JPH1089289A - Impeller for axial flow blower - Google Patents

Impeller for axial flow blower

Info

Publication number
JPH1089289A
JPH1089289A JP26533296A JP26533296A JPH1089289A JP H1089289 A JPH1089289 A JP H1089289A JP 26533296 A JP26533296 A JP 26533296A JP 26533296 A JP26533296 A JP 26533296A JP H1089289 A JPH1089289 A JP H1089289A
Authority
JP
Japan
Prior art keywords
center
impeller
hub
blade
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26533296A
Other languages
Japanese (ja)
Inventor
Taku Kawanishi
卓 川西
Hajime Yatsuhashi
元 八橋
Akiyoshi Suzuki
晃好 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP26533296A priority Critical patent/JPH1089289A/en
Publication of JPH1089289A publication Critical patent/JPH1089289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an impeller for an axial flow blower to reduce the generation of noise due to a wake in an upper stream spot and interference noise of a vane, remarkably improve the strength of a vane, reduce the thickness and the warp of the vane, and eliminate a need for reinforcement. SOLUTION: A ratio of a hub diameter D1 to the outside diameter D1 of an impeller is 30-40%, the center of a vane having an arbitrary diameter is situated on a circular arc or an n-degree curve to interconnect the center of the section of a vane at a hub 2 and the center of the section of the vane. As seen from the front of the impeller, an angle between a straight line to interconnect the center of a rotary shaft and the center of the vane 1 at the hub 2 and a straight line to interconnect the center of the rotary shaft and the center of the vane 1 having an impeller outside diameter is 50-55 deg.. The center of the vane 1 having an arbitrary diameter is situated on a straight line or a circular arc or an ndegree curve to interconnect the center of the vane 1 at the hub 2 and the center of the vane at the outside diameter Dt of the impeller on a meridian plane, and an angle between a straight line to interconnect the center of the vane at the hub 2 and the center of the vane 1 at the impeller outside diameter Dt and a perpendicular to the center of the rotary shaft is 7.5-12.5 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気調和機や換気扇
等に用いられる軸流送風機の羽根車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impeller of an axial blower used for an air conditioner, a ventilation fan and the like.

【0002】[0002]

【従来の技術】空気調和機の室外機や換気扇等に用いら
れている軸流送風機の羽根車は、快適性や社会環境の向
上のために低騒音化が要求されている。従来、この種の
羽根車においては、低騒音化を達成するために、羽根車
の翼素中心が気体の吸込み側に傾斜していると同時に、
回転方向へ前進した、いわゆる前傾、前進羽根車が採用
されている。
2. Description of the Related Art An impeller of an axial blower used for an outdoor unit of an air conditioner, a ventilation fan, and the like is required to reduce noise in order to improve comfort and social environment. Conventionally, in this type of impeller, in order to achieve low noise, at the same time as the blade element center of the impeller is inclined toward the gas suction side,
A so-called forward leaning, forward impeller that has advanced in the rotational direction is employed.

【0003】図12は、従来の前傾、前進羽根車の一例
を示す図であり、図12(a)は羽根車の一部を示す正
面図、図12(b)は羽根車の一部を示す子午面図であ
る。図12において、符号11は羽根車の翼、符号12
は翼11を取り付けるハブである。翼11の特徴とし
て、翼面が空間的にねじれながら、気体の吸込み側に大
きく前傾し、3次元的曲面形状を形成している。そし
て、前傾角(δZ)は12.5〜30°、前進角(δ
θ)は15〜35°で構成するものが低騒音であるとさ
れている(θは図中下付きで表示されている)。
FIG. 12 is a view showing an example of a conventional forwardly inclined, forward impeller. FIG. 12 (a) is a front view showing a part of the impeller, and FIG. 12 (b) is a part of the impeller. FIG. In FIG. 12, reference numeral 11 denotes an impeller wing, and reference numeral 12 denotes a blade.
Is a hub to which the wings 11 are attached. As a feature of the wing 11, the wing surface is greatly twisted forward to the gas suction side while being spatially twisted, forming a three-dimensional curved surface shape. The forward inclination angle (δ Z ) is 12.5 to 30 ° and the advance angle (δ Z )
(θ) is considered to have low noise when the angle is in the range of 15 to 35 ° (θ is indicated by subscript in the figure).

【0004】[0004]

【発明が解決しようとする課題】しかし、前傾角を1
2.5〜30°にすると、羽根車が軸方向に長くなり、
組み込む空調機や換気扇などが軸方向に大きくなったり
するなどの寸法上の問題がある。この軸方向に長い羽根
車を空調機など限られたスペースに組み込む場合には、
翼の先端がコイルやその他の配管類に接近し、それらの
後流と翼による干渉音が発生し、羽根車単体としては低
騒音であっても、上流側に後流を発生するものがある場
合に組み込んだ機器としては騒音が大きくなるという問
題点があった。そして、騒音を低減するために羽根車を
コイルなどから遠ざける分、機器が軸方向に大きくなる
という問題があった。
However, the forward inclination angle is set to 1
When it is set to 2.5 to 30 °, the impeller becomes longer in the axial direction,
There are dimensional problems, such as the size of the air conditioner and ventilation fan to be incorporated becoming larger in the axial direction. When incorporating this axially long impeller into a limited space such as an air conditioner,
The tip of the wing approaches coils and other piping, causing wake noise from the wake and the wings, and some impellers generate wake on the upstream side even with low noise. There is a problem that noise is increased as a device incorporated in such a case. In addition, there is a problem that the size of the device increases in the axial direction as much as the impeller is moved away from the coil or the like in order to reduce noise.

【0005】また前傾、前進した翼は羽根車のハブにお
ける翼断面の図心から回転軸におろした垂線上に翼の重
心がなく、前傾、前進した分偏心しているので、図13
に示すように、回転に伴って生ずる遠心力によってハブ
の翼断面に加わる曲げモーメントが大きくなり、遠心力
に対し強度が低下する。そのため、低速でしか運転で
きない、ハブの翼断面の厚みやそりを大きくしなけれ
ばならない、ハブの翼断面に補強が必要である、など
の問題点がある。そして、翼の厚みやそりを大きくする
ことは騒音の増大をまねくという問題点があった。また
図14に示すように翼11の基部に補強を行うと、補強
部分から発生する渦により騒音が増大するなどの問題が
あった。
[0005] Further, since the wing that has been tilted forward and advanced does not have the center of gravity of the wing on a vertical line drawn from the centroid of the wing cross section at the hub of the impeller to the rotation axis and is eccentric by the amount of forward tilt and advance, FIG.
As shown in (1), the bending moment applied to the wing section of the hub increases due to the centrifugal force generated by the rotation, and the strength decreases with respect to the centrifugal force. Therefore, there are problems such as operation at low speed, the need to increase the thickness and warpage of the hub blade section, and the need to reinforce the hub blade section. In addition, there is a problem that increasing the thickness and the warpage of the wing may increase noise. Further, when reinforcement is applied to the base of the wing 11 as shown in FIG. 14, there is a problem that noise is increased due to a vortex generated from the reinforcement portion.

【0006】本発明は上述の事情に鑑みなされたもの
で、機器に組み込む場合、上流側の後流と翼の干渉音に
よる騒音を低減できるか、又は従来と同一レベルの騒音
のまま機器を軸方向に小型化することができ、かつ翼の
強度が飛躍的に向上し、前進角を50°以上にしてもな
んら問題なく使用できるとともに、翼の厚みやそりを小
さくでき、補強も必要ない軸流送風機の羽根車を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and when incorporated into a device, the noise due to the interference between the wake and the blades on the upstream side can be reduced, or the device can be controlled with the same level of noise as before. Axles that can be downsized in the direction and the strength of the wings are dramatically improved, and can be used without any problem even when the advancing angle is 50 ° or more, and the thickness and warpage of the wings can be reduced and no reinforcement is required. An object of the present invention is to provide an impeller of a blower.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
め、本発明は、複数枚の翼と、これら翼を取り付けるハ
ブとを備えた軸流送風機の羽根車において、羽根車の外
径寸法に対しハブ径の比率が30〜40%で、羽根車を
正面から見て、ハブにおける翼の断面の中心と羽根車外
径における翼の断面の中心を結ぶ円弧またはn次曲線上
に任意の径の径における翼の中心があり、羽根車を正面
から見て、回転軸中心とハブにおける翼の中心を結ぶ直
線と、回転軸中心と羽根車外径における翼の中心を結ぶ
直線のなす角度を50〜55゜とし、羽根車を回転軸中
心を含む1平面上に投影した、いわゆる子午面におい
て、ハブにおける翼の中心と羽根車外径における翼の中
心を結ぶ直線または円弧またはn次曲線上に任意の径に
おける翼の中心があり、ハブにおける翼の中心と羽根車
外径における翼の中心を結ぶ直線と回転軸中心に対する
垂線のなす角度が7.5〜12.5°であることを特徴
とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention relates to an impeller of an axial flow blower having a plurality of blades and a hub to which the blades are attached, and an outer diameter of the impeller. When the impeller is viewed from the front and the center of the cross-section of the blade at the hub and the center of the cross-section of the blade at the outer diameter of the impeller are an arbitrary diameter on an arc or n-th order curve when the impeller is viewed from the front. When the impeller is viewed from the front, the angle between the straight line connecting the center of the rotation axis and the center of the blade at the hub and the straight line connecting the center of the rotation axis and the center of the blade at the outer diameter of the impeller is 50. In the so-called meridional plane, in which the impeller is projected on one plane including the center of the rotation axis, a straight line or an arc or an nth-order curve connecting the center of the blade at the hub and the center of the blade at the outer diameter of the impeller. The center of the wing at the diameter of , In which the angle of the normal to the straight line with the rotation axis center line connecting the centers of the blades at the center and the impeller outside diameter of the blade in the hub, characterized in that a 7.5 to 12.5 °.

【0008】[0008]

【発明の実施の形態】以下、本発明に係る軸流送風機の
羽根車の一実施例を図1乃至図11を参照してして説明
する。図1および図2は本発明の軸流送風機の羽根車の
基本構成を示す図であり、図1は羽根車の一部を示す正
面図、図2は羽根車の一部を示す子午面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an impeller of an axial blower according to the present invention will be described below with reference to FIGS. 1 and 2 are views showing a basic configuration of an impeller of an axial blower according to the present invention. FIG. 1 is a front view showing a part of the impeller, and FIG. 2 is a meridional view showing a part of the impeller. It is.

【0009】図1および図2において、符号1は羽根車
の翼であり、符号2は翼1を取り付けるハブである。羽
根車の外径Dtに対しハブ2の外径Dbの比率が30〜
40%に設定されている。即ち、Db=(0.3〜0.
4)×Dtに設定されている。前記翼1においては、図
1に示すように羽根車を正面から見て、ハブにおける翼
の断面の中心Oaと羽根車外径における翼の断面の中心
Obを結ぶ円弧またはn次曲線C上に任意の径における
翼の中心があり、羽根車を正面から見て、回転軸中心O
oとハブ2における翼の中心Oaを結ぶ直線L1と、回
転軸中心Ooと羽根車外径における翼の中心Obを結ぶ
直線L2のなす角度δθが50〜55°に設定されてい
る。又、翼の中心を結ぶ円弧またはn次曲線はハブにお
ける翼の断面の中心Oaと羽根車外径における翼断面の
中心Obを結ぶ直線に対して、回転方向と反対の方向へ
直線距離Oa〜Obの15〜25%膨らむように設定さ
れている。
1 and 2, reference numeral 1 denotes an impeller blade, and reference numeral 2 denotes a hub to which the blade 1 is attached. The ratio of the outer diameter Db of the hub 2 to the outer diameter Dt of the impeller is 30 to
It is set to 40%. That is, Db = (0.3-0.
4) It is set to × Dt. In the wing 1, as shown in FIG. 1, the impeller is viewed from the front, and an arbitrary arc or n-dimensional curve C connecting the center Oa of the wing cross section at the hub and the center Ob of the wing cross section at the outer diameter of the impeller is used. The center of the wing at the diameter of
the straight line L 1 connecting the center Oa of the blade in the o and the hub 2, an angle δθ of the straight line L 2 connecting the center Ob of the blade in the rotation axis center Oo and the impeller outside diameter is set to 50-55 °. An arc or an nth-order curve connecting the centers of the blades is a straight line distance Oa-Ob in a direction opposite to the rotation direction with respect to a straight line connecting the center Oa of the cross section of the blade at the hub and the center Ob of the blade cross section at the outer diameter of the impeller. Is set to swell by 15 to 25%.

【0010】また、図2に示すように、羽根車を回転軸
中心を含む1平面上に投影した、いわゆる子午面におい
てハブ2における翼1の中心Ocと羽根車外径における
翼の中心Odを結ぶ直線または円弧またはn次曲線上に
任意の径における翼の中心があり、ハブにおける翼の中
心Ocと羽根車外径における翼の中心Odを結ぶ直線L
3と回転軸中心Ooに対する垂線L4のなす角度δZ
7.5〜12.5°に設定されている。子午面における
任意の翼断面をOc,Odを結ぶ円弧またはn次曲線状
に配置する場合はOc,Odを結ぶ直線に対して流れ方
向の下流側の方向へ直線距離Oc〜Odの0〜10%膨
らむように設定されている。
As shown in FIG. 2, the center Oc of the wing 1 in the hub 2 and the center Od of the wing in the outer diameter of the impeller are connected on a so-called meridional plane in which the impeller is projected on one plane including the center of the rotation axis. A straight line, an arc or an n-order curve has the center of the blade at an arbitrary diameter, and a straight line L connecting the center Oc of the blade at the hub and the center Od of the blade at the outer diameter of the impeller.
3 and the angle [delta] Z of a perpendicular line L 4 relative to the rotation axis center Oo is set to 7.5 to 12.5 °. When an arbitrary blade section in the meridian plane is arranged in an arc or an nth-order curve connecting Oc and Od, a linear distance Oc to Od of 0 to 10 in the downstream direction in the flow direction with respect to the straight line connecting Oc and Od. % Is set to swell.

【0011】図3および図4は、本発明の羽根車の翼の
形状を示す図であり、図3は翼およびハブの斜視図、図
4は翼のハブの円筒面の平面への等角写像図である。図
3および図4に示すように、本発明の翼においては、任
意の径における翼の断面の重心A,B,C,Dから回転
軸中心Ooにおろした垂線La,Lb,Lc,Ldとハ
ブの円筒面との交点A′,B′,C′,D′が、ハブの
円筒面を平面に等角写像したときに、ハブにおける翼の
断面の図心zを通り翼の先端と後端を結ぶ直線L5と平
行な直線L6上にあるか、翼全体の重心Wcから回転軸
中心Ooにおろした垂線Lwcとハブの円筒面との交点
Wc′が、ハブの円筒面を平面に等角写像したときに、
ハブにおける翼の断面の図心zを通り翼の先端と後端を
結ぶ直線L5と平行な直線L6上にある。そして、任意の
径における翼の断面が翼型形状をしているか、または翼
型のいわゆるキャンバーラインに沿った等厚の形状をし
ている。
3 and 4 are views showing the shape of the blade of the impeller of the present invention. FIG. 3 is a perspective view of the blade and the hub, and FIG. 4 is an isometric view of the cylindrical surface of the hub of the blade with respect to the plane. It is a map. As shown in FIGS. 3 and 4, in the blade of the present invention, perpendiculars La, Lb, Lc, and Ld drawn from the center of gravity A, B, C, and D of the cross section of the blade at an arbitrary diameter to the center Oo of the rotation axis. When intersections A ', B', C ', and D' with the cylindrical surface of the hub are conformally mapped on the plane of the cylindrical surface of the hub, they pass through the centroid z of the cross section of the blade at the hub, and the tip and the rear of the blade. whether on the straight line L 6 parallel to the straight line L 5 connecting the end, the intersection point Wc 'of the cylindrical surface of the perpendicular Lwc a hub down to the rotation axis center Oo from the center of gravity Wc of the whole wing, flat cylindrical surface of the hub When isometric mapping to
It is on a straight line parallel to L 6 between the straight line L 5 which connects the front end and the rear end of the centroid z street wing section of the blade at the hub. Then, the cross section of the wing at an arbitrary diameter has an airfoil shape or an equal thickness shape along a so-called camber line of the airfoil.

【0012】図5および図6は、本発明の羽根車の翼の
形状を示す図であり、図5(a)は翼の羽根車外径の円
筒面の平面への等角写像図、図5(b)は翼のハブの円
筒面の平面への等角写像図、図6は翼の断面を示す図で
ある。図5に示すように、本発明の翼においては、翼の
取付角度が羽根車外径においてB∞t=20〜30°、
ハブにおいてB∞b=30〜45°である。また図6に
示すように、Lを翼弦長、fを翼のキャンバーライン
(中心線)のそり(max)、dを翼の最大長さとし、
またtを翼のピッチ、Dを直径、Zを翼枚数とすると、
t=πD/Zと表わされ、本発明の翼においては、任意
の断面におけるいわゆる節弦比t/Lが1.1〜1.
5、そりf/Lが4〜12%、任意の断面の最大厚みd
/Lが1.5〜8%に設定されている。
5 and 6 are views showing the shape of the blade of the impeller of the present invention. FIG. 5 (a) is an isometric map of the outer diameter of the blade of the impeller onto the plane of the cylindrical surface. (B) is an isometric view of the cylindrical surface of the wing hub on the plane, and FIG. 6 is a diagram showing a cross section of the wing. As shown in FIG. 5, in the blade of the present invention, the mounting angle of the blade is B∞t = 20 to 30 ° at the outer diameter of the impeller;
In the hub, B〜b = 30-45 °. As shown in FIG. 6, L is a chord length, f is a camber line (center line) warp (max) of the wing, d is a maximum length of the wing,
Also, if t is the pitch of the blade, D is the diameter, and Z is the number of blades,
t = πD / Z, and in the blade of the present invention, the so-called chord ratio t / L at an arbitrary cross section is 1.1 to 1.
5, the warp f / L is 4 to 12%, and the maximum thickness d of an arbitrary cross section
/ L is set to 1.5 to 8%.

【0013】図7および図8は、本発明の軸流送風機の
羽根車と従来の軸流送風機の羽根車との設置状態の比較
を示す説明図である。図7においては本発明の羽根車を
実線で示し、従来の羽根車を2点鎖線で示している。本
発明においては、羽根車の前傾角を7.5〜12.5°と
比較的小さい角度とするかわりに前進角を50〜55°
に大きくし、羽根車単体では騒音を従来の前傾角12.
5〜30°、前進角15〜35°のものと同レベルに
し、上流側にコイルなどの後流発生体5がある機器に据
え付けた場合、後流発生体5から翼の先端が遠ざかる
分、従来の羽根車を使用する場合よりも上流からの後流
と翼の干渉音が低減するので、ファンを組み込んだ機器
として騒音が低減できるか、騒音レベルを従来と同等に
したまま機器を軸方向に小さくできる。
FIGS. 7 and 8 are explanatory views showing a comparison of the installation state of the impeller of the axial blower of the present invention and the impeller of the conventional axial blower. In FIG. 7, the impeller of the present invention is indicated by a solid line, and the conventional impeller is indicated by a two-dot chain line. In the present invention, instead of setting the forward tilt angle of the impeller to a relatively small angle of 7.5 to 12.5 °, the advance angle is set to 50 to 55 °.
And the impeller alone reduces the noise to the conventional forward tilt angle of 12.
5 to 30 °, the same level as the advance angle of 15 to 35 °, and when installed on a device having a wake generator 5 such as a coil on the upstream side, the amount by which the tip of the blade moves away from the wake generator 5, Since the interference noise between the wake and the blade from the upstream is reduced as compared with the case of using the conventional impeller, the noise can be reduced as a device with a built-in fan, or the device can be moved in the axial direction with the noise level kept the same as before. Can be made smaller.

【0014】従来の前傾角12.5〜30°、前進角1
5〜35°で構成した羽根車は、羽根車単体では低騒音
であっても、例えばコイルなどの下流側に設置し、軸方
向のスペースが限られた場合、コイルなどに羽根車の先
端が近接し、後流と翼の干渉音が発生し騒音の増大をま
ねく。
Conventional forward tilt angle 12.5-30 °, advance angle 1
Even if the impeller alone has low noise, the impeller configured at 5 to 35 ° is installed on the downstream side of a coil or the like. When approaching, interference noise between the wake and the wing is generated, resulting in increased noise.

【0015】コイルなどの後流の幅や流速によっても干
渉音の大きさは左右されるが、定性的には、後流発生体
と羽根車との距離と騒音の関係は、図9に示すものであ
り、両者が近接すると騒音は羽根枚数×回転周波数で表
される周波数およびその整数倍の周波数のいわゆる回転
騒音が増大する結果となる。本発明の羽根車のように前
傾角を7.5〜12.5°の範囲におさえると、図7およ
び図8に示すように、従来の羽根車に対し同一スペース
で T=Htan (12.5〜30°)−Htan (7.5〜12.5°) ≒0〜0.36H の長さだけ、後流発生体5から羽根車の先端を遠ざける
ことができるので、結果として、図9のΔSPLだけ従
来のものに対し低騒音化できる効果が生じる。
The magnitude of the interference sound depends on the width and flow velocity of the wake, such as a coil. However, qualitatively, the relationship between the distance between the wake generator and the impeller and the noise is shown in FIG. When the two are close to each other, the noise increases as the frequency expressed by the number of blades times the rotation frequency and a so-called rotation noise having a frequency that is an integral multiple of the frequency. When the forward inclination angle is limited to a range of 7.5 to 12.5 ° like the impeller of the present invention, as shown in FIGS. 7 and 8, T = Htan (12. 5 to 30 °) −Htan (7.5 to 12.5 °) The tip of the impeller can be kept away from the wake generator 5 by a length of ≒ 0 to 0.36H. The effect that noise can be reduced compared to the conventional one by ΔSPL is obtained.

【0016】一方、羽根車の前傾角、前進角と騒音の相
対比較を図10に示す。図10は、横軸が前進角δθ、
縦軸が相対騒音レベルを示し、前傾角δzをパラメータ
としたものである。図10から明らかなように、前傾角
7.5〜12.5°であっても、前進角を50°以上に
すれば、従来のものに比べて羽根車単体では差は生じな
い結果となったので、後流発生体5の下流で軸方向にス
ペースがとれないような機器に設置した場合、ΔSPL
だけ低騒音化できる。あるいは同一騒音レベルで従来の
ものを使用する場合に対しTだけ軸方向寸法を小型化で
きる効果が得られる。
On the other hand, FIG. 10 shows a relative comparison between the forward tilt angle and the advance angle of the impeller and the noise. FIG. 10 shows that the horizontal axis represents the advance angle δθ,
The vertical axis indicates the relative noise level, is the forward inclination [delta] z those parameters. As is clear from FIG. 10, even if the forward inclination angle is 7.5 to 12.5 °, if the advance angle is set to 50 ° or more, there is no difference between the impeller alone and the conventional one. Therefore, if it is installed in a device that does not take up space in the axial direction downstream of the wake generator 5, ΔSPL
Only the noise can be reduced. Alternatively, the effect of reducing the size in the axial direction by T compared to the case of using the conventional one at the same noise level is obtained.

【0017】また従来の前傾前進翼は、羽根車のハブに
おける翼断面の図心から回転軸におろした垂線上に翼の
重心がなく前傾、前進した分偏心しているので、図13
に示すように翼11に大きな曲げモーメントが加わる。
このため、前述したように翼厚を厚くしたり、翼のそり
を大きくしたり、補強を設けて断面係数を大きくし強度
を上げているが、これらの方法は翼の後流の幅が大きく
なるために騒音が増加する。
The conventional forward tilting forward wing is eccentric by the amount of forward tilting and forward movement without the center of gravity of the blade on a vertical line drawn from the centroid of the blade cross section at the hub of the impeller to the rotation axis.
A large bending moment is applied to the wing 11 as shown in FIG.
For this reason, as described above, the blade thickness is increased, the blade warpage is increased, and reinforcement is provided to increase the section modulus and increase the strength.However, these methods have a large wake width of the blade. Noise increases to become.

【0018】この問題を解決するために、本発明におい
ては、図3および図4に示すように任意の径における翼
の断面の重心A,B,C,Dから回転軸中心Ooにおろ
した垂線La,Lb,Lc,Ldとハブの円筒面の交点
A′,B′,C′,D′が、ハブの円筒面を平面に等角
写像したときに、ハブにおける翼の断面の図心zを通り
翼の先端と後端を結ぶ直線L5と平行な直線L6上にある
か、翼全体の重心Wcから回転軸中心Ooにおろした垂
線Lwcとハブの円筒面の交点Wc′が、ハブの円筒面
を平面に等角写像したときに、ハブの翼断面の図心zを
通り翼の先端と後端を結ぶ直線L5と平行な直線L6上に
配置する。これにより、遠心力による荷重から生じる曲
げモーメントはハブの翼断面の断面係数の小さい方向に
は全く作用せず、断面係数の大きい方向にのみ作用す
る。
In order to solve this problem, in the present invention, as shown in FIG. 3 and FIG. 4, a perpendicular drawn from the center of gravity A, B, C, D of the cross section of the blade at an arbitrary diameter to the center Oo of the rotation axis. When the intersections A ', B', C ', D' of La, Lb, Lc, Ld and the cylindrical surface of the hub are conformally mapped on the plane of the cylindrical surface of the hub, the centroid z of the cross section of the blade at the hub is obtained. or it is on the straight line L 6 parallel to the straight line L 5 which connects the front end and the rear end of the street wing intersection Wc 'of the cylindrical surface of a perpendicular Lwc a hub down to the rotation axis center Oo from the center of gravity Wc of the whole wing, when conformal mapping the cylindrical surface of the hub in a plane, arranged on the straight line L 6 parallel to the straight line L 5 which connects the front end and the rear end of the through wing centroid z of the wing cross-section of the hub. As a result, the bending moment generated by the load due to the centrifugal force does not act at all in the direction where the section modulus of the blade section of the hub is small, but acts only in the direction where the section modulus is large.

【0019】簡単のため1円弧翼に同一の荷重が加わっ
た場合、上記の構成のものと上記以外の構成のものを比
較して図11に示す。図11はハブの円筒面を等角写像
した図であり、図11(a)は本発明の羽根車を示し、
図11(b)は従来の羽根車を示す。図11(a)に示
すようにf/L=8%、d/L=6%である。r(1−
cosα)=8,2×rsinα=100よりr=16
0.25,α=0.3173radである。X軸回りの
断面係数Z1は、 Z1={r2t(α2+αsinα・cosα−2sin2α)}/(α−sin α) =1300 Y軸回りの断面係数Zは、 Z=r2t{(α/sinα)−cosα }=1030
7 荷重=100とすると、 本発明においては、σb1=(100×80)/1030
7=0.78 従来例においては、σb2=(100×70)/1030
7+(100×25)/1300=2.6 図11に示す例においては、曲げモーメントのみに着目
した極端な例ではあるが、本発明の羽根車における応力
が従来例の30%となり、同一の応力が加わると仮定す
ると、本発明の羽根車では1.8倍の回転数で回転する
ことができる。また同一の回転数で回転すると仮定する
と、本発明の羽根車では、板厚を従来例の30%にする
ことができる。
For the sake of simplicity, when the same load is applied to one arc blade, FIG. 11 shows a comparison between the above-described configuration and the configuration other than the above. FIG. 11 is an isometric view of the cylindrical surface of the hub, and FIG. 11A shows an impeller of the present invention;
FIG. 11B shows a conventional impeller. As shown in FIG. 11A, f / L = 8% and d / L = 6%. r (1-
cos α) = 8.2, 2 × rsin α = 100 and r = 16
0.25, α = 0.3173 rad. Section modulus Z 1 around the X axis is, Z 1 = {r 2 t (α 2 + αsinα · cosα-2sin 2 α)} / (α-sin α) = 1300 Y axis of the section modulus Z is, Z = r 2 t {(α / sinα) -cosα} = 1030
7 Assuming that the load = 100, in the present invention, σ b1 = (100 × 80) / 1030
7 = 0.78 In the conventional example, σ b2 = (100 × 70) / 1030
7+ (100 × 25) /1300=2.6 Although the example shown in FIG. 11 is an extreme example focusing only on the bending moment, the stress in the impeller of the present invention is 30% of that of the conventional example, and is the same. Assuming that stress is applied, the impeller of the present invention can rotate at 1.8 times the rotation speed. Further, assuming that the impeller rotates at the same rotational speed, the impeller of the present invention can reduce the plate thickness to 30% of the conventional example.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
従来50°以上の前進角についても強度上なんら問題な
く使用でき、小さい前進角(7.5〜12.5°)で大
きい前進角(12.5〜35°)と同レベルの低騒音化
が得られるので、羽根車が軸方向に小さくでき、機器に
組み込む場合、上流側の後流と翼の干渉音による騒音を
低減できるか、または従来と同一レベルの騒音のまま機
器を軸方向に小型化できる。
As described above, according to the present invention,
Conventionally, it is possible to use the advancing angle of 50 ° or more without any problem in strength, and a low advancing angle (7.5 to 12.5 °) and the same level of noise reduction as a large advancing angle (12.5 to 35 °) can be achieved. As a result, the impeller can be made smaller in the axial direction, and when incorporating it into equipment, the noise caused by interference between the upstream wake and the blades can be reduced, or the equipment can be made smaller in the axial direction while maintaining the same level of noise as before. Can be

【0021】また本発明によれば、翼の断面は公知の翼
型または翼型のキャンバーラインに沿った等厚の板状の
翼を使用することによりさらに低騒音化することができ
る。
According to the present invention, the cross section of the blade can be further reduced by using a known blade type or a plate-shaped blade having an equal thickness along a camber line of the blade type.

【0022】さらに本発明によれば、曲げモーメントが
ハブの翼断面の断面係数の大きい方向にしか作用しない
ため、強度が飛躍的に向上し前進角を50°以上にして
もなんら問題なく使用できるうえに翼の厚みやそりを小
さくでき、補強も必要ないのでこれらの後流による騒音
を低減できる。
Furthermore, according to the present invention, since the bending moment acts only in the direction in which the section modulus of the blade section of the hub is large, the strength is dramatically improved, and even if the advancing angle is 50 ° or more, it can be used without any problem. In addition, the thickness and warpage of the blades can be reduced, and no reinforcement is required, so that noise due to these wakes can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る軸流送風機の羽根車の基本構成を
示す図であり、羽根車の一部を示す正面図である。
FIG. 1 is a diagram showing a basic configuration of an impeller of an axial blower according to the present invention, and is a front view showing a part of the impeller.

【図2】本発明に係る軸流送風機の羽根車の基本構成を
示す図であり、羽根車の一部を示す子午面図である。
FIG. 2 is a meridional view showing a basic configuration of an impeller of the axial blower according to the present invention, showing a part of the impeller.

【図3】本発明の軸流送風機の羽根車における翼および
ハブの斜視図である。
FIG. 3 is a perspective view of a blade and a hub in the impeller of the axial blower of the present invention.

【図4】翼のハブの円周面の平面への等角写像図であ
る。
FIG. 4 is an isometric view of the circumferential surface of the hub of the wing onto the plane.

【図5】本発明の軸流送風機の羽根車における翼の等角
写像である。
FIG. 5 is an isometric map of blades in an impeller of an axial blower according to the present invention.

【図6】本発明の軸流送風機の羽根車における翼の断面
を示す図である。
FIG. 6 is a view showing a cross section of a blade in an impeller of the axial blower of the present invention.

【図7】本発明の軸流送風機の羽根車と従来の軸流羽根
車との比較を示す説明図である。
FIG. 7 is an explanatory view showing a comparison between the impeller of the axial blower of the present invention and a conventional axial impeller.

【図8】本発明の軸流送風機の羽根車と従来の軸流羽根
車との比較を示す説明図である。
FIG. 8 is an explanatory view showing a comparison between the impeller of the axial blower of the present invention and a conventional axial impeller.

【図9】後流発生体と羽根車との距離と騒音の関係を示
す図である。
FIG. 9 is a diagram illustrating a relationship between a distance between a wake generator and an impeller and noise.

【図10】羽根車の前傾角、前進角と騒音の相対比較を
示す図である。
FIG. 10 is a diagram showing a relative comparison between the forward tilt angle and the advance angle of the impeller and noise.

【図11】1円弧の翼に同一の荷重が加わった場合の本
発明のものと他のものとの比較を示す図である。
FIG. 11 is a diagram showing a comparison between the one of the present invention and another when the same load is applied to a single-arc blade.

【図12】従来の前傾、前進の羽根車の一例を示す図で
あり、図12(a)は正面図、図12(b)は子午面図
である。
12A and 12B are views showing an example of a conventional forwardly inclined, forward impeller, FIG. 12A is a front view, and FIG. 12B is a meridional view.

【図13】従来の翼に遠心力によって加わる曲げモーメ
ントを示す図である。
FIG. 13 is a diagram showing a bending moment applied to a conventional wing by centrifugal force.

【図14】従来の翼の補強を行った場合の作用を示す図
である。
FIG. 14 is a diagram showing an operation when reinforcement of a conventional wing is performed.

【符号の説明】[Explanation of symbols]

1 翼 2 ハブ 5 後流発生体 Dt 羽根車外径 Db ハブ外径 δθ 前進角 δz 前傾角 A,B,C,D 任意の径における翼の断面の重心 Wc 翼全体の重心 z 翼の断面の図心Reference Signs List 1 blade 2 hub 5 wake generator Dt impeller outer diameter Db hub outer diameter δθ advancing angle δ z forward tilt angle A, B, C, D Center of gravity of blade section at arbitrary diameter Wc Center of gravity of entire blade z Section of blade section Conscience

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の翼と、これら翼を取り付けるハ
ブとを備えた軸流送風機の羽根車において、 羽根車の外径寸法に対しハブ径の比率が30〜40%で
あり、 羽根車を正面から見て、ハブにおける翼の断面の中心と
羽根車外径における翼の断面の中心を結ぶ円弧またはn
次曲線上に任意の径における翼の中心があり、羽根車を
正面から見て、回転軸中心とハブにおける翼の中心を結
ぶ直線と、回転軸中心と羽根車外径における翼の中心を
結ぶ直線のなす角度を50〜55゜とし、 羽根車を回転軸中心を含む1平面上に投影した、いわゆ
る子午面において、ハブにおける翼の中心と羽根車外径
における翼の中心を結ぶ直線または円弧またはn次曲線
上に任意の径における翼の中心があり、ハブにおける翼
の中心と羽根車外径における翼の中心を結ぶ直線と回転
軸中心に対する垂線のなす角度が7.5〜12.5°で
あることを特徴とする軸流送風機の羽根車。
1. An impeller of an axial blower comprising a plurality of blades and a hub to which the blades are attached, wherein a ratio of a hub diameter to an outer diameter of the impeller is 30 to 40%. Viewed from the front, an arc or n connecting the center of the cross section of the blade at the hub and the center of the cross section of the blade at the impeller outer diameter
There is a center of the blade at an arbitrary diameter on the next curve, and a straight line connecting the center of the rotating shaft and the center of the blade at the hub, and a straight line connecting the center of the rotating shaft and the center of the blade at the outer diameter of the impeller when the impeller is viewed from the front. In the so-called meridional plane in which the impeller is projected on one plane including the center of the rotation axis, a straight line or an arc or n connecting the center of the blade at the hub and the center of the blade at the outer diameter of the impeller. The center of the blade at an arbitrary diameter is on the next curve, and the angle between the straight line connecting the center of the blade at the hub and the center of the blade at the outer diameter of the impeller and the perpendicular to the center of the rotation axis is 7.5 to 12.5 °. An impeller for an axial blower, characterized in that:
【請求項2】 任意の径における翼の断面の重心から回
転軸中心におろした垂線とハブの円筒面との交点が、ハ
ブの円筒面を平面に等角写像したときに、ハブにおける
翼の断面の図心を通り翼の先端と後端を結ぶ直線と平行
な直線上にあるか、 翼全体の重心から回転軸中心におろした垂線とハブの円
筒面との交点が、ハブの円筒面を平面に等角写像したと
きに、ハブにおける翼の断面の図心を通り翼の先端と後
端を結ぶ直線と平行な直線上にあり、 任意の径における翼の断面が翼型形状をしているか、ま
たは翼型のいわゆるキャンバーラインに沿った等厚の形
状をしていることを特徴とする請求項1記載の軸流送風
機の羽根車。
2. The intersection of a vertical line drawn from the center of gravity of the cross section of the blade with an arbitrary diameter to the center of the rotation axis and the cylindrical surface of the hub when the cylindrical surface of the hub is conformally mapped to a plane. The intersection of the hub's cylindrical surface with a vertical line passing through the centroid of the cross section and parallel to the straight line connecting the tip and rear ends of the wing or the center of rotation from the center of gravity of the entire wing and the hub's cylindrical surface When the isometric mapping is performed on a plane, it is on a straight line that passes through the centroid of the cross section of the wing at the hub and is parallel to the straight line that connects the tip and the rear end of the wing. The impeller of an axial flow blower according to claim 1, wherein the impeller has an equal thickness along an airfoil so-called camber line.
【請求項3】 翼の取り付け角度が羽根車外径において
20〜30°、ハブにおいて30〜45°であり、任意
の断面におけるいわゆる節弦比t/Lが1.1〜1.5、
そりf/Lが4〜12%、任意の断面の最大厚みd/L
が1.5〜8%であることを特徴とする請求項1又は2
記載の軸流送風機の羽根車。
3. The mounting angle of the wing is 20 to 30 ° at the impeller outer diameter and 30 to 45 ° at the hub, and the so-called chord ratio t / L at an arbitrary cross section is 1.1 to 1.5.
Warpage f / L is 4 to 12%, maximum thickness d / L of any cross section
Is 1.5 to 8%.
The impeller of the axial blower described.
JP26533296A 1996-09-13 1996-09-13 Impeller for axial flow blower Pending JPH1089289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26533296A JPH1089289A (en) 1996-09-13 1996-09-13 Impeller for axial flow blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26533296A JPH1089289A (en) 1996-09-13 1996-09-13 Impeller for axial flow blower

Publications (1)

Publication Number Publication Date
JPH1089289A true JPH1089289A (en) 1998-04-07

Family

ID=17415725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26533296A Pending JPH1089289A (en) 1996-09-13 1996-09-13 Impeller for axial flow blower

Country Status (1)

Country Link
JP (1) JPH1089289A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520993A (en) * 1998-07-20 2002-07-09 エヌエムビー(ユーエスエイ)・インコーポレイテッド Axial fan
KR100379499B1 (en) * 2000-10-18 2003-04-10 엘지전자 주식회사 Axial fan for a refrigerator
WO2003033913A1 (en) * 2001-10-15 2003-04-24 Yanmar Co., Ltd. Radiator fan and engine cooling device using the radiator fan
KR100402478B1 (en) * 2001-05-17 2003-10-22 엘지전자 주식회사 Fan assembly for refrigerator
JP2007040201A (en) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd Propeller fan
JP2007170292A (en) * 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd Blower
JP2008208792A (en) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp Propeller fan
JP2009281392A (en) * 2003-06-18 2009-12-03 Mitsubishi Electric Corp Blower
US7815418B2 (en) 2005-08-03 2010-10-19 Mitsubishi Heavy Industries, Ltd. Shroud and rotary vane wheel of propeller fan and propeller fan
JP4662608B2 (en) * 2000-06-09 2011-03-30 エルジー エレクトロニクス インコーポレイティド Fan motor with integrated axial fan and motor
US8215916B2 (en) 2007-06-28 2012-07-10 Mitsubishi Electric Corporation Axial flow fan
WO2017094233A1 (en) * 2015-12-02 2017-06-08 パナソニックIpマネジメント株式会社 Blower impeller
EP3296508A1 (en) * 2016-09-09 2018-03-21 United Technologies Corporation Full-span forward swept airfoils for gas turbine engines
CN108507017A (en) * 2018-03-15 2018-09-07 珠海格力电器股份有限公司 Blade structure and air conditioner with it
CN114688049A (en) * 2020-12-25 2022-07-01 广东美的白色家电技术创新中心有限公司 Fan subassembly and air conditioner

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002520993A (en) * 1998-07-20 2002-07-09 エヌエムビー(ユーエスエイ)・インコーポレイテッド Axial fan
JP4796691B2 (en) * 1998-07-20 2011-10-19 ミネベア株式会社 Axial fan
JP4662608B2 (en) * 2000-06-09 2011-03-30 エルジー エレクトロニクス インコーポレイティド Fan motor with integrated axial fan and motor
KR100379499B1 (en) * 2000-10-18 2003-04-10 엘지전자 주식회사 Axial fan for a refrigerator
KR100402478B1 (en) * 2001-05-17 2003-10-22 엘지전자 주식회사 Fan assembly for refrigerator
US7037077B2 (en) 2001-10-15 2006-05-02 Yanmar Co., Ltd. Radiator fan and engine cooling device using the same
WO2003033913A1 (en) * 2001-10-15 2003-04-24 Yanmar Co., Ltd. Radiator fan and engine cooling device using the radiator fan
KR100889306B1 (en) 2001-10-15 2009-03-18 얀마 가부시키가이샤 Radiator fan and engine cooling device using the radiator fan
JP2009281392A (en) * 2003-06-18 2009-12-03 Mitsubishi Electric Corp Blower
JP2007040201A (en) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd Propeller fan
US7815418B2 (en) 2005-08-03 2010-10-19 Mitsubishi Heavy Industries, Ltd. Shroud and rotary vane wheel of propeller fan and propeller fan
JP4576304B2 (en) * 2005-08-03 2010-11-04 三菱重工業株式会社 Propeller fan
US7909572B2 (en) 2005-08-03 2011-03-22 Mitsubishi Heavy Industries, Ltd. Shroud and rotary vane wheel of propeller fan and propeller fan
JP2007170292A (en) * 2005-12-22 2007-07-05 Matsushita Electric Ind Co Ltd Blower
JP4680947B2 (en) * 2007-02-27 2011-05-11 三菱電機株式会社 Propeller fan
JP2008208792A (en) * 2007-02-27 2008-09-11 Mitsubishi Electric Corp Propeller fan
US8215916B2 (en) 2007-06-28 2012-07-10 Mitsubishi Electric Corporation Axial flow fan
WO2017094233A1 (en) * 2015-12-02 2017-06-08 パナソニックIpマネジメント株式会社 Blower impeller
JP2017101597A (en) * 2015-12-02 2017-06-08 パナソニックIpマネジメント株式会社 Blower impeller
EP3296508A1 (en) * 2016-09-09 2018-03-21 United Technologies Corporation Full-span forward swept airfoils for gas turbine engines
US10605260B2 (en) 2016-09-09 2020-03-31 United Technologies Corporation Full-span forward swept airfoils for gas turbine engines
CN108507017A (en) * 2018-03-15 2018-09-07 珠海格力电器股份有限公司 Blade structure and air conditioner with it
CN114688049A (en) * 2020-12-25 2022-07-01 广东美的白色家电技术创新中心有限公司 Fan subassembly and air conditioner
CN114688049B (en) * 2020-12-25 2024-02-20 广东美的白色家电技术创新中心有限公司 Fan assembly and air conditioner

Similar Documents

Publication Publication Date Title
JPH1089289A (en) Impeller for axial flow blower
AU761201B2 (en) Rotor with a split rotor blade
JP5980180B2 (en) Axial flow fan and air conditioner having the axial flow fan
US4531890A (en) Centrifugal fan impeller
US20030021674A1 (en) Enhanced performance air moving assembly
JP4818184B2 (en) Propeller fan
JP2010121615A (en) Serial axial flow fan
MX2007000296A (en) Axial fan.
JP6604981B2 (en) Axial blower impeller and axial blower
JP2001509226A (en) Impeller and fan incorporating it
JP5425192B2 (en) Propeller fan
CN111133201A (en) Propeller fan and axial flow blower
JP3127850B2 (en) Impeller for propeller fan
KR20080019521A (en) Propeller fan
JP4839901B2 (en) Jet fan
JP2001234893A (en) Axial blower
KR20070122376A (en) Axial fan
JPWO2019035153A1 (en) Impeller, blower, and air conditioner
JP3040601B2 (en) Radial turbine blade
JP4233359B2 (en) Blower impeller for air conditioner
JP4491711B2 (en) Jet fan
JPH06249195A (en) Impeller of axial blower
CN211573863U (en) Axial flow fan blade, air interchanger and air conditioner
JP2018155128A (en) Vertical axis wind turbine and wind power generator
JP6930644B1 (en) Propeller fan