JP2003253671A - Rotational embedding method for existing pile with less soil displacement - Google Patents

Rotational embedding method for existing pile with less soil displacement

Info

Publication number
JP2003253671A
JP2003253671A JP2002055354A JP2002055354A JP2003253671A JP 2003253671 A JP2003253671 A JP 2003253671A JP 2002055354 A JP2002055354 A JP 2002055354A JP 2002055354 A JP2002055354 A JP 2002055354A JP 2003253671 A JP2003253671 A JP 2003253671A
Authority
JP
Japan
Prior art keywords
pile
tip
rotational
excavation
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002055354A
Other languages
Japanese (ja)
Inventor
Shinichi Yamato
真一 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002055354A priority Critical patent/JP2003253671A/en
Publication of JP2003253671A publication Critical patent/JP2003253671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotational embedding method for an existing pile capable of reducing the amount of displacement soil excavated and safely and surely performing rotational embedding. <P>SOLUTION: After excavation is carried out to a predetermined depth by a pre-auger construction method, cement milk is injected to the periphery of the tip for turning the periphery of the tip into a soil cement form, and inside the excavated hole, an existing pile serving as an upper pile is arranged on an existing pile having a spiral blade at the pile tip periphery of the pile and serving as a lower pile. In the rotational embedding, a rod is arranged in a hollow part of the upper pile, and a rotational force is applied to the lower pile via the rod, so that the amount of displacement soil can be reduced in this rotational embedding method for the existing pile. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、既成杭の埋設方
法、特に環境に配慮して極力施工現場から排出される掘
削排土を少なくでき、しかも既成杭埋設後には高い支持
力を得られる既成杭の埋設方法に関する。詳しくは施工
に際しては掘削排土を少なくでき、しかも既成杭埋設後
には高い支持力を得られる既製杭とソイルセメントとの
複合構造体の造成方法に関する。 【0002】 【従来の技術】従来、既製杭の埋込み杭工法では杭先端
部を拡大掘削し、この部分にセメントミルクを注入し、
杭先端部に拡大球根を造成して、既製杭を埋込むプレボ
ーリング拡大根固め工法が多く実施されてきた(図
3)。しかし、杭先端部の支持力は打込み工法の場合よ
り小さく、不十分なため杭先端のみを太径とするST杭
(図4)や杭先端部周辺に凸部を有する節付き杭とし、
杭先端部付近の周面摩擦力をも加えて、支持力を高める
方法(図5)が提案されている。しかし、この方法では
杭外径には凸部や太径部があるため埋込杭工法で杭沈設
するには杭全長にわたり掘削孔を杭の太径部径以上の径
で掘削し、掘削土をできるだけ掘削孔内から除去し、更
に杭を埋設するために掘削孔内を流動化して軟らかくす
る必要があり、このため施工機械は大きくなり、掘削時
には多くの水やベントナイト泥水等の掘削液やセメント
ミルクを注入しながら流動化させる必要があった。 【0003】その結果、掘削時及び杭埋設時に排出され
る土砂は多く、これらは産業廃棄物となるので環境面か
らも多くの問題点を有していた。また、特開昭60−2
38515号には土質固化セメントミルクの充填された
杭埋設孔中に杭先端部にらせん翼を設けた杭を回転貫入
して埋込み、杭支持力を増強する方法が考案されてい
る。しかしながら、この方法においては、杭頭に回転力
を与えて杭を回転沈設するため、地盤が硬いと杭には大
きな回転トルクが生じこれによってコンクリート杭の場
合は杭体がねじ切れる恐れあるなどの問題があった。 【0004】 【発明が解決しようとする課題】本発明は、上記問題の
ない、掘削孔底部の支持力の信頼性を向上させ、上部荷
重を安全確実に地盤に伝達しうる高い支持力が得られる
既成杭の回転埋設方法を提供することを目的とする。 【0005】 【課題を解決するための手段】本発明者は、らせん翼の
回転沈設機能と支持力発現のためのセメントミルクによ
る根固め機能を利用することに着目し、さらに回転沈設
機能を検討し、本発明に到達した。 【0006】すなわち、本発明は、プレオーガー工法に
て所定深度まで掘削し、次いで先端付近にセメントミル
クを注入して先端付近をソイルセメント状とした後、該
掘削孔内に杭先端部付近にらせん翼を有する下杭となる
既製杭にその上部に上杭となる既製杭を設置して、既製
杭の回転埋設を行うに際し、該上杭の中空部にロッドを
配置し、該ロッドを介して該下杭に回転力を与えて回転
埋設することを特徴とする排土の少ない既製杭の回転埋
設方法である。 【0007】好ましくは、プレオーガーにて所定深度ま
で既製杭のらせん翼径以下の径で排土を少なく掘削し、
次いで先端付近を拡大掘削したのち拡大掘削孔内にセメ
ントミルクを注入してソイルセメント状とした後、該掘
削孔内に杭先端部付近にらせん翼を有する既製杭を回転
圧入してらせん翼を拡大掘削孔内に埋設することを特徴
とする排土の少ない既製杭の埋設方法である。 【0008】 【発明の実施の形態】以下図面を用いて本発明を詳細に
説明する。図1にこの方法の概要を示す。図1に示す1
は杭本体であり、3は杭本体に固着されたらせん翼であ
る。2は掘削孔であり、4は杭先端部付近のソイルセメ
ント硬化体である。また、図2に示す5はプレオーガー
径より大きい拡大掘削孔である。 【0009】杭先端部付近にはソイルセメントが充填さ
れておりこれは施工後時間経過とともに硬化してソイル
セメント硬化体4となり、杭と一体化し複合構造とな
る。この構造体の施工に用いる掘削装置は最下部がオー
ガービットであり、上部は曲がりがなく、剛性の高いロ
ッドである。ロッドには地盤を攪拌するための攪拌棒が
必要に応じて複数取りつけられている。先端のオーガー
ビットは、掘削刃を有するものであればどのような形状
でも良い。拡大掘削する場合は拡大掘削刃が油圧式で機
械的に開閉するものでも、また、逆回転によって周辺土
との抵抗によって開閉する方式のものでもよい。ただ
し、ビットの先端はノズルを有し、掘削液やセメントミ
ルクを吐出できる構造を有することが必要である。 【0010】このような掘削装置を用いて、所定深度ま
で通常のプレオーガー工法にて掘削孔2を設ける。この
とき水やベントナイト泥水等の掘削液を注入しながら掘
削しても良いし、地盤が軟弱な場合などは掘削液などを
用いないで掘削し、掘削による排出土を少なくする。ま
た地層の中間部に緩い砂層を挟む場合などは掘削による
砂層の崩壊を防ぐためにベントナイト等を混入した掘削
液をその地層部分だけに注入すると良い。図2に示す拡
大掘削孔を先端部付近に設ける場合は拡大掘削刃を拡げ
て拡大掘削し、ビット先端部のノズルなどを介してセメ
ントミルクを注入して拡大掘削孔内をソイルセメント状
とする。掘削装置を引き抜いた後、掘削孔内に杭先端部
付近にらせん翼3を有する下杭7となる既製杭を回転に
より下降させて下杭7のらせん翼3を先端部付近のソイ
ルセメントよりなる掘削孔5内に定着させる。このとき
上杭1となる既製杭の中空部に挿入したロッド8をらせ
ん翼3を有する下杭の一部に取り外し自在に連結し、ロ
ッドの回転力を下杭にのみ与えて下杭を回転沈設により
下降させる。図7に示すように下杭と上杭両者の継ぎ手
部に回転自在継ぎ手9を設ければ下杭のみを回転でき
る。上杭の中空部に挿入したロッドを下杭と連結するに
はロッドの端部が一般に六角のカップラー型継ぎ手にな
っているので、下杭頭部に六角形の中空部を有する端版
を固着しこの中空部にロッドの六角カップラーを挿入す
れば容易に連結取り外しができる。 【0011】掘削孔の径は大きいほど地盤を緩める効果
が大きいので杭沈設は容易となり望ましいが大きな掘削
孔には大きな施工機械が必要となり、また排土量も多く
なるので可能な限り掘削孔の径は小さい方が望ましい。
杭の沈設速度からは掘削孔はらせん翼外径より小さい掘
削孔の方が杭を回転沈設する場合の推進力が大きいので
望ましい。従って、掘削孔は地盤が軟らかい場合は杭の
沈設は容易なのでかなり小さくても良いが地盤が硬い場
合は回転沈設に必要な回転トルクが大きくなってコンク
リート杭では杭が回転力で切断する恐れがある。そのた
め大きな掘削孔を設けて地盤を緩める必要がある。この
場合掘削孔は杭径以上あれば良いが最大でもらせん翼径
以下で十分である。 【0012】拡大掘削孔の長さは地盤の種別及び必要な
支持力に応じて選択すれば良い。らせん翼径の3倍くら
いあれば良いが、5倍以上あれば十分である。拡大掘削
孔径はらせん翼径以上あれば良いが地盤が硬い場合には
羽根径より多少小さくてもよい。また、掘削装置に十分
な能力があり大きな拡大掘削が可能な場合はらせん翼径
より大きくすることが望ましい。らせん翼から拡大球根
への荷重を十分伝達させるには拡大掘削径はらせん翼径
の1.2倍程度あれば十分である。 【0013】使用する杭は鋼管杭、既製コンクリート
杭、鋼管コンクリート杭、H型鋼杭等いずれの杭も可能
である。既製コンクリートの場合はらせん翼を杭外周面
に取り付けるための工夫を施す必要がある。コンクリー
ト杭製造時に複数の短い鋼管を予め型枠内に設置してお
きコンクリート硬化後鋼管部分にらせん翼を溶接にて固
着すれば良い。杭先端部に取り付けるらせん翼は、らせ
んがほぼ一回転していれば良い。らせん翼は最低1枚あ
れば良いが複数設置した方が杭の支持力や回転沈設能力
の面で有利である。らせん翼を複数枚設置するときはほ
ぼ等間隔に設置し、またその間隔は杭径にもよるが杭本
体径の2倍から10倍程度の間隔で設置すると効果的で
ある。らせん翼の径は杭本体径の1.5倍から3倍程度
が好ましい。1.5倍より小さいと荷重の分散効果が少
ないし3倍より大きいと羽根の分担力が大きくなり羽根
厚が厚くなるとともに回転沈設時の抵抗が増大して沈設
が難しくなる。 【0014】らせん翼は杭先端部付近に最低1枚取りつ
ければ良いが、図1に示す様に杭先端部付近に複数枚取
りつければ更に効果的である。らせん翼が1枚の場合は
図6に示す様にソイルセメント硬化体の上方へ定着され
るように配置した方が杭の鉛直支持力及び回転沈設能力
の面で効果がある。 【0015】 【発明の効果】本発明では、回転沈設が可能であるので
掘削時に排出土砂を少なく抑えることができる。また、
杭埋設後には高い支持力が得られ、さらにらせん翼を大
きくしておけばソイルセメントと杭とを一体化させる事
ができるので杭の荷重伝達が良好となる。また、使用す
る杭体のネジリ破壊に対する危険も低減できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for burying existing piles, and in particular, it is possible to reduce excavated soil discharged from a construction site as much as possible in consideration of the environment. The present invention relates to a method for burying existing piles that can obtain high bearing capacity after burial. More specifically, the present invention relates to a method for forming a composite structure of a ready-made pile and soil cement, which can reduce excavation and excavation during construction and can obtain a high bearing capacity after burying the existing pile. 2. Description of the Related Art Conventionally, in the method of embedding a ready-made pile, a pile tip is enlarged and excavated, and cement milk is injected into this portion.
Many pre-boring expanded root consolidation methods of embedding ready-made piles by creating expanded bulbs at the tip of the pile have been implemented (Fig. 3). However, the supporting force at the tip of the pile is smaller than that of the driving method, and it is not sufficient. For this reason, an ST pile (Fig. 4) in which only the tip of the pile has a large diameter or a knotted pile having a convex portion around the tip of the pile is used.
A method (FIG. 5) has been proposed in which the supporting force is increased by also adding the peripheral frictional force near the tip of the pile. However, in this method, the pile outer diameter has a convex part and a large diameter part, so in order to bury the pile by the embedded pile method, the excavation hole is excavated over the entire length of the pile with a diameter larger than the diameter of the large diameter part of the pile. It is necessary to remove as much as possible from the inside of the drilling hole and to fluidize the inside of the drilling hole and soften it in order to bury the pile, so the construction machine becomes large, and when drilling, drilling liquid such as a lot of water and bentonite muddy water It was necessary to fluidize while injecting cement milk. As a result, a large amount of earth and sand is discharged at the time of excavation and pile burial, and these are industrial wastes, and therefore have many environmental problems. Further, Japanese Patent Application Laid-Open No. Sho 60-2
No. 38515 proposes a method in which a pile provided with a spiral wing at the tip of the pile is rotationally penetrated and embedded into a pile burial hole filled with soil-consolidated cement milk to enhance pile supporting capacity. However, in this method, since the pile head is rotated and settled by applying a rotational force to the pile head, a large rotational torque is generated in the pile if the ground is hard, which may cause the pile body to be cut off in the case of a concrete pile. There was a problem. SUMMARY OF THE INVENTION The present invention improves the reliability of the support force at the bottom of an excavation hole and has a high support force capable of transmitting the upper load safely and reliably to the ground without the above-mentioned problems. It is an object of the present invention to provide a method for rotating and burying existing piles. Means for Solving the Problems The present inventor paid attention to the use of the function of rotating and setting the spiral wing and the function of consolidating cement milk to develop the supporting force, and further studied the function of setting and rotating. Then, the present invention has been reached. That is, according to the present invention, excavation is performed to a predetermined depth by a pre-auger method, and then cement milk is injected into the vicinity of the tip to form a soil cement in the vicinity of the tip. A ready-made pile that is to be an upper pile is installed on the ready-made pile that is to be a lower pile having wings, and when performing a rotary burial of the ready-made pile, a rod is arranged in a hollow portion of the upper pile, and through the rod. A method of rotating and burying pre-made piles with less earth removal, wherein a rotating force is applied to the lower pile to bury the lower pile. [0007] Preferably, the pre-auger is excavated to a predetermined depth with a diameter equal to or less than the spiral blade diameter of the ready-made pile to reduce the amount of earth removal,
Next, after excavating near the tip, cement milk is injected into the enlarged drilling hole to make it into a soil cement state, and then a pre-made pile having a spiral wing near the tip of the pile is rotationally pressed into the drilling hole to form a spiral wing. This is a method of burying ready-made piles with little earth removal, which is buried in an enlarged excavation hole. The present invention will be described below in detail with reference to the drawings. FIG. 1 shows an outline of this method. 1 shown in FIG.
Is a pile main body, and 3 is a spiral wing fixed to the pile main body. Reference numeral 2 denotes an excavation hole, and reference numeral 4 denotes a hardened soil cement near the tip of the pile. Reference numeral 5 shown in FIG. 2 is an enlarged excavation hole larger than the pre-auger diameter. [0009] Soil cement is filled in the vicinity of the tip of the pile, which hardens with the passage of time after construction to become a hardened soil cement 4, which is integrated with the pile to form a composite structure. The excavator used for construction of this structure has an auger bit at the lowermost part and a rigid rod without bending at the upper part. The rod is provided with a plurality of stirring rods for stirring the ground as necessary. The auger bit at the tip may have any shape as long as it has a cutting edge. In the case of enlarged excavation, the enlarged excavation blade may be a hydraulic type that mechanically opens and closes, or may be a system that opens and closes by resistance to surrounding soil by reverse rotation. However, it is necessary that the tip of the bit has a nozzle and has a structure capable of discharging drilling fluid and cement milk. Using such an excavator, the excavation hole 2 is provided to a predetermined depth by a normal pre-auger method. At this time, excavation may be performed while pouring a drilling fluid such as water or bentonite mud, or when the ground is soft, the drilling may be performed without using the drilling fluid or the like to reduce the amount of soil excavated. When a loose sand layer is sandwiched in the middle part of the stratum, it is advisable to inject a drilling liquid containing bentonite or the like only into the stratum to prevent collapse of the sand layer due to excavation. When the enlarged drilling hole shown in FIG. 2 is provided in the vicinity of the tip, the enlarged drilling blade is expanded to perform the enlarged drilling, and cement milk is injected through a nozzle or the like at the bit tip to make the inside of the enlarged drilling hole a soil cement. . After pulling out the drilling rig, the lower pile 7 having the spiral wing 3 near the tip of the pile in the drilling hole is lowered by rotation, and the spiral wing 3 of the lower pile 7 is made of soil cement near the tip. It is fixed in the excavation hole 5. At this time, the rod 8 inserted into the hollow portion of the ready-made pile that becomes the upper pile 1 is detachably connected to a part of the lower pile having the spiral wing 3 and the rotational force of the rod is given only to the lower pile to rotate the lower pile. Lower by sinking. As shown in FIG. 7, if the rotatable joint 9 is provided at the joint between the lower pile and the upper pile, only the lower pile can be rotated. In order to connect the rod inserted in the hollow part of the upper pile to the lower pile, the end of the rod is generally a hexagonal coupler type joint, so fix the end plate with a hexagonal hollow part on the lower pile head If the hexagonal coupler of the rod is inserted into this hollow portion, the connection and removal can be easily performed. The larger the diameter of the excavation hole is, the larger the effect of loosening the ground is. Therefore, it is preferable that the pile is easily settled. However, a large excavation hole requires a large construction machine, and the amount of excavated soil is increased. A smaller diameter is desirable.
From the setting speed of the pile, it is preferable that the excavation hole is smaller than the outer diameter of the spiral blade because the propulsive force when rotating and setting the pile is larger. Therefore, the excavation hole may be quite small because the pile is easy to settle when the ground is soft.However, when the ground is hard, the rotational torque required for rotary subsidence increases, and the pile may be cut by the rotational force in the concrete pile. is there. Therefore, it is necessary to provide a large excavation hole to loosen the ground. In this case, it is sufficient that the borehole is larger than the pile diameter, but it is sufficient if the borehole diameter is smaller than the maximum. The length of the enlarged excavation hole may be selected according to the type of the ground and the required supporting force. About three times the diameter of the helical wing is sufficient, but five times or more is sufficient. The diameter of the enlarged excavation hole may be larger than the diameter of the spiral blade, but may be slightly smaller than the blade diameter when the ground is hard. If the drilling rig has sufficient capacity to enable large-scale excavation, it is desirable to make the diameter larger than the spiral blade diameter. In order to sufficiently transmit the load from the spiral blade to the enlarged bulb, it is sufficient that the enlarged excavation diameter is about 1.2 times the diameter of the spiral blade. The pile to be used can be any pile such as a steel pipe pile, a ready-made concrete pile, a steel pipe concrete pile, and an H-shaped steel pile. In the case of ready-made concrete, it is necessary to take measures to attach the spiral wing to the outer peripheral surface of the pile. A plurality of short steel pipes may be installed in the formwork in advance during the production of the concrete pile, and the helical wing may be fixed to the steel pipe portion by welding after the concrete is hardened. The spiral wing attached to the tip of the pile only needs to make one full turn of the spiral. At least one spiral wing is sufficient, but installing multiple spiral wings is more advantageous in terms of pile support capacity and rotational sinking capacity. When a plurality of spiral blades are installed, they are installed at substantially equal intervals, and the interval depends on the pile diameter, but it is effective to install them at intervals of about 2 to 10 times the diameter of the pile body. The diameter of the spiral wing is preferably about 1.5 to 3 times the diameter of the pile body. If it is less than 1.5 times, the effect of dispersing the load is small, and if it is more than 3 times, the sharing force of the blades becomes large, the thickness of the blades becomes thick, and the resistance at the time of rotation subsidence increases, making subsidence difficult. At least one spiral wing may be mounted near the tip of the pile, but it is more effective to mount a plurality of spiral wings near the tip of the pile as shown in FIG. In the case of one spiral wing, as shown in FIG. 6, it is more effective to dispose the spiral wing so that it is fixed above the soil cement hardened body in terms of the vertical support force of the pile and the rotational sinking ability. According to the present invention, it is possible to reduce the amount of sediment discharged during excavation since rotation and subsidence are possible. Also,
After the pile is buried, a high bearing capacity can be obtained, and if the spiral wing is enlarged, the soil cement and the pile can be integrated, so that the load transmission of the pile becomes good. In addition, the risk of torsion breakage of the pile used can be reduced.

【図面の簡単な説明】 【図1】本発明の一例を示す概要説明図である。 【図2】先端部を拡大掘削した本発明の一例を示す概要
説明図である。 【図3】先端部を拡大掘削した従来工法の例を示す概要
説明図である。 【図4】先端拡大したST杭を用いた従来工法の例を示
す概要説明図である。 【図5】杭先端部に節付き杭を用いた従来工法の例を示
す概要説明図である。 【図6】本発明の別の実施例を示す説明図である。 【図7】上杭と下杭の接合部を回転自在継ぎ手とした場
合の説明図である。 【符号の説明】 1 上杭 2 掘削孔 3 らせん翼 4 ソイルセメント硬化体 5 下部の掘削孔 6 上部の非造成層 7 下杭 8 中空部に挿入したロッド 9 回転自在継ぎ手
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view showing an example of the present invention. FIG. 2 is a schematic explanatory view showing an example of the present invention in which a tip portion is enlarged and excavated. FIG. 3 is a schematic explanatory view showing an example of a conventional construction method in which a tip portion is enlarged and excavated. FIG. 4 is a schematic explanatory view showing an example of a conventional construction method using an ST pile with an enlarged tip. FIG. 5 is a schematic explanatory view showing an example of a conventional construction method using a knotted pile at the tip of the pile. FIG. 6 is an explanatory view showing another embodiment of the present invention. FIG. 7 is an explanatory view in the case where a joint between an upper pile and a lower pile is a rotatable joint. [Description of Signs] 1 Upper pile 2 Drilling hole 3 Spiral wing 4 Soil cement hardened body 5 Lower drilling hole 6 Upper non-forming layer 7 Lower pile 8 Rod inserted in hollow part 9 Rotatable joint

Claims (1)

【特許請求の範囲】 【請求項1】 プレオーガー工法にて所定深度まで掘削
し、次いで先端付近にセメントミルクを注入して先端付
近をソイルセメント状とした後、該掘削孔内に杭先端部
付近にらせん翼を有する下杭となる既製杭にその上部に
上杭となる既製杭を設置して、既製杭の回転埋設を行う
に際し、該上杭の中空部にロッドを配置し、該ロッドを
介して該下杭に回転力を与えて回転埋設することを特徴
とする排土の少ない既製杭の回転埋設方法。
[Claim 1] Excavation to a predetermined depth by the pre-auger method, and then cement milk is injected into the vicinity of the tip to make the vicinity of the tip into a soil cement state. A pre-made pile that is to be an upper pile is installed on the pre-made pile that is to be a lower pile having a spiral wing, and a rod is disposed in a hollow portion of the upper pile when rotating and burying the pre-made pile. A method of rotating and burying a ready-made pile with a small amount of earth removal, wherein a rotational force is applied to the lower pile via the lower pile.
JP2002055354A 2002-03-01 2002-03-01 Rotational embedding method for existing pile with less soil displacement Pending JP2003253671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002055354A JP2003253671A (en) 2002-03-01 2002-03-01 Rotational embedding method for existing pile with less soil displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002055354A JP2003253671A (en) 2002-03-01 2002-03-01 Rotational embedding method for existing pile with less soil displacement

Publications (1)

Publication Number Publication Date
JP2003253671A true JP2003253671A (en) 2003-09-10

Family

ID=28666213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002055354A Pending JP2003253671A (en) 2002-03-01 2002-03-01 Rotational embedding method for existing pile with less soil displacement

Country Status (1)

Country Link
JP (1) JP2003253671A (en)

Similar Documents

Publication Publication Date Title
JP5265500B2 (en) Pile digging method, foundation pile structure
JP5045971B2 (en) Ready-made piles and tip fittings
JP4496553B2 (en) Construction method of foundation pile and ready-made pile
JP2003184078A (en) Cast-in-place concrete pile and its construction method
JP4074198B2 (en) How to remove existing piles
JP3989224B2 (en) Pile burial equipment
JP2003253671A (en) Rotational embedding method for existing pile with less soil displacement
JP2003147768A (en) Ready-made pile burying method for reducing removal earth
JP2004027610A (en) Burying method for prefabricated pile
JP4156313B2 (en) Rotating method for ready-made piles
JP4346002B2 (en) Pile embedding method and apparatus
JPH03257215A (en) Pile constructing method
JP3673171B2 (en) Concrete pile setting method
JP2002097639A (en) Pile burying method and jig
JP2000154540A (en) Bored pile, its work execution method, work execution device, and existing pile for bored pile
JP2006063526A (en) Expansive foot protection method using friction pile
JP2002054135A (en) Composite structure
JP2005240395A (en) Rotary embedding method for pile
JP4517234B2 (en) Construction method of foundation pile, ready-made pile with propulsion cylinder
JP2006183233A (en) Method for rotatively burying pile with concrete spiral protrusion
JPH0627405B2 (en) Ready-made pile burying method
JP2003147767A (en) Rotational burying method for ready-made pile
JP3679377B2 (en) Construction method of underground pile
JP2016130418A (en) Method for embedding low-strength pipe, and excavation head used therewith
JP2004339917A (en) Rotary embedding method for pile