JP2003245807A - Cemented carbide made cutting tool exhibiting excellent abrasive resistance in high-speed cutting of hard-to-cut material - Google Patents

Cemented carbide made cutting tool exhibiting excellent abrasive resistance in high-speed cutting of hard-to-cut material

Info

Publication number
JP2003245807A
JP2003245807A JP2002047348A JP2002047348A JP2003245807A JP 2003245807 A JP2003245807 A JP 2003245807A JP 2002047348 A JP2002047348 A JP 2002047348A JP 2002047348 A JP2002047348 A JP 2002047348A JP 2003245807 A JP2003245807 A JP 2003245807A
Authority
JP
Japan
Prior art keywords
cutting
cemented carbide
carbide
cutting tool
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002047348A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yanai
俊之 谷内
Satoshi Takahashi
高橋  慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002047348A priority Critical patent/JP2003245807A/en
Publication of JP2003245807A publication Critical patent/JP2003245807A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cemented carbide made cutting tool that exhibits excellent abrasive resistance in the high-speed cutting of hard-to-cut materials. <P>SOLUTION: The cemented carbide made tool is made of a tungsten carbide base cemented carbide containing 3 to 10 mass% of Co, and 0.1 to 1 mass% of Cr, as a binding phase formation component, and the rest of tungsten carbide as a hard phase forming component and unavoidable impurities. At least the cutting blade surface portion of the tool has a pure copper-infiltrated layer at an average depth range of 100 to 500 μm from the surface. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、切削時に切粉に
対してすぐれた潤滑効果を発揮し、したがって特にステ
ンレス鋼や軟鋼、さらに耐熱合金などのきわめて粘性が
高く、かつ切粉が切刃表面に溶着し易い難削材の高速切
削に用いた場合にも、切刃にチッピング(微小欠け)な
どの発生なく、すぐれた耐摩耗性を長期に亘って発揮す
る超硬合金製切削工具(以下、超硬切削工具という)に
関するものである。 【0002】 【従来の技術】一般に、超硬切削工具には、各種の鋼や
鋳鉄などの被削材の旋削加工や平削り加工にバイトやカ
ッターの先端部に着脱自在に取り付けて用いられるスロ
ーアウエイチップ、前記被削材の穴あけ切削加工などに
用いられるドリルやミニチュアドリル、さらに前記被削
材の面削加工や溝加工、肩加工などに用いられるソリッ
ドタイプのエンドミルなどがあり、また前記スローアウ
エイチップを着脱自在に取り付けて前記ソリッドタイプ
のエンドミルと同様に切削加工を行うスローアウエイエ
ンドミル工具などが知られ、これらが各種の炭化タング
ステン基超硬合金(以下、超硬合金という)で製造さ
れ、かつ各種の鋼や鋳鉄などの連続切削や断続切削に用
いられることも良く知られるところである。 【0003】 【発明が解決しようとする課題】近年の切削装置の高性
能化はめざましく、一方で切削加工に対する省力化およ
び省エネ化、さらに低コスト化の要求は強く、これに伴
い、切削加工は高速化の傾向にあるが、従来の超硬工具
においては、これを低合金鋼や鋳鉄などの通常の条件で
の連続切削や断続切削に用いた場合には問題はないが、
これをきわめて粘性の高いステンレス鋼や軟鋼、さらに
耐熱合金などの難削材の高速切削に用いた場合には、こ
れら被削材の切粉は、切刃表面に溶着し易く、この溶着
現象は切削加工が高速化すればするほど顕著に現れ、こ
の溶着現象が原因で切刃にチッピングが発生し易くな
り、比較的短時間で使用寿命に至るのが現状である。 【0004】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、特にステンレス鋼や軟鋼などの
難削材の高速切削に用いた場合にも、切刃表面に切粉の
溶着し難い超硬切削工具を開発すべく研究を行った結
果、(a)超硬切削工具を構成する超硬合金を、質量%
(以下、%は質量%を示す)で、結合相形成成分とし
て、 Co:3〜10%、 Cr:0.1〜1%、 を含有し、残りが硬質相形成成分としての炭化タングス
テン(WC)と不可避不純物からなる組成を有する超硬
合金に特定した上で、これの少なくとも切刃表面部に、
例えば物理蒸着法やメッキ法などを用いて、純銅薄層
を、望ましくは0.1〜0.5mmの平均層厚で形成し
た状態で、真空雰囲気中、温度:800〜1100℃に
所定時間保持の条件で加熱処理を施すと、前記超硬切削
工具の少なくとも切刃表面部には、純銅含浸層が形成さ
れるようになること。(b)上記(a)において、上記
純銅薄層の層厚および上記加熱処理条件を調整して、前
記純銅含浸層の表面からの深さを、100〜500μm
の範囲内の所定の平均深さにすると、この結果の超硬切
削工具においては、高速切削時の発熱によって切刃表面
部から純銅が僅かづつ溶出し、これが被削材の切粉と切
刃表面の間に存在して、前記切粉の切刃表面に対する滑
り性が一段と向上し、前記切刃表面部が前記切粉に対し
て常にすぐれた潤滑効果を発揮することから、特にステ
ンレス鋼や軟鋼、さらに耐熱合金などの粘性の高い難削
材の切粉が切刃表面に溶着することがなくなり、この結
果切刃にチッピングの発生がなくなり、長期に亘ってす
ぐれた切削性能を発揮するようになること。以上(a)
および(b)に示される研究結果を得たのである。 【0005】この発明は、上記の研究結果に基づいてな
されたものであって、結合相形成成分として、 Co:3〜10%、 Cr:0.1〜1%、 を含有し、残りが硬質相形成成分としてのWCと不可避
不純物からなる組成を有する超硬合金で構成された超硬
切削工具の少なくとも切刃表面部に、表面から100〜
500μmの範囲内の所定の平均深さ位置に亘って純銅
含浸層を形成してなる、難削材の高速切削ですぐれた耐
摩耗性を発揮する超硬切削工具に特徴を有するものであ
る。 【0006】つぎに、この発明の超硬切削工具におい
て、これを構成する超硬合金の組成および純銅含浸層の
平均深さを上記の通りに数値限定した理由を説明する。 (a)超硬合金のCo含有量 Co成分には焼結性を向上させ、もって超硬合金の強度
を向上させる作用があるが、その含有量が3%未満で
は、所望の強度を確保することができず、一方その含有
量が10%を越えると、耐摩耗性が急激に低下するよう
になることから、その含有量を3〜10%と定めた。 【0007】(b)超硬合金のCr含有量 Cr成分は、結合相形成成分であるCo成分中に固溶
し、硬質相であるWC粒の成長を抑制し、むしろWC粒
を微細化して、超硬合金の強度向上に寄与するほか、前
記WC粒の微細化に伴う粒界の増大による純銅含浸量の
増加にも寄与する作用を有するが、その含有量が0.1
%未満では、前記作用に所望の向上効果が得られず、一
方その含有量が1%を越えると、第3相としてCr炭化
物が析出するようになり、これがチッピング発生の原因
となることから、その含有量を0.1〜1%と定めた。 【0008】(c)純銅含浸層の平均深さ 上記の通り、純銅含浸層において、含浸した純銅は上記
結合相や上記WC粒にほとんど固溶することなく、前記
WC粒の相互粒界に前記結合相と共に遊離した状態で共
存し、切削時の発熱で超硬切削工具表面に溶出し、この
溶出純銅による潤滑作用で切粉にすぐれた滑り性を付与
して、前記超硬切削工具表面に切粉が溶着するのを抑制
し、もって切刃におけるチッピング発生を防止する作用
があるが、その平均深さが100μm未満では、純銅含
浸層における純銅含浸量が不十分なため、超硬切削工具
の使用寿命に至るまで純銅を溶出し続けることが困難で
あり、一方平均深さが500μmを越えると、切刃部に
偏摩耗の原因となる熱塑性変形が発生し、前記偏摩耗が
摩耗進行を促進するようになることから、その平均深さ
を100〜500μmと定めた。 【0009】 【発明の実施の形態】つぎに、この発明の超硬切削工具
を実施例により具体的に説明する。原料粉末として、
1.5μmのWC粉末、同2.3μmのCr32粉末、
および同1.4μmCo粉末を用意し、これら原料粉末
を表1に示される配合組成に配合し、ボールミルで72
時間混合した後、100MPa の圧力で所定形状の圧
粉体にプレス成形し、この圧粉体を1.3Paの真空
中、1380〜1480℃の範囲内の所定温度に1時間
保持の条件で真空焼結し、焼結後研削加工を施すことに
より、実質的に上記配合組成と同じ成分組成をもったJ
IS・SPGN120308に規定したスローアウエイ
チップ形状の比較超硬切削工具1〜10をそれぞれ製造
した。 【0010】ついで、これらの比較超硬切削工具1〜1
0のそれぞれを、図1に概略説明図で示される通常のア
ークイオンプレーティング装置に装入し、カソード電極
(蒸発源)として純度:99.99%の純銅を装着し、
装置内を排気して0.5Pa以下の真空に保持しなが
ら、ヒーターで装置内を500℃に加熱した後、Arガ
スを装置内に導入して10PaのAr雰囲気とし、この
状態で前記比較超硬切削工具に−800vのバイアス電
圧を印加して前記比較超硬切削工具表面をArガスボン
バート洗浄し、ついで再び装置内を排気して0.5Pa
以下の真空に保持しながら、前記比較超硬切削工具に印
加するバイアス電圧を−100Vに下げて、前記カソー
ド電極とアノード電極との間にアーク放電を発生させる
条件にて、前記比較超硬切削工具の表面に、表2に示さ
れる平均層厚の純銅薄層を形成し、ついで、これを加熱
炉に装入し、0.5Pa以下の真空雰囲気中、温度:8
00〜1100℃の範囲内の所定温度に1〜3時間の範
囲内の所定時間保持の条件で加熱処理を施して、同じく
表2に示される表面からの平均深さ(鏡面に研磨した断
面をエネルギー分散型X線分光装置を用いて線分析測
定)を有する純銅含浸層を形成することにより本発明超
硬切削工具1〜10をそれぞれ製造した。 【0011】つぎに、この結果得られた上記の本発明超
硬切削工具1〜10および比較超硬切削工具1〜10の
うち、本発明超硬切削工具1〜3および比較超硬切削工
具1〜3について、 被削材:JIS・SUS304の丸棒、 切削速度:200m/min.、 切り込み:1.5mm、 送り:0.3mm/rev.、 切削時間:15分、 の条件でのステンレス鋼の乾式連続高速切削試験、本発
明超硬切削工具4〜7および比較超硬切削工具4〜7に
ついては、 被削材:JIS・SUJ2の長さ方向等間隔4本縦溝入
り丸棒、 切削速度:250m/min.、 切り込み:1.5mm、 送り:0.3mm/rev.、 切削時間:15分、 の条件での軟鋼の乾式断続高速切削試験、さらに、本発
明超硬切削工具8〜10および比較超硬切削工具8〜1
0については、 被削材:インコネル718の丸棒、 切削速度:100m/min.、 切り込み:1.0mm、 送り:0.15mm/rev.、 切削時間:10分、 の条件での耐熱合金の湿式高速切削試験(水溶性切削油
使用)を行い、いずれの切削試験でも切刃の逃げ面摩耗
幅を測定した。この測定結果を表1,2に示した。 【0012】 【表1】【0013】 【表2】 【0014】 【発明の効果】表1,2に示される結果から、いずれも
切刃表面部に純銅含浸層を有する本発明超硬切削工具1
〜10は、ステンレス鋼および軟鋼、さらに耐熱合金の
切削を高い発熱を伴う高速で行っても、切削時に前記純
銅含浸層から僅かずつ溶出する純銅が粘性のきわめて高
い切粉に潤滑性を付与し、切粉が切刃表面に対して良好
な滑り性を発揮するようになることから、切刃への切粉
溶着が原因のチッピングが切刃に発生することがなく、
すぐれた耐摩耗性を発揮するのに対して、切刃表面部に
前記純銅含浸層の形成がない比較超硬切削工具1〜10
においては、切粉の切刃表面への溶着は避けられず、こ
れが原因でいずれも切刃にチッピングが発生し、比較的
短時間で使用寿命に至ることが明らかである。上述のよ
うに、この発明の超硬切削工具は、各種低合金鋼や鋳鉄
などの通常の条件での連続切削や断続切削は勿論のこ
と、特に粘性が高く、切粉が切刃表面に溶着し易いステ
ンレス鋼や軟鋼、さらに耐熱合金などの高速切削でもて
すぐれた耐摩耗性を発揮するものであり、切削加工の省
力化および省エネ化、さらに低コスト化に十分満足に対
応できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention exerts an excellent lubricating effect on cutting chips at the time of cutting, and is therefore particularly highly viscous of stainless steel, mild steel, and heat-resistant alloys. Even when used for high-speed cutting of difficult-to-cut materials that are high in cutting power and the chip easily adheres to the cutting blade surface, excellent wear resistance is maintained over a long period without chipping (small chipping) on the cutting blade. The present invention relates to a cemented carbide cutting tool (hereinafter referred to as a cemented carbide cutting tool). 2. Description of the Related Art Generally, a carbide cutting tool is used for turning or planing a work material such as steel or cast iron by being detachably attached to a tip of a cutting tool or a cutter. Away tips, drills and miniature drills used for drilling and cutting the work material, and solid-type end mills used for face milling, grooving, shoulder processing and the like of the work material, etc. There are known throw-away end mill tools and the like, which carry out cutting in the same manner as the solid type end mill by detachably attaching the way chip, and these are manufactured from various tungsten carbide-based cemented carbides (hereinafter, referred to as cemented carbide). It is also well known that it is used for continuous cutting and intermittent cutting of various steels and cast irons. [0003] In recent years, the performance of cutting equipment has been remarkably improved. On the other hand, there has been a strong demand for labor saving, energy saving, and further cost reduction for cutting work. Although there is a tendency to increase the speed, in conventional carbide tools, there is no problem if this is used for continuous cutting or interrupted cutting under ordinary conditions such as low alloy steel or cast iron,
When this is used for high-speed cutting of difficult-to-cut materials such as extremely viscous stainless steel, mild steel, and heat-resistant alloys, the chips of these materials tend to adhere to the cutting blade surface, and this welding phenomenon The higher the speed of the cutting process, the more remarkable it appears. Due to this welding phenomenon, chipping is likely to occur on the cutting blade, and the service life is currently shortened in a relatively short time. [0004] Accordingly, the present inventors have proposed:
In view of the above, the results of research were conducted to develop a carbide cutting tool that does not easily deposit cutting chips on the cutting edge surface, even when used for high-speed cutting of difficult-to-cut materials such as stainless steel and mild steel. , (A) The cemented carbide constituting the cemented carbide cutting tool is
(Hereinafter,% indicates mass%), containing Co: 3 to 10% and Cr: 0.1 to 1% as a binder phase-forming component, and tungsten carbide (WC) as a hard phase-forming component. ) And a cemented carbide having a composition consisting of unavoidable impurities, and at least the cutting edge surface of this
For example, a pure copper thin layer is desirably formed with an average layer thickness of 0.1 to 0.5 mm using a physical vapor deposition method, a plating method, or the like, and is maintained at a temperature of 800 to 1100 ° C. for a predetermined time in a vacuum atmosphere. When the heat treatment is performed under the conditions described above, a pure copper impregnated layer is formed on at least the cutting blade surface of the cemented carbide cutting tool. (B) In the above (a), the thickness from the surface of the pure copper impregnated layer is adjusted to 100 to 500 μm by adjusting the thickness of the pure copper thin layer and the heat treatment conditions.
In the resulting carbide cutting tool, pure copper elutes little by little from the surface of the cutting edge due to the heat generated during high-speed cutting. Existing between the surfaces, the slipperiness of the cuttings with respect to the cutting edge surface is further improved, and since the cutting edge surface always exerts an excellent lubricating effect on the cutting edges, especially stainless steel and Chips of difficult-to-cut materials such as mild steel and heat-resistant alloys do not adhere to the surface of the cutting edge, and as a result, chipping does not occur on the cutting edge, so that excellent cutting performance can be exhibited over a long period of time. Become (A)
The research results shown in (b) and (b) were obtained. The present invention has been made on the basis of the above research results, and contains Co: 3 to 10%, Cr: 0.1 to 1% as a binder phase forming component, and the balance is hard. At least the cutting edge surface of a cemented carbide cutting tool composed of a cemented carbide having a composition consisting of WC as a phase forming component and unavoidable impurities is 100 to 100 mm from the surface.
The present invention is characterized by a carbide cutting tool having a pure copper impregnated layer formed over a predetermined average depth position within a range of 500 μm and exhibiting excellent wear resistance in high-speed cutting of difficult-to-cut materials. Next, the reason why the composition of the cemented carbide constituting the cemented carbide cutting tool of the present invention and the average depth of the pure copper impregnated layer are numerically limited as described above will be described. (A) Co Content of Cemented Carbide The Co component has the effect of improving sinterability and thereby improving the strength of the cemented carbide, but if its content is less than 3%, the desired strength is secured. On the other hand, if the content exceeds 10%, the wear resistance rapidly decreases, so the content is set to 3 to 10%. (B) Cr Content of Cemented Carbide The Cr component forms a solid solution in the Co component, which is a binder phase forming component, and suppresses the growth of WC grains, which are hard phases, but rather refines the WC grains. Has the effect of not only contributing to the improvement in the strength of the cemented carbide, but also contributing to an increase in the pure copper impregnation due to an increase in the grain boundaries accompanying the refinement of the WC grains.
When the content is less than 1%, a desired improvement effect cannot be obtained in the above-mentioned action. On the other hand, when the content exceeds 1%, Cr carbide precipitates as a third phase, which causes chipping. Its content was determined to be 0.1-1%. (C) Average Depth of Pure Copper Impregnated Layer As described above, in the pure copper impregnated layer, the pure copper impregnated hardly forms a solid solution with the binder phase or the WC grains. It coexists in a state of being separated with the binder phase, elutes on the surface of the carbide cutting tool due to heat generated during cutting, and imparts excellent slip properties to the chips by the lubricating action of this eluted pure copper, and on the surface of the carbide cutting tool. It has the effect of suppressing the deposition of chips and preventing the occurrence of chipping at the cutting edge. However, if the average depth is less than 100 μm, the pure copper impregnation amount in the pure copper impregnated layer is insufficient. It is difficult to continue eluting pure copper until the service life of the tool.On the other hand, when the average depth exceeds 500 μm, thermoplastic deformation causing uneven wear occurs at the cutting edge, and the uneven wear causes wear progress. To promote Al, determined the average depth and 100 to 500 [mu] m. Next, the carbide cutting tool of the present invention will be specifically described with reference to examples. As raw material powder,
1.5 μm WC powder, 2.3 μm Cr 3 C 2 powder,
And the same 1.4 μm Co powder were prepared, and these raw material powders were blended in the blending composition shown in Table 1 and mixed with a ball mill to obtain
After mixing for 1 hour, the mixture is pressed into a green compact having a predetermined shape at a pressure of 100 MPa, and the green compact is vacuum-pressed in a vacuum of 1.3 Pa at a predetermined temperature within a range of 1380 to 1480 ° C. for 1 hour. By sintering and grinding after sintering, J having substantially the same composition as the above-mentioned composition is obtained.
Comparative carbide cutting tools 1 to 10 each having a shape of a throw-away tip specified in IS • SPGN120308 were manufactured. Next, these comparative carbide cutting tools 1 to 1
0 was charged into a normal arc ion plating apparatus schematically shown in FIG. 1, and pure copper having a purity of 99.99% was mounted as a cathode electrode (evaporation source).
While the inside of the apparatus was evacuated and maintained at a vacuum of 0.5 Pa or less, the inside of the apparatus was heated to 500 ° C. with a heater, and then an Ar gas was introduced into the apparatus to form an Ar atmosphere of 10 Pa. A bias voltage of -800 V is applied to the hard cutting tool to clean the surface of the comparative carbide cutting tool with Ar gas bombardment.
While maintaining the following vacuum, the bias voltage applied to the comparative carbide cutting tool was reduced to -100 V, and the comparative carbide cutting was performed under the condition that an arc discharge was generated between the cathode electrode and the anode electrode. A pure copper thin layer having an average thickness shown in Table 2 was formed on the surface of the tool, which was then charged into a heating furnace, and in a vacuum atmosphere of 0.5 Pa or less, at a temperature of 8:
A heat treatment is performed at a predetermined temperature in a range of 00 to 1100 ° C. for a predetermined time in a range of 1 to 3 hours, and an average depth from the surface shown in Table 2 (a cross section polished to a mirror surface is also shown). Carbide cutting tools 1 to 10 of the present invention were produced by forming a pure copper impregnated layer having a line analysis measurement using an energy dispersive X-ray spectrometer. Next, among the above-described carbide cutting tools 1 to 10 of the present invention and comparative carbide cutting tools 1 to 10 obtained as a result, the carbide cutting tools 1 to 3 of the present invention and the comparative carbide cutting tool 1 Work material: JIS SUS304 round bar, Cutting speed: 200 m / min. Infeed: 1.5 mm Feed: 0.3 mm / rev. Cutting time: 15 minutes Dry dry continuous high-speed cutting test of stainless steel under the following conditions: Carbide cutting tools 4 to 7 of the present invention and comparative carbide cutting tools 4 to 7: Work material: JIS SUJ2 Round bar with four vertical grooves at equal intervals in the vertical direction, Cutting speed: 250 m / min. Infeed: 1.5 mm Feed: 0.3 mm / rev. Cutting time: 15 minutes Dry intermittent high-speed cutting test of mild steel under the following conditions: Further, the carbide cutting tools 8 to 10 of the present invention and the comparative carbide cutting tools 8 to 1
0, work material: round bar of Inconel 718, cutting speed: 100 m / min. Infeed: 1.0 mm Feed: 0.15 mm / rev. A high-speed wet-type cutting test (using a water-soluble cutting oil) was performed on the heat-resistant alloy under the following conditions: cutting time: 10 minutes, and the flank wear width of the cutting edge was measured in each cutting test. The measurement results are shown in Tables 1 and 2. [Table 1] [Table 2] According to the results shown in Tables 1 and 2, the carbide cutting tool 1 of the present invention having a pure copper impregnated layer on the surface of the cutting edge in each case
10 to 10, even when cutting stainless steel and mild steel, and even heat-resistant alloys at high speed with high heat generation, pure copper eluted little by little from the pure copper impregnated layer during cutting imparts lubricity to extremely viscous cutting chips. Since the chips exhibit good slipperiness on the cutting edge surface, chipping due to chip welding to the cutting edge does not occur on the cutting edge,
The comparative carbide cutting tools 1 to 10 exhibit excellent wear resistance but do not have the pure copper impregnated layer on the surface of the cutting edge.
In this case, it is evident that welding of the cutting powder to the surface of the cutting blade is inevitable, and as a result, chipping occurs in any of the cutting blades, resulting in a relatively short service life. As described above, the cemented carbide cutting tool of the present invention is not only capable of continuous cutting and interrupted cutting under ordinary conditions such as various low alloy steels and cast irons, but also has a particularly high viscosity, and the chips are welded to the cutting blade surface. It exhibits excellent wear resistance even in high-speed cutting of stainless steel, mild steel, heat-resistant alloys, etc., which can be easily performed, and can sufficiently respond to labor savings and energy savings in cutting work, as well as lower costs. .

【図面の簡単な説明】 【図1】通常のアークイオンプレーティング装置の概略
説明図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of a normal arc ion plating apparatus.

Claims (1)

【特許請求の範囲】 【請求項1】 結合相形成成分として、 Co:3〜10質量%、 Cr:0.1〜1質量%、 を含有し、残りが硬質相形成成分としての炭化タングス
テンと不可避不純物からなる組成を有する炭化タングス
テン基超硬合金で構成された超硬合金製切削工具の少な
くとも切刃表面部に、 表面から100〜500μmの範囲内の所定の平均深さ
位置に亘って純銅含浸層を形成したこと、を特徴とする
難削材の高速切削ですぐれた耐摩耗性を発揮する超硬合
金製切削工具。
[Claim 1] As a binder phase forming component, Co: 3 to 10% by mass, Cr: 0.1 to 1% by mass, the balance being tungsten carbide as a hard phase forming component. At least on the cutting edge surface of a cemented carbide cutting tool composed of a tungsten carbide based cemented carbide having a composition consisting of unavoidable impurities, pure copper over a predetermined average depth position within a range of 100 to 500 μm from the surface A cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials, characterized by the formation of an impregnated layer.
JP2002047348A 2002-02-25 2002-02-25 Cemented carbide made cutting tool exhibiting excellent abrasive resistance in high-speed cutting of hard-to-cut material Withdrawn JP2003245807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002047348A JP2003245807A (en) 2002-02-25 2002-02-25 Cemented carbide made cutting tool exhibiting excellent abrasive resistance in high-speed cutting of hard-to-cut material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002047348A JP2003245807A (en) 2002-02-25 2002-02-25 Cemented carbide made cutting tool exhibiting excellent abrasive resistance in high-speed cutting of hard-to-cut material

Publications (1)

Publication Number Publication Date
JP2003245807A true JP2003245807A (en) 2003-09-02

Family

ID=28660430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002047348A Withdrawn JP2003245807A (en) 2002-02-25 2002-02-25 Cemented carbide made cutting tool exhibiting excellent abrasive resistance in high-speed cutting of hard-to-cut material

Country Status (1)

Country Link
JP (1) JP2003245807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010860A1 (en) * 2008-07-23 2010-01-28 イビデン株式会社 Method for manufacturing mold and mold
JP2010024519A (en) * 2008-07-23 2010-02-04 Ibiden Engineering Kk Method for manufacturing wear-resistant metal body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010860A1 (en) * 2008-07-23 2010-01-28 イビデン株式会社 Method for manufacturing mold and mold
JP2010024518A (en) * 2008-07-23 2010-02-04 Ibiden Engineering Kk Method for manufacturing mold, and mold
JP2010024519A (en) * 2008-07-23 2010-02-04 Ibiden Engineering Kk Method for manufacturing wear-resistant metal body

Similar Documents

Publication Publication Date Title
EP1498199A1 (en) Cubic boron nitride base ultra-high pressure sintered material cutting tip
JP2003340608A (en) Surface-covered cemented carbide made cutting tool having hard coating layer to exhibit excellent abrasion resistance in high speed heavy cutting condition
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP2003245807A (en) Cemented carbide made cutting tool exhibiting excellent abrasive resistance in high-speed cutting of hard-to-cut material
JP2003205404A (en) Surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting hardly machinable material at high speed
JP2010194669A (en) Cutting tool
JP2004338058A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JP2004042170A (en) Surface-coated cemented carbide cutting tool having hard coating layer for exhibiting superior chipping resistance under high speed double cutting condition
JP2004074378A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed cutting condition
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2004338060A (en) Surface coated cemented carbide cutting tool with hard coating layer exhibiting excellent wear resistance in high-speed cutting condition, and its manufacturing method
JP2007038343A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting superior chipping resistance under high speed heavy cutting of hard-to-cut material
JP2007038341A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting superior chipping resistance under high speed heavy cutting of hard-to-cut material
JP2007015060A (en) Surface coated cemented carbide cutting tool with hard coating layer displaying excellent chipping resistance in cutting of material difficult to be cut
JP2004344991A (en) Cutting tool of surface-coated cemented carbide with hard coating layer achieving excellent abrasion resistance in high speed cutting condition, and method for manufacturing the same
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP2004074379A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition
JP2000052085A (en) High performance super high pressure cutting tool of brazing type composed of diamond group super high pressure sintered compact and substrate hard metal
JP2003205405A (en) Surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting hardly machinable material at high speed
JP3982347B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP4379908B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2004322279A (en) Surface-coated cemented carbide cutting tool having hard coating layer exhibiting superior chipping resistance under high speed double cutting condition
JP4379907B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2004306166A (en) Cutting tool made of surface coated cemented carbide having hard coating layer exhibiting excellent wear resistance under high-speed cutting condition and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510