JP2000164355A - Organic el element and its manufacture - Google Patents

Organic el element and its manufacture

Info

Publication number
JP2000164355A
JP2000164355A JP10335895A JP33589598A JP2000164355A JP 2000164355 A JP2000164355 A JP 2000164355A JP 10335895 A JP10335895 A JP 10335895A JP 33589598 A JP33589598 A JP 33589598A JP 2000164355 A JP2000164355 A JP 2000164355A
Authority
JP
Japan
Prior art keywords
organic
film
cupc
organic film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10335895A
Other languages
Japanese (ja)
Inventor
Yukio Ogawa
行雄 小川
Yasuhiro Iiizumi
安広 飯泉
Hisamitsu Takahashi
尚光 高橋
Tatsuo Fukuda
辰男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP10335895A priority Critical patent/JP2000164355A/en
Publication of JP2000164355A publication Critical patent/JP2000164355A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption even when copper phthalocyanine(CuPc) organic film is made thick, to drive it with a lower voltage for low power consumption, to improve the transmission factor of the red section of visible light through the CuPc organic film and to obtain a desired luminescence color. SOLUTION: An anode 4 made of a transparent conductive film 3 in the prescribed pattern shape is formed on a glass substrate 2. A hole injection CuPc organic film 5a is formed on the anode 4 as a plasma polymerized film having an improved transmission factor of red luminescence at the thickness of 1 μm or above by an ion plating method. The CuPc organic film 5a is exposed to the atmosphere of NO2 which is an electron-acceptive gas after it is formed, and it contains NO2 in it. The conductivity of the CuPc organic film 5a is increased, and hole injection efficiency is stabilized and improved. An α-NPD organic film 5b and an Alq3 organic film 5c are formed in this order on the CuPc organic film 5a to obtain an organic layer 5, and a cathode 6 is formed on the Alq3 organic film 5c. A container section is fixed to the peripheral portion of the glass substrate 2 to protect the anode 4, organic layer 5 and cathode 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子とホール(正
孔)の注入・再結合により発光する有機化合物材料のエ
レクトロルミネッセンス(以下ELという)を利用し
て、前記有機EL化合物の薄膜から構成された有機EL
素子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film of an organic EL compound utilizing electroluminescence (hereinafter referred to as EL) of an organic compound material which emits light by injection and recombination of electrons and holes (holes). Organic EL
The present invention relates to an element and a method for manufacturing the same.

【0002】[0002]

【従来の技術】有機EL素子は、蛍光性有機化合物を含
む薄膜を陰極と陽極との間に挟んだ積層構造を有し、前
記薄膜に電子及びホールを注入して再結合させることに
より励起子(エキシトン)を生成させ、この励起子が失
活する際の光の放出(蛍光・燐光)を利用して表示を行
う表示素子である。
2. Description of the Related Art An organic EL device has a laminated structure in which a thin film containing a fluorescent organic compound is sandwiched between a cathode and an anode, and excitons are injected into the thin film by injecting electrons and holes and recombining them. (Exciton) is generated, and the display element performs display by utilizing light emission (fluorescence / phosphorescence) when the exciton is deactivated.

【0003】図9(a)〜(g)はこの種の従来の有機
EL素子の構成及び製造工程を示す側断面図である。
FIGS. 9A to 9G are side sectional views showing the structure and manufacturing process of a conventional organic EL device of this type.

【0004】この有機EL素子31は、図9(a)に示
す絶縁性及び透明性を有するガラス基板32の上にIT
O(Indium Tin Oxide)からなる透明導電膜33が形成
されている。この透明導電膜33はガラス基板32上に
成膜され、図9(b)に示すような所定パターン形状に
パターンニングされて陽極34を形成している。
The organic EL element 31 is provided on an insulating and transparent glass substrate 32 as shown in FIG.
A transparent conductive film 33 made of O (Indium Tin Oxide) is formed. The transparent conductive film 33 is formed on a glass substrate 32 and patterned into a predetermined pattern as shown in FIG. 9B to form an anode 34.

【0005】陽極34の上には有機化合物材料の薄膜に
よる有機層35が積層されている。有機層35は、図9
(c)に示す陽極34の上に成膜されたホール注入層と
しての銅フタロシアニン(CuPc)有機膜35aと、
図9(d)に示すCuPc有機膜35aの上に成膜され
たホール輸送層としてのα−NPD(Bis(N−(1
−naphtyl −N−phneyl)benzidine )有機膜35b
と、図9(e)に示すα−NPD有機膜35bの上に成
膜された発光層兼電子輸送層としてのトリス(8−キノ
リノラト)アルミニウム(Alq3 )有機膜35cとの
3層構造で形成されている。
[0005] On the anode 34, an organic layer 35 of a thin film of an organic compound material is laminated. As shown in FIG.
(C) a copper phthalocyanine (CuPc) organic film 35a as a hole injection layer formed on the anode 34,
As a hole transport layer formed on the CuPc organic film 35a shown in FIG. 9D, α-NPD (Bis (N- (1
-Naphtyl-N-phneyl) benzidine) Organic film 35b
And a tris (8-quinolinolato) aluminum (Alq 3 ) organic film 35c as a light emitting layer and an electron transport layer formed on the α-NPD organic film 35b shown in FIG. Is formed.

【0006】図9(f)に示すように、有機層35(A
lq3 有機膜35c)の上には、例えばAl−Li等の
金属薄膜からなる陰極36が形成されている。
As shown in FIG. 9F, the organic layer 35 (A
On the lq 3 organic film 35c), a cathode 36 made of a metal thin film such as Al-Li is formed.

【0007】図9(g)に示すように、ガラス基板32
の外周部分には、水分を極力取り除いた不活性ガス(例
えばドライ窒素)やドライエアによるドライ雰囲気にお
いて、封着部材としての容器部37が接着剤により固着
されている。
[0007] As shown in FIG.
A container portion 37 as a sealing member is fixed to the outer peripheral portion of the outer peripheral portion of the container with an adhesive in a dry atmosphere with an inert gas (for example, dry nitrogen) or dry air from which water is removed as much as possible.

【0008】上記のように構成される有機EL素子31
では、陽極34と陰極36との間に電圧を印加して定電
流を流す。これにより、有機層35に対し、陽極34か
らホールが、陰極36から電子がそれぞれ注入される。
そして、注入された電子とホールが再結合して励起子を
生成し、この励起子が失活する際の光の放出により所望
の表示がなされる。その際の発光は、透明導電膜33に
よる陽極34を介してガラス基板32側から観測され
る。
The organic EL element 31 constructed as described above
Then, a voltage is applied between the anode 34 and the cathode 36 to flow a constant current. As a result, holes are injected from the anode 34 and electrons are injected from the cathode 36 into the organic layer 35.
Then, the injected electrons and holes recombine to generate excitons, and a desired display is performed by emission of light when the excitons are deactivated. Light emission at this time is observed from the glass substrate 32 side via the anode 34 of the transparent conductive film 33.

【0009】[0009]

【発明が解決しようとする課題】ところで、上記のよう
に構成される有機EL素子31では、有機層35のホー
ル注入層としてCuPc有機膜35aを有している。こ
のCuPc有機膜35aは、その膜厚に応じて電圧−電
流特性及び電圧−輝度特性が異なる特性を有している。
すなわち、一定電流又は一定輝度で発光させる場合、C
uPc有機膜の膜厚が薄くなるに連れて駆動電圧を低く
でき、逆にCuPc有機膜が厚くなるに連れて駆動電圧
が高くなる特性を示している。
Incidentally, the organic EL element 31 configured as described above has a CuPc organic film 35a as a hole injection layer of the organic layer 35. The CuPc organic film 35a has characteristics in which voltage-current characteristics and voltage-luminance characteristics differ depending on the film thickness.
That is, when light is emitted with a constant current or constant luminance, C
The driving voltage can be reduced as the thickness of the uPc organic film is reduced, and the driving voltage is increased as the thickness of the CuPc organic film is increased.

【0010】図6及び図7には、図9の有機EL素子の
構成を採用し、CuPc有機膜の膜厚を20nmと10
00nmで成膜した場合のそれぞれの特性が示されてい
る。この図からも明らかなように、CuPc有機膜の膜
厚を20nmで成膜した場合の方が1000nmで成膜
した場合よりも駆動電圧を低くできることが判る。
FIGS. 6 and 7 adopt the structure of the organic EL device of FIG. 9 and have a CuPc organic film having a film thickness of 20 nm and 10 nm.
The respective characteristics when a film is formed at 00 nm are shown. As is apparent from this figure, it can be seen that the drive voltage can be lower when the CuPc organic film is formed with a thickness of 20 nm than when the organic film is formed with a thickness of 1000 nm.

【0011】具体的に、電流で見た場合、有機EL素子
を駆動するのに必要な15mA/cm2 の電流を流すに
は、図6に示すように、CuPc有機膜の膜厚が20n
mで約5.8V程度の駆動電圧を必要とするのに対し、
1000nmでは15mA/cm2 はとれず素子として
実用化できなかった。
Specifically, in view of the current, in order to supply a current of 15 mA / cm 2 required for driving the organic EL element, as shown in FIG.
m requires a drive voltage of about 5.8V,
At 1000 nm, 15 mA / cm 2 could not be obtained, and the device could not be practically used.

【0012】また、輝度で見た場合、一般に表示素子と
して必要とする400cd/m2 の輝度を得るには、図
7に示すように、CuPc有機膜の膜厚が20nmで約
6.2V程度の駆動電圧を必要とするのに対し、100
0nmでは400cd/m2を得ることは不可能であっ
た。
In addition, in terms of luminance, in order to obtain a luminance of 400 cd / m 2 , which is generally required as a display element, as shown in FIG. 7, as shown in FIG. Drive voltage is required, while 100
At 0 nm, it was impossible to obtain 400 cd / m 2 .

【0013】したがって、図9の構成による有機EL素
子31でより高輝度を得るためには、CuPc有機膜の
膜厚を20nmと薄くしなければならなかった。
Therefore, in order to obtain higher luminance with the organic EL device 31 having the configuration shown in FIG. 9, the thickness of the CuPc organic film had to be reduced to 20 nm.

【0014】ところで、特開昭59−194393号公
報(特公平6−32307号)には、有機層として正孔
インジェクション帯域と有機発光帯域とを厚さが100
0nmを越えないように陽極と陰極との間に挟んで積層
した構造による有機エレクトロルミネッセント装置が開
示されている。
Japanese Patent Application Laid-Open No. Sho 59-194393 (Japanese Patent Publication No. 6-32307) discloses that the hole injection zone and the organic emission zone are formed as an organic layer having a thickness of 100 mm.
There is disclosed an organic electroluminescent device having a structure of being stacked between an anode and a cathode so as not to exceed 0 nm.

【0015】しかしながら、上記装置においても、上述
したCuPc有機膜による問題を含め、以下に示すよう
な問題がある。すなわち、有機層の下地になる陽極をI
TOで形成した場合、その表面がスパイク状の突起を含
む数十nmの凹凸面となってしまう。また、ITOの下
地になるガラス基板の表面も緩やかではあるが凹凸面と
なっている。
However, the above-described apparatus also has the following problems, including the above-mentioned problem caused by the CuPc organic film. That is, the anode serving as the base of the organic layer is
When formed by TO, the surface becomes an uneven surface of several tens nm including spike-shaped protrusions. In addition, the surface of the glass substrate serving as an underlayer of ITO has a moderate but uneven surface.

【0016】そして、凹凸面を有するガラス基板の上に
ITOを成膜して陽極を形成し、更に凹凸面を有するI
TOの上に有機層をなす正孔インジェクション帯域及び
有機発光帯域、陰極を順に積層して成膜すると、ITO
のスパイク状の突起により陽極と陰極との間が電気的に
ショートして絶縁不良を招くおそれがあった。
An ITO is formed on a glass substrate having an uneven surface to form an anode.
When a hole injection zone, an organic emission zone, and a cathode, which form an organic layer, are sequentially stacked on the TO to form a film, ITO is formed.
The spike-like projections may cause an electrical short between the anode and the cathode, resulting in poor insulation.

【0017】また、蒸着する場所や周囲の微細なゴミ等
が既に形成されている陽極の表面に付着した場合、その
まま陽極の上に有機層、陰極を順に成膜すると、ゴミ等
による隙間を完全に埋めることができない。このため、
その隙間を介して陽極と陰極との間の電気的なショート
を引き起し易い。しかも、陽極に付着したゴミが導電性
を有している場合には、このゴミを介して陽極と陰極と
の間を電気的にショートさせる可能性が高い。
In the case where fine dust or the like at the place where the film is to be deposited or the surroundings is adhered to the surface of the already formed anode, an organic layer and a cathode are sequentially formed on the anode as it is to completely remove the gap due to the dust and the like. Can not be buried in. For this reason,
It is easy to cause an electrical short between the anode and the cathode through the gap. Moreover, when the dust attached to the anode has conductivity, there is a high possibility that the anode and the cathode are electrically short-circuited through the dust.

【0018】したがって、上記問題を解消するために
は、有機層の膜厚をある程度厚くすることにより、ゴミ
等に対する許容を広くし、有機層の下地になる電極の表
面を平滑化させる必要があった。
Therefore, in order to solve the above-mentioned problem, it is necessary to increase the thickness of the organic layer to some extent to increase the tolerance to dust and the like, and to smooth the surface of the electrode serving as the base of the organic layer. Was.

【0019】ところが、上述したように、特に有機層と
して透明導電膜の上に成膜されるCuPc有機膜を厚く
すると、電圧−電流特性及び電圧−輝度特性が高電圧側
にシフトする。その結果、CuPc有機膜の膜厚を厚く
する前のものとと同一輝度で発光させるためには、より
高い駆動電圧を必要とし、電力の消費量が増すという問
題を招く。
However, as described above, when the CuPc organic film formed as the organic layer on the transparent conductive film is particularly thick, the voltage-current characteristics and the voltage-luminance characteristics shift to higher voltages. As a result, in order to emit light with the same luminance as that before the CuPc organic film is made thicker, a higher driving voltage is required, which causes a problem that power consumption increases.

【0020】更に、分子線蒸着で成膜したCuPc有機
膜は、緑から赤色領域に吸収帯を有しており、発光層の
発光に赤色成分が多く含まれる場合には発光の多くがC
uPc有機膜で吸収されてしまうので、十分な赤色発光
の輝度が得られない。
Further, the CuPc organic film formed by molecular beam evaporation has an absorption band in the green to red region, and when the light emission of the light emitting layer contains a large amount of red component, most of the light emission is C
Since it is absorbed by the uPc organic film, sufficient red light emission luminance cannot be obtained.

【0021】したがって、有機層にCuPc有機膜が含
まれた構成では、CuPc有機膜の膜厚が厚くなるほど
CuPc有機膜における赤色や緑色の成分の光が通りに
くくなる。その結果、緑色より長波長の成分の輝度が低
下し、白色の発光を得ようとした場合でも青色になって
しまい、所望の発光色を得ることができない。
Therefore, in the configuration in which the organic layer includes the CuPc organic film, as the thickness of the CuPc organic film increases, light of red and green components in the CuPc organic film becomes more difficult to pass. As a result, the luminance of the component having a longer wavelength than that of green is reduced, and the color becomes blue even when white light is to be obtained, and a desired light emission color cannot be obtained.

【0022】ところで、有機層の一部を構成するCuP
c膜はp形伝導を示すが、このCuPc膜に例えばNO
2 等の電子受容性(酸化性)の強いガスが吸着すると、
ガス分子がCuPc膜の環状原子団のπ電子を受け取
り、膜中に正孔を発生させて膜の導電率が上昇する性質
を有していることが知られている。
By the way, CuP constituting a part of the organic layer
The c film shows p-type conduction.
When a strong electron-accepting (oxidizing) gas such as 2 adsorbs,
It is known that gas molecules have the property of receiving π electrons of a cyclic atomic group of a CuPc film, generating holes in the film, and increasing the conductivity of the film.

【0023】そこで、本発明は、上述したCuPc膜の
性質を利用し、CuPc有機膜の膜厚を厚くしても、低
消費電力化を図ってより低い電圧での駆動可能であり、
CuPc有機膜の可視光赤色部の透過率を向上させて所
望の発光色を得ることができる有機EL素子とその製造
方法を提供することを目的としている。
In view of the above, the present invention makes it possible to reduce the power consumption and drive at a lower voltage even if the thickness of the CuPc organic film is increased by utilizing the above-mentioned properties of the CuPc film.
It is an object of the present invention to provide an organic EL device capable of obtaining a desired emission color by improving the transmittance of a visible red light portion of a CuPc organic film, and a method of manufacturing the same.

【0024】[0024]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、少なくとも一方の電極が透明導
電膜でなる一対の電極間にホール注入性のCuPc有機
膜を含む有機層が積層された有機EL素子において、前
記CuPc有機膜が、1000nm以上の膜厚でイオン
プレーティング法により形成した電子受容性のガスを含
有する膜からなることを特徴とする。
In order to achieve the above-mentioned object, according to the present invention, an organic layer including a hole-injecting CuPc organic film between a pair of electrodes, at least one of which is a transparent conductive film, is provided. The stacked organic EL device is characterized in that the CuPc organic film is a film containing an electron-accepting gas formed by an ion plating method with a thickness of 1000 nm or more.

【0025】請求項2の発明は、請求項1の有機EL素
子において、前記電子受容性のガスがNO2 からなるこ
とを特徴とする。
According to a second aspect of the present invention, in the organic EL device according to the first aspect, the electron accepting gas comprises NO 2 .

【0026】請求項3の発明は、少なくとも一方の電極
が透明導電膜でなる一対の電極間にホール注入性のCu
Pc有機膜を含む有機層が積層された有機EL素子の製
造方法において、前記CuPc有機膜をイオンプレーテ
ィング法により膜厚1000nm以上で成膜し、前記C
uPc有機膜が成膜された後に、該CuPc有機膜の表
面を電子受容性のガスでリンス処理する工程を含むこと
を特徴とする。
According to a third aspect of the present invention, there is provided a method of forming a hole-injecting Cu between a pair of electrodes, at least one of which is formed of a transparent conductive film.
In the method for manufacturing an organic EL device in which an organic layer including a Pc organic film is laminated, the CuPc organic film is formed to a thickness of 1000 nm or more by an ion plating method.
After the uPc organic film is formed, a step of rinsing the surface of the CuPc organic film with an electron-accepting gas is included.

【0027】請求項4の発明は、少なくとも一方の電極
が透明導電膜でなる一対の電極間にホール注入性のCu
Pc有機膜を含む有機層が積層された有機EL素子の製
造方法において、前記CuPc有機膜を複数の層に分け
てイオンプレーティング法により膜厚1000nm以上
で成膜する工程と、前記CuPc有機膜の各層を成膜す
る毎に電子受容性のガスで表面をリンス処理する工程と
を含むことを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for forming a hole-injecting Cu between a pair of electrodes, at least one of which is formed of a transparent conductive film.
A method of manufacturing an organic EL device in which an organic layer including a Pc organic film is laminated, a step of dividing the CuPc organic film into a plurality of layers and forming a film with a thickness of 1000 nm or more by an ion plating method; Rinsing the surface with an electron-accepting gas every time each layer is formed.

【0028】[0028]

【発明の実施の形態】図1は本発明による有機EL素子
の第1実施の形態を示す部分拡大側断面図、図2(a)
〜(i)は図1の有機EL素子の製造工程を示す側断面
図である。
FIG. 1 is a partially enlarged side sectional view showing an organic EL device according to a first embodiment of the present invention, and FIG.
FIGS. 2A to 2I are side sectional views showing a manufacturing process of the organic EL device of FIG.

【0029】図1に示すように、第1実施の形態による
有機EL素子1A(1)は、絶縁性及び透明性を有する
矩形状のガラス基板2を基部としている。ガラス基板2
の上には、ITO等の透明導電膜3が成膜されている。
透明導電膜3は、例えば真空蒸着法、スパッタ法等のP
VD(Physical Vapor Deposition )法により100n
m前後の膜厚で成膜される。透明導電膜3は、更にフォ
トレジストパターンによるエッチングで所定パターン形
状にパターンニングされ、陽極4を形成している。陽極
4の一部は、ガラス基板2の端部まで引き出されて不図
示の駆動回路(ドライバIC)に接続される。
As shown in FIG. 1, the organic EL element 1A (1) according to the first embodiment is based on a rectangular glass substrate 2 having insulation and transparency. Glass substrate 2
On top of this, a transparent conductive film 3 such as ITO is formed.
The transparent conductive film 3 is made of P, for example, by a vacuum deposition method or a sputtering method.
100n by VD (Physical Vapor Deposition) method
m. The transparent conductive film 3 is further patterned into a predetermined pattern by etching with a photoresist pattern to form an anode 4. Part of the anode 4 is drawn out to the end of the glass substrate 2 and connected to a drive circuit (driver IC) (not shown).

【0030】陽極4の上には、有機化合物材料の薄膜に
よる発光層を含む有機層5が積層されている。有機層5
は、例えば分子線蒸着法、抵抗加熱法等のPVD法によ
り成膜される。
On the anode 4, an organic layer 5 including a light emitting layer made of a thin film of an organic compound material is laminated. Organic layer 5
Is formed by a PVD method such as a molecular beam evaporation method and a resistance heating method.

【0031】図1における有機層5は、陽極4の上に1
000nm以上の膜厚で成膜されたホール注入性有機膜
としてのCuPc有機膜5aと、CuPc有機膜5aの
上に数10nmの膜厚で成膜されたホール輸送性有機膜
としてのα−NPD有機膜5bと、α−NPD有機膜5
bの上に数10nmの膜厚で成膜された発光層兼電子輸
送性有機膜としてのAlq3 有機膜5cとの3層構造で
形成されている。
The organic layer 5 in FIG.
A CuPc organic film 5a as a hole-injecting organic film formed to a thickness of 000 nm or more, and an α-NPD as a hole-transporting organic film formed to a thickness of several tens nm on the CuPc organic film 5a. Organic film 5b and α-NPD organic film 5
It has a three-layer structure including an Alq 3 organic film 5c as a light emitting layer and an electron transporting organic film formed with a film thickness of several tens of nanometers on the substrate b.

【0032】有機層5の上には、金属薄膜による陰極6
が形成されている。陰極6は、例えばAl、Li、M
g、Ag、In等の仕事関数の小さい金属材料単体やA
l−Li、Mg−Ag等の仕事関数の小さい合金からな
る。陰極6は、例えば分子線蒸着法、抵抗加熱法等のP
VD法により例えば数10nm〜数100nm(好まし
くは50nm〜200nm)の膜厚で成膜される。陰極
6の一部は、ガラス基板2の端部まで引き出されて不図
示の駆動回路に接続される。
On the organic layer 5, a cathode 6 made of a metal thin film is provided.
Are formed. The cathode 6 is made of, for example, Al, Li, M
metal material such as g, Ag, In, etc. having a small work function or A
It is made of an alloy having a small work function such as l-Li and Mg-Ag. The cathode 6 is made of P, such as a molecular beam deposition method or a resistance heating method.
The film is formed to a thickness of, for example, several tens nm to several hundreds nm (preferably, 50 nm to 200 nm) by the VD method. Part of the cathode 6 is drawn out to the end of the glass substrate 2 and connected to a drive circuit (not shown).

【0033】ガラス基板2の外周部分には、水分を極力
取り除いた不活性ガス(例えばドライ窒素)やドライエ
アによるドライ雰囲気において、封着部材としての蓋状
の容器部7が接着剤(例えば紫外線硬化接着剤)により
固着されている。これにより、両電極4,6及び有機層
5を保護するとともに、高精細な有機ELデバイスを実
現している。
In a dry atmosphere using an inert gas (eg, dry nitrogen) or dry air from which moisture has been removed as much as possible, a lid-like container 7 as a sealing member is provided with an adhesive (eg, ultraviolet curing) on the outer peripheral portion of the glass substrate 2. Adhesive). Thereby, both the electrodes 4 and 6 and the organic layer 5 are protected, and a high-definition organic EL device is realized.

【0034】上記のように構成される有機EL素子1A
では、陽極4と陰極6との間に不図示の駆動回路から駆
動電圧を印加して定電流を流す。これにより、有機層5
に対し、陽極4からホールが、陰極6から電子がそれぞ
れ注入される。そして、注入されたホールと電子が有機
層5で再結合して励起子を生成し、この励起子が失活す
る際の光の放出により所望の表示がなされる。その際の
発光は、透明導電膜による陽極4を介してガラス基板2
の外側から観測される。
The organic EL device 1A configured as described above
Then, a drive voltage is applied between the anode 4 and the cathode 6 from a drive circuit (not shown) to flow a constant current. Thereby, the organic layer 5
In contrast, holes are injected from the anode 4 and electrons are injected from the cathode 6. Then, the injected holes and electrons are recombined in the organic layer 5 to generate excitons, and a desired display is performed by emission of light when the excitons are deactivated. At this time, light is emitted from the glass substrate 2 through the anode 4 made of a transparent conductive film.
Observed from outside.

【0035】次に、上記構成による有機EL素子1Aの
製造方法を図2(a)〜(i)に基づいて説明する。ま
ず、内部圧力が10-5Pa以下に設定された不図示のチ
ャンバー内にガラス基板2をセットし、ガラス基板2の
表面に透明導電膜3を150nm程度の膜厚で成膜する
(図2(a))。続いて、透明導電膜3にフォトレジス
トパターンによるエッチングを施して所定パターン形状
の陽極4を形成する(図2(b))。この透明導電膜3
は通常のスパッタ法で成膜できるが、スパッタ法による
成膜では透明導電膜3がポリ化して結晶粒界に起因した
フレーク状の凹凸が表面に形成されてしまうので、非結
晶質で成膜されるのが好ましい。例えば、IDIXO
(商品名:出光透明導電材料Idemitsu Indium X-Metal
Oxide 、出光興産株式会社製)の非晶質透明導電膜で透
明導電膜3を成膜すれば、緻密で表面平滑性に優れた膜
を形成することができる。
Next, a method of manufacturing the organic EL device 1A having the above configuration will be described with reference to FIGS. First, the glass substrate 2 is set in a chamber (not shown) in which the internal pressure is set to 10 −5 Pa or less, and the transparent conductive film 3 is formed on the surface of the glass substrate 2 to a thickness of about 150 nm (FIG. 2). (A)). Subsequently, the transparent conductive film 3 is etched by a photoresist pattern to form an anode 4 having a predetermined pattern shape (FIG. 2B). This transparent conductive film 3
Can be formed by a normal sputtering method. However, in the case of the film formation by the sputtering method, the transparent conductive film 3 is polycrystallized, and flake-like irregularities caused by crystal grain boundaries are formed on the surface. Preferably. For example, IDIXO
(Product name: Idemitsu Indium X-Metal
Oxide, manufactured by Idemitsu Kosan Co., Ltd.) can form a dense and excellent surface smoothness film by forming the transparent conductive film 3 with an amorphous transparent conductive film.

【0036】なお、非晶質による透明導電膜(IDIX
Oによる透明導電膜等)3の成膜時に、所望のパターン
ニングをするためにマスク蒸着をしてもよい。また、場
合によっては、透明導電膜3の成膜後に、通常のフォト
リソグラフィ法を用いて透明導電膜3をパターン加工し
てもよい。
The transparent conductive film made of amorphous (IDIX)
At the time of forming the transparent conductive film 3 of O), mask evaporation may be performed in order to perform desired patterning. In some cases, after the transparent conductive film 3 is formed, the transparent conductive film 3 may be patterned using a normal photolithography method.

【0037】透明導電膜3による陽極4が形成された
後、陽極4の上にCuPc有機膜5aを1000nm以
上の膜厚で成膜する(図2(c))。例えば1000n
mの膜厚のCuPc有機膜5aを成膜する場合には、分
子線蒸着法、抵抗加熱法等のPVD法により、1回当た
り100nmの膜厚で10回に分けて成膜される。
After the anode 4 is formed of the transparent conductive film 3, a CuPc organic film 5a is formed on the anode 4 to a thickness of 1000 nm or more (FIG. 2C). For example, 1000n
When the CuPc organic film 5a having a thickness of m is formed, the CuPc organic film 5a is formed into 10 times with a thickness of 100 nm each time by a PVD method such as a molecular beam evaporation method and a resistance heating method.

【0038】上記CuPc有機膜5aの成膜には、図3
に示すイオンプレーティング装置が用いられる。イオン
プレーティング装置11は、図示しない排気手段を用い
て内部を所望の真空雰囲気にする真空槽12を有してい
る。真空槽12の上部には基板ホルダー13が設けられ
ている。基板ホルダー13は、CuPc有機膜5aを堆
積させるためのガラス基板2を着脱可能に保持する。こ
の基板ホルダー13には基板バイアス電源14が接続さ
れ、後述するプラズマを加速してガラス基板2に引き寄
せることができるように構成されている。真空槽12の
下部には、加熱手段15が設置されている。WやMo等
からなるボート16内に蒸着源17を入れ、この加熱手
段15上に載置して加熱すれば、蒸着源17は熱により
蒸発する。真空槽12内の加熱手段15の上方側部に
は、コイル電極18が配置されている。コイル電極18
には整合回路19を介してRF電源20が接続されてお
り、近傍の分子にエネルギーを与えてプラズマを発生さ
せることができる。真空槽12にはガス導入弁21を介
してガス導入管22が接続されており、内部に所望の雰
囲気ガスを所望の量だけ導入できるようになっている。
The CuPc organic film 5a is formed as shown in FIG.
Are used. The ion plating apparatus 11 has a vacuum chamber 12 for setting the inside to a desired vacuum atmosphere by using an exhaust means (not shown). A substrate holder 13 is provided above the vacuum chamber 12. The substrate holder 13 detachably holds the glass substrate 2 for depositing the CuPc organic film 5a. A substrate bias power supply 14 is connected to the substrate holder 13, and is configured so that plasma described later can be accelerated and drawn to the glass substrate 2. A heating means 15 is provided below the vacuum chamber 12. If the evaporation source 17 is placed in a boat 16 made of W, Mo, or the like, and is placed on the heating means 15 and heated, the evaporation source 17 evaporates due to heat. A coil electrode 18 is arranged on the upper side of the heating means 15 in the vacuum chamber 12. Coil electrode 18
Is connected to an RF power source 20 via a matching circuit 19, and can apply energy to nearby molecules to generate plasma. A gas introduction pipe 22 is connected to the vacuum chamber 12 via a gas introduction valve 21 so that a desired amount of an atmospheric gas can be introduced into the inside of the vacuum chamber 12.

【0039】前記イオンプレーティング装置11を用い
てガラス基板2の透明導電膜3の上にCuPc有機膜5
aを形成する。まず、真空槽12中の加熱手段15に、
WやMoのボート16を設置する。このボート16内に
CuPcを入れる。真空槽12中を10-5Torr以下の真
空度になるように排気する。次に、加熱手段15に通電
してボート16を400〜500℃程度の温度に加熱
し、CuPcを蒸発させる。この時、ガス導入弁21を
操作して真空槽12中にAr等のガスを導入して真空度
を10-1〜10-4Torr以上にし、コイル電極18に高周
波電力を印加してプラズマを発生させる。基板ホルダー
13に500V以下の加速電圧を印加すると、プラズマ
化したCuPcが基板ホルダー13に取り付けたガラス
基板2に向けて移動し、ガラス基板2の透明導電膜3の
上に堆積してプラズマ重合膜としてのCuPc有機膜5
aを生成する。
The CuPc organic film 5 is formed on the transparent conductive film 3 of the glass substrate 2 by using the ion plating apparatus 11.
a is formed. First, the heating means 15 in the vacuum chamber 12
A boat 16 of W or Mo is installed. CuPc is put into the boat 16. The inside of the vacuum chamber 12 is evacuated to a degree of vacuum of 10 −5 Torr or less. Next, the heating means 15 is energized to heat the boat 16 to a temperature of about 400 to 500 ° C. to evaporate CuPc. At this time, the gas introduction valve 21 is operated to introduce a gas such as Ar into the vacuum chamber 12 to increase the degree of vacuum to 10 -1 to 10 -4 Torr or more, and apply high frequency power to the coil electrode 18 to generate plasma. generate. When an accelerating voltage of 500 V or less is applied to the substrate holder 13, the plasmanized CuPc moves toward the glass substrate 2 attached to the substrate holder 13 and deposits on the transparent conductive film 3 of the glass substrate 2 to form a plasma polymerized film. CuPc organic film 5 as
Generate a.

【0040】上記のようにしてCuPc有機膜5aが成
膜されると、CuPc有機膜5aの第1ガスリンス処理
として、ガラス基板2がセットされたチャンバー内にN
2 ガスを導入してエージングする(図2(d))。具体
的に、この第1ガスリンス処理では、N2 ガスを例えば
100ml/mnの流量でチャンバー内圧力が10〜1
00Paになるまで導入し、5分間放置する。この第1
ガスリンス処理で電子受容性の強いNO2 ガスを導入し
ないのは、いきなりNO2 ガスをチャンバー内に導入す
ると、チャンバー内の残留ガスと反応して爆発等を起こ
すおそれがあるためである。
When the CuPc organic film 5a is formed as described above, as a first gas rinsing process of the CuPc organic film 5a, N.sub.2 is placed in a chamber in which the glass substrate 2 is set.
Aging is performed by introducing two gases (FIG. 2D). Specifically, in the first gas rinsing process, N 2 gas is supplied at a flow rate of, for example, 100 ml / mn and the pressure in the chamber is 10 to 1
It is introduced until the pressure becomes 00 Pa and left for 5 minutes. This first
Not to introduce an electron-accepting strong NO 2 gas Gasurinsu process, when suddenly introducing the NO 2 gas into the chamber, there is a possibility of causing an explosion or the like by reacting with the residual gas in the chamber.

【0041】上記第1ガスリンス処理に引き続いて、C
uPc膜5aの第2ガスリンス処理として、チャンバー
内にNO2 ガスを導入してN2 ガスをNO2 ガスに置換
する(図2(e))。具体的に、この第2ガスリンス処
理では、NO2 ガスを例えば100ml/mnの流量で
チャンバー内圧力が10〜100Paになるまで導入
し、10分間放置する。これにより、チャンバー内のN
2 ガスを成膜直後に大気に曝さない状態でCuPc有
機膜5aに接触させる。そして、CuPc有機膜5aの
表面にNO2 ガスを十分吸着させ、膜中にNO2 ガスを
浸透させる。
Following the first gas rinsing process, C
As a second gas rinsing process of the uPc film 5a, NO 2 gas is introduced into the chamber to replace N 2 gas with NO 2 gas (FIG. 2E). Specifically, in the second gas rinsing process, NO 2 gas is introduced at a flow rate of, for example, 100 ml / mn until the pressure in the chamber becomes 10 to 100 Pa, and left for 10 minutes. Thereby, N in the chamber is
Immediately after the film formation, the O 2 gas is brought into contact with the CuPc organic film 5a without being exposed to the atmosphere. Then, the NO 2 gas is sufficiently adsorbed on the surface of the CuPc organic film 5a, and the NO 2 gas penetrates into the film.

【0042】上記第2ガスリンス処理を終えると、再度
チャンバー内を真空排気し、チャンバー内圧力を10-5
Pa以下にした状態で、CuPc有機膜5aの上にα−
NPD有機膜5bを分子線蒸着法、抵抗加熱法等のPV
D法により成膜する(図2(f))。続いて、α−NP
D有機膜5bの上にAlq3 有機膜5cを成膜し(図2
(g))、更にAlq3 有機膜5cの上に陰極6となる
金属薄膜(例えばAl−Li膜)をPVD法により成膜
する(図2(h))。
When the second gas rinsing process is completed, the inside of the chamber is evacuated again to reduce the pressure in the chamber to 10 -5.
In the state where the pressure is set to Pa or less, α-
PVD of the NPD organic film 5b by molecular beam evaporation, resistance heating, etc.
A film is formed by the method D (FIG. 2F). Then, α-NP
An Alq 3 organic film 5c is formed on the D organic film 5b (FIG. 2).
(G)) Further, a metal thin film (for example, an Al—Li film) serving as the cathode 6 is formed on the Alq 3 organic film 5c by a PVD method (FIG. 2H).

【0043】その後、水分を極力取り除いた不活性ガス
(例えばドライ窒素)やドライエアによる雰囲気におい
て、ガラス基板2の外周部分に封着部材としての容器部
7を紫外線硬化接着剤により固着する(図2(i))。
これにより、内部の陽極4、有機層5及び陰極6が保護
され、有機EL素子1Aが完成する。
Thereafter, the container portion 7 as a sealing member is fixed to the outer peripheral portion of the glass substrate 2 with an ultraviolet curing adhesive in an atmosphere of an inert gas (eg, dry nitrogen) or dry air from which water has been removed as much as possible (FIG. 2). (I)).
Thereby, the inner anode 4, the organic layer 5, and the cathode 6 are protected, and the organic EL element 1A is completed.

【0044】次に、図4は本発明による有機EL素子の
第2実施の形態を示す図、図5(a)〜(j)は図4の
有機EL素子の製造工程を示す図である。なお、第1実
施の形態と同一の構成要素には同一番号を付し、その説
明を省略する。
Next, FIG. 4 is a view showing a second embodiment of the organic EL device according to the present invention, and FIGS. 5 (a) to 5 (j) are views showing the steps of manufacturing the organic EL device of FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0045】第2実施の形態の有機EL素子1Bは、陽
極4の上に成膜されるCuPc有機膜5aが分子線蒸着
法、抵抗加熱法等のPVD法により、複数層に分けて成
膜され、各層が成膜される毎に各層の表面にNO2 ガス
を十分吸着させる構成となっている。その他の構成につ
いては、第1実施の形態の有機EL素子1Aと同一であ
る。
In the organic EL device 1B of the second embodiment, the CuPc organic film 5a formed on the anode 4 is formed into a plurality of layers by a PVD method such as a molecular beam evaporation method or a resistance heating method. The structure is such that the NO 2 gas is sufficiently adsorbed on the surface of each layer every time each layer is formed. Other configurations are the same as those of the organic EL element 1A of the first embodiment.

【0046】上記有機EL素子1Bを製造するにあたっ
て、CuPc有機膜5aの1層目を成膜するまでの工程
は上述した第1実施の形態の有機EL素子1Aを製造す
る場合と同一工程で行われる(図5(a)〜(c))。
In manufacturing the organic EL element 1B, the steps up to forming the first layer of the CuPc organic film 5a are performed in the same steps as in the case of manufacturing the organic EL element 1A of the first embodiment. (FIGS. 5A to 5C).

【0047】前述したイオンプレーティング法により陽
極4の上にCuPc有機膜5aの1層目が成膜される
と、第1ガスリンス処理として、ガラス基板2がセット
されたチャンバー内にN2 ガスを導入してエージングす
る(図5(d))。具体的に、この第1ガスリンス処理
では、N2 ガスを例えば100ml/mnの流量でチャ
ンバー内圧力が10〜100Paになるまで導入し、5
分間放置する。
When the first layer of the CuPc organic film 5a is formed on the anode 4 by the above-described ion plating method, as a first gas rinsing process, N 2 gas is introduced into a chamber in which the glass substrate 2 is set. It is introduced and aged (FIG. 5D). Specifically, in the first gas rinsing process, N 2 gas is introduced at a flow rate of, for example, 100 ml / mn until the pressure in the chamber becomes 10 to 100 Pa, and 5
Leave for a minute.

【0048】上記第1ガスリンス処理に引き続いて、第
2ガスリンス処理として、チャンバー内にNO2 ガスを
導入してN2 ガスをNO2 ガスに置換する(図5
(e))。具体的に、この第2ガスリンス処理では、N
2 ガスを例えば100ml/mnの流量でチャンバー
内圧力が10〜100Paになるまで導入し、10分間
放置する。これにより、チャンバー内のNO2 ガスを成
膜直後に大気に曝さない状態でCuPc有機膜5aの1
層目に接触させる。そして、CuPc有機膜5aの表面
にNO2 ガスを十分吸着させ、膜中にNO2 ガスを浸透
させる。
Following the first gas rinsing process, as a second gas rinsing process, NO 2 gas is introduced into the chamber to replace N 2 gas with NO 2 gas (FIG. 5).
(E)). Specifically, in the second gas rinsing process, N
O 2 gas is introduced at a flow rate of, for example, 100 ml / mn until the pressure in the chamber becomes 10 to 100 Pa, and left for 10 minutes. As a result, the first CuPc organic film 5a is exposed to the NO 2 gas in the chamber immediately after film formation without being exposed to the atmosphere.
Contact the layer. Then, the NO 2 gas is sufficiently adsorbed on the surface of the CuPc organic film 5a, and the NO 2 gas penetrates into the film.

【0049】上記第2ガスリンス処理を終えると、イオ
ンプレーティング法によりCuPc有機膜5aの2層目
を1層目の上に成膜する。このCuPc有機膜5aの2
層目以降について、所望とする膜厚(1000nm以
上)でCuPc有機膜5aが成膜されるまでは、各層が
成膜される毎に上記第2ガスリンス処理が行われる(図
5(f))。
After the second gas rinsing process is completed, a second layer of the CuPc organic film 5a is formed on the first layer by ion plating. 2 of the CuPc organic film 5a.
Until the CuPc organic film 5a is formed with a desired film thickness (1000 nm or more) for the subsequent layers, the second gas rinsing process is performed each time each layer is formed (FIG. 5F). .

【0050】すなわち、所望とするCuPc有機膜5a
の膜厚をM(nm)(但し、M>0nm)、1回当たり
に成膜される膜厚をH(nm)とすると、その成膜回数
をNは、H・N≧Mの関係を満足するように成膜され
る。具体的に、所望とするCuPc有機膜の膜厚が10
00nmで、1回当たりに成膜される膜厚が100nm
であれば、CuPc有機膜は10回に分けて成膜され
る。そして、この10回の成膜を終える毎に上記第2ガ
スリンス処理が行われる。
That is, the desired CuPc organic film 5a
Is a film thickness of M (nm) (where M> 0 nm), and a film thickness formed at one time is H (nm). The film is formed to satisfy. Specifically, the desired thickness of the CuPc organic film is 10
00 nm and the film thickness formed at one time is 100 nm
In this case, the CuPc organic film is formed in ten divided steps. Then, the second gas rinsing process is performed each time the film formation is completed ten times.

【0051】所望とする膜厚のCuPc有機膜5aが成
膜され、各層毎に上記第2ガスリンス処理を終えると、
再度チャンバー内を真空排気し、チャンバー内圧力を1
-5Pa以下にした状態で、CuPc有機膜5aの上に
α−NPD有機膜5bを分子線蒸着法、抵抗加熱法等の
PVD法により成膜する(図5(g))。続いて、α−
NPD有機膜5bの上にAlq3 有機膜5cを成膜し
(図5(h))、更にAlq3 有機膜5cの上に陰極6
となる金属薄膜(例えばAl−Li膜)をPVD法によ
り成膜する(図5(i))。
After the CuPc organic film 5a having a desired film thickness is formed and the second gas rinsing process is completed for each layer,
The chamber is evacuated again, and the pressure in the chamber is reduced to 1
An α-NPD organic film 5b is formed on the CuPc organic film 5a by a PVD method such as a molecular beam evaporation method or a resistance heating method under the condition of 0 −5 Pa or less (FIG. 5G). Then, α-
An Alq 3 organic film 5c is formed on the NPD organic film 5b (FIG. 5 (h)), and a cathode 6 is further formed on the Alq 3 organic film 5c.
A metal thin film (for example, an Al—Li film) is formed by a PVD method (FIG. 5I).

【0052】その後、水分を極力取り除いた不活性ガス
(例えばドライ窒素)やドライエアによる雰囲気におい
て、ガラス基板2の外周部分に封着部材としての容器部
7を紫外線硬化接着剤により固着する(図5(j))。
これにより、内部の陽極4、有機層5及び陰極6が保護
され、有機EL素子1Bが完成する。
Thereafter, the container 7 as a sealing member is fixed to the outer peripheral portion of the glass substrate 2 with an ultraviolet-curing adhesive in an atmosphere of an inert gas (eg, dry nitrogen) or dry air from which water has been removed as much as possible (FIG. 5). (J)).
Thereby, the internal anode 4, organic layer 5 and cathode 6 are protected, and the organic EL element 1B is completed.

【0053】このように、上記各実施の形態の有機EL
素子1(1A,1B)によれば、有機層5の一部を構成
するCuPc有機膜5aが電子受容性(酸化性)の強い
ガスとしてNO2 を含有しているので、CuPc有機膜
5aの導電率が上昇し、ホール注入効率を安定して向上
させることができる。これにより、電圧−電流特性にお
ける電流の閾値を低電圧側にシフトすることができる。
その結果、有機EL素子1をダイナミック駆動するとき
においても、所望の輝度を得るための電圧を低電圧に設
定することが可能となり、駆動回路(ドライバーIC)
のコストダウンを図ることができる。しかも、有機EL
素子1を低電圧で駆動できることから、点灯中の寿命特
性も改善することができる。
As described above, the organic EL of each of the above embodiments is
According to the element 1 (1A, 1B), the CuPc organic film 5a constituting a part of the organic layer 5 contains NO 2 as a gas having a strong electron accepting (oxidizing) property. The conductivity is increased, and the hole injection efficiency can be stably improved. Thereby, the threshold value of the current in the voltage-current characteristics can be shifted to the lower voltage side.
As a result, even when the organic EL element 1 is dynamically driven, a voltage for obtaining a desired luminance can be set to a low voltage, and a driving circuit (driver IC)
Cost can be reduced. And organic EL
Since the element 1 can be driven at a low voltage, the life characteristics during lighting can be improved.

【0054】ここで、CuPc有機膜の膜厚を1000
nmとしたときの本実施の形態(第2実施の形態)の有
機EL素子と従来の有機EL素子における電圧−電流特
性と電圧−輝度特性を図6及び図7に示す。
Here, the thickness of the CuPc organic film is set to 1000.
FIGS. 6 and 7 show voltage-current characteristics and voltage-luminance characteristics of the organic EL element according to the present embodiment (second embodiment) and the conventional organic EL element when nm is set.

【0055】図6及び図7に基づいて本実施の形態の有
機EL素子と従来の有機EL素子の各特性について比較
すると、まず、有機EL素子に15mA/cm2 の電流
を流す場合、図6に示すように、CuPc有機膜の膜厚
が1000nmの本実施の形態の有機EL素子1Bで
は、その駆動電圧が約8.5Vとなる。
A comparison between the characteristics of the organic EL device of the present embodiment and the characteristics of the conventional organic EL device based on FIGS. 6 and 7 shows that, when a current of 15 mA / cm 2 is applied to the organic EL device, FIG. As shown in (1), in the organic EL element 1B of the present embodiment in which the thickness of the CuPc organic film is 1000 nm, the driving voltage is about 8.5V.

【0056】これに対し、CuPc有機膜の膜厚が10
00nmの従来の有機EL素子では、図6からも明らか
なように、上記実施の形態の有機EL素子よりも更に高
い駆動電圧を必要とする。
On the other hand, when the thickness of the CuPc organic film is 10
As is clear from FIG. 6, the conventional organic EL device of 00 nm requires a higher driving voltage than the organic EL device of the above embodiment.

【0057】また、400cd/m2 の輝度を得る場合
には、図7に示すように、CuPc有機膜の膜厚が10
00nmの本実施の形態の有機EL素子では、その駆動
電圧が約9Vの駆動電圧となる。
When a luminance of 400 cd / m 2 is obtained, as shown in FIG.
In the case of the organic EL element of this embodiment having a thickness of 00 nm, the driving voltage is about 9 V.

【0058】これに対し、CuPc有機膜の膜厚が10
00nmの従来の有機EL素子では、図7からも明らか
なように、上記実施の形態の有機EL素子よりも更に高
い駆動電圧を必要とする。
On the other hand, if the thickness of the CuPc organic film is 10
As is clear from FIG. 7, the conventional organic EL device of 00 nm requires a higher driving voltage than the organic EL device of the above embodiment.

【0059】このように、CuPc有機膜の膜厚を10
00nmとし、同一電流又は同一輝度で比較した場合、
本実施の形態の有機EL素子によれば、図6の電圧−電
流特性及び図7の電圧−輝度特性を従来の有機EL素子
よりも低電圧側にシフトできることが判る。
As described above, the thickness of the CuPc organic film is set to 10
00nm and the same current or the same brightness,
According to the organic EL device of the present embodiment, it can be seen that the voltage-current characteristics of FIG. 6 and the voltage-luminance characteristics of FIG. 7 can be shifted to a lower voltage side than the conventional organic EL device.

【0060】したがって、CuPc膜の膜厚を同一厚さ
とした場合、各実施の形態の有機EL素子1A,1Bに
よれば、従来の有機EL素子より低い電圧で駆動するこ
とができ、消費電力の低減を図ることができる。
Therefore, when the thickness of the CuPc film is the same, according to the organic EL elements 1A and 1B of each embodiment, it is possible to drive at a lower voltage than the conventional organic EL element, and to reduce power consumption. Reduction can be achieved.

【0061】図8は本実施の形態の有機EL素子のCu
Pc有機膜と従来の有機EL素子のCuPc有機膜にお
ける波長と透過率の関係を示す図である。図8におい
て、実線は本実施の形態に係るイオンプレーティング法
により1000nmの膜厚でCuPc有機膜を成膜した
透過率曲線であり、破線は従来の分子線蒸着法、抵抗加
熱法等のPVD法により1000nmの膜厚でCuPc
有機膜を成膜したときの透過率曲線である。
FIG. 8 is a graph showing the Cu of the organic EL device according to the present embodiment.
It is a figure which shows the relationship between the wavelength and transmittance in a Pc organic film and the CuPc organic film of the conventional organic EL element. 8, a solid line is a transmittance curve obtained by forming a CuPc organic film to a thickness of 1000 nm by the ion plating method according to the present embodiment, and a broken line is a PVD such as a conventional molecular beam evaporation method and a resistance heating method. CuPc with a thickness of 1000 nm by the method
It is a transmittance curve at the time of forming an organic film.

【0062】この図8を見ても明らかなように、赤色領
域において、本実施の形態のCuPc有機膜では透過率
のピークが0.95を示すのに対し、従来のCuPc有
機膜では透過率のピークが0.05を示している。この
ことから、本実施の形態のイオンプレーティング法によ
り成膜したCuPc有機膜5aにおいては、赤色領域で
の透過率が従来に比べて大幅に向上している。これは、
プラズマ重合によって結晶状態が変わり、近接するCu
Pc分子間の相互作用が減少したため、顔料としての隠
蔽力が低下したためと考えられる。また、高周波電力を
印加して行うインプレーティング法によれば、堆積した
プラズマ重合膜の表面の凹凸は小さくなって平滑にな
り、このため発光に寄与しない無効電流が少なくなる。
As is apparent from FIG. 8, in the red region, the transmittance peak of the CuPc organic film of this embodiment is 0.95, whereas the transmittance of the conventional CuPc organic film is 0.95. Indicates 0.05. For this reason, in the CuPc organic film 5a formed by the ion plating method of the present embodiment, the transmittance in the red region is significantly improved as compared with the related art. this is,
The crystal state changes due to plasma polymerization,
This is probably because the interaction between Pc molecules was reduced, and the hiding power as a pigment was reduced. Further, according to the plating method in which high-frequency power is applied, the unevenness of the surface of the deposited plasma-polymerized film becomes small and smooth, and therefore, the reactive current that does not contribute to light emission is reduced.

【0063】このように、本実施の形態では、上述した
ガスリンス処理に加え、CuPc有機膜5aがイオンプ
レーティング法により形成した透過率の高いプラズマ重
合層なので、赤色発光が吸収されにくくなり、赤色発光
の透過率を向上させて所望の発光色を得ることができ
る。また、成膜されたCuPc有機膜5aの表面は、通
常の蒸着膜よりも平滑になるので、発光に寄与しない無
効電流を減少させることができる。
As described above, in this embodiment, in addition to the above-described gas rinsing treatment, the CuPc organic film 5a is a plasma-polymerized layer having a high transmittance formed by the ion plating method. The desired light emission color can be obtained by improving the light emission transmittance. Further, the surface of the formed CuPc organic film 5a is smoother than a normal vapor-deposited film, so that the reactive current that does not contribute to light emission can be reduced.

【0064】第2実施の形態の有機EL素子1Bによれ
ば、CuPc有機膜5aが各層毎にNO2 ガスを吸着し
た多層構造となっているので、CuPc膜5aの上層と
下層におけるガス分子の濃度が均一となり、CuPc膜
5aの膜厚方向のNO2 ガス分子濃度(図1及び図4に
おけるCuPc有機膜5aの点の分布)の傾斜、すなわ
ちガス分子濃度のバラツキを無くすことができる。
According to the organic EL device 1B of the second embodiment, since the CuPc organic film 5a has a multilayer structure in which NO 2 gas is adsorbed for each layer, gas molecules in the upper and lower layers of the CuPc film 5a are removed. The concentration becomes uniform, and the inclination of the NO 2 gas molecule concentration (the distribution of points of the CuPc organic film 5a in FIGS. 1 and 4) in the thickness direction of the CuPc film 5a, that is, the variation of the gas molecule concentration can be eliminated.

【0065】なお、上記実施の形態において、CuPc
有機膜5aの下地が透明導電膜の場合、CuPc有機膜
5aの膜厚を薄くすると、透明導電膜3の凹凸面による
影響を受けるため、透明導電膜3の平滑化処理が必要と
なる。この平滑化処理としては、ITO等の透明導電膜
3の成膜後に表面を研磨して平滑化するか、IDIXO
等の非晶質で透明導電膜3を成膜することが考えられ
る。
In the above embodiment, CuPc
When the underlayer of the organic film 5a is a transparent conductive film, if the thickness of the CuPc organic film 5a is reduced, the CuPc organic film 5a is affected by the uneven surface of the transparent conductive film 3, so that the transparent conductive film 3 needs to be smoothed. As the smoothing process, the surface may be polished and smoothed after forming the transparent conductive film 3 such as ITO, or IDIXO may be used.
It is conceivable to form the transparent conductive film 3 with an amorphous material such as the above.

【0066】ところで、上述した各実施の形態の製造方
法では、N2 ガスの第1ガスリンス処理とNO2 ガスの
第2ガスリンス処理とを別々の工程で行うものとして説
明したが、例えばN2 :NO2 =98:2の比率による
混合ガスを用いてガスリンス処理を行ってもよい。これ
により、上記CuPc膜5aのN2 ガスの第1ガスリン
ス処理とNO2 ガスの第2ガスリンス処理を分けずに1
つの工程で実現することができる。
[0066] In the manufacturing method of the above described embodiments has been described as performing a second Gasurinsu processing of the first Gasurinsu processing and NO 2 gas of the N 2 gas in separate steps, for example, N 2: The gas rinsing process may be performed using a mixed gas having a ratio of NO 2 = 98: 2. Thereby, the first gas rinsing process of the N 2 gas and the second gas rinsing process of the NO 2 gas of the CuPc film
It can be realized in two steps.

【0067】各実施の形態における有機層5は、図示の
3層構造に限定されるものではなく、ホール注入性有機
膜としてのCuPc有機膜5a及び発光層を含む構造で
あればよい。
The organic layer 5 in each embodiment is not limited to the three-layer structure shown in the drawings, but may be any structure including a CuPc organic film 5a as a hole injecting organic film and a light emitting layer.

【0068】各実施の形態において、透明導電膜3から
なる陽極4と金属薄膜からなる陰極6を逆転させた構成
としてもよい。この場合、有機層5を構成するCuPc
有機膜5a、α−NPD有機膜5b、Alq3 有機膜5
cも逆転して積層される。その際、使用されるガラス基
板2が必ずしも透明性を有する必要がなく、絶縁性を有
する有色の基板を用いることができる。
In each embodiment, the anode 4 made of the transparent conductive film 3 and the cathode 6 made of a metal thin film may be inverted. In this case, CuPc constituting the organic layer 5
Organic film 5a, α-NPD organic film 5b, Alq 3 organic film 5
c is also reversed and stacked. At this time, the glass substrate 2 to be used does not necessarily need to have transparency, and a colored substrate having an insulating property can be used.

【0069】また、一対の電極(陽極4、陰極6)は、
少なくとも一方が透明性を有する導電材料で形成されて
いればよい。その際、両方の電極が透明性を有する導電
材料の場合には、一方の電極(陽極4)に仕事関数の大
きい透明性を有する導電材料(ITO)を使用し、他方
の電極(陰極6)に仕事関数の小さい透明性を有する導
電材料を使用する。
The pair of electrodes (anode 4 and cathode 6)
At least one of them may be formed of a conductive material having transparency. At this time, when both electrodes are made of a transparent conductive material, one electrode (anode 4) is made of a transparent conductive material (ITO) having a large work function and the other electrode (cathode 6) is used. A conductive material having a small work function and having transparency is used.

【0070】[0070]

【発明の効果】以上の説明で明らかなように、本発明の
有機EL素子によれば、有機層の一部を構成するCuP
c有機膜が電子受容性のガス(NO2 )を含有している
ので、CuPc有機膜の導電率が上昇し、ホール注入効
率を安定して向上させることができる。
As is apparent from the above description, according to the organic EL device of the present invention, CuP constituting a part of the organic layer is used.
Since the organic film c contains an electron-accepting gas (NO 2 ), the conductivity of the organic CuPc film is increased, and the hole injection efficiency can be stably improved.

【0071】これにより、電圧−電流特性における電流
の閾値を低電圧側にシフトすることができる。その結
果、有機EL素子をダイナミック駆動するときにおいて
も、所望の輝度を得るための電圧を低電圧に設定するこ
とが可能となり、駆動回路のコストダウンを図ることが
できる。しかも、有機EL素子を低電圧で駆動できるこ
とから、点灯中の寿命特性も改善することができる。加
えて、CuPc有機膜は、イオンプレーティング法によ
り形成した透過率の高いプラズマ重合層なので、赤色発
光が吸収されにくくなり、赤色発光の透過率を向上させ
て所望の発光色を得ることができる。また、イオンプレ
ーティング法により形成されたCuPc有機膜の表面
は、通常の蒸着膜よりも平滑になるので、発光に寄与し
ない無効電流を減少させることができる。
As a result, the threshold value of the current in the voltage-current characteristics can be shifted to the lower voltage side. As a result, even when the organic EL element is dynamically driven, a voltage for obtaining a desired luminance can be set to a low voltage, and the cost of the driving circuit can be reduced. In addition, since the organic EL element can be driven at a low voltage, the life characteristics during lighting can be improved. In addition, since the CuPc organic film is a plasma-polymerized layer having a high transmittance formed by an ion plating method, it is difficult to absorb red light emission, and a desired light emission color can be obtained by improving the transmittance of red light emission. . In addition, the surface of the CuPc organic film formed by the ion plating method is smoother than a normal vapor-deposited film, so that a reactive current that does not contribute to light emission can be reduced.

【0072】特に、CuPc有機膜を複数層に分けて成
膜し、各層を成膜する毎に電子受容性のガス(NO2
で表面をリンス処理することにより、CuPc膜の上層
と下層におけるガス分子の濃度が均一となり、CuPc
膜の膜厚方向のガス分子濃度のバラツキを無くすことが
できる。
In particular, a CuPc organic film is formed in a plurality of layers, and each time each layer is formed, an electron-accepting gas (NO 2 )
By rinsing the surface with CuPc, the concentration of gas molecules in the upper and lower layers of the CuPc film becomes uniform, and CuPc
Variations in gas molecule concentration in the film thickness direction can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のよる有機EL素子の第1実施の形態を
示す部分側断面図
FIG. 1 is a partial cross-sectional view showing a first embodiment of an organic EL device according to the present invention.

【図2】(a)〜(i)第1実施の形態の有機EL素子
の製造工程を示す側断面図
FIGS. 2A to 2I are side sectional views showing manufacturing steps of the organic EL device according to the first embodiment;

【図3】本発明の有機EL素子のCuPc有機膜の成膜
に使用されるイオンプレーティング装置の構造を模式的
に示す図
FIG. 3 is a diagram schematically showing a structure of an ion plating apparatus used for forming a CuPc organic film of the organic EL element of the present invention.

【図4】本発明による有機EL素子の第2実施の形態を
示す部分側断面図
FIG. 4 is a partial sectional side view showing a second embodiment of the organic EL device according to the present invention.

【図5】(a)〜(j)第2実施の形態の有機EL素子
の製造工程を示す側断面図
FIGS. 5A to 5J are side sectional views showing manufacturing steps of an organic EL device according to a second embodiment.

【図6】CuPc有機膜の膜厚に応じた本実施の形態の
有機EL素子と従来の有機EL素子の電圧−電流特性を
示す図
FIG. 6 is a diagram showing voltage-current characteristics of the organic EL element of the present embodiment and a conventional organic EL element according to the thickness of a CuPc organic film.

【図7】CuPc有機膜の膜厚に応じた本実施の形態の
有機EL素子と従来の有機EL素子の電圧−輝度特性を
示す図
FIG. 7 is a diagram showing voltage-luminance characteristics of the organic EL element of the present embodiment and a conventional organic EL element according to the thickness of the CuPc organic film.

【図8】本実施の形態の有機EL素子のCuPc有機膜
と従来の有機EL素子のCuPc有機膜における波長と
透過率の関係を示す図
FIG. 8 is a diagram showing the relationship between the wavelength and the transmittance of the CuPc organic film of the organic EL device of the present embodiment and the CuPc organic film of the conventional organic EL device.

【図9】(a)〜(g)従来の有機EL素子の構成及び
製造工程を示す側断面図
FIGS. 9A to 9G are side sectional views showing a configuration and a manufacturing process of a conventional organic EL element.

【符号の説明】[Explanation of symbols]

1(1A,1B)…有機EL素子、3…透明導電膜、4
…陽極、5…有機層、5a…CuPc有機膜、6…陰
極、11…イオンプレーティング装置。
1 (1A, 1B) ... organic EL element, 3 ... transparent conductive film, 4
... Anode, 5 ... Organic layer, 5a ... CuPc organic film, 6 ... Cathode, 11 ... Ion plating apparatus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 尚光 千葉県茂原市大芝629 双葉電子工業株式 会社内 (72)発明者 福田 辰男 千葉県茂原市大芝629 双葉電子工業株式 会社内 Fターム(参考) 3K007 AB04 AB06 AB08 AB18 BA06 BB01 CA01 CB01 DA01 DB03 EB00 FA01 4K029 AA09 BA08 BA62 BB02 BC09 BD00 CA03 DD02 EA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoko Takahashi 629 Futaba Electronics Industry Co., Ltd. 629 Oshiba, Mobara City, Chiba Prefecture (Reference) 3K007 AB04 AB06 AB08 AB18 BA06 BB01 CA01 CB01 DA01 DB03 EB00 FA01 4K029 AA09 BA08 BA62 BB02 BC09 BD00 CA03 DD02 EA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の電極が透明導電膜でな
る一対の電極間にホール注入性のCuPc有機膜を含む
有機層が積層された有機EL素子において、 前記CuPc有機膜が、1000nm以上の膜厚でイオ
ンプレーティング法により形成した電子受容性のガスを
含有する膜からなることを特徴とする有機EL素子。
1. An organic EL device in which an organic layer including a hole-injectable CuPc organic film is laminated between a pair of electrodes each having at least one electrode formed of a transparent conductive film, wherein the CuPc organic film has a thickness of 1000 nm or more. An organic EL device comprising a thick film containing an electron-accepting gas formed by an ion plating method.
【請求項2】 前記電子受容性のガスがNO2 からなる
請求項1記載の有機EL素子。
2. The organic EL device according to claim 1, wherein said electron-accepting gas comprises NO 2 .
【請求項3】 少なくとも一方の電極が透明導電膜でな
る一対の電極間にホール注入性のCuPc有機膜を含む
有機層が積層された有機EL素子の製造方法において、 前記CuPc有機膜をイオンプレーティング法により膜
厚1000nm以上で成膜し、前記CuPc有機膜が成
膜された後に、該CuPc有機膜の表面を電子受容性の
ガスでリンス処理する工程を含むことを特徴とする有機
EL素子の製造方法。
3. A method of manufacturing an organic EL device in which an organic layer including a hole-injectable CuPc organic film is laminated between a pair of electrodes, at least one of which is formed of a transparent conductive film, wherein the CuPc organic film is formed by ion plating. An organic EL device comprising: forming a film with a thickness of 1000 nm or more by a coating method, and rinsing the surface of the CuPc organic film with an electron-accepting gas after the CuPc organic film is formed. Manufacturing method.
【請求項4】 少なくとも一方の電極が透明導電膜でな
る一対の電極間にホール注入性のCuPc有機膜を含む
有機層が積層された有機EL素子の製造方法において、 前記CuPc有機膜を複数の層に分けてイオンプレーテ
ィング法により膜厚1000nm以上で成膜する工程
と、 前記CuPc有機膜の各層を成膜する毎に電子受容性の
ガスで表面をリンス処理する工程とを含むことを特徴と
する有機EL素子の製造方法。
4. A method for manufacturing an organic EL device in which an organic layer including a hole-injectable CuPc organic film is laminated between a pair of electrodes each including at least one electrode formed of a transparent conductive film, A step of forming a layer with a thickness of 1000 nm or more by an ion plating method, and a step of rinsing the surface with an electron-accepting gas every time each layer of the CuPc organic film is formed. A method for manufacturing an organic EL device.
JP10335895A 1998-11-26 1998-11-26 Organic el element and its manufacture Pending JP2000164355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10335895A JP2000164355A (en) 1998-11-26 1998-11-26 Organic el element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10335895A JP2000164355A (en) 1998-11-26 1998-11-26 Organic el element and its manufacture

Publications (1)

Publication Number Publication Date
JP2000164355A true JP2000164355A (en) 2000-06-16

Family

ID=18293581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10335895A Pending JP2000164355A (en) 1998-11-26 1998-11-26 Organic el element and its manufacture

Country Status (1)

Country Link
JP (1) JP2000164355A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100480A (en) * 2000-09-22 2002-04-05 Sumitomo Chem Co Ltd Organic electroluminescence element
WO2004064453A1 (en) * 2003-01-10 2004-07-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and process for preparing the same
DE102004060481A1 (en) * 2004-12-16 2006-06-29 Hella Kgaa Hueck & Co. Multi-layer component, in particular lamp or vehicle headlamp, comprises plastic substrate with applied color layer and one or more moisture resistant organic protective layers
US7247983B2 (en) 2003-07-24 2007-07-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light emitting element
JP2011216473A (en) * 2010-03-15 2011-10-27 Mitsubishi Chemicals Corp Method for manufacturing organic electroluminescent element, organic electroluminescent element, organic el lighting, organic el display device, and manufacturing device of organic electroluminescent element
WO2012005126A1 (en) * 2010-07-06 2012-01-12 本城金属株式会社 Lithium laminated member and method for producing same
JP2015046412A (en) * 2000-08-28 2015-03-12 株式会社半導体エネルギー研究所 Light emitting device
GB2539496A (en) * 2015-06-19 2016-12-21 Cambridge Display Tech Ltd Method Of Making An Electronic Device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046412A (en) * 2000-08-28 2015-03-12 株式会社半導体エネルギー研究所 Light emitting device
JP2017022406A (en) * 2000-08-28 2017-01-26 株式会社半導体エネルギー研究所 Light emitting device
JP2002100480A (en) * 2000-09-22 2002-04-05 Sumitomo Chem Co Ltd Organic electroluminescence element
JP4560927B2 (en) * 2000-09-22 2010-10-13 住友化学株式会社 Organic electroluminescence device
WO2004064453A1 (en) * 2003-01-10 2004-07-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and process for preparing the same
US7059928B2 (en) 2003-01-10 2006-06-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and method for manufacturing the same
US7416464B2 (en) 2003-01-10 2008-08-26 Semiconductor Energy Laboratory Co., Ltd. Lighting emitting element and method for manufacturing the same
US7247983B2 (en) 2003-07-24 2007-07-24 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light emitting element
DE102004060481A1 (en) * 2004-12-16 2006-06-29 Hella Kgaa Hueck & Co. Multi-layer component, in particular lamp or vehicle headlamp, comprises plastic substrate with applied color layer and one or more moisture resistant organic protective layers
JP2011216473A (en) * 2010-03-15 2011-10-27 Mitsubishi Chemicals Corp Method for manufacturing organic electroluminescent element, organic electroluminescent element, organic el lighting, organic el display device, and manufacturing device of organic electroluminescent element
WO2012005126A1 (en) * 2010-07-06 2012-01-12 本城金属株式会社 Lithium laminated member and method for producing same
GB2539496A (en) * 2015-06-19 2016-12-21 Cambridge Display Tech Ltd Method Of Making An Electronic Device

Similar Documents

Publication Publication Date Title
US5981306A (en) Method for depositing indium tin oxide layers in organic light emitting devices
JP3875401B2 (en) Organic EL display device and organic EL element
JP2010192455A (en) Light emitting device
JPH0963771A (en) Organic thin film luminescent element
JP2005510025A (en) Organic light emitting device with high luminous efficiency
US20070046192A1 (en) Electroluminescence device and functional device
KR20010049923A (en) Organic electroluminescent device
JP2006155978A (en) Method of manufacturing organic el device and electronic apparatus
JPH08185983A (en) Organic electroluminescent element
JP2000164355A (en) Organic el element and its manufacture
WO1998024272A1 (en) Organic el element
JPH09204985A (en) Optical element and its manufacture
JP3651347B2 (en) Organic electroluminescence device
KR20020076171A (en) Organic light-emitting device capable of high-quality display
JPH1131587A (en) Organic electroluminescent element and manufacture thereof
TW201123970A (en) Organic electroluminescent devices and process for production of same
JP2002299062A (en) Organic electroluminescent device
JP3492535B2 (en) Organic thin film EL device and method of manufacturing the same
JP2002246173A (en) Organic el device and manufacturing method for the same
CN111081904A (en) Preparation method of graphene oxide film, OLED device and preparation method
JPH11242994A (en) Light emitting element and its manufacture
JP4443872B2 (en) Electroluminescent device, light emitting device, electric appliance
JP4527089B2 (en) Electroluminescent device and light emitting device using the electroluminescent device
WO2011030378A1 (en) Organic el element and manufacturing method thereof
JP2000068068A (en) Organic el and its manufacture