JP2003253153A - Water-resistant rare earth pigment - Google Patents

Water-resistant rare earth pigment

Info

Publication number
JP2003253153A
JP2003253153A JP2002054719A JP2002054719A JP2003253153A JP 2003253153 A JP2003253153 A JP 2003253153A JP 2002054719 A JP2002054719 A JP 2002054719A JP 2002054719 A JP2002054719 A JP 2002054719A JP 2003253153 A JP2003253153 A JP 2003253153A
Authority
JP
Japan
Prior art keywords
rare earth
water
pigment
resistant rare
water resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002054719A
Other languages
Japanese (ja)
Other versions
JP4028992B2 (en
Inventor
Tsutomu Odaki
勉 小田喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Rubber Kenkyusho KK
Original Assignee
Fine Rubber Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Rubber Kenkyusho KK filed Critical Fine Rubber Kenkyusho KK
Priority to JP2002054719A priority Critical patent/JP4028992B2/en
Publication of JP2003253153A publication Critical patent/JP2003253153A/en
Application granted granted Critical
Publication of JP4028992B2 publication Critical patent/JP4028992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth pigment improved in water resistance. <P>SOLUTION: The water-resistant rare earth pigment has a composition represented by A<SB>x</SB>B<SB>(0.5-x/2)</SB>LnM<SB>2</SB>O<SB>8</SB>. In the composition, 0<x≤1; A is at least one selected among alkali metals; B is at least one selected among alkaline earth metals; Ln is at least one selected among rare earth elements; and M is at least one selected from molybdenum and tungsten. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐水性を改善した
希土類顔料に関する。
TECHNICAL FIELD The present invention relates to a rare earth pigment having improved water resistance.

【0002】[0002]

【従来の技術】無機顔料は耐熱性、耐候性に優れている
ためエンジニヤリングプラスチックなどの高温成形材料
や建材への利用、塗料、絵の具、陶磁器など多くの需要
がある。また、希土類元素は4f軌道内に不対電子をも
っているため顔料や発光材料に用いられている。
2. Description of the Related Art Since inorganic pigments are excellent in heat resistance and weather resistance, they are used in high-temperature molding materials such as engineering plastics and construction materials, paints, paints, ceramics, and so on. Further, since rare earth elements have unpaired electrons in the 4f orbit, they are used in pigments and light emitting materials.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、無機顔
料には重金属や遷移金属を含むものが多く、それら金属
イオンが流出した場合、環境や人体に影響を及ぼす恐れ
があった。特にカドミウム,鉛を含む顔料は、その使用
が厳しく制限されている。この問題を解決するため、希
土類元素を用いた黄色系顔料が研究開発され提案され
た。しかし、この化合物はアルカリ金属イオンを含有す
るため耐水性に弱いという問題を有する。また、アルカ
リ金属イオンを含むため、屋外の使用や水が存在する環
境下ではアルカリ金属イオンが溶出する恐れがあり、使
用範囲が制限されるという問題を有する。
However, many of the inorganic pigments contain heavy metals and transition metals, and when these metal ions flow out, there is a risk of affecting the environment and the human body. Especially, the use of pigments containing cadmium and lead is severely restricted. In order to solve this problem, a yellow pigment using a rare earth element has been researched and developed and proposed. However, this compound has a problem that it is weak in water resistance because it contains an alkali metal ion. In addition, since it contains an alkali metal ion, there is a risk that the alkali metal ion may elute under outdoor use or in an environment where water is present, which poses a problem that the range of use is limited.

【0004】本発明は上記問題点を解決するためになさ
れたものであり、結晶構造を保持しながら水への溶解性
の高いアルカリ金属イオンの含有量を減少させ、従来の
無機顔料が使用されている分野、例えば一般樹脂および
エンジニヤリングプラスチック樹脂の着色、塗料、イン
キ、セラミックス、建材等の分野、また発光材料として
用いられる分野において有用な耐水性希土類顔料を提供
することを目的とする。
The present invention has been made in order to solve the above problems, and reduces the content of alkali metal ions highly soluble in water while maintaining the crystal structure, and conventional inorganic pigments are used. It is an object of the present invention to provide a water resistant rare earth pigment which is useful in various fields such as coloring of general resins and engineering plastic resins, paints, inks, ceramics, building materials, and fields used as light emitting materials.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため種々の組成からなる化合物を調製し検討
した結果、組成がAxB(0.5-x/2)LnM2O8で表される希土類
化合物において希土類イオン特有の発色が得られ、アル
カリ金属含有量を減少させることにより耐水性が向上で
きることを明らかにした。
[Means for Solving the Problems] As a result of preparing and examining compounds having various compositions in order to achieve the above object, the present inventors have found that the composition is A x B (0.5-x / 2) LnM 2 O 8 It was clarified that the rare earth compound represented by the formula (3) gives a color unique to the rare earth ion, and that the water resistance can be improved by reducing the content of the alkali metal.

【0006】本発明に係る耐水性希土類顔料は、ALnM2O
8(組成中のAはアルカリ金属からなる群より選ばれた少
なくとも1種であり、Lnは希土類元素より選ばれた少な
くとも1種であるであり,Mはモリブデンおよびタングス
テンより選ばれた少なくとも1種である)のアルカリ金
属イオンを、アルカリ土類金属で置換することにより耐
水性を高めることができる。
The water resistant rare earth pigment according to the present invention is ALnM 2 O.
8 (A in the composition is at least one selected from the group consisting of alkali metals, Ln is at least one selected from rare earth elements, and M is at least one selected from molybdenum and tungsten. The water resistance can be increased by substituting the alkaline earth metal of (1)) with an alkaline earth metal.

【0007】即ち、本発明に係る耐水性希土類顔料は組
成がAxB(0.5-x/2)LnM2O8(但し、0<x≦1、組成中の
Aはアルカリ金属(Li、Na、K、Rb、Cs、Fr)より選ばれ
た少なくとも1種であり、組成中のBはアルカリ土類金属
(Ca、Sr、Mg、Ba、Be、Ra)より選ばれた少なくとも1
種であり、Lnは希土類元素からなる群より選ばれた少な
くとも1種である)であることを特徴とする。
That is, the water resistant rare earth pigment according to the present invention has a composition of A x B (0.5-x / 2) LnM 2 O 8 (where 0 <x ≤ 1,
A is at least one selected from alkali metals (Li, Na, K, Rb, Cs, Fr), and B in the composition is from alkaline earth metals (Ca, Sr, Mg, Ba, Be, Ra). At least one chosen
Ln is at least one selected from the group consisting of rare earth elements).

【0008】前記AxB(0.5-x/2)LnM2O8(但し0<x≦
1、組成中のAはアルカリ金属より選ばれた少なくとも1
種であり、Bはアルカリ土類金属より選ばれた少なくと
も1種であり、Lnは希土類元素より選ばれた少なくとも1
種であるであり、Mはモリブデンおよびタングステンよ
り選ばれた少なくとも1種でありある)の製造方法は、
固相反応法、沈殿法、水熱合成法、グリコサーマル法、
ゾルーゲル法、噴霧熱分解法などが考えられるが、いず
れの方法に限定されるものではない。また、焼成を行な
う場合、固相反応法では500℃から1300℃の焼成で目的
化合物を得ることができるが、AxB(0.5-x/2)LnM2O8の構
造が生成するような焼成温度、保持時間であれば焼成温
度も限定されない。
The above A x B (0.5-x / 2) LnM 2 O 8 (where 0 <x ≦
1, A in the composition is at least 1 selected from alkali metals
B is at least one selected from alkaline earth metals, Ln is at least 1 selected from rare earth elements
And M is at least one selected from molybdenum and tungsten).
Solid phase reaction method, precipitation method, hydrothermal synthesis method, glycothermal method,
A sol-gel method, a spray pyrolysis method and the like are conceivable, but the method is not limited to either method. Further, when firing is carried out, the target compound can be obtained by firing at 500 ° C. to 1300 ° C. in the solid phase reaction method, but a structure of A x B (0.5-x / 2) LnM 2 O 8 is generated. The firing temperature is not limited as long as it is the firing temperature and the holding time.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を以下
の実施例に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the following examples.

【0010】[0010]

【実施例1】組成AxB(0.5-x/2)LnM2O8において、Aのアル
カリ金属としてリチウム(Li)を、Bのアルカリ土類金
属としてカルシウム(Ca)を、Lnの希土類元素としてセ
リウム(Ce)を用いてLixCa(0.5-x/2)CeM2O8を構成し、
x=0,0.25,0.50,0.75,1.0となるように化学量論比で
炭酸リチウム(Li2CO3),炭酸カルシウム(CaCO3),
酸化モリブデン(MoO3),酸化セリウム(CeO2)を正確
に秤量し,ボールミルを使用して均一に混合して原料混
合体とした。次に、得られた原料混合体を、アルミナ製
るつぼに入れ600℃〜900℃の温度で6時間焼成した。得
られた焼成物をアルミナ乳鉢で十分に粉砕し目的化合物
を得た。
Example 1 In the composition A x B (0.5-x / 2) LnM 2 O 8 , lithium (Li) was used as the alkali metal of A, calcium (Ca) was used as the alkaline earth metal of B, and the rare earth element of Ln was used. Li x Ca (0.5-x / 2) CeM 2 O 8 is formed by using cerium (Ce) as
Stoichiometric ratios of lithium carbonate (Li 2 CO 3 ), calcium carbonate (CaCO 3 ), x = 0, 0.25, 0.50, 0.75, 1.0
Molybdenum oxide (MoO 3 ) and cerium oxide (CeO 2 ) were accurately weighed and uniformly mixed using a ball mill to prepare a raw material mixture. Next, the obtained raw material mixture was put into an alumina crucible and fired at a temperature of 600 ° C. to 900 ° C. for 6 hours. The obtained calcined product was sufficiently crushed in an alumina mortar to obtain the target compound.

【0011】上記カルシウム(Ca)の配合量の増加によ
って高い焼成温度が必要であることがわかった。LiCeMo
2O8は600℃で単一相が得られるが、Ca0.5CeMo2O8では90
0℃以上の焼成が必要であった。得られた化合物は、LiC
eMo2O8と同形のX線回折パターンを示すことから同一な
結晶構造を有していることが確認された。そして、図1
に示すように、分光反射率曲線において硫化カドミウム
(CdS)と比較すると、Ca0.5CeMo2O8は550nm未満の波
長で吸収が弱くなるが、550nm以上では硫化カドミウム
に匹敵する反射率を示した。Ca0.5CeMo2O8は、明度64.7
%,刺激純度75.7%,主波長579.0nmの鮮やかな黄色を呈
し、アルカリ金属元素含有量を低下させることにより耐
水性を向上させ無機顔料として有用であることがわかっ
た。
It has been found that a high firing temperature is required due to an increase in the amount of calcium (Ca) blended. LiCeMo
2 O 8 can obtain a single phase at 600 ℃, but Ca 0.5 CeMo 2 O 8 is 90
Baking above 0 ° C was required. The obtained compound is LiC
Since it showed the same X-ray diffraction pattern as eMo 2 O 8 , it was confirmed that they had the same crystal structure. And FIG.
As shown in Fig. 5, when compared with cadmium sulfide (CdS) in the spectral reflectance curve, Ca 0.5 CeMo 2 O 8 shows weak absorption at a wavelength of less than 550 nm, but exhibits a reflectance comparable to that of cadmium sulfide at a wavelength of 550 nm or more. . Ca 0.5 CeMo 2 O 8 has a brightness of 64.7.
%, Stimulation purity 75.7%, main wavelength 579.0 nm, a bright yellow color, and it was found to be useful as an inorganic pigment by improving the water resistance by reducing the content of alkali metal elements.

【0012】[0012]

【実施例2】上記した実施例1同様、組成AxB(0.5-x/2)L
nM2O8において、Aのアルカリ金属としてリチウム(Li)
を、Bのアルカリ土類金属としてカルシウム(Ca)を、L
nの希土類元素としてユウロピウム(Eu)を用いてLixCa
(0.5-x/2)EuM2O8を構成し、Ca0.5EuMo2O8となるように
化学量論比で炭酸カルシウム(CaCO3),酸化モリブデ
ン(MoO3),酸化ユウロピウム(Eu2O3)を正確に秤量
し、エタノール中でボールミルを使用して均一に混合し
て原料混合体とした。つぎに、得られた原料混合体を、
アルミナ製るつぼに入れ900℃の温度で6時間焼成した。
得られた焼成物をアルミナ乳鉢で十分に粉砕し目的化合
物を得た。
Example 2 Similar to Example 1 above, the composition A x B (0.5-x / 2) L
In nM 2 O 8 , lithium (Li) as the alkali metal of A
, Calcium (Ca) as alkaline earth metal of B, L
Li x Ca using europium (Eu) as the rare earth element of n
(0.5-x / 2) EuM 2 O 8 is composed, and calcium carbonate (CaCO 3 ), molybdenum oxide (MoO 3 ), europium oxide (Eu 2 O 8 ) are formed in a stoichiometric ratio so as to be Ca 0.5 EuMo 2 O 8. 3 ) was accurately weighed and uniformly mixed in ethanol using a ball mill to prepare a raw material mixture. Next, the obtained raw material mixture,
It was placed in an alumina crucible and baked at a temperature of 900 ° C. for 6 hours.
The obtained calcined product was sufficiently crushed in an alumina mortar to obtain the target compound.

【0013】まだICDDカードに登録されていないため、
生成物の同定はできなかったが、図4に示すように前記
した実施例1の希土類元素としてセリウム(Ce)を用い
た化合物と同形のX線回折パターンを示すことから同一
構造であると考えられる。このことからCa0.5EuMo2O8
生成していることが確認できた。この化合物を分光蛍光
光度計により測定した結果、図2に示すように615nmを
ピークとする赤色の発光が観測された。又、図2に示す
ように361nm,381nm,394nm,415nm,464nm,535nmをピ
ークとするシャープな励起帯が確認され、これらの波長
を有する光源、たとえば紫外LED,青色LED,緑色LED,
陰極管などに好適に用いることが可能である。
Since it has not been registered in the ICDD card yet,
Although the product could not be identified, it is considered to have the same structure as shown in FIG. 4, because it shows the same X-ray diffraction pattern as the compound using cerium (Ce) as the rare earth element in Example 1 described above. To be From this, it was confirmed that Ca 0.5 EuMo 2 O 8 was generated. As a result of measuring this compound with a spectrofluorometer, red emission having a peak at 615 nm was observed as shown in FIG. Further, as shown in FIG. 2, sharp excitation bands having peaks at 361 nm, 381 nm, 394 nm, 415 nm, 464 nm, and 535 nm were confirmed, and light sources having these wavelengths, for example, ultraviolet LED, blue LED, green LED,
It can be suitably used for a cathode tube and the like.

【0014】[0014]

【実施例3】組成AxB(0.5-x/2)LnM2O8において、Aのア
ルカリ金属としてリチウム(Li)を、Bのアルカリ土類
金属としてカルシウム(Ca)を、Lnの希土類元素として
ネオジム(Nd)を用いてLixCa(0.5-x/2)NdM2O8を構成
し、Ca0.5NdMo2O8となるように化学量論比で炭酸カルシ
ウム(CaCO3),酸化モリブデン(MoO3),酸化ネオジ
ム(Nd2O3)を正確に秤量し、エタノール中でボールミ
ルを使用して均一に混合して原料混合体とした。つぎ
に、得られた原料混合体をアルミナ製るつぼに入れ900
℃の温度で6時間焼成した。得られた焼成物をアルミナ
乳鉢で十分に粉砕し目的化合物を得た。
Example 3 In the composition A x B (0.5-x / 2) LnM 2 O 8 , lithium (Li) is used as the alkali metal of A, calcium (Ca) is used as the alkaline earth metal of B, and a rare earth element of Ln is used. Li x Ca (0.5-x / 2) NdM 2 O 8 is formed by using neodymium (Nd) as a material, and calcium carbonate (CaCO 3 ) and molybdenum oxide are used in a stoichiometric ratio so that Ca 0.5 NdMo 2 O 8 is obtained. (MoO 3 ) and neodymium oxide (Nd 2 O 3 ) were accurately weighed and uniformly mixed in ethanol using a ball mill to prepare a raw material mixture. Next, the obtained raw material mixture was put into an alumina crucible and 900
It was baked at a temperature of ° C for 6 hours. The obtained calcined product was sufficiently crushed in an alumina mortar to obtain the target compound.

【0015】まだICDDカードに登録されていないため、
生成物の同定はできなかったが、図4に示すように前記
実施例1のセリウム(Ce)、及び実施例2のユウロピウ
ム(Eu)を用いた化合物と同形のX線回折パターンを示
すことから同一構造であると考えられる。そして、分光
光度計で分光反射率を測定した結果、図3に示すように
Nd3+イオンによる部分的な吸収帯が確認された。このこ
とから、この顔料をフィルターに用いた場合、光の3原
色である青,緑,赤の透過率が高く、中間色(青緑,黄
色など)は吸収されやすいことが容易に推測できる。従
って、液晶,カラーテレビ,ELディスプレイ,PDPなど
のディスプレイに用いれば、コントラストを高めること
が可能であり、有用に利用することができる。
Since it has not been registered in the ICDD card yet,
Although the product could not be identified, as shown in FIG. 4, the compound showed the same X-ray diffraction pattern as the compound using cerium (Ce) of Example 1 and europium (Eu) of Example 2. It is considered to have the same structure. Then, as a result of measuring the spectral reflectance with a spectrophotometer, as shown in FIG.
A partial absorption band due to Nd 3+ ions was confirmed. From this, it can be easily inferred that when this pigment is used for a filter, the transmittance of the three primary colors of light, blue, green, and red, is high, and intermediate colors (blue-green, yellow, etc.) are easily absorbed. Therefore, when it is used for a display such as a liquid crystal, a color television, an EL display, and a PDP, it is possible to enhance the contrast and it can be effectively used.

【0016】[0016]

【実施例4】Ca0.5CeMo2O8の化学量論組成となるよう
に、酸化モリブデン(MoO3),酸化セリウム(CeO2),
酸化カルシウム(CaCO3)を正確に秤量し、Ca0.5CeMo2O
8に対しリン酸水素二アンモニウム((NH4)2HPO4)を0m
ol%から20mol%外配合で添加した。これらの試薬をエ
タノール中でボールミルを使用して均一に混合して原料
混合体とした。つぎに、得られた原料混合体を、アルミ
ナ製るつぼに入れ900℃の温度で6時間焼成した。得られ
た焼成物をアルミナ乳鉢で十分に粉砕し目的化合物を得
た。
Example 4 Molybdenum oxide (MoO 3 ), cerium oxide (CeO 2 ), and Ca 0.5 CeMo 2 O 8 having a stoichiometric composition
Accurately weigh calcium oxide (CaCO 3 ), Ca 0.5 CeMo 2 O
8 diammonium hydrogen phosphate to ((NH 4) 2 HPO 4 ) 0m
It was added in an ol% to 20 mol% external formulation. These reagents were uniformly mixed in ethanol using a ball mill to prepare a raw material mixture. Next, the obtained raw material mixture was put into an alumina crucible and baked at a temperature of 900 ° C. for 6 hours. The obtained calcined product was sufficiently crushed in an alumina mortar to obtain the target compound.

【0017】得られた化合物は、X線回折より実施例1
の希土類元素としてセリウム(Ce)を用いた化合物と同
形のX線回折パターンを示すことから同じ結晶構造を持
つことが確認された。600nmから700nmの分光反射率が増
加して色相は赤み方向にシフトした。このことから燐
(P)の添加により600nmから700nmの反射率を増加さ
せ、色相を赤み方向にシフトできることがわかった。そ
の結果を〔表1〕に示す。
The compound obtained was analyzed by X-ray diffraction in Example 1.
The compound has the same X-ray diffraction pattern as the compound using cerium (Ce) as the rare earth element, and it is confirmed that it has the same crystal structure. The spectral reflectance increased from 600 nm to 700 nm, and the hue shifted to the reddish direction. From this, it was found that the addition of phosphorus (P) can increase the reflectance from 600 nm to 700 nm and shift the hue in the reddish direction. The results are shown in [Table 1].

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上説明の通り、本発明に係る耐水性希
土類顔料によれば、有害な物質を含まず、高い着色力ま
たは発光強度を有し、従来の無機顔料が使用されている
分野,例えば一般樹脂及びエンジニヤリングプラスチッ
ク樹脂の着色、塗料、インキ、セラミックス、建材また
は発光材料、ディスプレイ等の分野において有用な黄色
系顔料を提供できると共に、アルカリ金属元素の含有量
を低下させることによって耐水性を改善することができ
る。
As described above, according to the water resistant rare earth pigment of the present invention, no harmful substances are contained, high coloring power or luminescence intensity is obtained, and conventional inorganic pigments are used. For example, it is possible to provide a yellow pigment useful in the fields of coloring of general resins and engineering plastic resins, paints, inks, ceramics, building materials or light-emitting materials, displays, etc., and also to reduce water resistance by reducing the content of alkali metal elements. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1による化合物の分光反射率を示すグ
ラフ
FIG. 1 is a graph showing the spectral reflectance of the compound according to Example 1.

【図2】 実施例2による化合物の励起波長及び発光波
長を示すグラフ
FIG. 2 is a graph showing the excitation wavelength and the emission wavelength of the compound according to Example 2.

【図3】 実施例3による化合物の分光反射率を示すグ
ラフ
FIG. 3 is a graph showing the spectral reflectance of the compound according to Example 3.

【図4】 実施例1から3による化合物のX線回折パター
ンを示すグラフ
FIG. 4 is a graph showing X-ray diffraction patterns of the compounds according to Examples 1 to 3.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 組成がAxB(0.5-x/2)LnM2O8で表されるこ
とを特徴とする耐水性希土類顔料。但し0<x≦1,組
成中のAはアルカリ金属より選ばれた少なくとも1種であ
り,Bはアルカリ土類金属より選ばれた少なくとも1種で
あり,Lnは希土類元素より選ばれた少なくとも1種であ
り,Mはモリブデンまたはタングステンから選ばれた少
なくとも1種である。
1. A water resistant rare earth pigment having a composition represented by A x B (0.5-x / 2) LnM 2 O 8 . However, 0 <x ≦ 1, A in the composition is at least one selected from alkali metals, B is at least one selected from alkaline earth metals, and Ln is at least 1 selected from rare earth elements. M is at least one selected from molybdenum and tungsten.
【請求項2】 上記アルカリ土類金属として、カルシウ
ムを用いることを特徴とする請求項1に記載の耐水性希
土類顔料。
2. The water resistant rare earth pigment according to claim 1, wherein calcium is used as the alkaline earth metal.
【請求項3】 上記希土類元素として、セリウムを用い
ることを特徴とする請求項1又は2に記載の耐水性希土
類顔料。
3. The water resistant rare earth pigment according to claim 1, wherein cerium is used as the rare earth element.
【請求項4】 上記希土類元素として、ユウロピウムを
用いることを特徴とする請求項1又は2に記載の耐水性
希土類顔料。
4. The water resistant rare earth pigment according to claim 1, wherein europium is used as the rare earth element.
【請求項5】 上記希土類元素として、ネオジムを用い
ることを特徴とする請求項1又は2に記載の耐水性希土
類顔料。
5. The water resistant rare earth pigment according to claim 1, wherein neodymium is used as the rare earth element.
【請求項6】 上記構成元素以外の元素を添加すること
を特徴とする請求項1乃至5の何れか1項に記載の耐水
性希土類顔料。
6. The water resistant rare earth pigment according to any one of claims 1 to 5, wherein an element other than the constituent elements is added.
JP2002054719A 2002-02-28 2002-02-28 Water resistant rare earth pigment Expired - Fee Related JP4028992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002054719A JP4028992B2 (en) 2002-02-28 2002-02-28 Water resistant rare earth pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002054719A JP4028992B2 (en) 2002-02-28 2002-02-28 Water resistant rare earth pigment

Publications (2)

Publication Number Publication Date
JP2003253153A true JP2003253153A (en) 2003-09-10
JP4028992B2 JP4028992B2 (en) 2008-01-09

Family

ID=28665797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002054719A Expired - Fee Related JP4028992B2 (en) 2002-02-28 2002-02-28 Water resistant rare earth pigment

Country Status (1)

Country Link
JP (1) JP4028992B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021161A (en) * 2009-07-21 2011-02-03 National Printing Bureau Phosphor
JP2012521946A (en) * 2009-03-27 2012-09-20 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ Production of green colorants from mixed rare earth compounds and molybdenum compounds and methods for surface coating thereof
RU2492198C1 (en) * 2012-02-07 2013-09-10 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук Molybdate-based inorganic pigment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012521946A (en) * 2009-03-27 2012-09-20 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ Production of green colorants from mixed rare earth compounds and molybdenum compounds and methods for surface coating thereof
JP2011021161A (en) * 2009-07-21 2011-02-03 National Printing Bureau Phosphor
RU2492198C1 (en) * 2012-02-07 2013-09-10 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук Molybdate-based inorganic pigment

Also Published As

Publication number Publication date
JP4028992B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
KR100338860B1 (en) Photostimulable phosphor
KR20020027538A (en) Highly efficient fluorescent material
JP5704457B2 (en) Deep red phosphor, illumination light source, and method for producing deep red phosphor
CN102559185B (en) Yellow luminescent material with voelckerite structure and preparation method thereof as well as white light-emitting diode device
Liu et al. Structure variation and luminescence enhancement of BaLaMg (Sb, Nb) O6: Eu3+ double perovskite red phosphors based on composition modulation
CN114437724A (en) Gallate-based multicolor long-afterglow luminescent material and preparation method thereof
CN101307228B (en) Chlorine-aluminosilicate fluorescent powder and method for preparing same
CN106590646B (en) A kind of white light LEDs blue light fluorescent powder of near ultraviolet excitation and preparation method thereof
KR101602313B1 (en) NASICON-structure phosphor and light emitting diodes including the NASICON-structure phosphor for solid-state lighting applications
CN1227325C (en) Violet light excitated bicomponent three basic colour fluorescent powder and its preparation method
CN1935936A (en) Long-persistence luminescent material and its preparing method
JP4028992B2 (en) Water resistant rare earth pigment
JP5682053B2 (en) Deep red phosphor, illumination light source, and method for producing deep red phosphor
CN105062479B (en) A kind of nitrogen oxide fluorescent material of yellow orange light type wollastonite structure and preparation method thereof
JP2000026854A (en) Liminous oxide having stuffed tridymite type or kaliphilite type structure and oxide luminophor
JP2000212557A (en) Luminous phosphor
CN102229802A (en) Rare earth double primary colour luminescent material for converting white light by utilizing violet light LED (light-emitting diode) and preparation method thereof
CN105733576B (en) Warm white LED double-perovskite type titanate red fluorescence powder and preparation method thereof
CN105062472A (en) Preparing method and application of blue fluorescent powder for warm white light LED
CN101735805A (en) Magnesium barium silicate full-color fluorescent material with adjustable green light emission phase and preparation method thereof
CN112480918B (en) Manganese-doped deep red light fluorescent powder material and preparation method thereof
TWI326704B (en) A phosphor and method for making the same
CN104232082A (en) Red phosphor, white light source, light-emitting device and red phosphor forming method
JP2012526157A (en) Blue-green silicate luminescent material
KR100793082B1 (en) Blue-emitting phosphors for long-middle ultraviolet ray and their production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees