JP2003247016A - Method for decarburizing molten steel - Google Patents

Method for decarburizing molten steel

Info

Publication number
JP2003247016A
JP2003247016A JP2002049331A JP2002049331A JP2003247016A JP 2003247016 A JP2003247016 A JP 2003247016A JP 2002049331 A JP2002049331 A JP 2002049331A JP 2002049331 A JP2002049331 A JP 2002049331A JP 2003247016 A JP2003247016 A JP 2003247016A
Authority
JP
Japan
Prior art keywords
molten steel
immersion
vacuum degassing
ladle
lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002049331A
Other languages
Japanese (ja)
Inventor
Takashi Yamauchi
崇 山内
Nobukazu Kitagawa
伸和 北川
Yoshihisa Kitano
嘉久 北野
Kazuyuki Kato
一之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002049331A priority Critical patent/JP2003247016A/en
Publication of JP2003247016A publication Critical patent/JP2003247016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decarburizing molten steel with which a carburizing reaction efficiency in the molten steel can be improved compared with that of the conventional method by eliminating a dead zone developed in the molten steel in a ladle with an RH vacuum degassing vessel disposed therein. <P>SOLUTION: When the molten steel is decarburized while circulating the molten steel between the RH vacuum degassing vessel and the ladle by disposing the RH vacuum degassing vessel in the molten steel held in the ladle, an immersion lance for blowing gas into the molten steel is arranged between the outer peripheral surface of the immersion tubes in the RH vacuum degassing vessel and the inner wall of the ladle, and the gas is blown through this immersion lance to stir the molten steel. In this case, it is desirable that the blowing gas through the above immersion lance is nitrogen or argon, or the dipping depth (d) of the above immersion tubes into the molten steel is adjusted so as to satisfy the following formula according to the inner radius (r) in this immersion tube. 0.9r≤d≤1.1r. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の脱炭方法に
係わり、詳しくは、溶銑を転炉で脱炭し、形成した溶鋼
を取鍋へ出鋼した後、さらに該溶鋼を真空脱ガス装置で
脱炭処理し、その炭素含有量を一層低減する技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decarburizing molten steel, more specifically, decarburizing molten iron in a converter, tapping the formed molten steel to a ladle, and then vacuum degassing the molten steel. The present invention relates to a technique for further reducing the carbon content by performing decarburization treatment with a device.

【0002】[0002]

【従来の技術】従来より、溶銑を転炉で脱炭精錬して溶
鋼となし、取鍋へ出鋼してから、さらに真空脱ガス装置
を用いて脱炭処理し、溶鋼の炭素含有量を一層低減する
こと(これを二次精錬という)が行われている。そし
て、この二次精錬における脱炭反応を効率的に行うた
め、さまざまな技術が提案されている。
2. Description of the Related Art Conventionally, molten iron is decarburized and refined in a converter to obtain molten steel, which is then tapped into a ladle and then decarburized using a vacuum degassing device to reduce the carbon content of the molten steel. Further reduction (this is called secondary refining) is being carried out. Various techniques have been proposed in order to efficiently carry out the decarburization reaction in this secondary refining.

【0003】例えば、特開平4−131316号公報
は、図5に示すように、取鍋1に保持した溶鋼2を上昇
及び下降させる2本の浸漬管3を備えた真空脱ガス槽4
と取鍋1間で溶鋼2を環流させる所謂「RH式真空脱ガ
ス槽」を用い、脱ガス処理中に取鍋1の底部から不活性
ガス5を吹き込んで溶鋼2の流動を改善する技術を開示
している。その取鍋底部からのガス吹込は、通常、ポー
ラスプラグ等の多孔質耐火物6を該底部に埋め込み、そ
れを介して行われる。ところが、該多孔質耐火物6に
は、目詰りに起因して吹き込むガスの流量に制約がある
ばかりでなく、交換に多大な労力を必要としたり、ある
いは交換の周期が短いといった問題があった。また、当
該多孔質耐火物6の埋め込み位置は、通常、設計時に一
義的に決定されているため、例えば、取鍋1内で溶鋼流
動が停滞し、脱炭が進行し難くなる領域(これを「デッ
ドゾーン」という)が存在しても、それを解消するに
は、底吹するガスの流量を増大させる対策しかなく、流
量増大により溶鋼2の温度降下を促進してしまうという
問題があった。
For example, Japanese Patent Laid-Open No. 4-131316 discloses a vacuum degassing tank 4 having two dip pipes 3 for raising and lowering the molten steel 2 held in a ladle 1, as shown in FIG.
Using a so-called "RH type vacuum degassing tank" in which the molten steel 2 is circulated between the ladle 1 and the ladle 1, a technique for improving the flow of the molten steel 2 by blowing an inert gas 5 from the bottom of the ladle 1 during the degassing process. Disclosure. The gas injection from the bottom of the ladle is usually performed by filling the bottom with a porous refractory 6 such as a porous plug. However, the porous refractory material 6 is not only restricted in the flow rate of gas blown due to clogging, but also has a problem that it requires a great deal of labor for replacement or has a short replacement cycle. . Further, since the embedding position of the porous refractory material 6 is usually uniquely determined at the time of design, for example, the molten steel flow is stagnant in the ladle 1 and the decarburization is difficult to proceed in the area ( Even if there is a "dead zone", the only way to eliminate it is to increase the flow rate of the gas blown from the bottom, and there is a problem that the increase in the flow rate accelerates the temperature drop of the molten steel 2. .

【0004】また、真空脱ガス槽4内での溶鋼2の脱炭
反応効率を向上させるには、本発明者らが先に特開平2
−77518号公報で提案したように、「RH真空脱ガ
ス槽4内に上吹きランス7を上方から挿入し、該上吹き
ランス7を介して酸素ガスを溶鋼2に吹き込み脱炭する
(図5参照)」技術が有効である。しかしながら、RH
真空脱ガス槽4には、前記2本の浸漬管3の間、及び浸
漬管3の外周面と取鍋1の内壁との間に、溶鋼2(又は
スラグ)が大気と触れる部分があり、その部分において
溶鋼2の流動が相対的に小さくなり、前記「デッドゾー
ン」が発生し易い。そして、この「デッドゾーン」の存
在が脱炭時間を延長したり、あるいは溶鋼の脱炭不良を
誘発する元凶となっていた。
In order to improve the efficiency of the decarburization reaction of the molten steel 2 in the vacuum degassing tank 4, the inventors of the present invention first disclosed in Japanese Patent Laid-Open No.
As proposed in Japanese Patent Application Laid-Open No. 77518/1995, “The upper blowing lance 7 is inserted into the RH vacuum degassing tank 4 from above, and oxygen gas is blown into the molten steel 2 through the upper blowing lance 7 to decarburize it (FIG. 5). Technology) is effective. However, RH
The vacuum degassing tank 4 has a portion where the molten steel 2 (or slag) comes into contact with the atmosphere between the two immersion pipes 3 and between the outer peripheral surface of the immersion pipe 3 and the inner wall of the ladle 1, The flow of the molten steel 2 becomes relatively small in that portion, and the “dead zone” is likely to occur. The existence of this "dead zone" has been a source of prolonging the decarburization time or inducing poor decarburization of molten steel.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、RH真空脱ガス槽を配設した取鍋内の溶鋼に生
じるデッドゾーンを解消し、溶鋼の脱炭反応効率を従来
より一層高めることの可能な溶鋼の脱炭方法を提供する
ことを目的としている。
In view of such circumstances, the present invention eliminates the dead zone that occurs in molten steel in the ladle provided with the RH vacuum degassing tank, and further improves the decarburization reaction efficiency of molten steel. It is an object of the present invention to provide a decarburizing method for molten steel that can be increased.

【0006】[0006]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究を重ね、その成果を本発明に具現化
した。
Means for Solving the Problems The inventor has conducted extensive studies in order to achieve the above object, and realized the results in the present invention.

【0007】すなわち、本発明は、取鍋に保持した溶鋼
にRH真空脱ガス槽を配設し、該RH真空脱ガス槽と取
鍋との間で該溶鋼を環流させつつ脱炭するに際して、前
記RH真空脱ガス槽の浸漬管の外周面と取鍋内壁との間
の溶鋼中にガスを吹き込む浸漬ランスを設け、該浸漬ラ
ンスを介してガスを吹込み、溶鋼を攪拌することを特徴
とする溶鋼の脱炭方法である。
That is, according to the present invention, when the RH vacuum degassing tank is provided in the molten steel held in the ladle, and the decarburization is performed while circulating the molten steel between the RH vacuum degassing tank and the ladle, An immersion lance for blowing gas into the molten steel between the outer peripheral surface of the immersion pipe of the RH vacuum degassing tank and the inner wall of the ladle is provided, and the gas is blown through the immersion lance to stir the molten steel. This is a decarburizing method for molten steel.

【0008】この場合、前記浸漬ランスを介して吹き込
まれるガスが窒素又はアルゴンであったり、あるいは前
記浸漬管の溶鋼への浸入深さ(d)を、該浸漬管の内径
(r)に応じ下記式を満足するように調整するのが好ま
しい。
In this case, the gas blown through the immersion lance is nitrogen or argon, or the penetration depth (d) of the immersion pipe into the molten steel is determined as follows depending on the inner diameter (r) of the immersion pipe. It is preferable to adjust so as to satisfy the formula.

【0009】0.9r≦d≦1.1r また、前記RH真空脱ガス槽内に挿入した上吹ランスを
介して酸素ガスを溶鋼に吹き付けることを併用したり、
あるいは前記浸漬ランスは、昇降自在で、且つその浸漬
位置を平面視でRH真空脱ガス槽の中心を基準にした±
60°の範囲内で調整するように、移動自在にすると一
層良い。
0.9r.ltoreq.d.ltoreq.1.1r In addition, the oxygen gas is blown to the molten steel through an upper blowing lance inserted in the RH vacuum degassing tank,
Alternatively, the immersion lance is movable up and down, and the immersion position is ± in reference to the center of the RH vacuum degassing tank in plan view.
It is better to make it movable so as to adjust within a range of 60 °.

【0010】本発明では、取鍋の内壁とRH真空脱ガス
槽の浸漬管外周面との間に生じる溶鋼の前記デッドゾー
ンにガス吹き込み用ランスを挿入し、ガスを吹込むよう
にしたので、該デッドゾーンが消失し、溶鋼全体の脱炭
に必要な時間を従来に比べて著しく短縮できるようにな
る。
According to the present invention, the gas injection lance is inserted into the dead zone of the molten steel formed between the inner wall of the ladle and the outer peripheral surface of the immersion pipe of the RH vacuum degassing tank, so that the gas is injected. The zone disappears, and the time required for decarburizing the entire molten steel can be significantly shortened compared to the conventional time.

【0011】[0011]

【発明の実施の形態】以下、発明をなすに至った経緯を
まじえ、本発明の実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below, including the background of the invention.

【0012】まず、発明者は、取鍋内の溶鋼を真空脱ガ
ス設備で脱炭処理する場合の流動解析によるシミュレー
ションを行い、取鍋各部位毎の溶鋼中炭素濃度と時間と
の関係を調査した。その結果、溶鋼全体の脱炭時間を延
長させる原因の1つとして、取鍋の上部や端部(壁際)
に発生する溶鋼流動の小さい領域(前記、デッドゾー
ン)の存在を確認した。そして、引き続き、これらのデ
ッドゾーンを消失させ、溶鋼全体の脱炭時間を短くする
ための方策について検討した。
First, the inventor conducted a simulation by a flow analysis when decarburizing molten steel in a ladle with a vacuum degassing equipment, and investigated the relationship between the carbon concentration in molten steel and each time in each portion of the ladle. did. As a result, as one of the causes of extending the decarburization time of the entire molten steel, the top and end of the ladle (at the wall)
It was confirmed that there is a region (a dead zone) where the flow of molten steel is small. Then, subsequently, a measure for eliminating these dead zones and shortening the decarburization time of the entire molten steel was examined.

【0013】そして、具体的な手段として、図1に示し
たように、浸漬管3の外周面と取鍋1の内壁との間の溶
鋼2にガスを吹き込むランス(以下、浸漬ランス9とい
う)を新規に設け、溶鋼2内に不活性ガス及び活性ガス
を吹き込み、取鍋1上部の溶鋼2に形成されたデッドゾ
ーンを撹拌する本発明を完成させたのである。
As a concrete means, as shown in FIG. 1, a lance for injecting gas into the molten steel 2 between the outer peripheral surface of the dip tube 3 and the inner wall of the ladle 1 (hereinafter referred to as dipping lance 9). The present invention completes the present invention in which the inert gas and the active gas are blown into the molten steel 2 to stir the dead zone formed in the molten steel 2 above the ladle 1.

【0014】通常、RH真空脱ガス槽4を利用する場合
には、溶鋼2を環流させるためのガス(環流ガス10と
いう)を、上昇管ともいう浸漬管3の方に別途設けた小
径管8より吹き込むが、これに加えて該真空脱ガス槽4
の内には、前記したように、上方よりガスの上吹きラン
ス7を挿入し、該上吹きランス7を介して酸素ガスを吹
込み、溶鋼の脱炭処理を実施することもある。そこで、
本発明では、これらのガス吹き込みも行った上で、上記
した浸漬管外周面と取鍋内壁との間の溶鋼へのガス吹き
込みも併用することにした。このようにすると、脱炭反
応がより効率的になるからである。
Usually, when the RH vacuum degassing tank 4 is used, a small diameter pipe 8 is provided separately for the gas for circulating the molten steel 2 (referred to as reflux gas 10) toward the dipping pipe 3 also called riser pipe. In addition to this, in addition to this, the vacuum degassing tank 4
In some cases, as described above, the upper blowing lance 7 of gas is inserted from above, and oxygen gas is blown through the upper blowing lance 7 to decarburize the molten steel. Therefore,
In the present invention, these gases are also blown, and then gas blowing into the molten steel between the outer peripheral surface of the dipping pipe and the inner wall of the ladle is also used. This is because the decarburization reaction becomes more efficient.

【0015】また、本発明者らは、前記シミュレーショ
ンを行う過程において、浸漬管3を溶鋼2内への深く浸
入させるほど、取鍋1の上部に生じる「デッドゾーン」
が拡大することを発見した。このデッドゾーンの拡大
は、溶鋼2の脱炭を均一化するまでの時間が長くなる。
その一方で、浸漬管3の深さが浅すぎると、取鍋1の上
部で溶鋼2に浮遊するスラグが前記上昇管を経て真空脱
ガス槽4内に浸入し易くなり、スラグ混入に起因して溶
鋼2の清浄度の悪化を誘発する。
In addition, the inventors of the present invention, in the process of performing the above simulation, the deeper the immersion pipe 3 penetrates into the molten steel 2, the more "dead zone" the upper part of the ladle 1.
Have been found to expand. The expansion of the dead zone increases the time required for uniform decarburization of the molten steel 2.
On the other hand, if the depth of the dipping pipe 3 is too shallow, the slag floating in the molten steel 2 at the upper part of the ladle 1 easily enters the vacuum degassing tank 4 through the rising pipe, which causes the slag mixture. As a result, the cleanliness of molten steel 2 is deteriorated.

【0016】そこで、発明者は、この浸漬管3の溶鋼2
内への浸漬深さを最適化することも検討した。そして、
浸漬管3の浸漬深さについては、図4に示す浸漬管の溶
鋼内への浸漬深さ(d)と浸漬管の内径(r)との比
が、スラグ巻込による不良鋼材の発生比率及び溶鋼の脱
炭に必要な時間に影響を与えることを見出した。そのた
め、発明者はこの影響を解消することも研究し、上記ス
ラグの巻込みが少なく、かつデッドゾーンが拡大しない
対策として、前記した比を、下記の範囲に収まるように
するのが良いと考え、このことも本発明に加えることに
した。
Therefore, the inventor has found that the molten steel 2 of the immersion pipe 3
Optimization of the immersion depth inside was also investigated. And
Regarding the immersion depth of the immersion pipe 3, the ratio of the immersion depth (d) into the molten steel of the immersion pipe and the inner diameter (r) of the immersion pipe shown in FIG. It was found that it affects the time required for decarburization of molten steel. Therefore, the inventor also studied to eliminate this effect, and thought that it is better to keep the above ratio within the following range as a measure to prevent the above-mentioned slag inclusion and the dead zone from expanding. This has also been added to the present invention.

【0017】0.9r≦d/r≦1.1 つまり、浸漬管3の浸漬深さ(d)がその内径(r)の
0.9未満では、スラグ巻込みによる不良鋼材の発生比
率の増大を招き、一方、浸漬深さ(d)が内径(r)の
1.1超えでは、デッドゾーンが拡大し、脱炭処理時間
の増大を招くからである。
0.9r ≦ d / r ≦ 1.1 That is, when the immersion depth (d) of the immersion pipe 3 is less than 0.9 of its inner diameter (r), the ratio of generation of defective steel due to slag inclusion increases. On the other hand, when the immersion depth (d) exceeds 1.1 of the inner diameter (r), the dead zone expands and the decarburization treatment time increases.

【0018】さらに、デッドゾーンは、主として取鍋1
の上部及び端部(上昇管側)に生じるが、本発明に係る
浸漬ランス9からのガス吹込みによる溶鋼2の下降流を
最大限に享受するため、デッドゾーンの解消には、該浸
漬ランス9を平面視で移動させたり、あるいは上下方向
に昇降するのが有効であることを見出した。そして、図
2に示すように、この浸漬ランス9を平面視で矢印方向
へ移動させたり、あるいは上下方向に昇降させることも
本発明に加えることにした。この場合、浸漬ランス9の
移動手段については周知のものを利用すれば良いので、
本発明では特に限定するものではない。
Further, the dead zone is mainly the ladle 1.
Occurs in the upper part and the end part (upward pipe side) of the molten steel 2 because the downward flow of the molten steel 2 due to the gas injection from the immersion lance 9 according to the present invention is maximized. It has been found that it is effective to move 9 in a plan view or to move up and down in the vertical direction. Then, as shown in FIG. 2, it is also added to the present invention that the immersion lance 9 is moved in the direction of the arrow in a plan view or is moved up and down. In this case, a well-known moving means of the immersion lance 9 may be used.
The present invention is not particularly limited.

【0019】なお、ここで、該浸漬ランス9の上下方向
への昇降距離については、溶鋼2の湯面から下方に50
0〜2000mmの範囲で、且つその移動の周期は、1
回/2分程度であることが望ましい。このような制限を
するのは、デッドゾーンの発生領域が溶鋼の上面から下
方へ通常1500mm以内であることに加えて、溶鋼2
の上面から500mmより浅い範囲でガスによるバブリ
ング処理を行うと、溶鋼2のスプラッシュ発生が多くな
ったり、溶鋼上のスラグを撹拌し、その清浄度を低下さ
せるからである。
Here, with respect to the ascending / descending distance of the immersion lance 9 in the vertical direction, the distance from the surface of the molten steel 2 downward is 50.
In the range of 0 to 2000 mm, and the movement cycle is 1
It is desirable that the time is about 2 minutes. This limitation is due to the fact that the dead zone generation area is usually within 1500 mm downward from the upper surface of the molten steel, and
This is because if bubbling treatment with gas is performed in a range shallower than 500 mm from the upper surface of the molten steel 2, splash generation of the molten steel 2 increases or the slag on the molten steel is agitated to lower the cleanliness thereof.

【0020】なお、RH真空脱ガス槽内の溶鋼に酸素を
供給して脱炭する場合は、前述のように、上吹ランスを
介して酸素ガスを溶鋼に吹き付ける方法が最も好ましく
使用できるが、その他の方法としてRH真空脱ガス槽の
下部横に設けた羽口から溶鋼中に酸素ガスを吹き込む方
法で、上吹ランスから金属酸化物を溶鋼に吹き付ける等
の公知の脱炭促進方法を適用しても良い。
When oxygen is supplied to the molten steel in the RH vacuum degassing tank for decarburization, the method of blowing oxygen gas to the molten steel via the upper blowing lance is most preferably used as described above. As another method, oxygen gas is blown into the molten steel from the tuyere provided on the lower side of the RH vacuum degassing tank, and a known decarburization accelerating method such as spraying a metal oxide onto the molten steel from an upper blowing lance is applied. May be.

【0021】[0021]

【実施例】容量が280トンの取鍋1に、図1に示すよ
うに、転炉(図示せず)から溶鋼2を出鋼し、RH真空
脱ガス槽4をセットして、本発明に係る溶鋼の脱炭方法
を実施した。また、比較として、本発明に係る浸漬ラン
ス9を用いない操業も行った。操業結果は、表1に示す
通りである。なお、表1の「操業」は、浸漬ランス9
を、最も溶鋼2の流動が小さいデッドゾーン(上昇管側
で湯面から深さ1.5mの位置)に固定し、アルゴンガ
スを毎分200リットルの流量で吹込んだ操業結果であ
る。また、表1の「操業」は、浸漬ランス9を上下方
向に1回/2分の周期で昇降させると共に、該浸漬ラン
ス9を取鍋1の内周に沿うような状態で1回/2分の周
期で、溶鋼2内で揺動させた場合の操業結果である。
EXAMPLE As shown in FIG. 1, molten steel 2 was tapped from a converter (not shown) and a RH vacuum degassing tank 4 was set in a ladle 1 having a capacity of 280 tons. The molten steel decarburizing method was carried out. In addition, as a comparison, an operation was performed without using the immersion lance 9 according to the present invention. The operation results are as shown in Table 1. In addition, "Operation" in Table 1 refers to immersion lance 9
Is fixed in a dead zone where the flow of molten steel 2 is the smallest (position at a depth of 1.5 m from the molten metal surface on the rising pipe side), and argon gas is blown at a flow rate of 200 liters per minute. In addition, the "operation" in Table 1 is such that the immersion lance 9 is moved up and down at a cycle of once every 1/2 minute, and the immersion lance 9 is moved once per half along the inner circumference of the ladle 1. It is an operation result at the time of rocking in the molten steel 2 in a cycle of minutes.

【0022】[0022]

【表1】 [Table 1]

【0023】表1より、本発明に係る浸漬ランス9を使
用し、該浸漬ランス9の平面移動、昇降等を実施しない
場合(操業)は、比較例と比べて、脱炭時間を2分短
縮できることが明らかである。さらに、浸漬ランス9を
上下方向に昇降(周期1回/2分、移動ストローク:取
鍋内溶鋼の上面から深さ500mm〜2000mm)さ
せ、さらに平面視で真空脱ガス槽4の中心を基準に±6
0゜の角度で該浸漬ランス9を移動させる本発明(操業
)では、比較例に対して脱炭時間を3分間短縮でき、
安定して脱炭できるようになった。従って、この脱炭処
理時間の短縮により、RH真空脱ガス槽で処理中の溶鋼
の温度降下が抑制できるので、上流工程である転炉から
の出鋼温度を3℃も低減することが可能となった。な
お、表1に、浸漬管3の浸漬深さと内径との比(d/
r)を示すが、本発明の実施例は、いずれも1.0とし
て操業した。また、脱炭処理後の炭素濃度は、図3に示
すように、いずれの例も15ppm以下を達成してい
た。
From Table 1, when the immersion lance 9 according to the present invention is used and the immersion lance 9 is not moved in plane or moved up and down (operation), the decarburization time is shortened by 2 minutes as compared with the comparative example. It is clear that you can. Further, the immersion lance 9 is vertically moved up and down (cycle once / 2 minutes, moving stroke: depth of 500 mm to 2000 mm from the upper surface of the molten steel in the ladle), and further in plan view with the center of the vacuum degassing tank 4 as a reference. ± 6
In the present invention (operation) in which the immersion lance 9 is moved at an angle of 0 °, the decarburization time can be shortened by 3 minutes as compared with the comparative example.
It became possible to decarburize stably. Therefore, by shortening the decarburization treatment time, the temperature drop of the molten steel during the treatment in the RH vacuum degassing tank can be suppressed, so that the tapping temperature from the converter, which is the upstream process, can be reduced by 3 ° C. became. In Table 1, the ratio of the immersion depth of the immersion pipe 3 to the inner diameter (d /
r) is shown, but all the examples of the present invention were operated at 1.0. Further, the carbon concentration after the decarburization treatment reached 15 ppm or less in all examples, as shown in FIG.

【0024】[0024]

【発明の効果】以上述べたように、本発明により、RH
真空脱ガス槽を配設した取鍋内の溶鋼に生じるデッドゾ
ーンを解消し、溶鋼の脱炭反応効率を従来より一層高く
することができる。
As described above, according to the present invention, the RH
It is possible to eliminate the dead zone that occurs in the molten steel in the ladle provided with the vacuum degassing tank, and to further improve the decarburization reaction efficiency of the molten steel as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る溶鋼の脱炭方法を実施したRH真
空脱ガス槽を示す横断面図である。
FIG. 1 is a cross-sectional view showing an RH vacuum degassing tank in which a molten steel decarburizing method according to the present invention is carried out.

【図2】本発明に係る浸漬ランスの移動範囲を説明する
平面図である。
FIG. 2 is a plan view illustrating a moving range of the immersion lance according to the present invention.

【図3】比較例と本発明の実施による溶鋼中の炭素濃度
と真空処理時間との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a carbon concentration in molten steel and a vacuum processing time according to a comparative example and an embodiment of the present invention.

【図4】浸漬管の溶鋼への浸漬深さ(d)及び浸漬管内
径(r)を説明するRH真空脱ガス槽の横断面図であ
る。
FIG. 4 is a cross-sectional view of an RH vacuum degassing tank for explaining the immersion depth (d) and the immersion pipe inner diameter (r) of the immersion pipe into the molten steel.

【図5】従来の溶鋼の脱炭方法を実施したRH真空脱ガ
ス槽を示す横断面図である。
FIG. 5 is a cross-sectional view showing an RH vacuum degassing tank in which a conventional molten steel decarburizing method is carried out.

【符号の説明】[Explanation of symbols]

1 取鍋 2 溶鋼 3 浸漬管 4 真空脱ガス槽 5 不活性ガス 6 多孔質耐火物 7 上吹きランス 8 小径管 9 浸漬ランス 10 環流ガス 1 ladle 2 Molten steel 3 immersion pipe 4 vacuum degassing tank 5 Inert gas 6 Porous refractory 7 Top blowing lance 8 small diameter pipe 9 Immersion lance 10 Return gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北野 嘉久 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 加藤 一之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K013 BA02 CA01 CA02 CA04 CA12 CA15 CA16 CC01 CE01 CE04 CE05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshihisa Kitano             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Chiba Steel Works, Ltd. (72) Inventor Kazuyuki Kato             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Chiba Steel Works, Ltd. F-term (reference) 4K013 BA02 CA01 CA02 CA04 CA12                       CA15 CA16 CC01 CE01 CE04                       CE05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 取鍋に保持した溶鋼にRH真空脱ガス槽
を配設し、該RH真空脱ガス槽と取鍋との間で該溶鋼を
環流させつつ脱炭するに際して、 前記RH真空脱ガス槽の浸漬管の外周面と取鍋内壁との
間の溶鋼中にガスを吹き込む浸漬ランスを設け、該浸漬
ランスを介してガスを吹込み、溶鋼を攪拌することを特
徴とする溶鋼の脱炭方法。
1. An RH vacuum degassing tank is provided in the molten steel held in a ladle, and when decarburizing while circulating the molten steel between the RH vacuum degassing tank and the ladle, the RH vacuum degassing is performed. A immersion lance for blowing gas into the molten steel between the outer peripheral surface of the immersion pipe of the gas tank and the inner wall of the ladle is provided, and the gas is blown through the immersion lance to stir the molten steel. Charcoal method.
【請求項2】 前記浸漬ランスを介して吹き込まれるガ
スが窒素又はアルゴンであることを特徴とする請求項1
記載の溶鋼の脱炭方法。
2. The gas blown through the immersion lance is nitrogen or argon.
Method for decarburizing molten steel described.
【請求項3】 前記浸漬管の溶鋼への浸入深さ(d)
を、該浸漬管の内径(r)に応じ下記式を満足するよう
に調整することを特徴とする請求項1又は2記載の溶鋼
の脱炭方法。 0.9r≦d≦1.1r
3. The penetration depth (d) of the immersion pipe into the molten steel
The method for decarburizing molten steel according to claim 1 or 2, wherein is adjusted according to the inner diameter (r) of the immersion pipe so as to satisfy the following formula. 0.9r ≦ d ≦ 1.1r
【請求項4】 前記RH真空脱ガス槽内に挿入した上吹
ランスを介して酸素ガスを溶鋼に吹き付けることを特徴
とする請求項1〜3のいずれかに記載の溶鋼の脱炭方
法。
4. The method for decarburizing molten steel according to claim 1, wherein oxygen gas is blown onto the molten steel through an upper blowing lance inserted in the RH vacuum degassing tank.
【請求項5】 前記浸漬ランスは、昇降自在で、且つそ
の浸漬位置を平面視でRH真空脱ガス槽の中心を基準に
した±60°の範囲内で調整するように、移動自在であ
ることを特徴とする請求項1〜4のいずれかに記載の溶
鋼の脱炭方法。
5. The immersion lance is vertically movable and is movable so as to adjust the immersion position within a range of ± 60 ° with respect to the center of the RH vacuum degassing tank in plan view. The method for decarburizing molten steel according to any one of claims 1 to 4.
JP2002049331A 2002-02-26 2002-02-26 Method for decarburizing molten steel Pending JP2003247016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049331A JP2003247016A (en) 2002-02-26 2002-02-26 Method for decarburizing molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049331A JP2003247016A (en) 2002-02-26 2002-02-26 Method for decarburizing molten steel

Publications (1)

Publication Number Publication Date
JP2003247016A true JP2003247016A (en) 2003-09-05

Family

ID=28661873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049331A Pending JP2003247016A (en) 2002-02-26 2002-02-26 Method for decarburizing molten steel

Country Status (1)

Country Link
JP (1) JP2003247016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082329A (en) * 2015-10-30 2017-05-18 ポスコPosco Refinery and refining method
CN107630122A (en) * 2016-07-18 2018-01-26 鞍钢股份有限公司 A kind of RH dynamic decarburization optimization methods based on flue gas analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017082329A (en) * 2015-10-30 2017-05-18 ポスコPosco Refinery and refining method
CN107630122A (en) * 2016-07-18 2018-01-26 鞍钢股份有限公司 A kind of RH dynamic decarburization optimization methods based on flue gas analysis

Similar Documents

Publication Publication Date Title
JP5904237B2 (en) Melting method of high nitrogen steel
JP2018131651A (en) Method for melting high-nitrogen low-oxygen steel
JP2018016843A (en) Method for melting extra-low-sulfur low-nitrogen steel
JP2009263783A (en) Method for refining molten steel in rh vacuum degassing apparatus
JP2003247016A (en) Method for decarburizing molten steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JP2008169407A (en) Method for desulfurizing molten steel
JPH01246314A (en) Production of extremely low carbon steel by vacuum degassing treatment
TW201336999A (en) Method for manufacturing ultra low carbon steel by ingot techniques using vacuum-degassing system
JP5505432B2 (en) Melting method of ultra low sulfur low nitrogen steel
JP3319244B2 (en) Heated refining method for molten steel
JP3891013B2 (en) Method of refining molten steel with RH degassing equipment
JP4036167B2 (en) Molten steel heating method and molten steel heating device
JP2724035B2 (en) Vacuum decarburization of molten steel
JP6337681B2 (en) Vacuum refining method for molten steel
JPH06116626A (en) Method for smelting low carbon steel by using vacuum refining furnace
JP2000212641A (en) High speed vacuum refining of molten steel
JPH0718322A (en) Method for refining highly clean aluminum-killed steel
JP3252726B2 (en) Vacuum refining method for molten steel
JP6631399B2 (en) Method for producing low nitrogen molten iron
JPH0754034A (en) Production of ultralow carbon steel
JPH09143546A (en) Oxygen top blowing method in rh degassing equipment
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JP3566770B2 (en) Manufacturing method of ultra-low carbon steel
JP2023003384A (en) Denitrification treatment method of molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040528

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Effective date: 20071029

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Effective date: 20080826

Free format text: JAPANESE INTERMEDIATE CODE: A02