JP2003253335A - Method for manufacturing grain-oriented magnetic steel sheet superior in magnetic property - Google Patents

Method for manufacturing grain-oriented magnetic steel sheet superior in magnetic property

Info

Publication number
JP2003253335A
JP2003253335A JP2002057073A JP2002057073A JP2003253335A JP 2003253335 A JP2003253335 A JP 2003253335A JP 2002057073 A JP2002057073 A JP 2002057073A JP 2002057073 A JP2002057073 A JP 2002057073A JP 2003253335 A JP2003253335 A JP 2003253335A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
cold rolling
grain
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002057073A
Other languages
Japanese (ja)
Other versions
JP4258156B2 (en
Inventor
Minoru Takashima
高島  稔
Tetsuo Toge
哲雄 峠
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002057073A priority Critical patent/JP4258156B2/en
Publication of JP2003253335A publication Critical patent/JP2003253335A/en
Application granted granted Critical
Publication of JP4258156B2 publication Critical patent/JP4258156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a yield and a magnetic property in a technology for manufacturing a grain-oriented magnetic steel sheet without using an inhibitor, by effectively preventing edge parts cracking of a steel sheet in a cold rolling step. <P>SOLUTION: When manufacturing the grain-oriented magnetic steel sheet by using a steel slab having a composition comprising 0.01-0.08% C, 2.0-8.0% Si, 0.005-3.0% Mn, and Al reduced to less than 100 ppm, and S and Se each reduced to 50 ppm or less, this method comprises controlling a thermal history of the steel sheet between points in time after coiling up after annealing before final cold rolling and just before last cold rolling, to such a range as to satisfy the following expression (1): (∫10<SP>(-4300/</SP>T<SP>(t)-2.1)</SP>dt)<SP>0.5</SP>≤2.0×10<SP>-5</SP>, (wherein t is a time (s) after coil rolling and T(t) is a temperature (K) of the steel sheet at the time t), and limiting the temperature of the steel sheet just before cold rolling to 30°C or higher but 300°C or lower. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器その他の電
気機器の鉄心などに用いて好適な磁気特性に優れた方向
性電磁鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having excellent magnetic characteristics, which is suitable for use in an iron core of a transformer or other electric equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板の製造に際しては、イン
ヒビターと呼ばれる析出物を使用して、最終仕上焼鈍中
にゴス方位粒と呼ばれる{110}<001>方位粒を
優先的に二次再結晶させることが、一般的な技術として
使用されている。例えば、特公昭40−15644 号公報に
は、インヒビターとしてAlN,MnSを使用する方法が、
また特公昭51−13469 号公報には、インヒビターとして
MnS, MnSeを使用する方法が開示され、いずれも工業的
に実用化されている。これらとは別に、CuSeとBNを添
加する技術が特公昭58−42244 号公報に、またTi,Zr,
V等の窒化物を使用する方法が特公昭46−40855 号公報
に開示されている。
2. Description of the Related Art In the production of grain-oriented electrical steel sheets, precipitates called inhibitors are used to preferentially recrystallize {110} <001> oriented grains called Goth oriented grains during final finish annealing. It is used as a general technique. For example, JP-B-40-15644 discloses a method of using AlN and MnS as inhibitors.
In addition, Japanese Patent Publication No. 51-13469 discloses that an inhibitor
A method using MnS and MnSe has been disclosed, and both have been industrially put to practical use. Aside from these, a technique of adding CuSe and BN is disclosed in Japanese Patent Publication No. 58-42244, and Ti, Zr,
A method using a nitride such as V is disclosed in Japanese Patent Publication No. 46-40855.

【0003】これらのインヒビターを用いる方法は、安
定して二次再結晶粒を発達させるのに有用な方法である
が、析出物を微細に分散させなければならないので、熱
延前のスラブ加熱を1300℃以上の高温で行うことが必要
とされる。しかしながら、スラブの高温加熱は、設備コ
ストが嵩むことの他、熱延時に生成するスケール量も増
大することから歩留りが低下し、また設備のメンテナン
スが煩雑になる等の問題がある。
The method using these inhibitors is a useful method for stably developing secondary recrystallized grains, but since the precipitate must be finely dispersed, slab heating before hot rolling is required. It is required to be performed at a high temperature of 1300 ° C or higher. However, heating the slab at a high temperature has a problem that not only the equipment cost increases, but also the amount of scale generated during hot rolling increases, so that the yield decreases, and the maintenance of the equipment becomes complicated.

【0004】これに対して、インヒビターを使用しない
で方向性電磁鋼板を製造する方法が、特開昭64−55339
号、特開平2−57635 号、特開平7−76732 号および特
開平7−197126号各公報に開示されている。これらの技
術に共通していることは、表面エネルギーを駆動力とし
て{110}面を優先的に成長させることを意図してい
ることである。表面エネルギーを有効に利用するために
は、表面の寄与を大きくするために板厚を薄くすること
が必然的に要求される。例えば、特開昭64−55339 号公
報に開示の技術では板厚が 0.2mm以下に、また特開平2
−57635 号公報に開示の技術では板厚が0.15mm以下に、
それぞれ制限されている。しかしながら、現在使用され
ている方向性電磁鋼板の板厚は0.20mm以上がほとんどで
あるため、上記したような表面エネルギーを利用した方
法で通常の方向性電磁鋼板を製造することは難しい。
On the other hand, a method for producing a grain-oriented electrical steel sheet without using an inhibitor is disclosed in JP-A-64-55339.
JP-A-2-57635, JP-A-7-76732 and JP-A-7-197126. What these technologies have in common is that the surface energy is used as a driving force to preferentially grow the {110} plane. In order to effectively utilize the surface energy, it is inevitably required to reduce the plate thickness in order to increase the contribution of the surface. For example, in the technique disclosed in JP-A-64-55339, the plate thickness is 0.2 mm or less, and
In the technology disclosed in −57635 publication, the plate thickness is 0.15 mm or less,
Each is restricted. However, since the grain thickness of the grain-oriented electrical steel sheet currently used is mostly 0.20 mm or more, it is difficult to manufacture a normal grain-oriented electrical steel sheet by the method utilizing surface energy as described above.

【0005】さらに表面エネルギーを利用するために
は、表面酸化物の生成を抑制した状態で高温の最終仕上
焼鈍を行わなければならない。例えば、特開昭64−5533
9 号公報に開示の技術では、1180℃以上の温度で、しか
も最終仕上焼鈍の雰囲気として、真空または不活性ガ
ス、あるいは水素ガスまたは水素ガスと窒素ガスの混合
ガスを使用することが記載されている。また、特開平2
−57635 号公報に開示の技術では、 950〜1100℃の温度
で、不活性ガス雰囲気あるいは水素ガスまたは水素ガス
と不活性ガスの混合雰囲気で、しかもこれらを減圧する
ことが推奨されている。さらに、特開平7−197126号公
報に開示の技術では、1000〜1300℃の温度で酸素分圧が
0.5 Pa以下の非酸化性雰囲気中または真空中で最終仕上
焼鈍を行うことが記載されている。
Further, in order to utilize the surface energy, it is necessary to perform high temperature final finishing annealing while suppressing the formation of surface oxides. For example, JP-A-64-5533
The technique disclosed in Japanese Patent No. 9 discloses that vacuum or an inert gas, or hydrogen gas or a mixed gas of hydrogen gas and nitrogen gas is used at a temperature of 1180 ° C. or higher and as an atmosphere for final annealing. There is. In addition, JP-A-2
In the technique disclosed in Japanese Patent Laid-Open No. -57635, it is recommended that the temperature is 950 to 1100 ° C., the atmosphere is an inert gas atmosphere or hydrogen gas or a mixed atmosphere of hydrogen gas and an inert gas, and the pressure is reduced. Further, in the technique disclosed in Japanese Patent Laid-Open No. 7-197126, the oxygen partial pressure is 1000 to 1300 ° C.
It is described that the final finish annealing is performed in a non-oxidizing atmosphere of 0.5 Pa or less or in a vacuum.

【0006】このように、表面エネルギーを利用して良
好な磁気特性を得ようとすると、最終仕上焼鈍の雰囲気
は不活性ガスや水素ガスが必要とされ、また推奨される
条件として真空とすることが要求されるけれども、高温
と真空の両立は設備的には極めて難しく、またコスト高
ともなる。
As described above, in order to obtain good magnetic properties by utilizing the surface energy, the atmosphere for the final finishing annealing requires an inert gas or hydrogen gas, and the recommended condition is to make a vacuum. However, it is extremely difficult in terms of equipment to achieve both high temperature and vacuum, and the cost is high.

【0007】さらに、表面エネルギーを利用した場合に
は、原理的には{110}面の選択のみが可能であるに
すぎず、圧延方向に<001>方向が揃ったゴス粒の成
長が選択されるわけではない。方向性電磁鋼板は、圧延
方向に磁化容易軸<001>を揃えてこそ磁気特性が向
上するので、{110}面の選択のみでは原理的に良好
な磁気特性は得られない。そのため、表面エネルギーを
利用する方法で良好な磁気特性を得ることができる圧延
条件や焼鈍条件は極めて限られたものとなり、その結
果、得られる磁気特性は不安定とならざるを得ない。
Further, when the surface energy is utilized, only the {110} plane can be selected in principle, and the growth of Goss grains aligned in the <001> direction in the rolling direction is selected. Not necessarily. In the grain-oriented electrical steel sheet, the magnetic properties are improved only by aligning the easy magnetization axis <001> in the rolling direction, so that theoretically good magnetic properties cannot be obtained only by selecting the {110} plane. Therefore, the rolling conditions and the annealing conditions that can obtain good magnetic properties by the method of utilizing surface energy are extremely limited, and as a result, the obtained magnetic properties must be unstable.

【0008】またさらに、表面エネルギーを利用する方
法では、表面酸化層の形成を抑制して最終仕上焼鈍を行
わねばならず、たとえばMgO のような焼鈍分離剤を塗布
焼鈍することができないので、最終仕上焼鈍後に通常の
方向性電磁鋼板と同様な酸化物被膜を形成することはで
きない。例えば、フォルステライト被膜は、焼鈍分離剤
としてMgO を主成分として塗布した時に形成される被膜
であるが、この被膜は鋼板表面に張力を与えるだけでな
く、その上にさらに塗布焼き付けられるリン酸塩を主体
とする絶縁張力コーティングの密着性を確保する機能を
担っている。従って、かようなフォルステライト被膜が
ない場合には鉄損は大幅に劣化する。
Furthermore, in the method utilizing surface energy, the final finish annealing must be carried out while suppressing the formation of the surface oxide layer, and the annealing separator such as MgO cannot be applied and annealed. After finish annealing, it is impossible to form an oxide film similar to that of a conventional grain-oriented electrical steel sheet. For example, a forsterite coating is a coating that is formed when MgO is used as the main component as an annealing separator, but this coating not only gives tension to the steel sheet surface, but also phosphates that are further applied and baked onto it. It is responsible for ensuring the adhesion of the insulation tension coating, which is mainly composed of Therefore, without such a forsterite coating, iron loss is significantly deteriorated.

【0009】上述したように、インヒビターを使用する
方法では、熱延前の高温スラブ加熱に付随する設備コス
トや製造コストの面で問題があり、一方インヒビターを
使用せず表面エネルギーを利用する方法では、鋼板板厚
が限定されること、二次再結晶方位の集積が劣ること、
表面酸化被膜がないために鉄損が劣ることなどの問題が
あった。
As described above, the method using an inhibitor has a problem in terms of equipment cost and manufacturing cost associated with high temperature slab heating before hot rolling, while the method using surface energy without using an inhibitor. , The steel plate thickness is limited, the secondary recrystallization orientation is poorly accumulated,
Since there is no surface oxide film, there are problems such as poor iron loss.

【0010】ところで、発明者らは、先に、上記の問題
を解決するものとして、インヒビターを含有しない素材
において、ゴス方位結晶粒を二次再結晶により発達させ
る技術を開発し、特開2000−129356号号公報において開
示した。しかしながら、この方法では、冷間圧延におい
て、鋼板エッジ部に割れが発生して歩留りが低下すると
いう問題があり、工業的な生産という観点から、これを
改善する必要があった。
By the way, the inventors previously developed a technique for developing Goss-oriented crystal grains by secondary recrystallization in a material containing no inhibitor as a solution to the above-mentioned problems. No. 129356. However, with this method, there is a problem that cracking occurs in the steel sheet edge portion during cold rolling and the yield decreases, and it has been necessary to improve this from the viewpoint of industrial production.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記の実状
に鑑み開発されたもので、インヒビターを使用しない方
向性電磁鋼板の製造技術において、冷間圧延工程におけ
る鋼板エッジ部割れを効果的に防止して、歩留りの向上
を図ると共に、磁気特性の改善も併せて達成した磁気特
性に優れた方向性電磁鋼板の有利な製造方法を提案する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention was developed in view of the above situation, and in the production technology of grain-oriented electrical steel sheet that does not use an inhibitor, effectively reduces the edge cracks of the steel sheet in the cold rolling process. It is an object of the present invention to propose an advantageous manufacturing method of a grain-oriented electrical steel sheet having excellent magnetic characteristics, which is achieved by preventing it and improving the yield as well as improving the magnetic characteristics.

【0012】[0012]

【課題を解決するための手段】すなわち、本発明の要旨
構成は次のとおりである。 1.質量%で、C:0.01〜0.08%, Si:2.0 〜8.0 %及
びMn:0.005 〜3.0 %を含み、Alを 100 ppm未満、S,
Seをそれぞれ 50ppm以下に低減した組成になる鋼スラブ
を、熱間圧延し、熱延板焼鈍を施したのち、1回の冷間
圧延によって最終板厚に仕上げ、ついで脱炭焼鈍後、焼
鈍分離剤を塗布してから、最終仕上焼鈍を施す一連の工
程からなる方向性電磁鋼板の製造方法において、熱延板
焼鈍後のコイル巻取りから冷間圧延直前までの間の鋼板
の熱履歴を、次式(1) (∫10(-4300/T(t)-2.1)dt)0.5 ≦ 2.0×10-5 --- (1) ここで、t:コイル巻取りからの時間(s) T(t) :時間tにおける鋼板温度(K) を満足する範囲に制御し、かつ冷間圧延直前の鋼板温度
を30℃以上 300℃以下に制限することを特徴とする磁気
特性に優れた方向性電磁鋼板の製造方法。
That is, the gist of the present invention is as follows. 1. % By mass, C: 0.01 to 0.08%, Si: 2.0 to 8.0% and Mn: 0.005 to 3.0%, Al less than 100 ppm, S,
A steel slab with a composition that reduces Se to 50 ppm or less is hot-rolled, hot-rolled and annealed, and then cold-rolled once to finish to the final thickness, followed by decarburization annealing and annealing separation. After applying the agent, in the method for producing a grain-oriented electrical steel sheet consisting of a series of steps for performing final finishing annealing, the thermal history of the steel sheet from coil winding after hot rolling sheet annealing to immediately before cold rolling, Formula (1) (∫10 (-4300 / T (t) -2.1) dt) 0.5 ≤ 2.0 × 10 -5 --- (1) where, t: time from coil winding (s) T ( t): Directional electromagnetic wave with excellent magnetic properties, which is characterized by controlling the steel plate temperature (K) at time t within a range that satisfies it and limiting the steel plate temperature immediately before cold rolling to 30 ° C or higher and 300 ° C or lower. Steel plate manufacturing method.

【0013】2.質量%で、C:0.01〜0.08%, Si:2.
0 〜8.0 %及びMn:0.005 〜3.0 %を含み、Alを 100 p
pm未満、S, Seをそれぞれ 50ppm以下に低減した組成に
なる鋼スラブを、熱間圧延し、必要に応じて熱延板焼鈍
を施したのち、中間焼鈍を挟む2回以上の冷間圧延によ
って最終板厚に仕上げ、ついで脱炭焼鈍後、焼鈍分離剤
を塗布してから、最終仕上焼鈍を施す一連の工程からな
る方向性電磁鋼板の製造方法において、最終冷間圧延前
の中間焼鈍後のコイル巻取りから最終冷間圧延直前まで
の間の鋼板の熱履歴を、次式(1) (∫10(-4300/T(t)-2.1)dt)0.5 ≦ 2.0×10-5 --- (1) ここで、t:コイル巻取りからの時間(s) T(t) :時間tにおける鋼板温度(K) を満足する範囲に制御し、かつ冷間圧延直前の鋼板温度
を30℃以上 300℃以下に制限することを特徴とする磁気
特性に優れた方向性電磁鋼板の製造方法。
2. % By mass, C: 0.01 to 0.08%, Si: 2.
0-8.0% and Mn: 0.005-3.0%, Al is 100 p
A steel slab having a composition of less than pm and S and Se reduced to 50 ppm or less is hot-rolled, hot-rolled sheet is annealed if necessary, and then cold-rolled twice or more with an intermediate annealing. In the manufacturing method of the grain-oriented electrical steel sheet consisting of a series of steps of finishing the final plate thickness, then decarburizing annealing, then applying the annealing separator, and then performing the final finishing annealing, after the intermediate annealing before the final cold rolling. The thermal history of the steel sheet from coil winding to immediately before the final cold rolling is calculated by the following equation (1) (∫10 (-4300 / T (t) -2.1) dt) 0.5 ≤ 2.0 × 10 -5 --- (1) where, t: time from coil winding (s) T (t): steel plate temperature (K) at time t is controlled within a range that satisfies the requirement, and the steel plate temperature immediately before cold rolling is 30 ° C or more. A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by being limited to 300 ° C or less.

【0014】3.鋼スラブが、質量%でさらに、Ni:0.
005 〜1.50%、Sn:0.01〜0.50%、Sb:0.005 〜0.50
%、Cu:0.01〜1.50%、P:0.005 〜0.50%およびCr:
0.01〜1.50%のうちから選んだ1種または2種以上を含
有することを特徴とする上記1または2記載の磁気特性
に優れた方向性電磁鋼板の製造方法。
3. The steel slab, in mass%, also contains Ni: 0.
005 to 1.50%, Sn: 0.01 to 0.50%, Sb: 0.005 to 0.50
%, Cu: 0.01 to 1.50%, P: 0.005 to 0.50% and Cr:
3. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to 1 or 2 above, which contains one or more selected from 0.01 to 1.50%.

【0015】[0015]

【発明の実施の形態】以下、本発明を具体的に説明す
る。まず、本発明を由来するに至った実験結果について
説明する。なお、成分に関する「%」表示は特に断らな
い限り質量%(mass%)を意味する。C:0.06%,Si:
3.3 %,Mn:0.03%,Al:20 ppm, S:10 ppm, Se:0.
1ppmおよびN:20 ppmを含有する組成になる鋼スラブ
を、1100℃に加熱したのち、熱間圧延により板厚:2.0
mmの熱延コイルとし、ついで1000℃, 1分間の熱延板焼
鈍を施したのち、冷却してからコイルに巻取り、熱延焼
鈍板コイルとした。ついで、この熱延焼鈍板コイルを、
15〜200 ℃の種々の温度に加熱、保熱したのち、直ちに
冷間圧延に供し、板厚:0.25mmの冷間圧延板とした。表
1に、コイル巻取りから圧延までの熱履歴を示す。ま
た、冷間圧延直前における鋼板温度および冷間圧延後の
冷延板エッジ部における割れの有無について調べた結果
を表1に併せて示す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the experimental results that led to the present invention will be described. In addition, unless otherwise indicated, "%" display regarding components means mass% (mass%). C: 0.06%, Si:
3.3%, Mn: 0.03%, Al: 20 ppm, S: 10 ppm, Se: 0.
A steel slab with a composition containing 1 ppm and N: 20 ppm is heated to 1100 ° C and then hot-rolled to a plate thickness of 2.0.
A hot-rolled coil of mm was formed, and then the hot-rolled sheet was annealed at 1000 ° C. for 1 minute, cooled, and then wound into a coil to obtain a hot-rolled annealed sheet coil. Then, this hot rolled annealed plate coil,
After being heated to various temperatures of 15 to 200 ° C. and kept heat, it was immediately subjected to cold rolling to obtain a cold rolled plate having a plate thickness of 0.25 mm. Table 1 shows the thermal history from coil winding to rolling. In addition, Table 1 also shows the results of the examination of the steel sheet temperature immediately before cold rolling and the presence or absence of cracks in the edge portion of the cold rolled sheet after cold rolling.

【0016】その後、 850℃, 2分間の脱炭焼鈍を施し
たのち、MgO を主成分とする焼鈍分離剤を塗布してか
ら、1200℃, 20時間の最終仕上焼鈍を施した。ついで、
リン酸塩−コロイダルシリカを主成分とする張力コーテ
ィング処理液を塗布、焼き付けて張力被膜を被成し、製
品とした。得られた製品の磁気特性について調べた結果
を、表1に併記する。
After that, decarburization annealing was performed at 850 ° C. for 2 minutes, an annealing separating agent containing MgO as a main component was applied, and then final finishing annealing was performed at 1200 ° C. for 20 hours. Then,
A tension coating treatment liquid containing phosphate-colloidal silica as a main component was applied and baked to form a tension coating film to obtain a product. The results of examining the magnetic properties of the obtained products are also shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】同表に示したとおり、冷間圧延直前の鋼板
温度を30℃以上にした場合には、冷間圧延で割れが発生
しないことが明らかとなった。しかしながら、磁気特性
が大幅に劣化する場合があることも併せて明らかとなっ
た。
As shown in the table, it became clear that when the steel sheet temperature immediately before cold rolling was set to 30 ° C. or higher, cracking did not occur in cold rolling. However, it was also clarified that the magnetic characteristics may be significantly deteriorated.

【0019】そこで、発明者らは、磁気特性の劣化原因
について調査を行ったところ、その原因は、固溶炭素の
析出に起因することが明らかになった。表1に、熱延鋼
板を熱延板焼鈍後、コイルに巻取った後、冷間圧延まで
の鋼板の熱履歴より計算された炭素の拡散距離L(cm)
についての調査結果を併せて示す。
Therefore, the present inventors have investigated the cause of the deterioration of the magnetic characteristics, and have found that the cause is due to the precipitation of solute carbon. Table 1 shows the carbon diffusion distance L (cm) calculated from the heat history of the steel sheet until the cold rolling after the hot rolled steel sheet was annealed and wound into a coil.
The results of the survey are also shown.

【0020】ここで、Lは、次式(2) L=(∫10(-4300/T(t)-2.1)dt)0.5 (cm) --- (2) で示され、tはコイル巻取りからの時間(s)、T(t)
は時間tにおける鋼板温度(絶対温度K)である。この
式は、文献(R.P.Smith:Trans.Met.Soc.AIME.,224(196
2)P.105)において求められた鋼中炭素の拡散式に基づ
くものであり、Lは炭素の平均拡散距離を示す。同表に
示したとおり、炭素の拡散距離Lが 2.0×10-5cm以下で
あるとき、良好な磁気特性が得られることが明らかとな
った。
Here, L is represented by the following equation (2) L = (∫10 (-4300 / T (t) -2.1) dt) 0.5 (cm) --- (2), and t is a coil winding. Time since taking (s), T (t)
Is the steel plate temperature (absolute temperature K) at time t. This formula is based on the literature (RPSmith: Trans.Met.Soc.AIME., 224 (196
2) Based on the diffusion formula of carbon in steel obtained in P.105), and L represents the average diffusion distance of carbon. As shown in the table, it became clear that good magnetic characteristics can be obtained when the carbon diffusion distance L is 2.0 × 10 −5 cm or less.

【0021】[0021]

【作用】本発明において、インヒビター成分を含まない
鋼において二次再結晶が発現する理由は必ずしも明らか
ではないが、以下のように考えている。発明者らは、ゴ
ス方位粒が二次再結晶する理由について鋭意研究を重ね
た結果、一次再結晶組織における方位差角が20〜45°で
ある粒界が重要な役割を果たしていることを発見し、Ac
ta Material 45巻(1997)1285頁に報告した。
In the present invention, the reason why secondary recrystallization occurs in steel containing no inhibitor component is not always clear, but is considered as follows. As a result of intensive studies on the reason why the Goth-oriented grains undergo secondary recrystallization, the inventors discovered that the grain boundary having a misorientation angle of 20 to 45 ° in the primary recrystallization structure plays an important role. And Ac
Ta Material 45 (1997) p. 1285.

【0022】方向性電磁鋼板の二次再結晶直前の状態で
ある一次再結晶組織を解析し、様々な結晶方位を持つ各
々の結晶粒周囲の粒界について、粒界方位差角が20〜45
°である粒界の全体に対する割合(%)について調査し
た結果を、図1に示す。同図において、結晶方位空間は
オイラー角(Φ1 、Φ、Φ2 )のΦ2 =45°断面を用い
て表示しており、ゴス方位など主な方位を模式的に表示
してある。同図によれば、方位差角が20〜45°である粒
界の各方位粒に対する存在頻度は、ゴス方位が最も高い
ことが分かる。
The primary recrystallization structure of the grain-oriented electrical steel sheet immediately before the secondary recrystallization is analyzed, and the grain boundary misorientation angle is 20 to 45 for the grain boundaries around the respective crystal grains having various crystal orientations.
FIG. 1 shows the result of the investigation on the ratio (%) of the grain boundaries with respect to the whole. In the figure, the crystal orientation space is shown using a Φ 2 = 45 ° cross section of Euler angles (Φ 1 , Φ, Φ 2 ), and the main directions such as the Goss orientation are schematically displayed. According to this figure, the Goss orientation has the highest frequency of existence of the grain boundaries of the grain boundaries having a misorientation angle of 20 to 45 °.

【0023】方位差角が20〜45°の粒界は、C. G. Dunn
らによる実験データ(AIME Transaction 188巻(1949)
368 頁)によれば、高エネルギー粒界である。この高エ
ネルギー粒界は粒界内の自由空間が大きく乱雑な構造を
している。粒界拡散は粒界を通じて原子が移動する過程
であるので、粒界中の自由空間の大きい、高エネルギー
粒界の方が粒界拡散は速い。二次再結晶は、インヒビタ
ーと呼ばれる析出物の拡散律速による成長に伴って発現
することが知られている。高エネルギー粒界上の析出物
は、仕上焼鈍中に優先的に粗大化が進行するので、優先
的にピン止めがはずれて粒界移動を開始し、ゴス粒が成
長する機構を示した。
Grain boundaries having a misorientation angle of 20 to 45 ° are CG Dunn
Experimental data from AIME Transaction 188 (1949)
According to page 368), it is a high energy grain boundary. This high energy grain boundary has a large free space in the grain boundary and has a disordered structure. Grain boundary diffusion is a process in which atoms move through the grain boundaries, so grain boundary diffusion is faster in high-energy grain boundaries with a large free space in the grain boundaries. It is known that the secondary recrystallization is accompanied by the growth of a precipitate called an inhibitor due to diffusion control. The precipitation on the high-energy grain boundaries preferentially grows during finish annealing, so the pinning is preferentially disengaged to initiate grain boundary migration, and a mechanism for the growth of Goss grains was shown.

【0024】発明者らは、この研究をさらに発展させ
て、ゴス方位粒の二次再結晶の本質的要因は、一次再結
晶組織中の高エネルギー粒界の分布状態にあり、インヒ
ビターの役割は、高エネルギー粒界と他の粒界の移動速
度差を生じさせることにあることを見い出した。従っ
て、この理論に従えば、インヒビターを用いなくとも、
粒界の移動速度差を生じさせることができれば、二次再
結晶させることが可能となる。
The inventors further developed this research, and the essential factor of the secondary recrystallization of Goss-oriented grains is the distribution state of high-energy grain boundaries in the primary recrystallization structure, and the role of the inhibitor is , It was found that there is a difference in the moving speed between the high energy grain boundary and other grain boundaries. Therefore, according to this theory,
If a difference in moving speed of grain boundaries can be generated, secondary recrystallization can be performed.

【0025】さて、鋼中に存在する不純物元素は、粒界
とくに高エネルギー粒界に偏析し易いため、不純物元素
を多く含む場合には、高エネルギー粒界と他の粒界の移
動速度に差がなくなっているものと考えられる。この
点、素材の高純度化によって、上記したような不純物元
素の影響を排除することができれば、高エネルギー粒界
の構造に依存する本来的な移動速度差が顕在化して、ゴ
ス方位粒の二次再結晶が可能になるものと考えられる。
Impurity elements existing in steel are likely to segregate at grain boundaries, especially at high energy grain boundaries. Therefore, when a large amount of impurity elements are contained, there is a difference in moving speed between the high energy grain boundaries and other grain boundaries. Is considered to have disappeared. On the other hand, if the influence of the impurity element as described above can be eliminated by improving the purity of the material, the inherent difference in the moving speed depending on the structure of the high-energy grain boundary becomes apparent, and the difference in the Goss-oriented grain It is considered that next recrystallization will be possible.

【0026】さらに、粒界移動速度差を利用して安定し
た二次再結晶を可能とするためには、一次再結晶組織を
できる限り均一な粒径分布に保つことが肝要である。と
いうのは、均一な粒径分布が保たれている場合には、ゴ
ス方位粒以外の結晶粒は粒界移動速度の小さい低エネル
ギー粒界の頻度が大きいため、粒成長が抑制されている
状態、いわゆるTexture Inhibition効果の発揮により、
粒界移動速度が大きい高エネルギー粒界の頻度が最大で
あるゴス方位粒の選択的粒成長としての二次再結晶が進
行するからである。これに対し、粒径分布が一様でない
場合には、隣接する結晶粒同士の粒径差を駆動力とする
正常粒成長が起こるため、粒界移動速度差と異なる要因
で成長する結晶粒が選択されるために、Texture Inhibi
tion効果が発揮されずに、ゴス方位粒の選択的粒成長が
起こらなくなる。
Further, in order to enable stable secondary recrystallization by utilizing the difference in grain boundary migration speed, it is important to keep the primary recrystallization structure as uniform in grain size distribution as possible. This is because when the uniform grain size distribution is maintained, grain growth is suppressed because the frequency of low-energy grain boundaries with a low grain boundary migration velocity is high in crystal grains other than Goss-oriented grains. By exerting the so-called Texture Inhibition effect,
This is because the secondary recrystallization as the selective grain growth of the Goss-oriented grains in which the frequency of high-energy grain boundaries with a high grain boundary migration speed is maximum proceeds. On the other hand, if the grain size distribution is not uniform, normal grain growth occurs with the grain size difference between adjacent crystal grains as the driving force, so that crystal grains that grow due to factors different from the grain boundary migration velocity difference Texture Inhibi to be selected
The selective effect of Goss-oriented grains does not occur without exerting the tion effect.

【0027】さて、上記したようなインヒビター成分を
含まない素材での二次再結晶において、良好な磁気特性
を得るためには、最終冷延前の鋼板にCが0.01〜0.08%
含有されていることが極めて重要である。というのは、
最終冷延前の鋼板に固溶あるいは析出している炭素が、
一次再結晶組織を改善し、二次再結晶粒方位のゴス方位
への集積を高めるからである。
In the secondary recrystallization of the material containing no inhibitor component as described above, in order to obtain good magnetic properties, the steel sheet before final cold rolling contains 0.01 to 0.08% of C.
It is extremely important that it is contained. I mean,
The carbon solid-solved or precipitated in the steel sheet before final cold rolling is
This is because the primary recrystallization structure is improved and the secondary recrystallization grain orientation is accumulated in the Goss orientation.

【0028】また、熱延板焼鈍後のコイル巻取りから冷
間圧延直前までの熱履歴と磁気特性の関係については以
下のように推定される。熱延板焼鈍後のコイル巻取り時
の鋼板内のCは、一部は炭化物として析出し、残部は固
溶していると推定される。冷間圧延において、鋼板の割
れを発生させないためには、冷間圧延直前の鋼板温度を
30℃以上、望ましくは50℃以上にすることが重要である
が、この際、鋼板内の固溶Cは炭化物として析出すると
考えられる。その結果、Cの拡散距離Lがしきい値2×
10-5cmを超えると、望ましい一次再結晶組織形成に必要
な固溶C量が減少し、磁気特性が劣化するものと考えら
れる。
Further, the relationship between the thermal history and the magnetic properties from coil winding after hot-rolled sheet annealing to immediately before cold rolling is estimated as follows. It is presumed that part of C in the steel sheet during coil winding after hot-rolled sheet annealing is precipitated as carbide and the rest is in solid solution. In cold rolling, in order to prevent cracking of the steel sheet, the steel sheet temperature immediately before cold rolling should be set to
It is important to set the temperature to 30 ° C. or higher, preferably 50 ° C. or higher. At this time, it is considered that the solid solution C in the steel sheet precipitates as carbides. As a result, the diffusion distance L of C is 2 × the threshold value.
If it exceeds 10 −5 cm, it is considered that the amount of solid solution C necessary for forming the desired primary recrystallized structure decreases and the magnetic properties deteriorate.

【0029】なお、インヒビターを含有する方向性電磁
鋼板では、炭化物の粗大化により磁気特性が劣化するこ
とが従来からよく知られている(例えば特開平9−1577
45号公報)。このようなインヒビターを含有する方向性
電磁鋼板における、炭化物の粗大化による磁気特性の劣
化は、150 ℃以上で長時間保持することによって起こ
る。このため、従来、冷間圧延時の鋼板の割れを防ぐた
めに、熱延板焼鈍を施した後のコイル巻取り時の鋼板温
度を 100〜150 ℃とし、コイルを保熱あるいは加熱ボッ
クスに装入して 100〜150 ℃に保持し、圧延直前にコイ
ルを保熱あるいは加熱ボックスから取り出して圧延す
る、ということが一般的であった。しかしながら、イン
ヒビターを含有しない方向性電磁鋼板では、上記のよう
な工程では磁気特性が大きく劣化する。
It is well known that the grain-oriented electrical steel sheet containing an inhibitor deteriorates in magnetic properties due to coarsening of carbides (for example, Japanese Patent Laid-Open No. 9-1577).
45 publication). In the grain-oriented electrical steel sheet containing such an inhibitor, the deterioration of the magnetic properties due to the coarsening of the carbides occurs by holding at 150 ° C. or higher for a long time. Therefore, in order to prevent cracking of the steel sheet during cold rolling, the temperature of the steel sheet during coil winding after hot-rolled sheet annealing has been set to 100 to 150 ° C, and the coil is kept warm or charged in a heating box. In general, the coil is kept at 100 to 150 ° C. and the coil is taken out of the heat retaining or heating box immediately before rolling and rolled. However, in the grain-oriented electrical steel sheet containing no inhibitor, the magnetic properties are greatly deteriorated in the above steps.

【0030】本発明の新規な点は、インヒビターを含有
しない方向性電磁鋼板の製造においては、炭化物の粗大
化が起こらない低温であっても、固溶炭素の析出によ
り、一次再結晶組織が劣化し、それにより磁気特性が劣
化することを見出したことである。
The novel point of the present invention is that, in the production of grain-oriented electrical steel sheet containing no inhibitor, the primary recrystallization structure is deteriorated by the precipitation of solute carbon even at a low temperature where coarsening of carbide does not occur. However, it has been found that the magnetic characteristics are deteriorated thereby.

【0031】次に、本発明において、素材であるスラブ
の成分組成を前記の範囲に限定した理由について説明す
る。 C:0.01〜0.08% Cが、0.01%に満たないと、一次再結晶組織の改善効果
が小さく、満足いくほどの磁気特性が得られず、一方0.
08%を超えると、製品のCを磁気時効の起こらない50pp
m 以下に低減することが困難になるので、C量は0.01〜
0.08%の範囲に限定した。 Si:2.0 〜8.0 % Siは、鋼の電気抵抗を増大し鉄損を低減するのに有用な
元素であるので、2.0%以上含有させる。しかしなが
ら、含有量が 8.0%を超えると加工性が著しく低下して
冷間圧延が困難となる。そこでSi量は 2.0〜8.0 %の範
囲に限定した。 Mn:0.005 〜3.0 % Mnは、熱間加工性を改善するために有用な元素である
が、含有量が 0.005%未満ではその添加効果に乏しく、
一方 3.0%を超えると磁束密度の低下を招くので、Mn量
は 0.005〜3.0 %の範囲とする。
Next, in the present invention, the reason why the composition of the raw material slab is limited to the above range will be described. C: 0.01 to 0.08% If C is less than 0.01%, the effect of improving the primary recrystallization structure is small, and satisfactory magnetic properties cannot be obtained.
When it exceeds 08%, the C of the product does not cause magnetic aging 50pp
Since it becomes difficult to reduce it to m or less, the C content is 0.01-
It was limited to the range of 0.08%. Si: 2.0 to 8.0% Since Si is an element useful for increasing the electric resistance of steel and reducing iron loss, it is contained at 2.0% or more. However, if the content exceeds 8.0%, the workability is remarkably reduced and cold rolling becomes difficult. Therefore, the Si content is limited to the range of 2.0 to 8.0%. Mn: 0.005-3.0% Mn is an element useful for improving hot workability, but if the content is less than 0.005%, its addition effect is poor,
On the other hand, if it exceeds 3.0%, the magnetic flux density will decrease, so the Mn content should be in the range of 0.005 to 3.0%.

【0032】Al:100 ppm 未満、S, Seはそれぞれ 50p
pm以下 また、不純物元素であるAlは 100 ppm未満、S, Seにつ
いてもそれぞれ 50ppm以下、好ましくは 30ppm以下に低
減することが、良好に二次再結晶させる上で不可欠であ
る。その他、窒化物形成元素であるTi, Nb, B, Ta, V
等についても、それぞれ 50ppm以下に低減することが鉄
損の劣化を防止し、良好な加工性を確保する上で有効で
ある。
Al: less than 100 ppm, S and Se are 50 p each
Further, it is indispensable to reduce the impurity element Al to less than 100 ppm, and S and Se to 50 ppm or less, preferably 30 ppm or less, respectively, for good secondary recrystallization. In addition, nitride forming elements such as Ti, Nb, B, Ta, V
Regarding the above, it is effective to reduce the iron content to 50 ppm or less in order to prevent deterioration of iron loss and ensure good workability.

【0033】以上、必須成分および抑制成分について説
明したが、本発明では、その他にも以下に述べる元素を
適宜含有させることができる。Ni:0.005 〜1.50%、S
n:0.01〜0.50%、Sb:0.005 〜0.50%、Cu:0.01〜1.5
0%、P:0.005 〜0.50%、Cr:0.01〜1.50%のうちか
ら選んだ少なくとも1種Niは、熱延板組織を改善して磁
気特性を向上させる有用元素である。しかしながら、含
有量が 0.005%未満では磁気特性の向上量が小さく、一
方1.50%を超えると二次再結晶が不安定になり磁気特性
が劣化するので、Ni量は 0.005〜1.50%とした。また、
Sn,Sb,Cu, P, Crはそれぞれ、鉄損の向上に有用な元
素であるが、いずれも上記範囲の下限値に満たないと鉄
損の向上効果が小さく、一方上限量を超えると二次再結
晶粒の発達が阻害されるので、それぞれSn:0.01〜0.50
%,Sb:0.005 〜0.50%,Cu:0.01〜1.50%,P:0.00
5 〜0.50%,Cr:0.01〜1.5 %の範囲で含有させる。
Although the essential component and the inhibitory component have been described above, other elements described below can be appropriately contained in the present invention. Ni: 0.005 to 1.50%, S
n: 0.01 to 0.50%, Sb: 0.005 to 0.50%, Cu: 0.01 to 1.5
At least one kind of Ni selected from 0%, P: 0.005 to 0.50%, and Cr: 0.01 to 1.50% is a useful element for improving the hot rolled sheet structure and magnetic properties. However, if the content is less than 0.005%, the amount of improvement in magnetic properties is small, while if it exceeds 1.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so the Ni content was made 0.005 to 1.50%. Also,
Each of Sn, Sb, Cu, P, and Cr is an element useful for improving iron loss, but if the lower limit of each of the above ranges is not satisfied, the effect of improving iron loss is small, while if it exceeds the upper limit, Since the development of secondary recrystallized grains is inhibited, Sn: 0.01 to 0.50, respectively.
%, Sb: 0.005 to 0.50%, Cu: 0.01 to 1.50%, P: 0.00
5 to 0.50%, Cr: 0.01 to 1.5%.

【0034】次に、本発明の製造工程について説明す
る。上記の好適成分組成に調整した溶鋼を、転炉、電気
炉などを用いる公知の方法で精錬し、必要があれば真空
処理などを施したのち、通常の造塊法や連続鋳造法を用
いてスラブを製造する。また、直接鋳造法を用いて 100
mm以下の厚さの薄鋳片を直接製造してもよい。スラブ
は、通常の方法で加熱して熱間圧延するが、鋳造後、加
熱せずに直ちに熱延に供してもよい。また、薄鋳片の場
合には、熱間圧延を行っても良いし、熱間圧延を省略し
てそのまま以後の工程に進めてもよい。熱間圧延前のス
ラブ加熱温度は1250℃以下に抑えることが、スラブ加熱
中に生成するスケール量を低減する上で特に望ましい。
また、結晶組織の微細化および不可避的に混入するイン
ヒビター成分の弊害を無害化して、均一な整粒一次再結
晶組織を実現する意味でもスラブ加熱温度の低温化が望
ましい。
Next, the manufacturing process of the present invention will be described. Molten steel adjusted to the above-mentioned preferred component composition is smelted by a known method using a converter, an electric furnace, etc., and if necessary subjected to vacuum treatment or the like, then using a usual ingot making method or continuous casting method. Manufacture slabs. Also, using direct casting method, 100
You may directly manufacture the thin slab with a thickness of less than mm. The slab is heated by a usual method and hot-rolled, but it may be directly subjected to hot rolling without heating after casting. Further, in the case of a thin cast piece, hot rolling may be performed, or hot rolling may be omitted and the process may be directly performed. It is particularly desirable to control the slab heating temperature before hot rolling to 1250 ° C. or lower in order to reduce the amount of scale generated during slab heating.
It is also desirable to lower the slab heating temperature in the sense that the crystal structure is made finer and the harmful effects of the inhibitor component mixed inevitably are made harmless to realize a uniform sized primary recrystallization structure.

【0035】ついで、熱延板焼鈍を施す。ゴス組織を製
品板において高度に発達させるためには、熱延板焼鈍温
度は 800〜1100℃の範囲が好適である。というのは、熱
延板焼鈍温度が 800℃未満では熱延でのバンド組織が残
留し、整粒の一次再結晶組織を実現することが困難にな
る結果、二次再結晶の発達が阻害され、一方熱延板焼鈍
温度が1100℃を超えると、不可避的に混入するインヒビ
ター成分が固溶し冷却時に不均一に再析出するために、
整粒一次再結晶組繊を実現することが困難となり、やは
り二次再結晶の発達が阻害されるからである。また、熱
延板焼鈍温度が1100℃を超えると、熱延板焼鈍後の粒径
が粗大化しすぎることも、整粒の一次再結晶組織を実現
する上で極めて不利である。
Then, hot-rolled sheet annealing is performed. In order to highly develop the Goss structure in the product sheet, the hot rolled sheet annealing temperature is preferably in the range of 800 to 1100 ° C. This is because when the hot-rolled sheet annealing temperature is lower than 800 ° C, the band structure in hot rolling remains and it becomes difficult to realize the primary recrystallization structure of the grain size, which hinders the development of secondary recrystallization. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C, the inhibitor components that are inevitably mixed are solid-dissolved and re-precipitate unevenly during cooling,
This is because it becomes difficult to realize sized primary recrystallized fiber, and the development of secondary recrystallization is also hindered. Further, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., the grain size after the hot-rolled sheet annealing becomes excessively large, which is extremely disadvantageous in realizing the primary recrystallized structure of sized grains.

【0036】熱延板焼鈍後、冷却し、コイルに巻取る。
ついで、冷間圧延により最終板厚に仕上げるが、冷間圧
延直前の鋼板温度を30℃以上、 300℃以下とすることが
重要である、というのは、冷間圧延直前の鋼板温度が30
℃に満たないと、冷間圧延によって鋼板エッジ部に割れ
が生じ、歩留りが大きく劣化し、一方 300℃を超える
と、冷間圧延ロールが熱膨張し、ヒートクラウンと呼ば
れる太鼓状形状となって、圧延が不可能となるからであ
る。
After annealing the hot rolled sheet, it is cooled and wound into a coil.
Then, the final thickness is finished by cold rolling, but it is important that the steel sheet temperature immediately before cold rolling is 30 ° C or higher and 300 ° C or lower, because the steel sheet temperature immediately before cold rolling is 30 ° C.
If the temperature is less than ℃, cold rolling will cause cracks in the edge of the steel sheet and the yield will be significantly deteriorated, while if it exceeds 300 ℃, the cold rolling rolls will thermally expand and become a drum shape called heat crown. This is because rolling becomes impossible.

【0037】また、熱延板焼鈍後のコイル巻取り後から
冷間圧延直前までの間の鋼板の熱履歴を、次式(1) (∫10(-4300/T(t)-2.1)dt)0.5 ≦ 2.0×10-5 --- (1) ここで、t:コイル巻取りからの時間(s) T(t) :時間tにおける鋼板温度(K) を満足する範囲に制御することが重要である。というの
は、上掲式(1) の左辺で示されるCの拡散距離Lが 2.0
×10-5 (cm)を超えると、固溶Cの析出により、磁気特
性が劣化するからである。
Further, the thermal history of the steel sheet after coil winding after hot-rolled sheet annealing and immediately before cold rolling is calculated by the following equation (1) (∫10 (-4300 / T (t) -2.1) dt ) 0.5 ≤ 2.0 × 10 -5 --- (1) where, t: time from coil winding (s) T (t): steel plate temperature (K) at time t can be controlled within a range satisfying. is important. This is because the diffusion distance L of C shown on the left side of the above equation (1) is 2.0.
This is because if it exceeds x 10 -5 (cm), the magnetic properties deteriorate due to the precipitation of solid solution C.

【0038】ここに、熱延板焼鈍後のコイル巻取りから
冷間圧延直前までの間の鋼板の熱履歴を、上掲式(1) を
満足する熱履歴とするには、熱延板焼鈍後のコイル巻取
り時の鋼板温度を従来よりも低く、望ましくは20℃以下
にすると共に、冷間圧延直前に鋼板を速やかに加熱し、
冷間圧延することが必要となる。鋼板の加熱方法として
は、圧延機の入側のコイル払い出し装置(ペイオフリー
ル)から圧延機までの間に、誘導加熱、赤外線加熱、通
電加熱等による加熱装置を配置し、鋼板を連続的に加熱
することが望ましい。というのは、この方法では、鋼板
の昇温速度を1〜100 ℃/s程度にすることが可能であ
り、その結果所望の温度に達するまでの炭素の拡散距離
Lを小さくすることが可能だからである。
In order to make the heat history of the steel sheet from coil winding after hot-rolled sheet annealing to immediately before cold rolling a heat history satisfying the above formula (1), hot-rolled sheet annealing is performed. The temperature of the steel sheet during coil winding after that is lower than that of the conventional one, preferably 20 ° C. or less, and the steel sheet is quickly heated immediately before cold rolling,
Cold rolling is required. As a method of heating the steel sheet, a heating apparatus such as induction heating, infrared heating, or electric heating is arranged between the coil payout device (pay-off reel) on the entrance side of the rolling mill and the rolling mill to continuously heat the steel sheet. It is desirable to do. This is because this method can increase the heating rate of the steel sheet to about 1 to 100 ° C./s, and as a result, can reduce the carbon diffusion distance L until the desired temperature is reached. Is.

【0039】また、熱延板焼鈍後、1回の冷間圧延で製
品厚とする上記の方法以外に、必要に応じて熱延板焼鈍
を施したのち、中間焼鈍を挟む2回以上の冷間圧延によ
り最終板厚に仕上げる方法も適用できる。この場合に
は、最終冷間圧延直前の鋼板温度を30℃以上、300 ℃以
下にすると共に、最終冷間圧延前の中間焼鈍後のコイル
巻取りから最終冷間圧延直前までの間の鋼板の熱履歴
を、次式(1) (∫10(-4300/T(t)-2.1)dt)0.5 ≦ 2.0×10-5 (cm) --- (1) を満たす範囲に制御すれば良い。
In addition to the above-described method in which the product thickness is obtained by one cold rolling after the hot-rolled sheet annealing, the hot-rolled sheet is optionally annealed, and then cold-rolled twice or more with intermediate annealing. A method of finishing to the final plate thickness by hot rolling can also be applied. In this case, the steel sheet temperature immediately before the final cold rolling is set to 30 ° C or higher and 300 ° C or lower, and the steel sheet temperature between the coil winding after the intermediate annealing before the final cold rolling and immediately before the final cold rolling is set. The thermal history may be controlled within a range that satisfies the following equation (1) (∫10 (-4300 / T (t) -2.1) dt) 0.5 ≤ 2.0 × 10 -5 (cm) --- (1).

【0040】ついで、最終仕上板厚となった冷延鋼板
に、脱炭焼鈍を施して、Cを磁気時効の起こらない 50p
pm以下好ましくは 30ppm以下まで低減する。かような脱
炭焼鈍は、湿潤雰囲気を使用して 700〜1000℃の温度で
行うことが好適である。また、脱炭焼鈍後に浸珪法によ
ってにSi量を増加させる技術を併用してもよい。その
後、焼鈍分離剤を塗布して、最終仕上焼鈍を施すことに
より二次再結晶組織を発達させるとともにフォルステラ
イト被膜を形成させる。最終仕上焼鈍は、二次再結晶発
現のために 800℃以上で行う必要があるが、800 ℃まで
の加熱速度は磁気特性に大きな影響を与えないので任意
の条件でよい。
Then, the cold-rolled steel sheet having the final finished thickness is subjected to decarburization annealing so that C is not magnetically aged at 50 p.
pm or less, preferably 30ppm or less. Such decarburization annealing is preferably carried out in a humid atmosphere at a temperature of 700-1000 ° C. Also, a technique of increasing the Si content by a siliconizing method after decarburization annealing may be used together. After that, an annealing separator is applied and final finishing annealing is performed to develop a secondary recrystallization structure and form a forsterite coating. The final finish annealing needs to be performed at 800 ° C. or higher in order to develop the secondary recrystallization, but the heating rate up to 800 ° C. does not have a great influence on the magnetic properties, so any conditions may be used.

【0041】その後、平坦化焼鈍を施して形状を矯正す
る。ついで、上記の平坦化焼鈍後、鉄損の改善を目的と
して、鋼板表面に張力を付与する絶縁コーティングを施
すことが有利である。さらに、公知の磁区細分化技術を
適用できることはいうまでもない。
After that, flattening annealing is performed to correct the shape. Then, after the above flattening annealing, it is advantageous to apply an insulating coating for imparting tension to the surface of the steel sheet for the purpose of improving iron loss. Further, it goes without saying that a known magnetic domain subdivision technique can be applied.

【0042】[0042]

【実施例】実施例1 C:0.01%,Si:3.8 %,Mn:0.15%を含有し、Alを10
ppm、Sを20 ppm、Seを0ppm 、Nを30 ppmに低減し、
残部はFeおよび不可避的不純物の組成になる溶鋼から、
連続鋳造によりスラブを製造した。このスラブを、再加
熱することなしに、熱間圧延により2.0 mm厚の熱延板と
し、1000℃で1分間の熱延板焼鈍を施したのち、冷却
し、表2に示す温度でコイルに巻取った。その後、冷間
圧延までの鋼板の熱履歴を表2に示すように変化させ
て、冷間圧延に供した。表2に、コイル巻取り後、冷間
圧延開始までの間の炭素拡散距離L(cm)および冷間圧
延開始直前の鋼板温度についての測定結果を示す。
EXAMPLES Example 1 C: 0.01%, Si: 3.8%, Mn: 0.15% are contained, and Al is 10%.
ppm, S to 20 ppm, Se to 0 ppm, N to 30 ppm,
The balance consists of molten steel with a composition of Fe and unavoidable impurities,
A slab was manufactured by continuous casting. This slab was hot-rolled into a 2.0 mm thick hot-rolled sheet without reheating, annealed at 1000 ° C for 1 minute, then cooled and formed into a coil at the temperature shown in Table 2. I wound up. Then, the heat history of the steel sheet until cold rolling was changed as shown in Table 2 and subjected to cold rolling. Table 2 shows the measurement results of the carbon diffusion distance L (cm) between the coil winding and the start of cold rolling and the steel sheet temperature immediately before the start of cold rolling.

【0043】ついで、冷間圧延により最終板厚:0.25mm
の冷延板に仕上げ、 800℃, 2分の脱炭焼鈍後、MgO を
塗布してから、1200℃,5hの仕上焼鈍を施した。その
後、リン酸塩とシリカを主成分とする絶縁コーティング
処理液を塗布したのち、平坦化を兼ねる焼鈍を施した。
かくして得られた製品の磁気特性について調べた結果を
表2に併記する。
Then, the final plate thickness is 0.25 mm by cold rolling.
Cold-rolled sheet was finished, decarburization annealed at 800 ° C for 2 minutes, MgO was applied, and then finish annealed at 1200 ° C for 5 hours. After that, an insulating coating treatment liquid containing phosphate and silica as a main component was applied, followed by annealing for also planarization.
The results of examining the magnetic properties of the products thus obtained are also shown in Table 2.

【0044】[0044]

【表2】 [Table 2]

【0045】同表から明らかなように、本発明に従って
得られた製品は、冷間圧延時に割れを生じることなく高
い磁束密度を示した。
As is apparent from the table, the product obtained according to the present invention showed a high magnetic flux density without cracking during cold rolling.

【0046】実施例2 C:0.07%,Si:3.3 %, Mn:0.05%, Cr:0.08%, C
u:0.08%, Sb:0.02%を含有し、Alを60 ppm、Sを20
ppm、Seを10 ppm、Nを55 ppmに低減し、残部はFeおよ
び不可避的不純物の組成になる溶鋼から、連続鋳造によ
りスラブを製造した。このスラブを、1200℃に加熱後、
熱間圧延により2.5 mm厚の熱延板とした。ついで、1回
目の冷間圧延により1.8 mmの中間厚とし、900 ℃で1分
間の中間焼鈍後を施したのち、冷却して、表3示す温度
でコイルに巻取った。その後、2回目の冷間圧延までの
鋼板の熱履歴を、表3に示すように種々に変化させた。
表3に、中間焼鈍後のコイル巻取り後、最終冷間圧延開
始までの炭素拡散距離L(cm)および2回目の冷間圧延
開始直前の鋼板温度を示す。
Example 2 C: 0.07%, Si: 3.3%, Mn: 0.05%, Cr: 0.08%, C
u: 0.08%, Sb: 0.02% contained, Al 60 ppm, S 20
A slab was produced by continuous casting from molten steel in which ppm, Se were reduced to 10 ppm, N was reduced to 55 ppm, and the balance was Fe and inevitable impurities. After heating this slab to 1200 ° C,
A hot rolled sheet with a thickness of 2.5 mm was obtained by hot rolling. Then, the steel sheet was cold-rolled for the first time to an intermediate thickness of 1.8 mm, subjected to intermediate annealing at 900 ° C. for 1 minute, cooled, and then wound into a coil at a temperature shown in Table 3. After that, the heat history of the steel sheet until the second cold rolling was changed variously as shown in Table 3.
Table 3 shows the carbon diffusion distance L (cm) after the coil winding after the intermediate annealing until the start of the final cold rolling and the steel plate temperature immediately before the start of the second cold rolling.

【0047】ついで、2回目の冷間圧延により最終板
厚:0.22mmに仕上げ、 850℃, 5分の脱炭焼鈍後、5%
のTiO2を含有するMgO を塗布してから、1200℃,5hの
仕上焼鈍を施した。その後、リン酸塩とシリカを主成分
とする絶縁コーティング処理液を塗布したのち、平坦化
を兼ねる焼鈍を施した。かくして得られた製品の磁気特
性について調べた結果を表3に併記する。
Then, the final cold rolling was finished by the second cold rolling to a final thickness of 0.22 mm, followed by decarburization annealing at 850 ° C. for 5 minutes, and then 5%.
Of MgO containing TiO 2 was applied, and then finish annealing was performed at 1200 ° C. for 5 hours. After that, an insulating coating treatment liquid containing phosphate and silica as a main component was applied, followed by annealing for also planarization. The results of examining the magnetic properties of the product thus obtained are also shown in Table 3.

【0048】[0048]

【表3】 [Table 3]

【0049】同表から明らかなように、本発明に従って
得られた製品は冷間圧延時に割れを生じることなく高い
磁束密度を示した。
As is clear from the table, the product obtained according to the present invention showed a high magnetic flux density without cracking during cold rolling.

【0050】実施例3 C:0.05%,Si:2.5 %,Mn:0.5 %を含有し、Alを90
ppm, Sを48 ppm、Seを3 ppm, Nを15 ppmに低減し、
さらにNi, Sn, Sb, Cu, P, Crをそれぞれ表4に示す範
囲で含有し、残部はFeおよび不可避的不純物の組成にな
る溶鋼から、連続鋳造によりスラブを製造した。このス
ラブを、1100℃に加熱後、熱間圧延により2.5 mm厚の熱
延板とした。ついで、 850℃で1分間の熱延板焼鈍後、
冷却し、コイルに巻取ったのち、コイルを加熱するなど
して、冷間圧延までの鋼板の熱履歴を2条件に変化させ
てから、冷間圧延に供した。コイル巻取り後、冷間圧延
開始までの炭素拡散距離L(cm)は 2.0×10-5(条件
I)および 8.2×10-4(条件II)であった。また、冷間
圧延開始直前の鋼板温度は40℃であった。
Example 3 C: 0.05%, Si: 2.5%, Mn: 0.5% are contained, and Al is 90%.
ppm, S to 48 ppm, Se to 3 ppm, N to 15 ppm,
Further, a slab was produced by continuous casting from molten steel containing Ni, Sn, Sb, Cu, P, and Cr in the ranges shown in Table 4, with the balance being Fe and inevitable impurities. After heating this slab to 1100 ° C., it was hot-rolled into a hot-rolled sheet having a thickness of 2.5 mm. Then, after annealing the hot rolled sheet at 850 ° C for 1 minute,
After cooling and winding on a coil, the coil was heated to change the heat history of the steel sheet up to cold rolling into two conditions, and then subjected to cold rolling. The carbon diffusion distance L (cm) after coil winding until the start of cold rolling was 2.0 × 10 −5 (condition I) and 8.2 × 10 −4 (condition II). The steel sheet temperature immediately before the start of cold rolling was 40 ° C.

【0051】ついで、冷間圧延により最終板厚:0.35mm
に仕上げ、 800℃, 2分の脱炭焼鈍後、MgO を塗布して
から、1200℃, 5hの仕上焼鈍を施した。その後、リン
酸塩とシリカを主成分とする絶縁コーティング処理液を
塗布したのち、平坦化を兼ねる焼鈍を施した。かくして
得られた製品の磁気特性について調べた結果を表4に併
記する。
Then, by cold rolling, the final plate thickness: 0.35 mm
After decarburization annealing at 800 ° C for 2 minutes, MgO was applied and then finish annealing at 1200 ° C for 5 hours. After that, an insulating coating treatment liquid containing phosphate and silica as a main component was applied, followed by annealing for also planarization. The results of examining the magnetic properties of the product thus obtained are also shown in Table 4.

【0052】[0052]

【表4】 [Table 4]

【0053】同表から明らかなように、いずれの製品に
おいても冷間圧延時の割れは発生しなかったが、比較例
(条件II)では十分な磁束密度が得られなかったのに対
し、本発明に従って得られた製品(条件I)では高い磁
束密度が得られている。
As is clear from the table, no cracks were generated during cold rolling in any of the products, but a sufficient magnetic flux density was not obtained in the comparative example (condition II). A high magnetic flux density is obtained in the product obtained according to the invention (condition I).

【0054】[0054]

【発明の効果】かくして、本発明によれば、インヒビタ
ーを利用せずに二次再結晶を生じさせる方法によって方
向性電磁鋼板を製造する場合に、最終冷間圧延前の焼鈍
後のコイル巻取りから最終冷間圧延直前までの間の鋼板
の熱履歴を制御することにより、冷間圧延工程における
鋼板エッジ部割れを効果的に防止して製品歩留りの向上
を図ることができ、併せて磁気特性の向上を図ることが
できる。
As described above, according to the present invention, when the grain-oriented electrical steel sheet is manufactured by the method of causing the secondary recrystallization without using the inhibitor, the coil winding after the annealing before the final cold rolling is performed. By controlling the heat history of the steel sheet during the period from to just before the final cold rolling, it is possible to effectively prevent the steel sheet edge cracks in the cold rolling process and improve the product yield. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 方向性電磁鋼板の一次再結晶組織における、
様々な結晶方位を持つ各々の結晶周囲の粒界について、
粒界方位差角が20〜45°である粒界の全体に対する割合
(%)を示す。
FIG. 1 shows the primary recrystallization structure of grain-oriented electrical steel,
For the grain boundaries around each crystal with various crystal orientations,
The ratio (%) to the entire grain boundaries having a grain boundary misorientation angle of 20 to 45 ° is shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K033 AA02 CA01 CA02 CA03 CA07 CA08 EA02 JA04 LA01 TA02 TA03 5E041 AA02 CA02 HB11 NN01 NN18   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsumasa Kurosawa             1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama             Shi) Kawasaki Steel Co., Ltd. Mizushima Steel Works F-term (reference) 4K033 AA02 CA01 CA02 CA03 CA07                       CA08 EA02 JA04 LA01 TA02                       TA03                 5E041 AA02 CA02 HB11 NN01 NN18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.01〜0.08%, Si:2.0
〜8.0 %及びMn:0.005〜3.0 %を含み、Alを 100 ppm
未満、S, Seをそれぞれ 50ppm以下に低減した組成にな
る鋼スラブを、熱間圧延し、熱延板焼鈍を施したのち、
1回の冷間圧延によって最終板厚に仕上げ、ついで脱炭
焼鈍後、焼鈍分離剤を塗布してから、最終仕上焼鈍を施
す一連の工程からなる方向性電磁鋼板の製造方法におい
て、 熱延板焼鈍後のコイル巻取りから冷間圧延直前までの間
の鋼板の熱履歴を、次式(1) (∫10(-4300/T(t)-2.1)dt)0.5 ≦ 2.0×10-5 --- (1) ここで、t:コイル巻取りからの時間(s) T(t) :時間tにおける鋼板温度(K) を満足する範囲に制御し、かつ冷間圧延直前の鋼板温度
を30℃以上 300℃以下に制限することを特徴とする磁気
特性に優れた方向性電磁鋼板の製造方法。
1. By mass%, C: 0.01 to 0.08%, Si: 2.0
~ 8.0% and Mn: 0.005-3.0%, Al 100 ppm
Steel, and a steel slab having a composition in which S and Se are reduced to 50 ppm or less, respectively, after hot rolling and hot-rolled sheet annealing,
In a method for producing a grain-oriented electrical steel sheet, which comprises a series of steps in which a final thickness is finished by one cold rolling, a decarburization annealing is performed, an annealing separator is applied, and then a final finishing annealing is performed. The thermal history of the steel sheet from coil winding after annealing to immediately before cold rolling is calculated by the following equation (1) (∫10 (-4300 / T (t) -2.1) dt) 0.5 ≤ 2.0 × 10 -5- -(1) where, t: time from coil winding (s) T (t): control within a range satisfying the steel plate temperature (K) at time t, and the steel plate temperature immediately before cold rolling is 30 A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by limiting the temperature to 300 ° C or higher.
【請求項2】 質量%で、C:0.01〜0.08%, Si:2.0
〜8.0 %及びMn:0.005〜3.0 %を含み、Alを 100 ppm
未満、S, Seをそれぞれ 50ppm以下に低減した組成にな
る鋼スラブを、熱間圧延し、必要に応じて熱延板焼鈍を
施したのち、中間焼鈍を挟む2回以上の冷間圧延によっ
て最終板厚に仕上げ、ついで脱炭焼鈍後、焼鈍分離剤を
塗布してから、最終仕上焼鈍を施す一連の工程からなる
方向性電磁鋼板の製造方法において、 最終冷間圧延前の中間焼鈍後のコイル巻取りから最終冷
間圧延直前までの間の鋼板の熱履歴を、次式(1) (∫10(-4300/T(t)-2.1)dt)0.5 ≦ 2.0×10-5 --- (1) ここで、t:コイル巻取りからの時間(s) T(t) :時間tにおける鋼板温度(K) を満足する範囲に制御し、かつ冷間圧延直前の鋼板温度
を30℃以上 300℃以下に制限することを特徴とする磁気
特性に優れた方向性電磁鋼板の製造方法。
2. C: 0.01 to 0.08%, Si: 2.0 by mass%
~ 8.0% and Mn: 0.005-3.0%, Al 100 ppm
Steel slabs with a composition of less than 50 ppm and less than 50 ppm of S and Se are hot-rolled, and if necessary hot-rolled sheet annealed, and then cold-rolled twice or more with an intermediate anneal. In the method for producing a grain-oriented electrical steel sheet, which comprises a series of steps of finishing the plate thickness, then decarburizing and annealing, then applying the annealing separator, and then performing the final finish annealing, the coil after the intermediate annealing before the final cold rolling. The thermal history of the steel sheet from winding to immediately before the final cold rolling is calculated by the following equation (1) (∫10 (-4300 / T (t) -2.1) dt) 0.5 ≤ 2.0 × 10 -5 --- ( 1) where, t: time from coil winding (s) T (t): steel plate temperature (K) at time t is controlled in a range satisfying the condition, and the steel plate temperature immediately before cold rolling is 30 ° C. or higher 300 A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties, characterized by being limited to ℃ or less.
【請求項3】 鋼スラブが、質量%でさらに、Ni:0.00
5 〜1.50%、Sn:0.01〜0.50%、Sb:0.005 〜0.50%、
Cu:0.01〜1.50%、P:0.005 〜0.50%およびCr:0.01
〜1.50%のうちから選んだ1種または2種以上を含有す
ることを特徴とする請求項1または2記載の磁気特性に
優れた方向性電磁鋼板の製造方法。
3. The steel slab further comprises Ni: 0.00 by mass%.
5 to 1.50%, Sn: 0.01 to 0.50%, Sb: 0.005 to 0.50%,
Cu: 0.01 to 1.50%, P: 0.005 to 0.50% and Cr: 0.01
3. The method for producing a grain-oriented electrical steel sheet having excellent magnetic properties according to claim 1 or 2, containing one or more selected from the range of 1.50%.
JP2002057073A 2002-03-04 2002-03-04 Oriented electrical steel sheet and manufacturing method thereof Expired - Lifetime JP4258156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057073A JP4258156B2 (en) 2002-03-04 2002-03-04 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057073A JP4258156B2 (en) 2002-03-04 2002-03-04 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003253335A true JP2003253335A (en) 2003-09-10
JP4258156B2 JP4258156B2 (en) 2009-04-30

Family

ID=28667429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057073A Expired - Lifetime JP4258156B2 (en) 2002-03-04 2002-03-04 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4258156B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094797A1 (en) * 2015-12-04 2017-06-08 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
US10844452B2 (en) 2015-06-09 2020-11-24 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
WO2022250113A1 (en) 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
WO2023063426A1 (en) * 2021-10-15 2023-04-20 Jfeスチール株式会社 Aging treatment method and oriented electromagnetic steel sheet manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10844452B2 (en) 2015-06-09 2020-11-24 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing the same
WO2017094797A1 (en) * 2015-12-04 2017-06-08 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
JPWO2017094797A1 (en) * 2015-12-04 2018-04-05 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
CN108291268A (en) * 2015-12-04 2018-07-17 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet
US20190112685A1 (en) * 2015-12-04 2019-04-18 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet
WO2022250113A1 (en) 2021-05-28 2022-12-01 Jfeスチール株式会社 Method for manufacturing grain-oriented electromagnetic steel sheet
KR20240004679A (en) 2021-05-28 2024-01-11 제이에프이 스틸 가부시키가이샤 Manufacturing method of grain-oriented electrical steel sheet
WO2023063426A1 (en) * 2021-10-15 2023-04-20 Jfeスチール株式会社 Aging treatment method and oriented electromagnetic steel sheet manufacturing method

Also Published As

Publication number Publication date
JP4258156B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
KR101445467B1 (en) Process for producing grain-oriented magnetic steel sheet
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
JP5782527B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
CN109906277B (en) Method for producing grain-oriented electromagnetic steel sheet
JP4032162B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP6607010B2 (en) Method for producing grain-oriented electrical steel sheet
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6813143B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
KR20190107072A (en) Method of manufacturing oriented electrical steel sheet
JP6601649B1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
CN109923222B (en) Method for producing grain-oriented electromagnetic steel sheet
JP7197069B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5920387B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP3948284B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003193134A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
JPH05186832A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP4258156B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP4196565B2 (en) Method for producing grain-oriented electrical steel sheet
JP2004076146A (en) Grain oriented magnetic steel sheet having excellent film adhesion and method for producing the same
JP2003193131A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP4259025B2 (en) Oriented electrical steel sheet having excellent bend characteristics and method for producing the same
JP7239077B1 (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term