JP2009250225A - Moving blade and axial flow blower using the same - Google Patents

Moving blade and axial flow blower using the same Download PDF

Info

Publication number
JP2009250225A
JP2009250225A JP2008103342A JP2008103342A JP2009250225A JP 2009250225 A JP2009250225 A JP 2009250225A JP 2008103342 A JP2008103342 A JP 2008103342A JP 2008103342 A JP2008103342 A JP 2008103342A JP 2009250225 A JP2009250225 A JP 2009250225A
Authority
JP
Japan
Prior art keywords
shape
edge
leading edge
trailing edge
moving blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008103342A
Other languages
Japanese (ja)
Inventor
Susumu Murayama
将 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008103342A priority Critical patent/JP2009250225A/en
Publication of JP2009250225A publication Critical patent/JP2009250225A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axial flow blower capable of blowing air in both of normal/reverse directions to achieve efficient air blowing. <P>SOLUTION: A blade cross section has a basic shape in which a blade cross sectional shape is provided, the skeleton line warps to a negative pressure surface side, the vertex position exists up to 50% in relation to a blade chord length from a front edge, the front edge has a circular-arc shape, thickness is gradually increased from the front edge, maximum thickness is provided at a vertex of warpage and the thickness is gradually thinned toward a rear edge. The skeleton line has a shape warping to a positive pressure surface side on the front edge side in the vicinity of a rear edge. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車道路トンネルの天井に設置され、噴流による圧力上昇によりトンネル内を換気する軸流送風機に関する。   The present invention relates to an axial blower that is installed on a ceiling of an automobile road tunnel and ventilates the inside of the tunnel by a pressure increase caused by a jet.

従来の軸流送風機の構成を図8〜11に示す。   The structure of the conventional axial blower is shown in FIGS.

図8に示す軸流送風機は、筒状ケーシング101内にモータ102が内装され、このモータ102の軸に羽根車103が取り付けられている。図8の場合、モータ102は片軸モータであり、羽根車103は1段取り付けられたものである。図9の場合、モータ102は両軸モータであり、それぞれの軸に羽根車103a、103bを取り付けることにより2段構成の羽根車となっている(特許文献1)。   In the axial blower shown in FIG. 8, a motor 102 is housed in a cylindrical casing 101, and an impeller 103 is attached to the shaft of the motor 102. In the case of FIG. 8, the motor 102 is a single-axis motor, and the impeller 103 is one-stage mounted. In the case of FIG. 9, the motor 102 is a double-axis motor, and the impeller has a two-stage configuration by attaching impellers 103 a and 103 b to the respective shafts (Patent Document 1).

このタイプの軸流送風機は、正方向および逆方向に同性能であることが要求される場合が多い。図10は、従来の1段羽根の軸流送風機にて正方向・逆方向双方に対し同性能である動翼の断面形状例を示す。動翼201はその翼型を動翼の腹側202aと背側202bの座標が、動翼の重心203に対し点対称な位置にある点対称翼型としている。図8は前記動翼201を軸流送風機に取り付けた状態を示す概略図で、羽根車103には動翼201を放射状に取り付けている。動翼201は点対称であるので、モータ102の回転方向を切り替えることにより、正方向・逆方向双方に対し同性能を達成することが可能である。また、図11は、従来の2段羽根の軸流送風機にて正方向・逆方向双方に対し同性能である動翼の断面形状例を示す。動翼211a、211bは正圧面212aおよび負圧面212bを有する、いわゆる翼型断面形状である。図9は前記羽根車103a、103bを軸流送風機に取り付けた状態を示す概略図で、羽根車103a、103bには動翼211a、211bを放射状に取り付けている。動翼211a、211bは、それぞれ同一枚数であり、しかも取付角度はそれぞれ180度異なるので、モータ102の回転方向を切り替えることにより、正方向・逆方向双方に対し同性能を達成することが可能である。
特開平9−287594号公報 特許第2997257号公報
This type of axial blower is often required to have the same performance in the forward and reverse directions. FIG. 10 shows an example of a cross-sectional shape of a moving blade having the same performance in both the forward direction and the reverse direction in a conventional one-stage blade axial fan. The moving blade 201 is a point-symmetric airfoil in which the coordinates of the abdominal side 202a and the back side 202b of the moving blade are point-symmetric with respect to the center of gravity 203 of the moving blade. FIG. 8 is a schematic view showing a state in which the moving blades 201 are attached to an axial blower. The moving blades 201 are attached radially to the impeller 103. Since the moving blade 201 is point-symmetric, by switching the rotation direction of the motor 102, it is possible to achieve the same performance in both the forward direction and the reverse direction. FIG. 11 shows an example of a cross-sectional shape of a moving blade having the same performance in both the forward and reverse directions in a conventional two-stage blade axial fan. The rotor blades 211a and 211b have a so-called airfoil cross-sectional shape having a pressure surface 212a and a suction surface 212b. FIG. 9 is a schematic view showing a state in which the impellers 103a and 103b are attached to an axial blower, and moving blades 211a and 211b are radially attached to the impellers 103a and 103b. Since the moving blades 211a and 211b have the same number and the mounting angles are different by 180 degrees, it is possible to achieve the same performance in both the forward direction and the reverse direction by switching the rotation direction of the motor 102. is there.
JP-A-9-287594 Japanese Patent No. 2997257

図9、図11に示すような、2段の羽根車を設けた軸流送風機では、風向に対して上流側の動翼による仕事を効率よくさせるように動翼の形状が設計され、下流側の動翼は効率のよい回転方向とは逆方向に回転することになる。従って、下流側の動翼(2段目の動翼)は風量を生み出す補助的役割は果たすが、送風機効率の低下を引き起こす原因となっている。   In the axial blower provided with the two-stage impeller as shown in FIG. 9 and FIG. 11, the shape of the moving blade is designed so that the work by the moving blade on the upstream side with respect to the wind direction is efficiently performed, and the downstream side The rotor blades rotate in the direction opposite to the efficient rotation direction. Therefore, the moving blades on the downstream side (second-stage moving blades) play an auxiliary role in generating the air volume, but cause a decrease in blower efficiency.

また、図8、図10に示すような、1段の羽根車を設け、その動翼の断面形状が重心に対して点対称となっている軸流送風機では、正転・逆転に関わらず同じ性能を有する。しかし、翼形断面形状と比較して揚抗比が良い形状を見出すのは困難である。   In addition, in an axial blower in which a single-stage impeller as shown in FIGS. 8 and 10 is provided and the cross-sectional shape of the moving blade is point-symmetric with respect to the center of gravity is the same regardless of whether it is forward or reverse. Has performance. However, it is difficult to find a shape with a good lift-drag ratio compared to the airfoil cross-sectional shape.

本発明は、上記課題を解決し、正転・逆転両方向に効率よく送風する軸流送風機を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide an axial fan that efficiently blows air in both the forward and reverse directions.

上記課題を解決するために、請求項1記載の本発明の軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っている形状であることを特徴とするものである。   In order to solve the above-mentioned problem, the moving blade of the axial blower of the present invention according to claim 1 has an airfoil cross-sectional shape, its skeleton line is warped on the suction surface side, and its apex position is a leading edge. More than 50% of the chord length, the leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually toward the trailing edge In the airfoil cross section of the basic shape with a reduced thickness, the skeleton line is warped to the pressure surface side on the front edge side in the vicinity of the rear edge.

請求項2記載の本発明の軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の正圧面側に円弧形状の凸部を有する形状であることを特徴とするものである。   The rotor blade of the axial flow fan of the present invention according to claim 2 has an airfoil cross-sectional shape, its skeleton line is warped toward the suction surface side, and its apex position is 50 with respect to the chord length from the leading edge. %, The leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section, the airfoil section has a shape having an arc-shaped convex portion on the pressure surface side near the trailing edge.

請求項3記載の本発明の軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の負圧面側に円弧形状の凸部を有する形状であることを特徴とするものである。   The moving blade of the axial blower of the present invention according to claim 3 has an airfoil cross-sectional shape, its skeleton line is warped toward the suction surface side, and its apex position is 50 with respect to the chord length from the leading edge. %, The leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section, the airfoil has a shape having an arc-shaped convex portion on the suction surface side near the trailing edge.

請求項4記載の本発明の軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の正圧面側と負圧面側の両側に円弧形状の凸部を有する形状であることを特徴とするものである。   The moving blade of the axial blower of the present invention according to claim 4 has an airfoil cross-sectional shape, its skeleton line is warped toward the suction side, and its apex position is 50 with respect to the chord length from the leading edge. %, The leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section, the airfoil section has a shape having arc-shaped convex portions on both the pressure surface side and the suction surface side near the trailing edge.

請求項5記載の本発明の軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の正圧面側に円弧形状の凸部を有する形状であることを特徴とするものである。   The moving blade of the axial blower of the present invention according to claim 5 has an airfoil cross-sectional shape, its skeleton line is warped toward the suction surface side, and its apex position is 50 with respect to the chord length from the leading edge. %, The leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section, the skeleton line is warped on the pressure surface side on the front edge side in the vicinity of the trailing edge, and has a shape having an arc-shaped convex portion on the pressure surface side in the vicinity of the trailing edge. .

請求項6記載の本発明の軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の負圧面側に円弧形状の凸部を有する形状であることを特徴とするものである。   The moving blade of the axial flow fan of the present invention according to claim 6 has an airfoil cross-sectional shape, the skeleton line is warped toward the suction surface side, and the apex position is 50 with respect to the chord length from the leading edge. %, The leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section, the skeleton line is warped on the pressure surface side on the front edge side in the vicinity of the trailing edge, and has a shape having an arc-shaped convex portion on the suction surface side in the vicinity of the trailing edge. .

請求項7記載の本発明の軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の正圧面側と負圧面側の両側に円弧形状の凸部を有する形状であることを特徴とするものである。   The moving blade of the axial blower of the present invention according to claim 7 has an airfoil cross-sectional shape, its skeleton line is warped toward the suction surface side, and its apex position is 50 with respect to the chord length from the leading edge. %, The leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section, the skeleton line is warped on the pressure surface side on the front edge side near the trailing edge, and the shape has arcuate convex portions on both the pressure surface side and suction surface side near the trailing edge. It is a feature.

請求項8記載の本発明の軸流送風機は、正転・逆転が可能な電動機で駆動され、請求項1〜7いずれかに記載の動翼を有する羽根車を1段備え、羽根車の回転方向を切り替えることにより正方向および逆方向に送風可能であることを特徴とするものである。   An axial blower according to an eighth aspect of the present invention is driven by an electric motor capable of normal rotation and reverse rotation, and includes one stage of an impeller having a moving blade according to any one of the first to seventh aspects. By switching the direction, it is possible to blow in the forward direction and the reverse direction.

請求項9記載の本発明の軸流送風機は、正転・逆転が可能な電動機で駆動され、請求項1〜7いずれかに記載の動翼を有する羽根車を2段備え、そのそれぞれの羽根車の動翼は後縁が互いに向き合うように取り付け、回転方向を切り替えることにより正方向および逆方向に送風可能であることを特徴とするものである。   The axial flow fan of the present invention according to claim 9 is driven by an electric motor capable of normal rotation and reverse rotation, and includes two stages of impellers having moving blades according to any one of claims 1 to 7, each blade of which The moving blades of the vehicle are attached so that the rear edges face each other, and can be blown in the forward direction and the reverse direction by switching the rotation direction.

請求項10記載の本発明の軸流送風機は、正転・逆転が可能な電動機で駆動され、請求項1〜7いずれかに記載の動翼を有する羽根車を2段備え、その動翼は全て同形状であり、それぞれの羽根車に取り付けた動翼の取付角度が180度異なり、羽根車の回転方向を切り替えることにより正方向および逆方向に同性能の送風が可能であることを特徴とするものである。   An axial fan according to a tenth aspect of the present invention is driven by an electric motor capable of normal rotation and reverse rotation, and includes two stages of impellers having the moving blade according to any one of claims 1 to 7, and the moving blade is All have the same shape, the mounting angle of the moving blades attached to each impeller is 180 degrees different, and it is possible to blow with the same performance in the forward direction and the reverse direction by switching the rotation direction of the impeller To do.

本発明によれば、正・逆両方向の送風が必要である軸流送風機において、効率の良い送風を実現することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to implement | achieve efficient ventilation in the axial flow fan which needs ventilation of the forward / reverse direction.

本発明の第1の実施の形態による軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っている形状であることを特徴とするものである。本実施の形態によれば、正転時には前縁より適切な迎え角にて流れを流入させることが出来るので、揚力が大きくかつ抗力が小さい、つまり揚抗比が良い動翼を提供できる。一方逆転時には、後縁より流れが流入することになるが、後縁近傍の前縁側において骨格線が正転時の正圧面側に反っている形状になっているので、逆転時の揚力係数を改善することが出来る。また、その反りは後縁近傍のみであるので、正転における性能の低下を極力抑えることが出来る。   The rotor blade of the axial flow fan according to the first embodiment of the present invention has an airfoil cross-sectional shape, and its skeleton line is warped toward the suction side, and its apex position is relative to the chord length from the leading edge. Basically, the leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section of the shape, the skeleton line is warped to the pressure surface side on the front edge side in the vicinity of the rear edge. According to the present embodiment, since the flow can flow at an appropriate angle of attack from the leading edge during forward rotation, it is possible to provide a moving blade having a high lift and a low drag, that is, a good lift-drag ratio. On the other hand, at the time of reverse rotation, the flow will flow from the rear edge, but since the skeleton line is warped on the pressure side at the time of forward rotation on the front edge side near the rear edge, the lift coefficient at the time of reverse rotation is It can be improved. In addition, since the warpage is only in the vicinity of the trailing edge, it is possible to suppress performance degradation during forward rotation as much as possible.

本発明の第2の実施の形態による軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の正圧面側に円弧形状の凸部を有する形状であることを特徴とするものである。本実施の形態によれば、逆転時には、後縁より流れが流入することになるが、後縁近傍の正圧面側に円弧形状の凸部を有する形状になっているので、逆転時に迎え角が比較的小さい場合に後縁からの流れの流入がスムースになり、揚力係数を改善することが出来る。また、その凸部は後縁近傍のみであるので、正転における性能の低下を極力抑えることが出来る。   The rotor blade of the axial blower according to the second embodiment of the present invention has an airfoil cross-sectional shape, its skeleton line is warped toward the suction side, and its apex position is relative to the chord length from the leading edge. Basically, the leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section having a shape, the airfoil section has a shape having an arc-shaped convex portion on the pressure surface side near the trailing edge. According to the present embodiment, at the time of reverse rotation, the flow flows from the rear edge, but since the shape has an arc-shaped convex part on the pressure surface side near the rear edge, the angle of attack at the time of reverse rotation is When it is relatively small, the flow inflow from the trailing edge becomes smooth, and the lift coefficient can be improved. Moreover, since the convex part is only in the vicinity of the trailing edge, it is possible to suppress a decrease in performance during normal rotation as much as possible.

本発明の第3の実施の形態による軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の負圧面側に円弧形状の凸部を有する形状であることを特徴とするものである。本実施の形態によれば、逆転時には、後縁より流れが流入することになるが、後縁近傍の負圧面側に円弧形状の凸部を有する形状になっているので、逆転時に迎え角が比較的大きい場合に後縁からの流れの流入がスムースになり、揚力係数を改善することが出来る。また、その凸部は後縁近傍のみであるので、正転における性能の低下を極力抑えることが出来る。   The rotor blade of the axial flow fan according to the third embodiment of the present invention has an airfoil cross-sectional shape, and its skeleton line is warped toward the suction surface side, and its apex position is relative to the chord length from the leading edge. Basically, the leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. The shape of the airfoil cross-section has a shape having an arc-shaped convex portion on the suction surface side near the trailing edge. According to this embodiment, at the time of reverse rotation, the flow flows from the trailing edge, but since the shape has an arc-shaped convex part on the suction surface side near the trailing edge, the angle of attack at the time of reverse rotation is When it is relatively large, the flow inflow from the trailing edge becomes smooth, and the lift coefficient can be improved. Moreover, since the convex part is only in the vicinity of the trailing edge, it is possible to suppress a decrease in performance during normal rotation as much as possible.

本発明の第4の実施の形態による軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の正圧面側と負圧面側の両側に円弧形状の凸部を有する形状であることを特徴とするものである。本実施の形態によれば、逆転時には、後縁より流れが流入することになるが、後縁近傍の正圧面側と負圧面側の両側に円弧形状の凸部を有する形状になっているので、逆転時に迎え角が大きくても小さくても後縁からの流れの流入がスムースになり、揚力係数を改善することが出来る。また、その凸部は後縁近傍のみであるので、正転における性能の低下を極力抑えることが出来る。   The rotor blade of the axial flow fan according to the fourth embodiment of the present invention has an airfoil cross-sectional shape, and its skeleton line is warped toward the suction side, and its apex position is relative to the chord length from the leading edge. Basically, the leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section having a shape, the airfoil section has a shape having arc-shaped convex portions on both the pressure surface side and the suction surface side near the trailing edge. According to the present embodiment, at the time of reverse rotation, the flow flows from the rear edge, but since the shape has arcuate convex portions on both the pressure surface side and the suction surface side near the rear edge, Even if the angle of attack is large or small at the time of reverse rotation, the inflow of the flow from the trailing edge becomes smooth, and the lift coefficient can be improved. Moreover, since the convex part is only in the vicinity of the trailing edge, it is possible to suppress a decrease in performance during normal rotation as much as possible.

本発明の第5の実施の形態による軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の正圧面側に円弧形状の凸部を有する形状であることを特徴とするものである。本実施の形態によれば、逆転時には、後縁より流れが流入することになるが、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の正圧面側に円弧形状の凸部を有する形状になっているので、逆転時に迎え角が比較的小さい場合に後縁からの流れの流入がスムースになり、揚力係数を改善することが出来る。また、その反りおよび凸部は後縁近傍のみであるので、正転における性能の低下を極力抑えることが出来る。   The rotor blade of the axial flow fan according to the fifth embodiment of the present invention has an airfoil cross-sectional shape, and its skeleton line is warped toward the suction side, and its apex position is relative to the chord length from the leading edge. Basically, the leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the shape of the airfoil section, the skeleton line is warped on the pressure surface side on the front edge side in the vicinity of the rear edge, and the shape has an arc-shaped convex part on the pressure surface side in the vicinity of the rear edge It is. According to the present embodiment, at the time of reverse rotation, the flow flows from the rear edge, but the skeleton line is warped on the pressure surface side on the front edge side near the rear edge, and on the pressure surface side near the rear edge. Since it has a shape having an arc-shaped convex portion, when the angle of attack is relatively small during reverse rotation, the flow inflow from the trailing edge becomes smooth and the lift coefficient can be improved. Moreover, since the curvature and the convex part are only in the vicinity of the trailing edge, it is possible to suppress a decrease in performance in forward rotation as much as possible.

本発明の第6の実施の形態による軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の負圧面側に円弧形状の凸部を有する形状であることを特徴とするものである。本実施の形態によれば、逆転時には、後縁より流れが流入することになるが、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の負圧面側に円弧形状の凸部を有する形状になっているので、逆転時に迎え角が比較的大きい場合に後縁からの流れの流入がスムースになり、揚力係数を改善することが出来る。また、その反りおよび凸部は後縁近傍のみであるので、正転における性能の低下を極力抑えることが出来る。   The rotor blade of the axial flow fan according to the sixth embodiment of the present invention has an airfoil cross-sectional shape, its skeleton line is warped toward the suction surface side, and its apex position is relative to the chord length from the leading edge. Basically, the leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the shape of the airfoil section, the skeleton line is warped on the pressure surface side on the front edge side in the vicinity of the rear edge, and the shape has an arc-shaped convex part on the suction surface side in the vicinity of the rear edge It is. According to the present embodiment, at the time of reverse rotation, the flow flows from the rear edge, but the skeleton line is warped on the pressure surface side on the front edge side near the rear edge, and on the suction surface side near the rear edge. Since it has a shape having an arc-shaped convex portion, when the angle of attack is relatively large at the time of reverse rotation, the inflow of the flow from the trailing edge becomes smooth, and the lift coefficient can be improved. Moreover, since the curvature and the convex part are only in the vicinity of the trailing edge, it is possible to suppress a decrease in performance in forward rotation as much as possible.

本発明の第7の実施の形態による軸流送風機の動翼は、翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の正圧面側と負圧面側の両側に円弧形状の凸部を有する形状であることを特徴とするものである。本実施の形態によれば、逆転時には、後縁より流れが流入することになるが、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の正圧面側と負圧面側の両側に円弧形状の凸部を有する形状になっているので、逆転時に迎え角が大きくても小さくても後縁からの流れの流入がスムースになり、揚力係数を改善することが出来る。また、その反りおよび凸部は後縁近傍のみであるので、正転における性能の低下を極力抑えることが出来る。   The rotor blade of the axial flow fan according to the seventh embodiment of the present invention has an airfoil cross-sectional shape, and its skeleton line is warped toward the suction side, and its apex position is relative to the chord length from the leading edge. Basically, the leading edge has an arc shape, the thickness gradually increases from the leading edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the airfoil cross section of the shape, the skeleton line is warped to the pressure surface side on the front edge side near the trailing edge, and the shape has arcuate convex portions on both the pressure surface side and the suction surface side near the trailing edge. It is characterized by this. According to the present embodiment, at the time of reverse rotation, the flow flows in from the rear edge, but the skeleton line is warped on the pressure surface side on the front edge side near the rear edge, and the pressure surface side near the rear edge and Since it has a shape with arc-shaped convex portions on both sides of the suction surface side, flow inflow from the trailing edge is smooth even when the angle of attack is large or small during reverse rotation, and the lift coefficient can be improved. I can do it. Moreover, since the curvature and the convex part are only in the vicinity of the trailing edge, it is possible to suppress a decrease in performance in forward rotation as much as possible.

本発明の第8の実施の形態による軸流送風機は、正転・逆転が可能な電動機で駆動され、請求項1〜7いずれかに記載の動翼を有する羽根車を1段備え、羽根車の回転方向を切り替えることにより正方向および逆方向に送風可能であることを特徴とするものである。本実施の形態によれば、正転時は揚抗比が良い動翼の軸流送風機を提供することができ、かつ前述の第1〜7の実施例で記載したように逆転時の揚力係数を改善した軸流送風機を提供することが出来る。   An axial blower according to an eighth embodiment of the present invention is driven by an electric motor capable of normal rotation and reverse rotation, and has one stage of an impeller having moving blades according to any one of claims 1 to 7, By switching the rotation direction, it is possible to blow air in the forward direction and the reverse direction. According to the present embodiment, it is possible to provide an axial-flow fan of a moving blade having a good lift-drag ratio during normal rotation, and as described in the first to seventh embodiments, the lift coefficient during reverse rotation It is possible to provide an axial blower that improves the above.

本発明の第9の実施の形態による軸流送風機は、正転・逆転が可能な電動機で駆動され、請求項1〜7いずれかに記載の動翼を有する羽根車を2段備え、そのそれぞれの羽根車の動翼は後縁が互いに向き合うように取り付け、回転方向を切り替えることにより正方向および逆方向に送風可能であることを特徴とするものである。本実施の形態によれば、1段目の羽根車の動翼は揚抗比が良いレイアウトであり、2段目の羽根車は後縁から流れが流入することになるが、前述の第1〜7の実施例で記載したように後縁から流入する場合であっても揚力係数を改善した軸流送風機を提供することが出来る。また、正方向であっても逆方向であっても同様の効果を得ることが出来る。   An axial blower according to a ninth embodiment of the present invention is driven by an electric motor capable of normal rotation and reverse rotation, and includes two stages of impellers having moving blades according to any one of claims 1 to 7, each of which The impeller blades are attached so that their rear edges face each other, and can be blown in the forward direction and the reverse direction by switching the rotation direction. According to the present embodiment, the moving blade of the first stage impeller has a good lift-drag ratio, and the second stage impeller flows from the trailing edge. Even if it is a case where it flows in from a rear edge as described in the Example of -7, the axial-flow fan which improved the lift coefficient can be provided. Moreover, the same effect can be acquired even if it is a forward direction or a reverse direction.

本発明の第10の実施の形態による軸流送風機は、正転・逆転が可能な電動機で駆動され、請求項1〜7いずれかに記載の動翼を有する羽根車を2段備え、その動翼は全て同形状であり、それぞれの羽根車に取り付けた動翼の取付角度が180度異なり、羽根車の回転方向を切り替えることにより正方向および逆方向に同性能の送風が可能であることを特徴とするものである。本実施の形態によれば、1段目の羽根車の動翼は揚抗比が良いレイアウトであり、2段目の羽根車は後縁から流れが流入することになるが、前述の第1〜7の実施例で記載したように後縁から流入する場合であっても揚力係数を改善した軸流送風機を提供することが出来る。また、また、正転であっても逆転であっても同様の効果を得ることが出来、しかも、1段目と2段目の動翼の取り付け角度は180度異なっているので、正方向・逆方向いずれも同性能である軸流送風機を提供することが出来る。   An axial blower according to a tenth embodiment of the present invention is driven by an electric motor capable of normal rotation and reverse rotation, and has two stages of impellers having moving blades according to any one of claims 1 to 7, All the blades have the same shape, the mounting angle of the moving blades attached to each impeller is 180 degrees different, and it is possible to blow the same performance in the forward direction and the reverse direction by switching the rotation direction of the impeller. It is a feature. According to the present embodiment, the moving blade of the first stage impeller has a good lift-drag ratio, and the second stage impeller flows from the trailing edge. Even if it is a case where it flows in from a rear edge as described in the Example of -7, the axial-flow fan which improved the lift coefficient can be provided. In addition, the same effect can be obtained regardless of whether it is forward rotation or reverse rotation, and the mounting angle of the first and second stage blades is 180 degrees different. An axial blower having the same performance in all the reverse directions can be provided.

以下、本発明の実施例について図を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
図1に本発明の第1実施例の動翼を示す。図1は2段羽根の軸流送風機の場合であり、動翼1a(図1 a−1)は1段目、動翼1b(図1 b−1)は2段目の羽根車の動翼である。図中には速度三角形(風速ベクトル図。図1 a−2,b−2)も合わせて記載する。1段目の動翼1aの入口(前縁)および出口(後縁)での風速ベクトルはそれぞれC1、C2である。図中のuは羽根車の周速ベクトルである。また、w1、w2は動翼1aの入口および出口での相対速度ベクトル、w∞1はw1、w2のベクトル平均である。軸流送風機の動翼の評価をする場合、w∞1の一様な流れが静止している動翼1aに当たると仮定するのが一般的である。また、2段目の動翼1bの場合、入口(後縁)および出口(前縁)での風速ベクトルはそれぞれC2、C3であり、入口および出口での相対速度ベクトルはそれぞれw2、w3である。w∞2はw2、w3のベクトル平均である。
Example 1
FIG. 1 shows a moving blade according to a first embodiment of the present invention. FIG. 1 shows a case of an axial blower having two-stage blades, where the moving blade 1a (FIG. 1a-1) is the first stage, and the moving blade 1b (FIG. 1b-1) is the moving blade of the second-stage impeller. It is. In the figure, a speed triangle (wind velocity vector diagram; FIGS. 1 a-2 and b-2) is also shown. The wind velocity vectors at the inlet (front edge) and the outlet (rear edge) of the first stage blade 1a are C1 and C2, respectively. In the figure, u is a peripheral speed vector of the impeller. Further, w1 and w2 are relative velocity vectors at the inlet and outlet of the moving blade 1a, and w∞1 is a vector average of w1 and w2. When evaluating a rotor blade of an axial-flow fan, it is generally assumed that a uniform flow of w∞1 hits a stationary blade 1a. In the case of the second stage moving blade 1b, the wind velocity vectors at the inlet (rear edge) and the outlet (front edge) are C2 and C3, respectively, and the relative velocity vectors at the inlet and outlet are w2 and w3, respectively. . w∞2 is a vector average of w2 and w3.

図1に示すように、動翼1a、1bの骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる、いわゆる翼型断面形状を基本形状として有する。その後縁の近傍において、骨格線が正圧面側に反っている。図11は、従来の2段羽根の軸流送風機の動翼である。前述のように動翼211a、211bはいわゆる翼型断面形状であり、図1と異なり後縁の骨格線は正圧面側に反っていない。   As shown in FIG. 1, the skeleton lines of the rotor blades 1a and 1b are warped to the suction surface side, the apex positions thereof exist up to 50% of the chord length from the leading edge, and the leading edge has an arc shape. It has a so-called airfoil cross-sectional shape as a basic shape that gradually increases from the leading edge, has a maximum thickness at the top of the warp, and gradually decreases toward the trailing edge. In the vicinity of the rear edge, the skeleton line is warped to the pressure surface side. FIG. 11 shows a moving blade of a conventional two-stage blade axial fan. As described above, the rotor blades 211a and 211b have a so-called airfoil cross-sectional shape, and unlike FIG. 1, the skeleton line at the trailing edge does not warp on the pressure surface side.

1段目の動翼1aおよび動翼211aの入口には迎え角α1にて風速w∞1で流入する。入口(前縁)にて流れが正圧面2a、212aおよび負圧面2b、212bのそれぞれに分かれる。動翼1aは基本形状が翼断面形状であり、動翼211aはいわゆる翼断面形状であるので、正圧面側の風速よりも負圧面側の風速の方が相対的に早くなり、静圧の差が生じて、揚力が正圧面側から負圧面側に向けて発生し、羽根車が空気を押し出す。その後、2段目の動翼1b、211bの入口には迎え角α2にて風速w∞2で流入する。従来の動翼211bの場合の正圧面212dは1段目の動翼211aの負圧面212bと同形状となり、負圧面212cは1段目の動翼211aの正圧面212aになるので、1段目で発生した正圧面と負圧面の静圧差が発生しにくい。つまり、入口が翼型断面の後縁であり、負圧面212c側に反っているので、負圧面212cに流入した流れが剥離しやすく、効率よい送風ができない。一方、図1の場合、2段目の動翼1bの入口が負圧面2c側(1段目の動翼1aの正圧面2a側)に反っているので、負圧面2cへの流れがスムースになり、2段目の動翼1bでの送風の効率を改善することが出来る。また、動翼1a、1bの基本形状は翼型断面であるので、1段目の動翼1aの揚抗比を大きく損なうことはない。   The inlet of the first stage moving blade 1a and the moving blade 211a flows at the angle of attack α1 and the wind speed w∞1. At the inlet (front edge), the flow is divided into the pressure surfaces 2a and 212a and the suction surfaces 2b and 212b. Since the basic shape of the moving blade 1a is a blade cross-sectional shape and the moving blade 211a is a so-called blade cross-sectional shape, the wind speed on the suction surface side is relatively faster than the wind speed on the pressure surface side, and the difference in static pressure Is generated, lift is generated from the pressure side toward the suction side, and the impeller pushes out air. Thereafter, the air flows into the inlets of the second stage moving blades 1b and 211b at the angle of attack α2 at the wind speed w∞2. The pressure surface 212d in the case of the conventional blade 211b has the same shape as the suction surface 212b of the first stage blade 211a, and the suction surface 212c becomes the pressure surface 212a of the first stage blade 211a. The static pressure difference between the positive pressure surface and the negative pressure surface generated in step 1 is less likely to occur. That is, since the inlet is the trailing edge of the airfoil cross section and warps toward the negative pressure surface 212c, the flow that has flowed into the negative pressure surface 212c is easy to peel off and efficient ventilation cannot be performed. On the other hand, in the case of FIG. 1, the inlet of the second stage moving blade 1b is warped toward the suction surface 2c (the pressure surface 2a side of the first stage blade 1a), so the flow to the suction surface 2c is smooth. Thus, it is possible to improve the efficiency of air blowing by the second stage moving blade 1b. Moreover, since the basic shape of the moving blades 1a and 1b is an airfoil cross section, the lift-drag ratio of the first-stage moving blade 1a is not greatly impaired.

(実施例2)
図2に本発明の第2実施例の動翼を示す。図2は図1と同様に2段羽根の軸流送風機の場合であり、動翼1aは1段目、動翼1bは2段目の羽根車の動翼である。その動翼1a、1bは、第1の実施例と同様に、いわゆる翼型断面形状を基本形状として有する。そして、その後縁の近傍において、正圧面2a側に円弧形状の凸部を有する。
(Example 2)
FIG. 2 shows a moving blade of a second embodiment of the present invention. FIG. 2 shows the case of an axial flow fan with two-stage blades as in FIG. 1, where the moving blade 1a is the first-stage blade and the moving blade 1b is the moving blade of the second-stage impeller. The rotor blades 1a and 1b have a so-called airfoil cross-sectional shape as a basic shape, as in the first embodiment. And in the vicinity of the rear edge, it has an arc-shaped convex part on the pressure surface 2a side.

図11の従来の動翼211bの場合、前述のとおり、2段目の動翼211bの入口が翼型断面の後縁であり鋭利になっているので、流入時の損失が大きく、効率よい送風ができない。図2の場合、2段目の動翼1bの入口の負圧面2c側(1段目の動翼1aの正圧面2a側)に円弧形状の凸部を有するので、流入時の損失を抑制することが出来る。特に、本実施例の場合は、2段目の動翼1bの迎え角α2が比較的小さい場合に有効である。また、動翼1a、1bの基本形状は翼型断面であるので、1段目の動翼1aの揚抗比を大きく損なうことはない。   In the case of the conventional moving blade 211b of FIG. 11, since the inlet of the second-stage moving blade 211b is the trailing edge of the airfoil section and is sharp, as described above, the loss during inflow is large and efficient air blowing. I can't. In the case of FIG. 2, since there is an arc-shaped convex portion on the suction surface 2c side (the pressure surface 2a side of the first-stage moving blade 1a) of the inlet of the second-stage moving blade 1b, loss during inflow is suppressed. I can do it. In particular, this embodiment is effective when the angle of attack α2 of the second stage moving blade 1b is relatively small. Moreover, since the basic shape of the moving blades 1a and 1b is an airfoil cross section, the lift-drag ratio of the first-stage moving blade 1a is not greatly impaired.

(実施例3)
図3に本発明の第3実施例の動翼を示す。図3は図1と同様に2段羽根の軸流送風機の場合であり、動翼1aは1段目、動翼1bは2段目の羽根車の動翼である。その動翼1a、1bは、第1の実施例と同様に、いわゆる翼型断面形状を基本形状として有する。そして、その後縁の近傍において、負圧面2b側に円弧形状の凸部を有する。
(Example 3)
FIG. 3 shows a moving blade according to a third embodiment of the present invention. FIG. 3 shows the case of an axial flow fan with two-stage blades as in FIG. 1, where the moving blade 1a is the first-stage blade and the moving blade 1b is the moving blade of the second-stage impeller. The rotor blades 1a and 1b have a so-called airfoil cross-sectional shape as a basic shape, as in the first embodiment. And in the vicinity of the rear edge, it has an arc-shaped convex part on the suction surface 2b side.

図11の従来の動翼211bの場合、前述のとおり、2段目の動翼211bの入口が翼型断面の後縁であり鋭利になっているので、流入時の損失が大きく、効率よい送風ができない。図3の場合、2段目の動翼1bの入口の正圧面2d側(1段目の動翼1aの負圧面2b側)に円弧形状の凸部を有するので、流入時の損失を抑制することが出来る。特に、本実施例の場合は、2段目の動翼1bの迎え角α2が比較的大きい場合に有効である。また、動翼1a、1bの基本形状は翼型断面であるので、1段目の動翼1aの揚抗比を大きく損なうことはない。   In the case of the conventional moving blade 211b of FIG. 11, since the inlet of the second-stage moving blade 211b is the trailing edge of the airfoil section and is sharp, as described above, the loss during inflow is large and efficient air blowing. I can't. In the case of FIG. 3, since there is an arc-shaped convex portion on the pressure surface 2d side (the suction surface 2b side of the first stage blade 1a) of the inlet of the second stage blade 1b, the loss during inflow is suppressed. I can do it. In particular, this embodiment is effective when the angle of attack α2 of the second stage moving blade 1b is relatively large. Moreover, since the basic shape of the moving blades 1a and 1b is an airfoil cross section, the lift-drag ratio of the first-stage moving blade 1a is not greatly impaired.

(実施例4)
図4に本発明の第4実施例の動翼を示す。図4は図1と同様に2段羽根の軸流送風機の場合であり、動翼1aは1段目、動翼1bは2段目の羽根車の動翼である。その動翼1a、1bは、第1の実施例と同様に、いわゆる翼型断面形状を基本形状として有する。そして、その後縁の近傍において、正圧面2a側と負圧面2b側に円弧形状の凸部を有する。
Example 4
FIG. 4 shows a moving blade according to a fourth embodiment of the present invention. FIG. 4 shows the case of an axial blower having two-stage blades as in FIG. 1, where the moving blade 1a is the first-stage blade and the moving blade 1b is the moving blade of the second-stage impeller. The rotor blades 1a and 1b have a so-called airfoil cross-sectional shape as a basic shape, as in the first embodiment. And in the vicinity of the rear edge, it has an arc-shaped convex part on the pressure surface 2a side and the suction surface 2b side.

図11の従来の動翼211bの場合、前述のとおり、2段目の動翼211bの入口が翼型断面の後縁であり鋭利になっているので、流入時の損失が大きく、効率よい送風ができない。図4の場合、2段目の動翼1bの入口の正圧面2d側(1段目の動翼1aの負圧面2b側)と負圧面2c側(1段目の動翼1aの正圧面2a側)に円弧形状の凸部を有するので、流入時の損失を抑制することが出来る。特に、本実施例の場合は、2段目の動翼1bの迎え角α2が大きくても小さくても有効である。また、動翼1a、1bの基本形状は翼型断面であるので、1段目の動翼1aの揚抗比を大きく損なうことはない。   In the case of the conventional moving blade 211b of FIG. 11, since the inlet of the second-stage moving blade 211b is the trailing edge of the airfoil section and is sharp, as described above, the loss during inflow is large and efficient air blowing. I can't. In the case of FIG. 4, the pressure surface 2d side (the negative pressure surface 2b side of the first-stage moving blade 1a) and the negative pressure surface 2c side (the pressure surface 2a of the first-stage moving blade 1a) at the inlet of the second-stage moving blade 1b. (Side) has an arc-shaped convex portion, so that loss during inflow can be suppressed. In particular, in the present embodiment, it is effective whether the angle of attack α2 of the second stage blade 1b is large or small. Moreover, since the basic shape of the moving blades 1a and 1b is an airfoil cross section, the lift-drag ratio of the first-stage moving blade 1a is not greatly impaired.

(実施例5〜7)
図5、6、7に本発明の第5、6、7の実施例の動翼をそれぞれ示す。図5の場合は、第1および第2の実施例の両方の効果を得ることが出来る。図6の場合は、第1および第3の実施例の両方の効果を得ることが出来、図7の場合は、第1および第4の実施例の両方の効果を得ることが出来る。
(Examples 5-7)
5, 6 and 7 show the blades of the fifth, sixth and seventh embodiments of the present invention, respectively. In the case of FIG. 5, the effects of both the first and second embodiments can be obtained. In the case of FIG. 6, the effects of both the first and third embodiments can be obtained, and in the case of FIG. 7, the effects of both the first and fourth embodiments can be obtained.

また、第1から第7の実施例は2段の動翼について説明したが、1段の軸流送風機についても同様の効果が得られる。つまり、正転の送風性能を確保しつつ、逆転の送風性能をある程度確保することが可能な1段の軸流送風機を提供することが出来る。   In the first to seventh embodiments, the two-stage moving blade has been described. However, the same effect can be obtained with a single-stage axial blower. That is, it is possible to provide a one-stage axial flow fan that can ensure a certain degree of reverse blowing performance while ensuring normal blowing performance.

本発明は、正転時と逆転時の性能を必要とする送風機、ポンプなどに用いることが可能である。   The present invention can be used for a blower, a pump, or the like that requires performance during forward rotation and reverse rotation.

本発明の第1の実施例の動翼の断面図 ((a−1)1段目の動翼断面図、(a−2)同風速ベクトル図、(b−1)2段目の動翼断面図、(b−2)同風速ベクトル図、(c)A部拡大図)Sectional view of moving blade of first embodiment of the present invention ((a-1) First-stage moving blade sectional view, (a-2) Same wind velocity vector diagram, (b-1) Second-stage moving blade Sectional view, (b-2) Same wind speed vector diagram, (c) A part enlarged view) 本発明の第2の実施例の動翼の断面図 ((a−1)1段目の動翼断面図、(a−2)同風速ベクトル図、(b−1)2段目の動翼断面図、(b−2)同風速ベクトル図、(c)A部拡大図)Sectional view of moving blade of second embodiment of the present invention ((a-1) First-stage moving blade sectional view, (a-2) Same wind speed vector diagram, (b-1) Second-stage moving blade Sectional view, (b-2) Same wind speed vector diagram, (c) A part enlarged view) 本発明の第3の実施例の動翼の断面図 ((a−1)1段目の動翼断面図、(a−2)同風速ベクトル図、(b−1)2段目の動翼断面図、(b−2)同風速ベクトル図、(c)A部拡大図)Sectional view of moving blade of third embodiment of the present invention ((a-1) First-stage moving blade sectional view, (a-2) Same wind speed vector diagram, (b-1) Second-stage moving blade Sectional view, (b-2) Same wind speed vector diagram, (c) A part enlarged view) 本発明の第4の実施例の動翼の断面図 ((a−1)1段目の動翼断面図、(a−2)同風速ベクトル図、(b−1)2段目の動翼断面図、(b−2)同風速ベクトル図、(c)A部拡大図)Sectional view of moving blade of fourth embodiment of the present invention ((a-1) First-stage moving blade sectional view, (a-2) Same wind velocity vector diagram, (b-1) Second-stage moving blade Sectional view, (b-2) Same wind speed vector diagram, (c) A part enlarged view) 本発明の第5の実施例の動翼の断面図 ((a−1)1段目の動翼断面図、(a−2)同風速ベクトル図、(b−1)2段目の動翼断面図、(b−2)同風速ベクトル図、(c)A部拡大図)Sectional view of moving blade of fifth embodiment of the present invention ((a-1) First stage moving blade sectional view, (a-2) Same wind speed vector diagram, (b-1) Second stage moving blade Sectional view, (b-2) Same wind speed vector diagram, (c) A part enlarged view) 本発明の第6の実施例の動翼の断面図 ((a−1)1段目の動翼断面図、(a−2)同風速ベクトル図、(b−1)2段目の動翼断面図、(b−2)同風速ベクトル図、(c)A部拡大図)Sectional view of moving blade of sixth embodiment of the present invention ((a-1) First-stage moving blade sectional view, (a-2) Same wind speed vector diagram, (b-1) Second-stage moving blade Sectional view, (b-2) Same wind speed vector diagram, (c) A part enlarged view) 本発明の第7の実施例の動翼の断面図 ((a−1)1段目の動翼断面図、(a−2)同風速ベクトル図、(b−1)2段目の動翼断面図、(b−2)同風速ベクトル図、(c)A部拡大図)Sectional view of moving blade of seventh embodiment of the present invention ((a-1) First-stage moving blade sectional view, (a-2) Same wind speed vector diagram, (b-1) Second-stage moving blade Sectional view, (b-2) Same wind speed vector diagram, (c) A part enlarged view) 従来の1段の羽根車を用いた軸流送風機を示す図The figure which shows the axial-flow fan using the conventional 1 stage impeller. 従来の点対称の断面を持つ動翼の断面図Cross section of a conventional blade with a point-symmetric cross section 従来の2段の羽根車を用いた軸流送風機を示す図The figure which shows the axial-flow fan using the conventional 2-stage impeller 従来の2段の軸流送風機の動翼の断面図 ((a−1)1段目の動翼断面図、(a−2)同風速ベクトル図、(b−1)2段目の動翼断面図、(b−2)同風速ベクトル図、(c)A部拡大図)Sectional view of moving blade of conventional two-stage axial flow fan ((a-1) First-stage moving blade sectional view, (a-2) Same wind speed vector diagram, (b-1) Second-stage moving blade Sectional view, (b-2) Same wind speed vector diagram, (c) A part enlarged view)

符号の説明Explanation of symbols

1a 動翼(1段目)
1b 動翼(2段目)
2a (1段目動翼の)正圧面
2b (1段目動翼の)負圧面
2c (2段目動翼の)負圧面
2d (2段目動翼の)正圧面
101 筒状ケーシング
102 モータ
103 羽根車
103a、103b 羽根車
201 動翼
211a 動翼(1段目)
211b 動翼(2段目)
212a (1段目動翼の)正圧面
212b (1段目動翼の)負圧面
212c (2段目動翼の)負圧面
212d (2段目動翼の)正圧面
C1 (1段目動翼の入口での)風速ベクトル
C2 (1段目動翼の出口および2段目動翼の入口での)風速ベクトル
C3 (2段目動翼の出口での)風速ベクトル
w1 (1段目動翼の入口での)相対速度ベクトル
w2 (1段目動翼の出口および2段目動翼の入口での)相対速度ベクトル
w3 (2段目動翼の出口での)相対速度ベクトル
w∞1 (w1、w2の)ベクトル平均
w∞2 (w2、w3の)ベクトル平均
α1 (1段目動翼の)迎え角
α2 (2段目動翼の)迎え角
1a Rotor blade (first stage)
1b Rotor blade (second stage)
2a Pressure surface (of the first stage moving blade) 2b Negative pressure surface (of the first stage moving blade) 2c Negative pressure surface (of the second stage moving blade) 2d Pressure surface (of the second stage moving blade) 101 Cylindrical casing 102 Motor 103 impeller 103a, 103b impeller 201 moving blade 211a moving blade (first stage)
211b Rotor blade (second stage)
212a Pressure surface (of the first stage blade) 212b Vacuum surface (of the first stage blade) 212c Vacuum surface (of the second stage blade) 212d Pressure surface (of the second stage blade) C1 (First stage blade) Wind speed vector C2 (at the inlet of the first stage blade and at the inlet of the second stage blade) C3 (at the outlet of the second stage blade) Wind speed vector w1 (at the inlet of the second stage blade) Relative velocity vector w2 (at the blade inlet) w2 (at the outlet of the first stage blade and the inlet of the second stage blade) Relative velocity vector w3 (at the outlet of the second stage blade) w∞1 Vector average (for w1, w2) w∞2 Vector average (for w2, w3) α1 Angle of attack (for first stage blade) α2 Angle of attack (for second stage blade)

Claims (10)

翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っている形状であることを特徴とする軸流送風機の動翼。 It has an airfoil cross-sectional shape, its skeletal line warps to the suction side, its apex position exists up to 50% of the chord length from the leading edge, the leading edge has an arc shape, In the airfoil cross section of the basic shape that gradually increases in thickness from the edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge, the skeleton line is positive on the leading edge side near the trailing edge. A moving blade of an axial blower characterized by having a shape warped on the pressure side. 翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の正圧面側に円弧形状の凸部を有する形状であることを特徴とする軸流送風機の動翼。 It has an airfoil cross-sectional shape, its skeletal line warps to the suction side, its apex position exists up to 50% of the chord length from the leading edge, the leading edge has an arc shape, In the airfoil cross section of the basic shape where the thickness gradually increases from the edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge, the arc shape is formed on the pressure surface side near the trailing edge. A moving blade of an axial blower characterized by having a shape having a convex portion. 翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の負圧面側に円弧形状の凸部を有する形状であることを特徴とする軸流送風機の動翼。 It has an airfoil cross-sectional shape, its skeletal line warps to the suction side, its apex position exists up to 50% of the chord length from the leading edge, the leading edge has an arc shape, In the airfoil cross section of the basic shape, where the thickness gradually increases from the edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge, an arc shape is formed on the suction surface side near the trailing edge. A moving blade of an axial blower characterized by having a shape having a convex portion. 翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の正圧面側と負圧面側の両側に円弧形状の凸部を有する形状であることを特徴とする軸流送風機の動翼。 It has an airfoil cross-sectional shape, its skeletal line warps to the suction side, its apex position exists up to 50% of the chord length from the leading edge, the leading edge has an arc shape, In the airfoil cross section of the basic shape where the thickness gradually increases from the edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge, the pressure side and suction side near the trailing edge A rotor blade of an axial-flow fan, characterized in that it has a shape having arc-shaped convex portions on both sides of the fan. 翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の正圧面側に円弧形状の凸部を有する形状であることを特徴とする軸流送風機の動翼。 It has an airfoil cross-sectional shape, its skeletal line warps to the suction side, its apex position exists up to 50% of the chord length from the leading edge, the leading edge has an arc shape, In the airfoil cross section of the basic shape that gradually increases in thickness from the edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge, the skeleton line is positive on the leading edge side near the trailing edge. A moving blade of an axial-flow fan, characterized in that it is warped on the pressure surface side and has an arc-shaped convex portion on the pressure surface side near the trailing edge. 翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の負圧面側に円弧形状の凸部を有する形状であることを特徴とする軸流送風機の動翼。 It has an airfoil cross-sectional shape, its skeletal line warps to the suction side, its apex position exists up to 50% of the chord length from the leading edge, the leading edge has an arc shape, In the airfoil cross section of the basic shape that gradually increases in thickness from the edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge, the skeleton line is positive on the leading edge side near the trailing edge. A moving blade of an axial-flow fan, characterized in that it is warped on the pressure surface side and has an arc-shaped convex portion on the suction surface side near the trailing edge. 翼型断面形状を有し、その骨格線は負圧面側に反っており、その頂点位置は前縁より翼弦長に対して50%までに存在し、前縁は円弧形状を有し、前縁より徐々に厚みが増加し、反りの頂点で最大の厚みを有し、後縁に向けて徐々に厚みが薄くなる基本形状の翼型断面において、後縁近傍の前縁側において骨格線が正圧面側に反っており、かつ後縁近傍の正圧面側と負圧面側の両側に円弧形状の凸部を有する形状であることを特徴とする軸流送風機の動翼。 It has an airfoil cross-sectional shape, its skeletal line warps to the suction side, its apex position exists up to 50% of the chord length from the leading edge, the leading edge has an arc shape, In the airfoil cross section of the basic shape that gradually increases in thickness from the edge, has the maximum thickness at the top of the warp, and gradually decreases toward the trailing edge, the skeleton line is positive on the leading edge side near the trailing edge. A moving blade of an axial-flow fan, characterized in that it is warped on the pressure surface side and has arcuate convex portions on both the pressure surface side and the suction surface side near the trailing edge. 正転・逆転が可能な電動機で駆動され、請求項1〜7いずれかに記載の動翼を有する羽根車を1段備え、羽根車の回転方向を切り替えることにより正方向および逆方向に送風可能であることを特徴とした軸流送風機。 It is driven by an electric motor capable of normal rotation and reverse rotation, and has one stage of an impeller having a moving blade according to any one of claims 1 to 7, and can blow air in the forward direction and the reverse direction by switching the rotation direction of the impeller. An axial blower characterized by being. 正転・逆転が可能な電動機で駆動され、請求項1〜7いずれかに記載の動翼を有する羽根車を2段備え、そのそれぞれの羽根車の動翼は後縁が互いに向き合うように取り付け、回転方向を切り替えることにより正方向および逆方向に送風可能であることを特徴とした軸流送風機。 It is driven by an electric motor capable of normal rotation and reverse rotation, and has two stages of impellers having the moving blades according to any one of claims 1 to 7, and the moving blades of the respective impellers are attached so that the trailing edges face each other. An axial blower characterized in that it can blow in the forward and reverse directions by switching the rotation direction. 正転・逆転が可能な電動機で駆動され、請求項1〜7いずれかに記載の動翼を有する羽根車を2段備え、その動翼は全て同形状であり、それぞれの羽根車に取り付けた動翼の取付角度が180度異なり、羽根車の回転方向を切り替えることにより正方向および逆方向に同性能の送風が可能であることを特徴とした軸流送風機。 It is driven by an electric motor capable of normal rotation and reverse rotation, and has two stages of impellers having the moving blades according to any one of claims 1 to 7, all of the moving blades have the same shape and are attached to the respective impellers. An axial-flow blower characterized in that the attachment angle of the moving blades is different by 180 degrees, and the same performance can be blown in the forward direction and the reverse direction by switching the rotation direction of the impeller.
JP2008103342A 2008-04-11 2008-04-11 Moving blade and axial flow blower using the same Pending JP2009250225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103342A JP2009250225A (en) 2008-04-11 2008-04-11 Moving blade and axial flow blower using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103342A JP2009250225A (en) 2008-04-11 2008-04-11 Moving blade and axial flow blower using the same

Publications (1)

Publication Number Publication Date
JP2009250225A true JP2009250225A (en) 2009-10-29

Family

ID=41311163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103342A Pending JP2009250225A (en) 2008-04-11 2008-04-11 Moving blade and axial flow blower using the same

Country Status (1)

Country Link
JP (1) JP2009250225A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130076A (en) * 2011-12-20 2013-07-04 Minebea Co Ltd Impeller used for axial flow fan and axial flow fan using the same
JP2014001717A (en) * 2012-06-20 2014-01-09 Mitsubishi Electric Corp Air blower, outdoor unit and refrigeration cycle device
JP2014066204A (en) * 2012-09-26 2014-04-17 Minebea Co Ltd Axial fan
CN104632716A (en) * 2014-12-25 2015-05-20 江苏大学 Design method for novel bi-directional axial flow pump airfoil profile
US9551346B2 (en) 2013-06-07 2017-01-24 Nidec Corporation Serial axial fan
CN108180169A (en) * 2018-02-09 2018-06-19 广东美的厨房电器制造有限公司 Fan and micro-wave oven

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130076A (en) * 2011-12-20 2013-07-04 Minebea Co Ltd Impeller used for axial flow fan and axial flow fan using the same
US9435345B2 (en) 2011-12-20 2016-09-06 Minebea Co., Ltd. Impeller for axial flow fan and axial flow fan using the same
JP2014001717A (en) * 2012-06-20 2014-01-09 Mitsubishi Electric Corp Air blower, outdoor unit and refrigeration cycle device
JP2014066204A (en) * 2012-09-26 2014-04-17 Minebea Co Ltd Axial fan
US9551346B2 (en) 2013-06-07 2017-01-24 Nidec Corporation Serial axial fan
CN104632716A (en) * 2014-12-25 2015-05-20 江苏大学 Design method for novel bi-directional axial flow pump airfoil profile
CN108180169A (en) * 2018-02-09 2018-06-19 广东美的厨房电器制造有限公司 Fan and micro-wave oven

Similar Documents

Publication Publication Date Title
JP4501575B2 (en) Axial blower
US20080253897A1 (en) Axial Flow Fan
JP2009250225A (en) Moving blade and axial flow blower using the same
CN100494640C (en) Big and small blade tandem blade cascade impeller and compressor
JP3960776B2 (en) Blower impeller for air conditioning
JPWO2014162758A1 (en) Propeller fan, blower and outdoor unit
JP2007040116A (en) Axial fan
JP2002235695A (en) Turbo fan, blowing device using turbo fan and air conditioner
JP5145188B2 (en) Multiblade centrifugal fan and air conditioner using the same
JP2011185236A (en) Blower and heat pump device
CN110914553B (en) Impeller, blower and air conditioner
JP4727425B2 (en) Centrifugal impeller and clean system equipped with it
JP2009097430A (en) Axial blower
JP2003013892A (en) Blower and air conditioner with blower
JPH05296195A (en) Axial fan
WO2002090777A1 (en) Blower and air conditioner with the blower
JP2006214371A (en) Blower
JP2006200457A (en) Blower
JP4033843B2 (en) Axial blower
JP2010242665A (en) Blower impeller
JP4243105B2 (en) Impeller
JP3191516B2 (en) Electric blower impeller
JP2006105156A (en) Impeller, blower, and refrigerator
JP2001304185A (en) Blower impeller and air conditioner provided with the blower impeller
JPH11280696A (en) Propeller fan