JP2003249379A - Surface treatment method for transparent conductive film, transparent conductive film with surface modified by using the same, and charge injection luminescence element having surface modified transparent conductive film - Google Patents

Surface treatment method for transparent conductive film, transparent conductive film with surface modified by using the same, and charge injection luminescence element having surface modified transparent conductive film

Info

Publication number
JP2003249379A
JP2003249379A JP2002046668A JP2002046668A JP2003249379A JP 2003249379 A JP2003249379 A JP 2003249379A JP 2002046668 A JP2002046668 A JP 2002046668A JP 2002046668 A JP2002046668 A JP 2002046668A JP 2003249379 A JP2003249379 A JP 2003249379A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
light emitting
plasma
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002046668A
Other languages
Japanese (ja)
Inventor
Takeshi Sakakibara
剛 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moriroku KK
Original Assignee
Moriroku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moriroku KK filed Critical Moriroku KK
Priority to JP2002046668A priority Critical patent/JP2003249379A/en
Publication of JP2003249379A publication Critical patent/JP2003249379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/211Changing the shape of the active layer in the devices, e.g. patterning by selective transformation of an existing layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/221Static displays, e.g. displaying permanent logos

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method for changing the charge injection efficiency of a transparent conductive film and, in turn, granting a desired luminescent pattern thereto, the transparent conductive film with a surface modified by using the same having selectively high-luminance luminescent regions and non-luminescent regions, and a charge injection luminescence element. <P>SOLUTION: The surface treatment method for the transparent conductive film comprises selectively changing the charge injection efficiency of the transparent conductive film by irradiating the transparent conductive film with ions in a plasma and then selectively irradiating it with electron beams having energy of a threshold value or larger for luminance disappearance, and, in turn, granting the desired luminescent pattern thereto. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透明導電性膜の電
荷注入効率を選択的に変化させ、もって所望の発光パタ
ーンを付与する表面処理方法、かかる方法により表面改
質された透明導電性膜、及び高輝度の発光領域及び非発
光領域を選択的に有する電荷注入型発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for selectively changing the charge injection efficiency of a transparent conductive film to give a desired light emission pattern, and a transparent conductive film surface-modified by such a method. And a charge injection type light emitting device selectively having a light emitting region and a non-light emitting region of high brightness.

【0002】[0002]

【従来の技術】1960年代にアントラセン結晶の発光現象
が観測されて以来、縮合ベンゼン環を有する共役有機活
性化剤と共役有機ホスト物質とで形成される有機発光性
物質等、種々の有機発光性物質が研究されてきた。有機
EL等の有機発光素子は、これらの有機発光性物質を含む
発光層を陰極と陽極とで挟んだ構造を有し、発光層に注
入された電子及び正孔の再結合により生成した励起子が
失活する際に放出する光を利用している。しかし現在ま
でに開発された有機ELは充分な光出力を得るために高い
駆動電圧を必要とするので、材料の劣化速度が速く、発
光寿命が短いという問題がある。そこで輝度及び耐久性
の観点から充分な性能を有する有機発光素子の開発が望
まれている。
2. Description of the Related Art Since the light emission phenomenon of anthracene crystals was observed in the 1960s, various organic light emitting substances such as organic light emitting substances formed of a conjugated organic activator having a condensed benzene ring and a conjugated organic host substance have been observed. Matter has been studied. Organic
An organic light emitting device such as EL has a structure in which a light emitting layer containing these organic light emitting substances is sandwiched between a cathode and an anode, and excitons generated by recombination of electrons and holes injected into the light emitting layer are It utilizes the light emitted when it is deactivated. However, the organic ELs developed to date require a high driving voltage to obtain a sufficient light output, so that there is a problem that the deterioration rate of the material is fast and the light emission life is short. Therefore, development of an organic light emitting device having sufficient performance from the viewpoint of brightness and durability is desired.

【0003】以上の事情下で、有機EL等の電極として広
く使用されている透明導電性膜(ITO膜等)にも高性能
化が要求されており、発光素子の輝度を増加するため、
抵抗率の減少だけでなく電荷注入効率の増加が強く望ま
れている。これらITO膜の特性はITOの結晶性に大きく影
響され、ITOの結晶性は製膜時の基板温度及び製膜速度
に依存する。ITO膜を基板上に形成するには、一般的に
真空蒸着やスパッタリング等のドライプロセスを用いる
が、得られるITO膜の物理的な表面形状(面粗さ)や仕
事関数を大幅に改善することは困難であり、電荷注入効
率を大きく向上させることができなかった。
Under the above circumstances, a transparent conductive film (ITO film or the like) which is widely used as an electrode of an organic EL or the like is required to have high performance, and the brightness of a light emitting element is increased.
It is strongly desired to increase not only the resistivity but also the charge injection efficiency. The characteristics of these ITO films are greatly affected by the crystallinity of ITO, and the crystallinity of ITO depends on the substrate temperature and the film formation rate during film formation. To form an ITO film on a substrate, a dry process such as vacuum deposition or sputtering is generally used, but the physical surface shape (surface roughness) and work function of the obtained ITO film should be significantly improved. However, the charge injection efficiency could not be significantly improved.

【0004】一方有機ELは有機発光性物質の種類を選択
することにより青色から赤色までの発光が可能であると
いう特徴を有するが、この特性を活かしたフルカラーデ
ィスプレイを得るためには、3原色の発光領域を画素毎
に配列する必要がある。このように発光領域と非発光領
域をパターニングする場合、有機発光層はパターニング
工程に対する耐性が不十分なため、従来からITO膜等の
電極を選択的にエッチングすることが行われている。し
かしエッチングによるITO膜のパターニングはフォトレ
ジスト等の手法を用いるため工程が複雑で、しかもレジ
ストに用いた物質による汚染等の問題もある。そこで有
機ELに発光領域と非発光領域の微細なパターニングを与
える簡便でクリーンなITO膜の処理方法が強く望まれて
いる。
On the other hand, the organic EL has a feature that it is possible to emit light from blue to red by selecting the type of organic light-emitting substance. In order to obtain a full-color display utilizing this characteristic, it is possible to use three primary colors. It is necessary to arrange the light emitting regions for each pixel. When the light emitting region and the non-light emitting region are patterned in this way, the organic light emitting layer has insufficient resistance to the patterning process, and thus electrodes such as ITO films have been conventionally selectively etched. However, since the patterning of the ITO film by etching uses a method such as a photoresist, the process is complicated and there is a problem such as contamination by the substance used for the resist. Therefore, there is a strong demand for a simple and clean method for processing an ITO film, which gives fine patterning of a light emitting region and a non-light emitting region to an organic EL.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の目的
は、透明導電性膜の電荷注入効率を選択的に変化させ、
もって所望の発光パターンを付与する表面処理方法、か
かる方法により表面改質され、高輝度の発光領域と非発
光領域とを選択的に有する透明導電性膜及び電荷注入型
発光素子を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to selectively change the charge injection efficiency of a transparent conductive film,
By providing a surface treatment method for imparting a desired light emitting pattern, a transparent conductive film and a charge injection type light emitting element which are surface-modified by such a method and selectively have a high-luminance light emitting region and a non-light emitting region. is there.

【0006】[0006]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者らは、透明導電性膜の表面にプラズマ
中のイオンを照射し、次いで透明導電性膜の任意の領域
に輝度消失のしきい値エネルギー以上の電子線を選択的
に照射することにより、透明導電性膜の電荷注入効率が
選択的に変化することを発見し、本発明に想到した。
As a result of earnest research in view of the above-mentioned object, the inventors of the present invention irradiate the surface of the transparent conductive film with ions in plasma, and then irradiate an arbitrary region of the transparent conductive film with brightness. The present invention was discovered by discovering that the charge injection efficiency of the transparent conductive film is selectively changed by selectively irradiating with an electron beam having a loss energy equal to or more than the threshold energy.

【0007】すなわち、本発明の透明導電性膜の表面処
理方法は、透明導電性膜にプラズマ中のイオンを照射し
た後、輝度消失のしきい値エネルギー以上の電子線を選
択的に照射することにより、透明導電性膜の電荷注入効
率を選択的に変化させ、もって所望の発光パターンを付
与することを特徴とする。本発明の表面処理方法におい
て、プラズマは不活性ガス又は酸素のプラズマであるの
が好ましく、プラズマとしては電子ビーム励起プラズマ
を用いるのが好ましい。プラズマ中のイオンの照射エネ
ルギーは10〜100 eVとするのが好ましい。また本発明に
用いる透明導電性膜はITO膜であるのが好ましい。
That is, in the surface treatment method of the transparent conductive film of the present invention, after the transparent conductive film is irradiated with ions in plasma, the transparent conductive film is selectively irradiated with an electron beam having a luminance disappearance threshold energy or more. By this, the charge injection efficiency of the transparent conductive film is selectively changed, thereby providing a desired light emission pattern. In the surface treatment method of the present invention, the plasma is preferably an inert gas plasma or an oxygen plasma, and electron beam excited plasma is preferably used as the plasma. The irradiation energy of the ions in the plasma is preferably 10 to 100 eV. The transparent conductive film used in the present invention is preferably an ITO film.

【0008】本発明の透明導電性膜は、本発明の表面処
理方法によって表面改質されたものであり、発光領域及
び非発光領域を選択的に有することを特徴とする。また
本発明の電荷注入型発光素子は、本発明の表面処理方法
により表面改質された透明導電性膜を電極として用い、
発光領域及び非発光領域を選択的に有することを特徴と
する。
The transparent conductive film of the present invention is surface-modified by the surface treatment method of the present invention and is characterized by selectively having a light emitting region and a non-light emitting region. Further, the charge injection type light emitting device of the present invention uses a transparent conductive film surface-modified by the surface treatment method of the present invention as an electrode,
It is characterized by selectively having a light emitting region and a non-light emitting region.

【0009】[0009]

【発明の実施の形態】[1] 透明導電性膜の表面処理方法 本発明の透明導電性膜の表面処理方法は、(a) プラズマ
中のイオン照射工程と、(b) 選択的な電子線照射工程と
からなる。以下工程(a)及び(b)について詳述するが、ま
ず本発明の表面処理方法の概要について簡単に説明す
る。なお工程(a)及び(b)において、透明導電性膜に照射
されるプラズマ中のイオン及び電子のエネルギーは、透
明導電性膜に印加される電圧にほぼ等しい。
BEST MODE FOR CARRYING OUT THE INVENTION [1] Surface Treatment Method for Transparent Conductive Film The surface treatment method for a transparent conductive film of the present invention comprises (a) an ion irradiation step in plasma and (b) a selective electron beam. And an irradiation step. The steps (a) and (b) will be described in detail below. First, the outline of the surface treatment method of the present invention will be briefly described. In steps (a) and (b), the energy of ions and electrons in the plasma with which the transparent conductive film is irradiated is approximately equal to the voltage applied to the transparent conductive film.

【0010】図1は本発明の一実施形態による透明導電
性膜の表面処理方法を示す断面図である。工程(a)で
は、基板1上に形成された透明導電性膜2にプラズマ中
のイオンIを照射することにより、未改質の透明導電性
膜表面2aが高電荷注入効率を有する透明導電性膜表面2b
(発光領域)に変化する。工程(b)においては、任意の
パターンを有する孔を設けたマスク3を透明導電性膜表
面2bにスペーサ(図示せず)を介して配置し、輝度消失
のしきい値エネルギー以上の電子線Eを照射する。これ
により電子線Eが照射された領域のみ、実質的に電荷注
入能を有さない透明導電性膜表面2c(非発光領域)に変
化し、透明導電性膜に所望の発光パターンを付与するこ
とができる。
FIG. 1 is a sectional view showing a surface treatment method for a transparent conductive film according to an embodiment of the present invention. In step (a), by irradiating the transparent conductive film 2 formed on the substrate 1 with ions I in the plasma, the unmodified transparent conductive film surface 2a has a high transparent charge conductivity. Membrane surface 2b
(Light emitting area). In the step (b), a mask 3 provided with holes having an arbitrary pattern is arranged on the transparent conductive film surface 2b via a spacer (not shown), and an electron beam E having a threshold energy of brightness disappearance or more is obtained. Irradiate. As a result, only the region irradiated with the electron beam E is changed to the transparent conductive film surface 2c (non-light emitting region) which has substantially no charge injection ability, and a desired light emitting pattern is imparted to the transparent conductive film. You can

【0011】工程(a)及び(b)は、照射する電荷(イオン
・電子線)の種類及びエネルギーを工程ごとに変化させ
て、同一のプラズマチェンバー内で行うことができるの
で、本発明によれば透明導電性膜の表面改質が簡便に行
える。このとき透明導電性膜は工程(a)において負の電
位を有し、工程(b)において正の電位を有する。
According to the present invention, the steps (a) and (b) can be performed in the same plasma chamber by changing the type and energy of the electric charge (ion / electron beam) to be irradiated for each step. For example, the surface of the transparent conductive film can be easily modified. At this time, the transparent conductive film has a negative potential in the step (a) and a positive potential in the step (b).

【0012】表面処理に用いることができるプラズマと
しては、電子ビーム励起プラズマ、イオン励起プラズ
マ、光励起プラズマ等が挙げられる。これらのプラズマ
のうち電子ビーム励起プラズマは、低ガス圧(0.1〜数P
a程度)でも高密度のプラズマを生成し、かつ外部電源
を調整することにより容易にプラズマ中のイオン及び電
子のエネルギーを制御できるので好ましい。またプラズ
マの密度は、ITO膜等の透明導電性膜を損傷しないため
に109〜1012 cm-3程度が望ましい。
Examples of plasma that can be used for the surface treatment include electron beam excited plasma, ion excited plasma, and light excited plasma. Among these plasmas, the electron beam excitation plasma has a low gas pressure (0.1 to several P
Even about a), high density plasma is generated, and the energy of ions and electrons in the plasma can be easily controlled by adjusting the external power source, which is preferable. The plasma density is preferably about 10 9 to 10 12 cm −3 so as not to damage the transparent conductive film such as the ITO film.

【0013】本発明の表面処理方法に使用する透明導電
性膜としては、例えばITO膜、SnO2膜、ZnO膜、MgIn2O4
膜等を挙げることができる。導電性及び可視域に対する
透明性の観点から、透明導電性膜はITO膜であるのが好
ましい。
The transparent conductive film used in the surface treatment method of the present invention is, for example, an ITO film, a SnO 2 film, a ZnO film, or a MgIn 2 O 4 film.
Membranes and the like can be mentioned. From the viewpoint of conductivity and transparency in the visible range, the transparent conductive film is preferably an ITO film.

【0014】(a) プラズマ中のイオン照射工程 透明導電性膜の表面には製膜時から数nm〜数十nmの凹凸
があるだけでなく、大気中の浮遊物や洗浄用の有機溶媒
の残存物が付着しており、仕事関数を改善する妨げとな
っている。工程(a)では物理的・化学的スパッタリング
によって、これらの付着物を除去するとともに膜表面を
平坦化し、面抵抗の増加を伴わずに透明導電性膜の仕事
関数を増大させることができる。
(A) Ion irradiation step in plasma Not only is there unevenness of several nm to several tens of nm on the surface of the transparent conductive film from the time of film formation, but there are also floating substances in the air and organic solvents for cleaning. Residues are attached and hinder the improvement of work function. In the step (a), these deposits can be removed and the film surface can be planarized by physical / chemical sputtering, and the work function of the transparent conductive film can be increased without increasing the sheet resistance.

【0015】本発明に用いるプラズマは、好ましくは不
活性ガス又は酸素のプラズマである。酸素のプラズマは
電子との分離が困難であるため、酸素のプラズマを用い
た場合、後に続く工程(b)の前にプラズマチェンバー内
の酸素ガスを不活性ガスに交換することが必要となる。
よって表面処理を簡便に行うためには不活性ガスのプラ
ズマを用いるのが有利である。不活性ガスとしては、例
えばヘリウム、アルゴン、ネオン等を用いることがで
き、好ましくはアルゴンを用いる。
The plasma used in the present invention is preferably an inert gas or oxygen plasma. Since oxygen plasma is difficult to separate from electrons, when oxygen plasma is used, it is necessary to exchange the oxygen gas in the plasma chamber with an inert gas before the subsequent step (b).
Therefore, it is advantageous to use plasma of an inert gas in order to perform the surface treatment easily. As the inert gas, for example, helium, argon, neon or the like can be used, and preferably argon is used.

【0016】透明導電性膜の電荷注入効率を効果的に増
加させるために、イオンの照射エネルギーは10〜100 eV
であるのが好ましく、プラズマの照射時間は10〜100秒
とするのが好ましい。
In order to effectively increase the charge injection efficiency of the transparent conductive film, the ion irradiation energy is 10 to 100 eV.
The plasma irradiation time is preferably 10 to 100 seconds.

【0017】(b) 選択的な電子線照射工程 電子の質量は非常に小さいため、工程(b)において輝度
消失のしきい値エネルギー以上の電子線を選択的に照射
してもスパッタリングは生じないが、工程(a)によって
一様に増大した透明導電性膜の電荷注入効率を、高密度
の電子線が有する加熱作用により選択的に極端に低下さ
せる。これは透明導電性膜の表面のうち電子が衝突した
領域において、表面加熱に伴う結晶構造の変化が促進さ
れ、電気抵抗が増加するためだと考えられる。電子線の
密度が工程(a)で照射されるイオンの密度に比べて2桁
以上大きいと、電荷注入効率の低下が顕著である。ここ
で「輝度消失のしきい値エネルギー」とは、電子線照射
により透明導電性膜の輝度が実質的に消失する臨界点に
おける電子線のエネルギーである。
(B) Selective electron beam irradiation step Since the mass of electrons is very small, sputtering does not occur even if an electron beam having a threshold energy of luminance disappearance or more is selectively irradiated in step (b). However, the charge injection efficiency of the transparent conductive film, which has been uniformly increased by the step (a), is selectively and extremely reduced by the heating effect of the high-density electron beam. It is considered that this is because in the region of the surface of the transparent conductive film where electrons collide, the change in crystal structure due to surface heating is promoted and the electrical resistance increases. If the density of the electron beam is higher than the density of the ions irradiated in the step (a) by two digits or more, the charge injection efficiency is significantly reduced. Here, the “threshold energy for disappearance of brightness” is the energy of an electron beam at a critical point at which the brightness of the transparent conductive film is substantially disappeared by electron beam irradiation.

【0018】透明導電性膜の輝度消失のための電子線の
しきい値エネルギーは、透明導電性膜の物質により異な
るが、例えばITOの場合40 eVである。電子線のエネルギ
ーがしきい値より小さいと透明導電性膜の電荷注入効率
が充分に下がらず、表面改質透明導電性膜を発光素子に
用いても発光領域と非発光領域との充分なコントラスト
が得られない。また電子線の照射時間は60〜600秒とす
るのが好ましい。電子線の照射時間が60秒より短いと電
子線照射の効果が現われにくく、照射時間を600秒より
長くしても電荷注入効率のさらなる低下が見られない。
The threshold energy of the electron beam for disappearing the brightness of the transparent conductive film depends on the material of the transparent conductive film, but is 40 eV in the case of ITO, for example. When the energy of the electron beam is smaller than the threshold value, the charge injection efficiency of the transparent conductive film is not sufficiently lowered, and even if the surface-modified transparent conductive film is used for a light emitting element, a sufficient contrast between the light emitting region and the non-light emitting region is obtained. Can't get The electron beam irradiation time is preferably 60 to 600 seconds. If the electron beam irradiation time is shorter than 60 seconds, the effect of electron beam irradiation is hard to appear, and even if the irradiation time is longer than 600 seconds, the charge injection efficiency is not further reduced.

【0019】透明導電性膜に選択的に電子を照射するた
めには、任意形状の孔を有するマスクを用いるのが好ま
しい。任意の形状を有する孔を設けたマスクを透明導電
性膜と電気的に絶縁した状態で透明導電性膜上に固定
し、透明導電性膜が正の電位を有するように電圧を印加
する。これによりプラズマ中のイオンはマスクの孔を通
過せず、電子線のみが孔を通過して透明導電性膜を照射
するため、導電性膜のうちマスクの孔に相当する領域の
みにおいて、電荷注入効率を低下させることができる。
マスクには耐熱牲の高い材料を用いるのが望ましく、例
えばカーボン、ステンレス、ニッケル等を用いるのが望
ましい。またマスクを用いたパターニングでは得られな
い、さらに微細な発光パターンを作成する場合は、微細
パターンの描画が可能な電子線発生装置を用いてもよ
い。
In order to selectively irradiate the transparent conductive film with electrons, it is preferable to use a mask having holes of arbitrary shape. A mask provided with a hole having an arbitrary shape is fixed on the transparent conductive film while being electrically insulated from the transparent conductive film, and a voltage is applied so that the transparent conductive film has a positive potential. As a result, the ions in the plasma do not pass through the holes in the mask, but only the electron beam passes through the holes and irradiates the transparent conductive film.Therefore, charge injection is performed only in the region of the conductive film corresponding to the holes in the mask. Efficiency can be reduced.
It is desirable to use a material having high heat resistance for the mask, for example, it is desirable to use carbon, stainless steel, nickel or the like. Further, when a finer light emitting pattern which cannot be obtained by patterning using a mask is created, an electron beam generator capable of drawing a fine pattern may be used.

【0020】[2] 表面改質透明導電性膜及びそれを用い
た電荷注入型置発光素子 本発明の表面改質透明導電性膜は、上記本発明の表面処
理方法により表面改質された透明導電性膜であって、高
輝度の発光領域及び非発光領域が選択的に付与されてい
る。一般に透明導電性膜の仕事関数及び導電性膜上に形
成される電荷輸送層のイオン化ポテンシャルの値が近い
と、透明導電性膜から電荷輸送層への正電荷の注入効率
が高くなる。工程(a)により仕事関数が増大した透明導
電性膜は、電荷輸送層への正電荷の注入効率が高く、未
処理の透明導電性膜を電極に使用した場合と比べて5〜
10数倍の電荷注入効率を有する。一方工程(b)により電
子線が照射された領域は実質的に電荷注入能を有さな
い。
[2] Surface Modified Transparent Conductive Film and Charge Injection Type Light Emitting Element Using the Same The surface modified transparent conductive film of the present invention is a transparent surface modified by the surface treatment method of the present invention. The conductive film is selectively provided with a high-luminance light emitting region and a non-light emitting region. Generally, when the work function of the transparent conductive film and the value of the ionization potential of the charge transport layer formed on the conductive film are close to each other, the efficiency of positive charge injection from the transparent conductive film to the charge transport layer increases. The transparent conductive film whose work function is increased by the step (a) has a high efficiency of injecting positive charges into the charge transport layer, and is 5 to 5 times as compared with the case where an untreated transparent conductive film is used for the electrode.
The charge injection efficiency is ten times higher. On the other hand, the region irradiated with the electron beam in the step (b) has substantially no charge injection ability.

【0021】本発明の電荷注入型発光素子は、本発明の
表面処理方法により表面改質された透明導電性膜を電極
として用い、発光領域及び非発光領域を選択的に有す
る。図2は本発明の一実施形態による電荷注入型発光素
子を示す縦断面図である。この発光素子は、表面改質さ
れた透明導電性膜2を基板1の上に有し、さらに正孔輸
送層4、有機発光性物質を有する電子輸送発光層5及び
陰極6が順次形成されている。透明導電性膜2のうち高
電荷注入効率を有する表面2bから注入された正孔と、陰
極から注入された電子とが電子輸送発光層5において再
結合し、光が発生する。しかし工程(b)において電子が
照射された領域の透明導電性膜表面2cは、正孔輸送層4
へ正電荷を注入する効率が極端に低くなっているため発
光が生じない。このようにして、発光領域及び非発光領
域のパターンが発光素子の表面に形成される。
The charge injection type light emitting device of the present invention uses a transparent conductive film surface-modified by the surface treatment method of the present invention as an electrode and selectively has a light emitting region and a non-light emitting region. FIG. 2 is a vertical sectional view showing a charge injection type light emitting device according to an embodiment of the present invention. This light emitting device has a surface-modified transparent conductive film 2 on a substrate 1, and a hole transport layer 4, an electron transport light emitting layer 5 containing an organic light emitting substance, and a cathode 6 are sequentially formed. There is. The holes injected from the surface 2b of the transparent conductive film 2 having a high charge injection efficiency and the electrons injected from the cathode are recombined in the electron transport light emitting layer 5 to generate light. However, the transparent conductive film surface 2c in the region irradiated with the electron in the step (b) has the hole transport layer 4
Light emission does not occur because the efficiency of injecting a positive charge into is extremely low. In this way, the pattern of the light emitting region and the non-light emitting region is formed on the surface of the light emitting element.

【0022】本発明において発光素子の材料及び構成は
特に限定されず、公知のものでよい。発光素子は上記実
施形態のように陽極/正孔輸送層/電子輸送発光層/陰
極の順に積層する構成以外にも、例えば陽極/発光層/
陰極、陽極/正孔輸送発光層/電子輸送層/陰極、陽極
/正孔輸送層/発光層/電子輸送層/陰極の順に積層す
る構成等とすることができる。また本発明の発光素子は
正孔注入層、電子注入層、湿気や空気を遮断するため保
護層等を有していてもよく、各層が複数の機能を備えた
ものであってもよい。
In the present invention, the material and structure of the light emitting device are not particularly limited and may be known ones. The light emitting element may have a structure in which an anode / hole transporting layer / electron transporting light emitting layer / cathode are laminated in this order as in the above-described embodiment.
A configuration in which a cathode, an anode / a hole transporting light emitting layer / an electron transporting layer / a cathode, and an anode / a hole transporting layer / a light emitting layer / an electron transporting layer / a cathode are laminated in this order can be adopted. The light emitting device of the present invention may have a hole injecting layer, an electron injecting layer, a protective layer for blocking moisture and air, and the like, and each layer may have a plurality of functions.

【0023】基板にはソーダライムガラス、無アルカリ
ガラス等のガラス、プラスチック等を使用できる。ガラ
スを用いる場合、ガラスは無アルカリガラスであるのが
好ましい。プラスチックは耐熱性、寸法安定性、耐溶剤
性、電気絶縁性及び加工性に優れており、かつ低通気性
及び低吸湿性であることが好ましい。このようなプラス
チックとしてはポリエチレンテレフタレート、ポリエチ
レンナフタレート、ポリスチレン、ポリカーボネート等
が挙げられる。基板の厚さは機械的強度を保つのに充分
であれば特に制限はないが、通常0.2 mm以上である。基
板上に形成される表面改質透明導電性膜からなる陽極の
膜厚は10 nm〜5μmとするのが好ましい。
As the substrate, glass such as soda lime glass or non-alkali glass, plastic or the like can be used. When glass is used, the glass is preferably non-alkali glass. It is preferable that the plastic is excellent in heat resistance, dimensional stability, solvent resistance, electric insulation and processability, and has low air permeability and low hygroscopicity. Examples of such plastics include polyethylene terephthalate, polyethylene naphthalate, polystyrene and polycarbonate. The thickness of the substrate is not particularly limited as long as it is sufficient to maintain the mechanical strength, but is usually 0.2 mm or more. The film thickness of the anode formed of the surface-modified transparent conductive film formed on the substrate is preferably 10 nm to 5 μm.

【0024】発光性物質には量子収率、成膜性及び電荷
輸送性に優れた有機物質が適しており、例えば低分子蛍
光色素、高分子蛍光色素、金属錯体等が用いられる。低
分子蛍光色素の具体例としてはジトルイルビニルビフェ
ニル(DTVBi)等が挙げられ、高分子蛍光色素の具体例と
してはポリ(p-フェニレンビニレン)、ポリアルキルチオ
フェン等のπ共役高分子等が挙げられ、金属錯体の具体
例としてはトリス(8-キノリノラト)アルミニウム錯体等
のアルミキノリノール錯体(Alq3)、ビス(ベンゾキノリ
ノラト)ベリリウム錯体(BeBq2)、トリ(ジベンゾイルメ
チル)フェナントロリンユーロピウム錯体(Eu(DBM)3(Phe
n))等が挙げられる。
As the light emitting substance, an organic substance excellent in quantum yield, film forming property and charge transporting property is suitable, and for example, a low molecular weight fluorescent dye, a high molecular weight fluorescent dye, a metal complex and the like are used. Specific examples of low molecular weight fluorescent dyes include ditoluyl vinyl biphenyl (DTVBi) and the like, and specific examples of high molecular weight fluorescent dyes include poly (p-phenylene vinylene) and π-conjugated polymers such as polyalkylthiophene. As specific examples of the metal complex, aluminum quinolinol complex (Alq 3 ) such as tris (8-quinolinolato) aluminum complex, bis (benzoquinolinolato) beryllium complex (BeBq 2 ), tri (dibenzoylmethyl) phenanthroline europium complex. (Eu (DBM) 3 (Phe
n)) and the like.

【0025】正孔輸送物質にはイオン化ポテンシャルが
小さく、ホール移動度が高い物質が適しており、テトラ
フェニルジアミン(TPD)等の芳香族アミン誘導体が多く
用いられる。またTPDを主鎖や側鎖に組み込んだ高分子
化合物も使用することができる。
A substance having a low ionization potential and a high hole mobility is suitable as the hole transporting substance, and an aromatic amine derivative such as tetraphenyldiamine (TPD) is often used. Further, a polymer compound having TPD incorporated in the main chain or side chain can also be used.

【0026】電子輸送物質としては、オキサジアゾール
誘導体、トリアゾール誘導体、トリアジン誘導体、ニト
ロ置換フルオレノン誘導体、チオピランジオキサイド誘
導体、ジフェニルキノン誘導体、ペリレンテトラカルボ
キシル誘導体、アントラキノジメタン誘導体、フレオレ
ニリデンメタン誘導体、アントロン誘導体、ペリノン誘
導体、オキシン誘導体、キノリン錯体誘導体等が広く使
用されている。特にトリアゾール誘導体はイオン化ポテ
ンシャルが大きいため、正孔を効率良く正孔輸送層に閉
じ込めることができるので、正孔輸送発光層を設ける場
合の電子輸送層として好適である。
Examples of the electron-transporting substance include oxadiazole derivatives, triazole derivatives, triazine derivatives, nitro-substituted fluorenone derivatives, thiopyrandioxide derivatives, diphenylquinone derivatives, perylene tetracarboxyl derivatives, anthraquinodimethane derivatives and fluorenylidene methane. Derivatives, anthrone derivatives, perinone derivatives, oxine derivatives, quinoline complex derivatives and the like are widely used. In particular, since the triazole derivative has a large ionization potential, holes can be efficiently confined in the hole transport layer, and thus it is suitable as an electron transport layer in the case of providing a hole transport light emitting layer.

【0027】陰極は仕事関数の小さな金属や合金、金属
ハロゲン化物、金属酸化物等からなるのが好ましく、隣
接する層との密着性やイオン化ポテンシャル、安定性等
を考慮して選択すればよい。陰極は具体的にはリチウ
ム、マグネシウム、銀、鉛、錫、アルミニウム、マンガ
ン、クロム、インジウム等やこれらの合金からなるのが
好ましい。陰極の膜厚は材料に応じて適宜選択可能であ
るが、通常10nm〜5μmである。
The cathode is preferably made of a metal or alloy having a small work function, a metal halide, a metal oxide, or the like, and may be selected in consideration of adhesion with an adjacent layer, ionization potential, stability and the like. Specifically, the cathode is preferably made of lithium, magnesium, silver, lead, tin, aluminum, manganese, chromium, indium, or the like or an alloy thereof. The film thickness of the cathode can be appropriately selected depending on the material, but is usually 10 nm to 5 μm.

【0028】またより高精細で高コントラストな発光素
子を得るために、樹脂中に光吸収材(カーボン、酸化チ
タン等)を分散してなる黒色着色組成物をインクジェッ
ト法等により非発光領域に塗布することもできる。黒色
着色組成物はガラス基板の透明導電性膜側に塗布するの
が効果的である。これにより非発光領域がいわゆるブラ
ックマトリックスとなり、各発光領域間の色にじみを防
ぐ。
Further, in order to obtain a light emitting device with higher definition and higher contrast, a black coloring composition obtained by dispersing a light absorbing material (carbon, titanium oxide, etc.) in a resin is applied to a non-light emitting area by an ink jet method or the like. You can also do it. It is effective to apply the black coloring composition to the transparent conductive film side of the glass substrate. As a result, the non-light emitting area becomes a so-called black matrix to prevent color bleeding between the light emitting areas.

【0029】発光素子の製造方法において、透明導電性
膜の表面処理工程以外は公知の方法を利用することがで
きる。好ましい製造例を挙げると、まずガラス基板上に
電子ビーム法、スパッタリング法、蒸着法、化学反応法
(ゾル−ゲル法等)等により透明導電性膜を形成し、本
発明の表面処理方法によって透明導電性膜の表面改質を
行う。得られた表面改質透明導電性膜の上に、真空蒸着
法、スパッタリング法、ディッピング法、スピンコーテ
ィング法、キャスティング法、バーコート法、ロールコ
ート法等の公知の方法により正孔輸送層、電子輸送層、
発光層等の有機層及び陰極を形成する。最後に陰極を真
空蒸着法、スパッタリング法、イオンプレーティング法
等の方法により形成する。
In the method for manufacturing the light emitting device, known methods can be used except the surface treatment step of the transparent conductive film. A preferred production example is as follows. First, a transparent conductive film is formed on a glass substrate by an electron beam method, a sputtering method, a vapor deposition method, a chemical reaction method (sol-gel method, etc.), and a transparent surface is formed by the surface treatment method of the present invention. The surface of the conductive film is modified. On the obtained surface-modified transparent conductive film, a hole-transporting layer and an electron are formed by a known method such as a vacuum deposition method, a sputtering method, a dipping method, a spin coating method, a casting method, a bar coating method and a roll coating method. Transport layer,
An organic layer such as a light emitting layer and a cathode are formed. Finally, the cathode is formed by a method such as a vacuum vapor deposition method, a sputtering method, an ion plating method.

【0030】[0030]

【実施例】本発明を以下の実施例によりさらに詳細に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention thereto.

【0031】実施例1 膜厚が約100 nm、面積が2×2 cm2のITO膜を表面に形
成したガラス基板を電子ビーム励起プラズマ装置(ニチ
メン電子工研(株)製)のチェンバー内に保持し、チェン
バー内を1.3×10-4 Paまで排気した後、アルゴンガスを
4×10-1 Paの圧力になるまで導入した。次いで電子ビ
ーム励起プラズマ装置を作動させて、チェンバー内にア
ルゴンのプラズマを発生させ、ITO膜に-60 Vの電圧を15
秒間印加した(工程(a))。これによりITO膜の表面に60
eVのエネルギーを有するアルゴンイオンが照射され
た。
Example 1 A glass substrate on the surface of which an ITO film having a thickness of about 100 nm and an area of 2 × 2 cm 2 was formed was placed in a chamber of an electron beam excitation plasma apparatus (manufactured by Nichimen Denko Ken Co., Ltd.). After holding and evacuating the chamber to 1.3 × 10 -4 Pa, argon gas was introduced until the pressure reached 4 × 10 -1 Pa. Then, the electron beam excitation plasma device was activated to generate argon plasma in the chamber, and a voltage of -60 V was applied to the ITO film at 15 V.
It was applied for 2 seconds (step (a)). As a result, 60
Argon ions with energy of eV were irradiated.

【0032】次にイオン照射したITO膜上に、「C」の形
を有する孔を設けた厚さ1 mmのニッケル板を厚さ0.5 m
mのガラスのスペーサを介して配置し、ITO膜に45 Vの正
電圧を120秒間印加した(工程(b))。この工程では基板
の電位が正であるため、アルゴンイオンはニッケル板の
孔を通過せず、ITO膜には電子線のみが照射された。
Next, on the ion-irradiated ITO film, a nickel plate having a thickness of 1 mm and having a hole having a shape of "C" was formed to a thickness of 0.5 m.
The ITO film was placed via a glass spacer of m and a positive voltage of 45 V was applied to the ITO film for 120 seconds (step (b)). In this step, since the potential of the substrate was positive, argon ions did not pass through the holes of the nickel plate and the ITO film was irradiated with only the electron beam.

【0033】上記表面処理を施したITO膜の上に、順に
2,7-ジ[N,N-ジフェニル-N,N-ジ(m-トルイル)]アミノ-9,
9-ジメチルフルオレンからなる正孔輸送層(膜厚:30 n
m)、アルミキノリノール錯体からなる電子輸送発光層
(膜厚:50 nm)、及びアルミニウムからなる陰極(膜
厚:120 nm)を蒸着することにより、電荷注入型発光素
子として有機EL素子を作製した。得られた発光素子に8
Vの駆動電圧を印加したところ、1200 cd/m2の輝度の発
光領域と、「C」形の非発光領域が形成された。
On top of the surface-treated ITO film,
2,7-di [N, N-diphenyl-N, N-di (m-toluyl)] amino-9,
Hole transport layer consisting of 9-dimethylfluorene (film thickness: 30 n
m), an electron-transporting light-emitting layer (thickness: 50 nm) made of an aluminum quinolinol complex, and a cathode (thickness: 120 nm) made of aluminum were vapor-deposited to prepare an organic EL element as a charge injection type light-emitting element. . 8 in the obtained light emitting device
When a driving voltage of V was applied, a light emitting region with a brightness of 1200 cd / m 2 and a “C” -shaped non-light emitting region were formed.

【0034】参考例1 ITO膜に照射する電子線のエネルギーが発光素子の輝度
に与える影響を調べるため、ITO膜を形成したガラス基
板をアルゴンプラズマ中に保持し、ITO膜にそれぞれ0
V、20 V、30 V、40 V及び50 Vの電圧を120秒間印加し
た。このときITO膜に照射される電子線のエネルギーは
それぞれ0 eV、20 eV、30 eV、40 eV及び50eVに相当す
る。得られた各電子線照射ITO膜上に実施例1と同じ方
法で有機層及び陰極を形成し、電荷注入型発光素子を作
製した。このようにして得られた各発光素子に8 Vの駆
動電圧を印加して輝度を測定した。結果を図3に示す。
Reference Example 1 In order to investigate the influence of the energy of the electron beam applied to the ITO film on the brightness of the light emitting device, the glass substrate on which the ITO film was formed was held in argon plasma and the ITO film was exposed to 0%.
Voltages of V, 20 V, 30 V, 40 V and 50 V were applied for 120 seconds. At this time, the energy of the electron beam with which the ITO film is irradiated corresponds to 0 eV, 20 eV, 30 eV, 40 eV and 50 eV, respectively. An organic layer and a cathode were formed on each of the obtained electron beam-irradiated ITO films by the same method as in Example 1 to prepare a charge injection type light emitting device. A luminance was measured by applying a drive voltage of 8 V to each of the light emitting devices thus obtained. The results are shown in Fig. 3.

【0035】図3から明らかなように、発光素子の輝度
は電子線照射時の印加電圧が30 V(電子のエネルギー:
30 eV)までは電圧の上昇にともなって増大するが、印
加電圧が30 Vを超えると急激に低下し、印加電圧が40 V
(電子のエネルギー:40 eV)ではほとんど発光しな
い。従ってITO膜の輝度を消失させる電子線のしきい値
エネルギーは40 eVであることが分かった。
As is clear from FIG. 3, the luminance of the light emitting element is 30 V (applied energy: electron energy:
Up to 30 eV) as the voltage rises, but when the applied voltage exceeds 30 V, it drops sharply and the applied voltage becomes 40 V.
It barely emits light at (electron energy: 40 eV). Therefore, it was found that the threshold energy of the electron beam that causes the brightness of the ITO film to disappear is 40 eV.

【0036】実施例2 実施例1と同様にしてプラズマ中のアルゴンイオンを照
射したITO膜に、参考例1と同じ条件で0 eV、20 eV、3
0 eV、40 eV及び50 eVのエネルギーの電子線を照射し
た。得られた各電子線照射ITO膜に実施例1と同じ方法
で有機層及び陰極を形成してなる各電荷注入型発光素子
に8 Vの駆動電圧を印加し、輝度を測定した。その結
果、図3に示すのと同じ傾向が認められ、プラズマ照射
により表面改質したITO膜に対しても、輝度を消失させ
る電子線のしきい値エネルギーは40eVであった。
Example 2 An ITO film irradiated with argon ions in plasma in the same manner as in Example 1 was subjected to 0 eV, 20 eV, 3 eV under the same conditions as in Reference Example 1.
The electron beams with energies of 0 eV, 40 eV and 50 eV were irradiated. A driving voltage of 8 V was applied to each charge injection type light emitting device in which an organic layer and a cathode were formed on each of the obtained electron beam irradiated ITO films by the same method as in Example 1, and the brightness was measured. As a result, the same tendency as shown in FIG. 3 was recognized, and the threshold energy of the electron beam that causes the brightness to disappear was 40 eV even for the ITO film surface-modified by plasma irradiation.

【0037】実施例3 膜厚が約100 nm、面積が2×2 cm2のITO膜を表面に形
成したガラス基板を電子ビーム励起プラズマ装置(ニチ
メン電子工研(株)製)のチェンバー内に保持し、チェン
バー内を1.3×10-4 Paまで排気した後、酸素ガスを2.7
×10-1 Paの圧力になるまで導入した。次いで電子ビー
ム励起プラズマ装置を作動させて、チェンバー内に酸素
プラズマを発生させ、ITO膜に-20 Vの電圧を30秒間印加
した(工程(a))。次にイオン照射したITO膜上に、
「C」の形を有する孔を設けた厚さ1 mmのニッケル板を
厚さ0.5 mmのガラスのスペーサを介して配置した。チェ
ンバー内の酸素ガスをアルゴンガスに交換してアルゴン
プラズマを発生させ、ITO膜に50Vの正電圧を180秒間印
加した(工程(b))。
Example 3 A glass substrate on the surface of which an ITO film having a film thickness of about 100 nm and an area of 2 × 2 cm 2 was formed was placed in the chamber of an electron beam excitation plasma device (manufactured by Nichimen Denko Kogyo Co., Ltd.). Hold the chamber and evacuate the chamber to 1.3 × 10 -4 Pa, then add oxygen gas to 2.7
It was introduced until the pressure became × 10 -1 Pa. Then, the electron beam excitation plasma device was operated to generate oxygen plasma in the chamber, and a voltage of −20 V was applied to the ITO film for 30 seconds (step (a)). Next, on the ion-irradiated ITO film,
A 1 mm thick nickel plate with holes having the shape of "C" was placed through a 0.5 mm thick glass spacer. The oxygen gas in the chamber was exchanged with argon gas to generate argon plasma, and a positive voltage of 50 V was applied to the ITO film for 180 seconds (step (b)).

【0038】上記表面処理を施したITO膜の上に、実施
例1と同じ方法で有機層及び陰極を形成して電荷注入型
発光素子を作製した。このようにして得られた発光素子
に8Vの駆動電圧を印加したところ、輝度が2×104 cd/
m2の発光領域と、「C」形の非発光領域を有する非常に
コントラストの強い発光パターンが形成された。
On the surface-treated ITO film, an organic layer and a cathode were formed in the same manner as in Example 1 to prepare a charge injection type light emitting device. When a driving voltage of 8 V was applied to the light emitting device thus obtained, the brightness was 2 × 10 4 cd /
A very high contrast emission pattern was formed with an emission area of m 2 and a non-emission area of “C” shape.

【0039】[0039]

【発明の効果】以上詳述した通り、本発明の透明導電性
膜の表面処理方法は、プラズマ中のイオン照射及び電子
線照射の二工程によって透明導電性膜の電荷注入効率を
選択的に変化させ、もって透明導電性膜に所望の発光パ
ターンを付与する。得られた表面改質透明導電性膜を電
極として用いる電荷注入型発光素子は、表面に発光領域
及び非発光領域を有し、高精細な発光パターンを形成で
きる。またプラズマ照射の条件を変化させることによっ
て発光領域の輝度を調節できるので、非発光領域との光
学的なコントラストを考慮して発光素子を作製すること
が可能である。さらに非発光領域をブラックマトリック
スとすれば、色にじみのないディスプレイを得ることが
できる。
As described in detail above, the surface treatment method of the transparent conductive film of the present invention selectively changes the charge injection efficiency of the transparent conductive film by the two steps of ion irradiation in plasma and electron beam irradiation. As a result, a desired light emitting pattern is imparted to the transparent conductive film. The charge-injection type light emitting device using the obtained surface-modified transparent conductive film as an electrode has a light emitting region and a non-light emitting region on the surface and can form a highly precise light emitting pattern. Further, since the brightness of the light emitting region can be adjusted by changing the conditions of plasma irradiation, it is possible to fabricate the light emitting element in consideration of the optical contrast with the non-light emitting region. Further, if the non-light emitting area is made a black matrix, a display without color fringing can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態による透明導電性膜の表
面処理方法を示す断面図であって、(a) はプラズマ中の
イオン照射工程を示し、(b) は選択的な電子線照射工程
を示す。
FIG. 1 is a cross-sectional view showing a surface treatment method for a transparent conductive film according to an embodiment of the present invention, in which (a) shows an ion irradiation step in plasma and (b) shows selective electron beam irradiation. The process is shown.

【図2】 本発明の一実施形態による電荷注入型発光素
子を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a charge injection type light emitting device according to an embodiment of the present invention.

【図3】 プラズマ未照射のITO膜に電子線を照射する
時のITO膜への印加電圧と、電子線照射したITO膜を有す
る発光素子の輝度との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the voltage applied to the ITO film when plasma-irradiated ITO film is irradiated with an electron beam and the luminance of the light emitting device having the ITO film irradiated with the electron beam.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・透明導電性膜 3・・・マスク 4・・・正孔輸送層 5・・・電子輸送発光層 6・・・陰極 1 ... Substrate 2 ... Transparent conductive film 3 ... Mask 4 ... Hole transport layer 5 ... Electron transport light emitting layer 6 ... Cathode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 透明導電性膜にプラズマ中のイオンを照
射した後、輝度消失のしきい値エネルギー以上の電子線
を選択的に照射することにより、前記透明導電性膜の電
荷注入効率を選択的に変化させ、もって所望の発光パタ
ーンを付与することを特徴とする透明導電性膜の表面処
理方法。
1. The charge injection efficiency of the transparent conductive film is selected by irradiating the transparent conductive film with ions in plasma and then selectively irradiating with an electron beam having a threshold energy of brightness disappearance or more. Surface treatment method of a transparent conductive film, which is characterized by changing the shape of the transparent conductive film to give a desired light emission pattern.
【請求項2】 請求項1に記載の透明導電性膜の表面処
理方法において、前記プラズマは不活性ガス又は酸素の
プラズマであることを特徴とする表面処理方法。
2. The method for surface treatment of a transparent conductive film according to claim 1, wherein the plasma is plasma of an inert gas or oxygen.
【請求項3】 請求項1又は2に記載の透明導電性膜の
表面処理方法において、前記プラズマとして電子ビーム
励起プラズマを用いることを特徴とする表面処理方法。
3. The method for surface treatment of a transparent conductive film according to claim 1, wherein electron beam excitation plasma is used as the plasma.
【請求項4】 請求項1〜3のいずれかに記載の透明導
電性膜の表面処理方法において、前記プラズマ中のイオ
ンの照射エネルギーが10〜100 eVであることを特徴とす
る表面処理方法。
4. The method for surface treatment of a transparent conductive film according to claim 1, wherein the irradiation energy of ions in the plasma is 10 to 100 eV.
【請求項5】 請求項1〜4のいずれかに記載の透明導
電性膜の表面処理方法において、輝度消失のための前記
電子線のしきい値エネルギーを40 eVとすることを特徴
とする表面処理方法。
5. The surface treatment method for a transparent conductive film according to claim 1, wherein the threshold energy of the electron beam for brightness disappearance is 40 eV. Processing method.
【請求項6】 請求項1〜5のいずれかに記載の透明導
電性膜の表面処理方法において、前記透明導電性膜がIT
O膜であることを特徴とする表面処理方法。
6. The surface treatment method for a transparent conductive film according to claim 1, wherein the transparent conductive film is IT.
A surface treatment method, which is an O film.
【請求項7】 請求項1〜6のいずれかに記載の方法に
より表面改質された透明導電性膜であって、発光領域及
び非発光領域を選択的に有することを特徴とする透明導
電性膜。
7. A transparent conductive film surface-modified by the method according to claim 1, wherein the transparent conductive film selectively has a light emitting region and a non-light emitting region. film.
【請求項8】 請求項1〜7のいずれかに記載の方法に
より表面改質された透明導電性膜を電極として用い、発
光領域及び非発光領域を選択的に有することを特徴とす
る電荷注入型発光素子。
8. A charge injection, characterized in that a transparent conductive film surface-modified by the method according to claim 1 is used as an electrode and selectively has a light emitting region and a non-light emitting region. Type light emitting device.
JP2002046668A 2002-02-22 2002-02-22 Surface treatment method for transparent conductive film, transparent conductive film with surface modified by using the same, and charge injection luminescence element having surface modified transparent conductive film Pending JP2003249379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002046668A JP2003249379A (en) 2002-02-22 2002-02-22 Surface treatment method for transparent conductive film, transparent conductive film with surface modified by using the same, and charge injection luminescence element having surface modified transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002046668A JP2003249379A (en) 2002-02-22 2002-02-22 Surface treatment method for transparent conductive film, transparent conductive film with surface modified by using the same, and charge injection luminescence element having surface modified transparent conductive film

Publications (1)

Publication Number Publication Date
JP2003249379A true JP2003249379A (en) 2003-09-05

Family

ID=28659986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002046668A Pending JP2003249379A (en) 2002-02-22 2002-02-22 Surface treatment method for transparent conductive film, transparent conductive film with surface modified by using the same, and charge injection luminescence element having surface modified transparent conductive film

Country Status (1)

Country Link
JP (1) JP2003249379A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253302A (en) * 2005-03-09 2006-09-21 Toyota Industries Corp Organic electroluminescence element
WO2011007296A1 (en) * 2009-07-16 2011-01-20 Koninklijke Philips Electronics N.V. Light-emitting device and method of manufacturing a light-emitting device
WO2011158185A1 (en) * 2010-06-18 2011-12-22 Koninklijke Philips Electronics N.V. Transparent light emitting device with controlled emission
JP2012028335A (en) * 2006-05-04 2012-02-09 Lg Chem Ltd Organic light-emitting device having light-emitting pattern, and method and apparatus for producing the same
JP2012506604A (en) * 2008-10-21 2012-03-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transparent OLED device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253302A (en) * 2005-03-09 2006-09-21 Toyota Industries Corp Organic electroluminescence element
JP4729949B2 (en) * 2005-03-09 2011-07-20 株式会社豊田自動織機 Organic electroluminescence device
JP2012028335A (en) * 2006-05-04 2012-02-09 Lg Chem Ltd Organic light-emitting device having light-emitting pattern, and method and apparatus for producing the same
US9028975B2 (en) 2006-05-04 2015-05-12 Lg Chem, Ltd. Organic light-emitting device having light-emitting pattern, method and apparatus for preparing the same
JP2012506604A (en) * 2008-10-21 2012-03-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Transparent OLED device
WO2011007296A1 (en) * 2009-07-16 2011-01-20 Koninklijke Philips Electronics N.V. Light-emitting device and method of manufacturing a light-emitting device
WO2011158185A1 (en) * 2010-06-18 2011-12-22 Koninklijke Philips Electronics N.V. Transparent light emitting device with controlled emission
CN102934252A (en) * 2010-06-18 2013-02-13 皇家飞利浦电子股份有限公司 Transparent light emitting device with controlled emission
US8766306B2 (en) 2010-06-18 2014-07-01 Koninklijke Philips N.V. Transparent light emitting device with controlled emission

Similar Documents

Publication Publication Date Title
KR101059008B1 (en) Organic electroluminescent device, full color organic electroluminescent device and manufacturing method thereof
US8278126B2 (en) Method for manufacturing organic electroluminescence device
US8354287B2 (en) Method for manufacturing organic electroluminescence device
JP4852008B2 (en) Method for manufacturing organic electroluminescence device
JP2000012220A (en) Manufacture of organic el display panel
US7939999B2 (en) Electroluminescence device and functional device
JP2001319781A (en) Selecting method of organic luminous element material and organic luminous element using its material
WO2012111595A1 (en) Organic electroluminescence device, and method of manufacturing thereof
JP2848386B1 (en) Organic electroluminescence device and method of manufacturing the same
JP3456423B2 (en) Manufacturing method of organic electroluminescent device
JP2003249379A (en) Surface treatment method for transparent conductive film, transparent conductive film with surface modified by using the same, and charge injection luminescence element having surface modified transparent conductive film
JP2003229269A (en) Organic el element
JP2002246173A (en) Organic el device and manufacturing method for the same
JPH08288064A (en) Manufacture of organic electroluminescent element
JPH11242994A (en) Light emitting element and its manufacture
JPH08213171A (en) Manufacture of polychromatic electroluminescent device
JP2000223265A (en) Light-emitting device
JP2000164355A (en) Organic el element and its manufacture
JP2004087321A (en) Manufacturing method for organic electroluminescent element
KR100272601B1 (en) Organic electroluminescent device and method for fabricating thereof
JP2012028338A (en) Organic electroluminescent element and method for manufacturing the same
JP2000208253A (en) Organic electroluminescent element and manufacture thereof
JP5314395B2 (en) Method for manufacturing organic electroluminescence element
JP2006059668A (en) Organic electroluminescent device, production method thereof and electronic apparatus
JP2002170670A (en) Organic elecroluminescent element and its manufacturing method as well as organic electroluminescent display