JP4379908B2 - Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting - Google Patents

Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting Download PDF

Info

Publication number
JP4379908B2
JP4379908B2 JP2003145566A JP2003145566A JP4379908B2 JP 4379908 B2 JP4379908 B2 JP 4379908B2 JP 2003145566 A JP2003145566 A JP 2003145566A JP 2003145566 A JP2003145566 A JP 2003145566A JP 4379908 B2 JP4379908 B2 JP 4379908B2
Authority
JP
Japan
Prior art keywords
highest
content point
cutting
hard coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003145566A
Other languages
Japanese (ja)
Other versions
JP2004345037A (en
Inventor
強 大上
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003145566A priority Critical patent/JP4379908B2/en
Publication of JP2004345037A publication Critical patent/JP2004345037A/en
Application granted granted Critical
Publication of JP4379908B2 publication Critical patent/JP4379908B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硬質被覆層がすぐれた高温強度を有し、かつ高い高温硬さも具備し、したがって特に例えば粘性の高い各種のステンレス鋼や軟鋼などの難削材の切削加工を、特に高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合に、硬質被覆層がチッピング(微小欠け)などの発生なく、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して超硬基体と云う)の表面に、
組成式:(Cr1- )N、(ただし、原子比で、Mは0.40〜0.60を示す)、
を満足するCrとBの複合窒化物[以下、(Cr,B)Nで示す]からなる硬質被覆層を0.5〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、この被覆超硬工具は、硬質被覆層である前記(Cr、B)N層がCr成分による高温強度とB成分による高温硬さを具備することから、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられることも良く知られるところである(例えば、特許文献1参照)。
【0004】
さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と各種の組成をもったCr−B合金がセットされたカソード電極(蒸発源)との間に、例えば電流:100Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとしてArガスと窒素ガスの混合ガス(容量%で、Ar:70%,N:30%)を導入して、例えば2.5Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬合金基体の表面に、(Cr,B)N層からなる硬質被覆層を0.5〜15μmの平均層厚で蒸着することにより製造されることも知られている。
【0005】
【特許文献1】
特開昭56−41372号公報
【0006】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求も強く、これに伴い、切削加工は高速化の傾向を強め、かつ高切り込みや高送りなどの重切削条件での切削加工を余儀なくされる傾向にあるが、上記の硬質被覆層が(Cr,B)N層の従来被覆超硬工具においては、これを例えば粘性の高い各種のステンレス鋼や軟鋼などの難削材の切削加工を特に高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なうのに用いた場合には、前記(Cr,B)N層が具備する高温強度および高温硬さが不十分なために、切刃部にチッピング(微少欠け)が発生し易く、かつ硬質被覆層の摩耗も促進するようになることから、比較的短時間で使用寿命に至るのが現状である。
【0007】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に粘性の高い各種のステンレス鋼や軟鋼などの難削材の高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の物理蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にB含有量の高いB−Cr−Zr合金を、通電性が小さいのでスパッタリングターゲットとして、他方側に相対的にCr含有量の高いCr−B−Zr合金を、通電性を有するのでカソード電極ターゲットとしてそれぞれ対向配置した装置を用い、この装置の前記回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して前記超硬基体を装着し、この状態で装置内の反応雰囲気を窒素雰囲気(実用上はArと窒素の混合ガス雰囲気)として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の相対的にB含有量の高いB−Cr−Zr合金のスパッタリングターゲットからは、例えばArイオンを用いてB−Cr−Zrイオンをスパッタさせ、同時に前記の相対的にCr含有量の高いCr−B−Zr合金のカソード電極ターゲットとアノード電極との間にはアーク放電を発生させてCr−B−Zrイオンを放出させ、もって前記超硬基体の表面にCrとBとZrの複合窒化物[以下、(Cr,B,Zr)Nで示す]層を形成すると、この結果の(Cr,B,Zr)N層においては、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対的にB含有量の高いB−Cr−Zr合金のスパッタリングターゲットに最も接近した時点で層中にB最高含有点が形成され、また前記超硬基体が上記の他方側の相対的にCr含有量の高いCr−B−Zr合金のカソード電極に最も接近した時点で層中にCr最高含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記B最高含有点とCr最高含有点が所定間隔をもって交互に繰り返し現れると共に、前記B最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記B最高含有点へCrおよびB成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造をもつようになること。
【0008】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Cr,B,Zr)N層において、例えば対向配置のスパッタリングターゲットおよびカソード電極ターゲットのそれぞれの組成を調製すると共に、超硬基体が装着されている回転テーブルの回転速度を制御して、
上記B最高含有点が、組成式:[B1- (X+Z)CrX Zr]N(ただし、原子比で、Xは0.15〜0.40、Zは0.01〜0.10を示す)、
上記Cr最高含有点が、組成式:[Cr1- Y +Z)Y Zr]N(ただし、原子比で、Yは0.05〜0.40、Zは0.01〜0.10を示す)、
をそれぞれ満足し、かつ隣り合う上記B最高含有点とCr最高含有点の厚さ方向の間隔を0.01〜0.1μmとすると、
上記B最高含有点部分では、(Cr,B,Zr)N層におけるB含有量が相対的に高く、Cr含有量が低くなることから、より一段と高い高温硬さを示し、一方上記Cr最高含有点部分では、前記B最高含有点部分に比してB含有量が低く、Cr含有量の高いものとなるので、相対的に著しく高い高温強度が確保され、この高温強度はZr成分の共存によって一段と向上し、かつこれらB最高含有点とCr最高含有点の間隔をきわめて小さくしたことから、層全体の特性としてきわめて高い高温強度と高い高温硬さを具備するようになり、したがって、硬質被覆層がかかる構成の(Cr,B,Zr)N層からなる被覆超硬工具は、各種の鋼や鋳鉄は勿論のこと、特に粘性の高い各種のステンレス鋼や軟鋼などの難削材の高速重切削加工でチッピングの発生なく、かつすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、(Cr,B,Zr)Nからなる硬質被覆層を0.5〜15μmの平均層厚で物理蒸着してなる被覆超硬工具において、
上記硬質被覆層が、層厚方向にそって、B最高含有点とCr最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記B最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記B最高含有点へCrおよびB成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記B最高含有点が、組成式:[B1- (X+Z)CrX Zr]N(ただし、原子比で、Xは0.15〜0.40、Zは0.01〜0.10を示す)、
上記Cr最高含有点が、組成式:組成式:[Cr1- Y +Z)Y Zr](ただし、原子比で、Yは0.05〜0.40、Zは0.01〜0.10を示す)、
をそれぞれ満足し、かつ隣り合う上記B最高含有点とCr最高含有点の間隔が、0.01〜0.1μmである、
高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
【0010】
つぎに、この発明の被覆超硬工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)B最高含有点の組成
(Cr,B,Zr)N層において、Cr成分には高温強度を向上させ、さらにZr成分にもCr成分との共存において高温強度を一段と向上させる作用があり、一方B成分には高温硬さを向上させる作用があり、したがってB最高含有点では相対的にB成分の含有割合を多くして、一段とすぐれた高温硬さを確保するものであるが、Cr成分の含有割合を示すX値がBとZr成分との合量に占める割合(原子比、以下同じ)で0.15未満なるとB成分の割合が多くなり過ぎて、脆化するようになり、隣接して高温強度のすぐれたCr最高含有点が存在しても、B最高含有点が破壊の起点となってチッピングが発生し易くなり、一方前記X値が0.40を越えると、相対的にB成分の割合が低くなり過ぎて、高温硬さが低下し、摩耗が急速に進行するようになることから、前記X値を0.15〜0.40と定めた。
また、Zr成分には、上記の通りCr成分との共存において高温強度を向上させる作用があるが、Zr成分の含有割合を示すZ値がCrおよびB成分との合量に占める割合で0.01未満では所望の高温強度向上効果が得られず、一方前記Z値が0.10を越えると高温硬さが急激に低下し、摩耗が促進するようになることから、前記Z値を0.01〜0.10と定めた。
【0011】
(b)Cr最高含有点の組成
上記の通りB最高含有点はすぐれた高温硬さを有するものであるが、反面高温強度の低いものであるため、このB最高含有点の高温強度不足を補う目的で、Cr成分の含有割合が高く、Zr成分も共存含有し、これによって高い高温強度を有するようになるCr最高含有点を厚さ方向に交互に介在させるものであるが、B成分の含有割合を示すY値がCrとZr成分との合量に占める割合で0.05未満なるとCr成分の割合が多くなり過ぎて、高温硬さが急激に低下し、B最高含有点が隣接して存在しても摩耗が一段と促進するようになり、一方前記Y値がCrとZr成分との合量に占める割合で0.40を越えると、Cr最高含有点での高温強度が急激に低下し、チッピングが発生し易くなることから、その割合を0.05〜0.40と定めた。
さらに、Cr最高含有点におけるZr成分の含有割合を示すZ値も上記のB最高含有点における理由と同じ理由で0.01〜0.10と定めたものである。
【0012】
(c)B最高含有点とCr最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温強度と高温硬さを確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちB最高含有点であれば高温強度不足、Cr最高含有点であれば高温硬さ不足が層内に局部的に現れ、これが原因で切刃部にチッピングが発生し易くなったり、摩耗が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0013】
(d)硬質被覆層の平均層厚
その層厚が0.5μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜15μmと定めた。
【0014】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、VC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。
【0015】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の超硬基体B−1〜B−6を形成した。
【0016】
ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される物理蒸着装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して装着し、一方側のカソード電極ターゲット(蒸発源)として、種々の成分組成をもったCr最高含有点形成用Cr−B−Zr合金、他方側のスパッタリングターゲット(蒸発源)として、種々の成分組成をもったB最高含有点形成用B−Cr−Zr合金を前記回転テーブルを挟んで対向配置し、またボンバード洗浄用金属Crも装着し、まず装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をCrボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスとArガスの混合ガス(容量%で、N/Ar=30/70)を導入して2.5Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつ前記Cr最高含有点形成用Cr−B−Zr合金のカソード電極ターゲットとアノード電極との間には100Aの電流を流してアーク放電を発生させ、また前記B最高含有点形成用B−Cr−Zr合金のスパッタリングターゲットには1kWの電力を印可してスパッタを発生させ、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成のCr最高含有点とB最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記B最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記B最高含有点へCrおよびB成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0017】
また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったCr−B合金を装着し、またボンバード洗浄用金属Crも装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をCrボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスとArガスの混合ガス(容量%で、N/Ar=30/70)を導入して2.5Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚を有し、かつ厚さ方向に沿って実質的に組成変化のない(Cr,B)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製スローアウエイチップ(以下、従来被覆超硬チップと云う)1〜16をそれぞれ製造した。
【0018】
つぎに、上記本発明被覆超硬チップ1〜16および従来被覆超硬チップ1〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:260m/min.、
切り込み:2.8mm、
送り:0.12mm/rev.、
切削時間:4分、
の条件での軟鋼の乾式断続高速高切り込み切削加工試験、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:2.5mm、
送り:0.20mm/rev.、
切削時間:3分、
の条件でのステンレス鋼の乾式断続高速高切り込み切削加工試験、さらに、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:1.0mm、
送り:0.4mm/rev.、
切削時間:3分、
の条件でのステンレス鋼の乾式断続高速高送り切削加工試験を行い、いずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0019】
【表1】

Figure 0004379908
【0020】
【表2】
Figure 0004379908
【0021】
【表3】
Figure 0004379908
【0022】
【表4】
Figure 0004379908
【0023】
【表5】
Figure 0004379908
【0024】
【表6】
Figure 0004379908
【0025】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエアの形状をもった超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。
【0026】
ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される物理蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表8に示される目標組成のCr最高含有点とB最高含有点とが交互に同じく表8に示される目標間隔で繰り返し存在し、かつ前記B最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記B最高含有点へCrおよびB成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表8に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0027】
また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Cr,B)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
【0028】
つぎに、上記本発明被覆超硬エンドミル1〜8および従来被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および従来被覆超硬エンドミル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:110m/min.、
軸方向切り込み:5mm、
径方向切り込み:2.5mm、
テーブル送り:380mm/分、
の条件での軟鋼の乾式高速高切り込み側面切削加工試験、本発明被覆超硬エンドミル4〜6および従来被覆超硬エンドミル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:120m/min.、
軸方向切り込み:10mm、
径方向切り込み:3.5mm、
テーブル送り:500mm/分、
の条件でのステンレス鋼の乾式高速高切り込み側面切削加工試験、本発明被覆超硬エンドミル7,8および従来被覆超硬エンドミル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS430の板材、
切削速度:120m/min.、
軸方向切り込み:20mm、
径方向切り込み:4mm、
テーブル送り:350mm/分、
の条件でのステンレス鋼の乾式高速高送り側面切削加工試験をそれぞれ行い、いずれの側面切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。この測定結果を表8、9にそれぞれ示した。
【0029】
【表7】
Figure 0004379908
【0030】
【表8】
Figure 0004379908
【0031】
【表9】
Figure 0004379908
【0032】
(実施例3)
上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもった超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。
【0033】
ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1の物理蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のCr最高含有点とB最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記B最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記B最高含有点へCrおよびB成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の硬質被覆層を蒸着することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0034】
また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Cr,B)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云う)1〜8をそれぞれ製造した。
【0035】
つぎに、上記本発明被覆超硬ドリル1〜8および従来被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および従来被覆超硬ドリル1〜3については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、
切削速度:60m/min.、
送り:0.2mm/rev.、
穴深さ:15mm.、
の条件でのステンレス鋼の湿式高速高送り穴あけ切削加工試験、本発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4〜6については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:75m/min.、
送り:0.23mm/rev.、
穴深さ:25mm.、
の条件での軟鋼の湿式高速高送り穴あけ切削加工試験、本発明被覆超硬ドリル7,8および従来被覆超硬ドリル7,8については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS430の板材、
切削速度:100m/min.、
送り:0.35mm/rev。、
穴深さ:50mm.、
の条件でのステンレス鋼の湿式高速高送り穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
【0036】
【表10】
Figure 0004379908
【0037】
【表11】
Figure 0004379908
【0038】
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8を構成する硬質被覆層におけるCr最高含有点とB最高含有点の組成、並びに従来被覆超硬工具としての従来被覆超硬チップ1〜16、従来被覆超硬エンドミル1〜8、および従来被覆超硬ドリル1〜8の硬質被覆層の組成について、厚さ方向に沿ってCr、B、およびZr成分の含有量をオージェ分光分析装置を用いて測定したところ、本発明被覆超硬工具の硬質被覆層では、Cr最高含有点とB最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記Cr最高含有点から前記B最高含有点、前記B最高含有点から前記Cr最高含有点へCrおよびB成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有することが確認され、また硬質被覆層の平均層厚も目標層厚と実質的に同じ値を示した。
一方前記従来被覆超硬工具の硬質被覆層では厚さ方向に沿って組成変化が見られず、かつ目標組成と実質的に同じ組成および目標層厚と実質的に同じ平均層厚を示すことが確認された。
【0039】
【発明の効果】
表3〜11に示される結果から、硬質被覆層が厚さ方向に、きわめて高い高温強度を有するCr最高含有点とすぐれた高温硬さを有するB最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Cr最高含有点から前記B最高含有点、前記B最高含有点から前記Cr最高含有点へCrおよびB成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有する本発明被覆超硬工具は、いずれも各種のステンレス鋼や軟鋼の高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、切刃部にチッピングの発生なく、硬質被覆層がすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が厚さ方向に沿って実質的に組成変化のない(Cr,B)N層からなる従来被覆超硬工具においては、重切削条件での高速切削加工では、前記硬質被覆層の高温強度および高温硬さ不足が原因で、いずれもチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬工具は、通常の条件での鋼や鋳鉄などの切削加工は勿論のこと、特に各種のステンレス鋼や軟鋼などの難削材の高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の被覆超硬工具を構成する硬質被覆層を形成するのに用いる物理蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来被覆超硬工具を構成する硬質被覆層を形成するのに用いるアークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
In the present invention, the hard coating layer has excellent high-temperature strength and also has high high-temperature hardness, and therefore, particularly, cutting of difficult-to-cut materials such as various high-viscosity stainless steels and mild steels, particularly at high speed, A surface-coated cemented carbide that provides excellent wear resistance without causing chipping (microchips) in the hard coating layer when subjected to heavy cutting conditions such as high cutting and high feed with high mechanical impact. The present invention relates to a cutting tool (hereinafter referred to as a coated carbide tool).
[0002]
[Prior art]
Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.
[0003]
Further, as a coated carbide tool, a substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a cemented carbide substrate). On the surface)
Composition formula: (Cr 1- M B M ) N (however, in atomic ratio, M represents 0.40 to 0.60),
Coated carbide tools formed by physical vapor deposition of a hard coating layer composed of a composite nitride of Cr and B satisfying the following [hereinafter referred to as (Cr, B) N] with an average layer thickness of 0.5 to 15 μm are known. In this coated carbide tool, the (Cr, B) N layer, which is a hard coating layer, has a high temperature strength due to the Cr component and a high temperature hardness due to the B component. It is also well known that it is used for cutting and intermittent cutting (for example, see Patent Document 1).
[0004]
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Cr—B alloy having various compositions is set, for example, at a current of 100 A, while being heated to a temperature of 500 ° C. At the same time, a mixed gas of Ar gas and nitrogen gas (in volume%, Ar: 70%, N 2 : 30%) is introduced into the apparatus as a reaction gas, for example, a reaction atmosphere of 2.5 Pa, while For example, a hard coating layer made of a (Cr, B) N layer is vapor-deposited on the surface of the cemented carbide substrate with an average layer thickness of 0.5 to 15 μm under the condition that a bias voltage of −100 V is applied, for example. Manufactured by It is also known that.
[0005]
[Patent Document 1]
JP-A-56-41372 [0006]
[Problems to be solved by the invention]
In recent years, there has been a remarkable increase in performance of cutting devices. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting. Although cutting tends to be forced under heavy cutting conditions such as high feed, in the conventional coated carbide tool in which the hard coating layer is a (Cr, B) N layer, this is applied to various types of high viscosity, for example. When used to cut difficult-to-cut materials such as stainless steel and mild steel under heavy cutting conditions such as high cutting and high feed with particularly high mechanical impact, (Cr, B) Since the high-temperature strength and high-temperature hardness of the N layer are insufficient, chipping (small chipping) is likely to occur at the cutting edge and the wear of the hard coating layer is promoted. The service life is reached in time Is Jo.
[0007]
[Means for Solving the Problems]
In view of the above, the inventors of the present invention, from the above viewpoint, have a coating super-superior that exhibits excellent chipping resistance in a high-speed heavy cutting of difficult-to-cut materials such as various highly viscous stainless steels and mild steels. As a result of conducting research, focusing on the hard coating layer that constitutes the above-mentioned conventional coated carbide tool in order to develop a hard tool,
(A) For example, a physical vapor deposition apparatus having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. A B—Cr—Zr alloy having a relatively high B content on one side and a Cr—B—Zr alloy having a relatively high Cr content on the other side as a sputtering target because the conductivity is small. Therefore, using the devices facing each other as the cathode electrode target because they have electrical conductivity, the carbide substrate is mounted on the rotary table of the device eccentrically at a position radially away from the central axis of the rotary table. In this state, the reaction atmosphere in the apparatus is changed to a nitrogen atmosphere (practically a mixed gas atmosphere of Ar and nitrogen), the rotary table is rotated, and the thickness of the hard coating layer formed by vapor deposition is uniform. From the sputtering target of the B-Cr-Zr alloy having a relatively high B content, for example, Ar ions are used to sputter B-Cr-Zr ions while rotating the cemented carbide substrate itself for the purpose of achieving the above. At the same time, an arc discharge is generated between the cathode electrode target and the anode electrode of the Cr-B-Zr alloy having a relatively high Cr content to release Cr-B-Zr ions, thereby When a composite nitride of Cr, B, and Zr [hereinafter referred to as (Cr, B, Zr) N] layer is formed on the surface of the hard substrate, the resulting (Cr, B, Zr) N layer has a rotating table. The highest B content point is formed in the layer when the carbide substrate arranged in a ring shape is closest to the sputtering target of the B-Cr-Zr alloy having a relatively high B content on one side. The In addition, when the cemented carbide substrate is closest to the cathode electrode of the Cr—B—Zr alloy having a relatively high Cr content on the other side, the highest Cr content point is formed in the layer. By rotation, the B highest content point and the Cr highest content point alternately appear at predetermined intervals in the layer thickness direction, and from the B highest content point, the Cr highest content point, from the Cr highest content point. It has a component concentration distribution structure in which the content ratios of Cr and B components continuously change to the B highest content point.
[0008]
(B) In the (Cr, B, Zr) N layer having the repeated continuous change component concentration distribution structure of (a) above, for example, the respective compositions of the sputtering target and the cathode electrode target arranged oppositely are prepared, and the carbide substrate is By controlling the rotation speed of the mounted rotary table,
The B highest content point is the composition formula: [B 1− (X + Z) Cr X Zr Z] N (provided that an atomic ratio, X is 0.15 to 0.40, Z represents a 0.01-0.10)
The Cr maximum content point is the composition formula: [Cr 1− ( Y + Z) B Y Zr Z ] N (wherein Y is 0.05 to 0.40 and Z is 0.01 to 0.10 in atomic ratio ). ),
And the distance in the thickness direction of the adjacent B highest content point and Cr highest content point adjacent to each other is 0.01 to 0.1 μm,
In the above B highest content point portion, the B content in the (Cr, B, Zr) N layer is relatively high and the Cr content is low, so it shows a higher high temperature hardness, while the above Cr highest content In the point portion, since the B content is low and the Cr content is high compared to the B highest content point portion, a relatively high high temperature strength is secured, and this high temperature strength is obtained by the coexistence of the Zr component. Since the distance between the highest B content point and the highest Cr content point is extremely small, the entire layer has a very high high-temperature strength and high high-temperature hardness. Coated carbide tools composed of (Cr, B, Zr) N layers with a high-speed heavy cutting of difficult-to-cut materials such as various types of stainless steel and mild steel, as well as various types of steel and cast iron Chip by processing Without the occurrence of bridging, and superior to become to exert a long term wear resistance was.
The research results shown in (a) and (b) above were obtained.
[0009]
The present invention has been made on the basis of the above research results. A hard coating layer made of (Cr, B, Zr) N is physically applied on the surface of a cemented carbide substrate with an average layer thickness of 0.5 to 15 μm. In coated carbide tools formed by vapor deposition,
In the hard coating layer, the highest B content point and the highest Cr content point are alternately present at predetermined intervals along the layer thickness direction, and the highest Cr content point, Cr A component concentration distribution structure in which the content ratios of Cr and B components continuously change from the highest content point to the B highest content point, respectively,
Further, the B highest content point is the composition formula: [B 1− (X + Z) Cr X Zr Z] N (provided that an atomic ratio, X is 0.15 to 0.40, Z represents a 0.01-0.10)
The Cr maximum content point, composition formula: formula: [Cr 1- (Y + Z ) B Y Zr Z] ( however, in atomic ratio, Y is 0.05 to 0.40, Z is from 0.01 to 0 .10),
And the distance between the B highest content point and the Cr highest content point adjacent to each other is 0.01 to 0.1 μm.
It is characterized by a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting.
[0010]
Next, in the coated carbide tool of the present invention, the reason why the structure of the hard coating layer constituting the tool is limited as described above will be described.
(A) In the composition (Cr, B, Zr) N layer with the highest B content point, the Cr component has the effect of improving the high temperature strength, and the Zr component also has the effect of further improving the high temperature strength in the presence of the Cr component. On the other hand, the B component has an effect of improving the high-temperature hardness. Therefore, at the highest B content point, the content of the B component is relatively increased to ensure a further excellent high-temperature hardness. When the X value indicating the content ratio of the component is less than 0.15 in the proportion of the total amount of B and Zr components (atomic ratio, the same applies hereinafter), the proportion of the B component becomes excessive and embrittles. Even if there is an adjacent Cr highest content point with excellent high-temperature strength, the highest B content point is the starting point of fracture, and chipping is likely to occur. On the other hand, if the X value exceeds 0.40, The ratio of B component is too low, There lowered, since it becomes wear proceeds rapidly, the X value was defined as 0.15 to 0.40.
The Zr component has the effect of improving the high-temperature strength in the coexistence with the Cr component as described above, but the Z value indicating the content ratio of the Zr component is 0. 0 in the total amount of the Cr and B components. If it is less than 01, the desired high-temperature strength improvement effect cannot be obtained. On the other hand, if the Z value exceeds 0.10, the high-temperature hardness rapidly decreases and wear is promoted. It was determined as 01 to 0.10.
[0011]
(B) Composition of the highest Cr content point As described above, the highest B content point has excellent high-temperature hardness, but on the other hand, it has a low high-temperature strength. For the purpose, the Cr content is high and the Zr component coexists, thereby interposing in the thickness direction alternately the highest Cr content points that have high high-temperature strength. When the Y value indicating the ratio is less than 0.05 in the ratio of the total amount of Cr and Zr components, the ratio of the Cr components increases too much, the high temperature hardness decreases rapidly, and the B highest content point is adjacent. Even if it is present, wear is further promoted. On the other hand, if the Y value exceeds 0.40 as a proportion of the total amount of Cr and Zr components, the high-temperature strength at the highest Cr content point rapidly decreases. Since chipping is likely to occur, The case was determined to be 0.05 to 0.40.
Further, the Z value indicating the content ratio of the Zr component at the highest Cr content point is also determined to be 0.01 to 0.10 for the same reason as that at the highest B content point.
[0012]
(C) Interval between the highest B content point and the highest Cr content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. Strength and high-temperature hardness cannot be ensured, and if the distance exceeds 0.1 μm, each point has a defect, that is, if the B highest content point is insufficient, the high temperature strength is insufficient, and if the Cr highest content point is high Insufficient hardness appears locally in the layer, which makes it easier for chipping to occur at the cutting edge and promotes wear, so the interval is set to 0.01 to 0.1 μm. It was.
[0013]
(D) Average layer thickness of hard coating layer If the layer thickness is less than 0.5 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping occurs at the cutting edge. Since it becomes easy to generate | occur | produce, the average layer thickness was set to 0.5-15 micrometers.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
Example 1
As raw material powders, WC powder, TiC powder, TaC powder, VC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle diameter of 1 to 3 μm, were prepared. And then wet-mixed with a ball mill for 72 hours, dried, and press-molded into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa at a temperature of 1400 ° C. for 1 hour. Sintered under holding conditions, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03, and a cemented carbide substrate A-1 made of WC-based cemented carbide having a chip shape of ISO standard / CNMG120408 ~ A-10 was formed.
[0015]
Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / TiCN-based cermet carbide substrates B-1 to B-6 having a chip shape of CNMG120408 were formed.
[0016]
Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then rotated in the physical vapor deposition apparatus shown in FIG. On the table, it is mounted eccentrically at a position away from the central axis of the rotary table in the radial direction, and as a cathode electrode target (evaporation source) on one side, Cr— B-Zr alloy, as a sputtering target (evaporation source) on the other side, B-Cr-Zr alloy for forming B highest content point having various component compositions are arranged opposite to each other across the rotary table, and for bombard cleaning. Carbide substrate, which is also mounted with metal Cr, and is first heated to 500 ° C. with a heater and then rotated while rotating on the rotary table while evacuating the apparatus and maintaining a vacuum of 0.1 Pa or less. A DC bias voltage of −1000 V is applied, a current of 100 A is caused to flow between the metal Cr of the cathode electrode and the anode electrode to generate arc discharge, and the surface of the carbide substrate is cleaned with Cr bombardment, and then in the apparatus. As a reaction gas, a mixed gas of nitrogen gas and Ar gas (volume%, N 2 / Ar = 30/70) is introduced to make a reaction atmosphere of 2.5 Pa, and rotates while rotating on the rotary table. A DC bias voltage of −100 V is applied to the carbide substrate, and an arc discharge is generated by flowing a current of 100 A between the cathode electrode target and the anode electrode of the Cr—B—Zr alloy for forming the highest Cr content point. In addition, the sputtering target of the B-Cr-Zr alloy for forming the highest B content point is applied with a power of 1 kW to generate spatter. The highest Cr content point and the highest B content point of the target composition shown in Tables 3 and 4 are alternately repeated at the target intervals shown in Tables 3 and 4 along the layer thickness direction on the surface of the cemented carbide substrate. And a component concentration distribution structure in which the content ratios of Cr and B components continuously change from the highest B content point to the highest Cr content point, from the highest Cr content point to the highest B content point, and Similarly, by depositing a hard coating layer having a target layer thickness shown in Tables 3 and 4, a throwaway tip made of the surface-coated cemented carbide of the present invention as the coated carbide tool of the present invention (hereinafter referred to as the coated carbide chip of the present invention). 1) to 16 were produced.
[0017]
For comparison purposes, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, and each of the ordinary arcs shown in FIG. Inserted into an ion plating apparatus, mounted with a Cr—B alloy having various component compositions as a cathode electrode (evaporation source), and mounted with a metallic Cr for bombard cleaning. The inside of the apparatus was heated to 500 ° C. with a heater while maintaining a vacuum of 0.5 Pa or less, and then a −1000 V DC bias voltage was applied to the cemented carbide substrate, and between the metal Cr of the cathode electrode and the anode electrode by flowing a 100A current to generate an arc discharge, with the carbide substrate surface was washed Cr bombardment by then a mixed gas (volume% of nitrogen gas and Ar gas as a reaction gas into the apparatus, N 2 / Ar = 0/70) was introduced to make a reaction atmosphere of 2.5 Pa, and the bias voltage applied to the cemented carbide substrate was lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode, Therefore, each of the surfaces of the carbide substrates A-1 to A-10 and B-1 to B-6 has the target composition and the target layer thickness shown in Table 5 and is substantially along the thickness direction. By depositing a hard coating layer composed of a (Cr, B) N layer having no composition change, a conventional surface-coated cemented carbide throwaway tip (hereinafter referred to as a conventional coated carbide tip) as a conventional coated carbide tool. ) 1-16 were produced.
[0018]
Next, with the present invention coated carbide tips 1-16 and conventional coated carbide tips 1-16, in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 260 m / min. ,
Cutting depth: 2.8 mm,
Feed: 0.12 mm / rev. ,
Cutting time: 4 minutes
Dry intermittent high-speed high-cut cutting test of mild steel under the conditions of
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 250 m / min. ,
Incision: 2.5mm,
Feed: 0.20 mm / rev. ,
Cutting time: 3 minutes
Stainless steel dry interrupted high-speed high-cut cutting test,
Work material: JIS / SUS304 lengthwise equidistant four round grooved round bars,
Cutting speed: 250 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.4 mm / rev. ,
Cutting time: 3 minutes
The dry intermittent high-speed high-feed cutting test of stainless steel was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any of the turning tests. The measurement results are shown in Table 6.
[0019]
[Table 1]
Figure 0004379908
[0020]
[Table 2]
Figure 0004379908
[0021]
[Table 3]
Figure 0004379908
[0022]
[Table 4]
Figure 0004379908
[0023]
[Table 5]
Figure 0004379908
[0024]
[Table 6]
Figure 0004379908
[0025]
(Example 2)
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 .mu.m Co powder, mix these raw material powders with the composition shown in Table 7, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and then press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. In combination, a carbide substrate (end mill) having a diameter of 4 mm × 13 mm, a length of 6 mm × 13 mm, a size of 10 mm × 22 mm, and a size of 20 mm × 45 mm, and a four-blade square with a twist angle of 30 degrees. ) C-1 to C-8 were produced.
[0026]
Next, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the physical vapor deposition apparatus shown in FIG. 1, the highest Cr content point and the highest B content point of the target composition shown in Table 8 along the layer thickness direction alternately and repeatedly exist at the target interval shown in Table 8, and the B It has a component concentration distribution structure in which the content ratios of Cr and B components continuously change from the highest content point to the highest Cr content point and from the highest Cr content point to the highest B content point, and also shown in Table 8 The surface coating cemented carbide end mills (hereinafter referred to as the present invention coated carbide end mills) 1 to 8 as the present invention coated carbide tools were produced by vapor-depositing a hard coating layer having a target layer thickness. .
[0027]
For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. (Cr, B) N layer that is charged and has the target composition and target layer thickness shown in Table 9 under the same conditions as in Example 1 and has substantially no composition change along the layer thickness direction. The conventional surface-coated cemented carbide end mills (hereinafter referred to as conventional coated cemented carbide end mills) 1 to 8 as conventional coated cemented carbide tools were produced by vapor-depositing a hard coating layer comprising:
[0028]
Next, of the present invention coated carbide end mills 1-8 and conventional coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and conventional coated carbide end mills 1-3 are as follows:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 110 m / min. ,
Axial cut: 5mm,
Radial notch: 2.5mm,
Table feed: 380 mm / min,
With respect to the dry high-speed high-cut side cutting test of mild steel under the following conditions, the coated carbide end mills 4 to 6 of the present invention and the conventional coated carbide end mills 4 to 6:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 120 m / min. ,
Axial cut: 10 mm
Radial notch: 3.5mm,
Table feed: 500 mm / min,
For the dry high-speed high-cut side cutting test of stainless steel under the following conditions, the coated carbide end mills 7 and 8 of the present invention and the conventional coated carbide end mills 7 and 8:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS430 plate material,
Cutting speed: 120 m / min. ,
Axial cut: 20mm,
Radial notch: 4mm,
Table feed: 350 mm / min,
Stainless steel dry high-speed high-feed side-cutting tests were performed under the conditions described above, and the flank wear width of the outer peripheral edge of the cutting edge reaches 0.1 mm, which is a guide for the service life in any side-cutting test. The cutting length up to was measured. The measurement results are shown in Tables 8 and 9, respectively.
[0029]
[Table 7]
Figure 0004379908
[0030]
[Table 8]
Figure 0004379908
[0031]
[Table 9]
Figure 0004379908
[0032]
(Example 3)
The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 having a two-blade shape with a twist angle of 30 degrees were manufactured.
[0033]
Next, honing is applied to the cutting edges of these carbide substrates (drills) D-1 to D-8, ultrasonic cleaning is performed in acetone, and the dried blades are loaded into the physical vapor deposition apparatus of FIG. Under the same conditions as in Example 1 above, the highest Cr content point and the highest B content point of the target composition shown in Table 10 along the layer thickness direction are repeatedly present at the target interval shown in Table 10 alternately. And having a component concentration distribution structure in which the content ratios of Cr and B components continuously change from the highest B content point to the highest Cr content point, from the highest Cr content point to the highest B content point, respectively, By depositing a hard coating layer having a target layer thickness shown in Table 10, drills made of the surface coated cemented carbide according to the present invention (hereinafter referred to as the present coated carbide drill) 1 to 8 as the coated carbide tool of the present invention. Were manufactured respectively.
[0034]
For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc ion plate of FIG. And having the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1, and substantially no composition change along the layer thickness direction (Cr, B ) Drills made of conventional surface-coated cemented carbide (hereinafter referred to as conventional coated carbide drills) 1 to 8 as conventional coated carbide tools were produced by vapor-depositing a hard coating layer comprising an N layer.
[0035]
Next, of the present invention coated carbide drills 1-8 and conventional coated carbide drills 1-8, the present invention coated carbide drills 1-3 and conventional coated carbide drills 1-3,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS304 plate,
Cutting speed: 60 m / min. ,
Feed: 0.2 mm / rev. ,
Hole depth: 15 mm. ,
For the wet high speed high feed drilling test of stainless steel under the conditions of the present invention, the coated carbide drills 4-6 of the present invention and the conventional coated carbide drills 4-6,
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 75 m / min. ,
Feed: 0.23 mm / rev. ,
Hole depth: 25 mm. ,
For the wet high speed high feed drilling test of mild steel under the following conditions, the coated carbide drills 7 and 8 of the present invention and the conventional coated carbide drills 7 and 8:
Work material: Plane dimension: 100 mm × 250 mm, thickness: 50 mm JIS / SUS430 plate material,
Cutting speed: 100 m / min. ,
Feed: 0.35 mm / rev. ,
Hole depth: 50 mm. ,
Wet high-speed high-feed drilling machining test of stainless steel under the above conditions, respectively, and the flank wear width of the tip cutting edge surface is 0 in any wet high-speed high-feed drilling test (using water-soluble cutting oil). The number of drilling processes up to 3 mm was measured. The measurement results are shown in Tables 10 and 11, respectively.
[0036]
[Table 10]
Figure 0004379908
[0037]
[Table 11]
Figure 0004379908
[0038]
In the hard coating layer which comprises this invention coated carbide tips 1-16, this invention coated carbide end mills 1-8, and this invention coated carbide drills 1-8 as this invention coated carbide tool obtained as a result. The composition of the highest Cr content point and the highest B content point, as well as the conventional coated carbide tips 1-16 as the conventional coated carbide tool, the conventional coated carbide end mills 1-8, and the hard coating of the conventional coated carbide drills 1-8 Regarding the composition of the layer, the content of Cr, B, and Zr components along the thickness direction was measured using an Auger spectroscopic analyzer. In the hard coating layer of the coated carbide tool of the present invention, The highest B content points are alternately and repeatedly present at substantially the same composition and interval as the target value, and the highest Cr content point to the highest B content point and the highest B content point to the highest Cr content point Cr And The content of component B is confirmed to have each continuously varying component concentration distribution structure, and exhibited substantially the same value average layer thickness is also the target layer thickness of the hard layer.
On the other hand, the hard coating layer of the conventional coated carbide tool does not show a composition change along the thickness direction, and shows a composition substantially the same as the target composition and an average layer thickness substantially the same as the target layer thickness. confirmed.
[0039]
【The invention's effect】
From the results shown in Tables 3 to 11, in the thickness direction, the hardest coating layer has a Cr highest content point having extremely high high-temperature strength and a B highest content point having excellent high-temperature hardness at predetermined intervals alternately. A book having a component concentration distribution structure that repeatedly exists and the content ratio of Cr and B components continuously changes from the highest Cr content point to the highest B content point and from the highest B content point to the highest Cr content point. Invented coated carbide tools all have high-speed cutting of various types of stainless steel and mild steel, even when heavy cutting conditions such as high cutting with high mechanical impact and high cutting are performed, and chipping is applied to the cutting edge. Conventionally coated carbide consisting of (Cr, B) N layer, which does not occur and the hard coating layer exhibits excellent wear resistance, while the hard coating layer has substantially no composition change along the thickness direction. For tools, heavy The high-speed cutting at cutting conditions, in high temperature strength and high-temperature hardness insufficient cause of the hard coating layer, any chipping occurs, it is apparent that lead to a relatively short time service life.
As described above, the coated carbide tool of the present invention is not only capable of cutting steel and cast iron under normal conditions, but particularly high-speed cutting of difficult-to-cut materials such as various stainless steels and mild steels. A cutting device that exhibits excellent chipping resistance and excellent wear resistance over a long period of time even under heavy cutting conditions such as high cutting and high feed with mechanical impact. It is possible to sufficiently satisfy the high performance, cutting labor and energy saving, and cost reduction.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 shows a physical vapor deposition apparatus used for forming a hard coating layer constituting a coated carbide tool of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of an arc ion plating apparatus used for forming a hard coating layer constituting a conventional coated carbide tool.

Claims (1)

炭化タングステン基超硬合金基体または炭窒化チタン系サーメット基体の表面に、Cr(クロム)とB(ボロン)とZr(ジルコニウム)の複合窒化物からなる硬質被覆層を0.5〜15μmの平均層厚で物理蒸着してなる表面被覆超硬合金製切削工具にして、
上記硬質被覆層が、層厚方向にそって、B最高含有点とCr最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記B最高含有点から前記Cr最高含有点、前記Cr最高含有点から前記B最高含有点へBおよびCr成分の含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記B最高含有点が、組成式:[B1- (X+Z)CrX Zr]N(ただし、原子比で、Xは0.15〜0.40、Zは0.01〜0.10を示す)、
上記Cr最高含有点が、組成式:[Cr1- Y +Z)Y Zr]N(ただし、原子比で、Yは0.05〜0.40、Zは0.01〜0.10を示す)、
をそれぞれ満足し、かつ隣り合う上記B最高含有点とCr最高含有点の間隔が、0.01〜0.1μmであること、
を特徴とする高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of a tungsten carbide base cemented carbide substrate or a titanium carbonitride cermet substrate, a hard coating layer made of a composite nitride of Cr (chromium), B (boron) and Zr (zirconium) is an average layer of 0.5 to 15 μm. A surface-coated cemented carbide cutting tool made by physical vapor deposition with a thickness,
In the hard coating layer, the highest B content point and the highest Cr content point are alternately present at predetermined intervals along the layer thickness direction, and the highest Cr content point, Cr A component concentration distribution structure in which the content ratios of the B and Cr components continuously change from the highest content point to the B highest content point, respectively,
Further, the B highest content point is the composition formula: [B 1− (X + Z) Cr X Zr Z] N (provided that an atomic ratio, X is 0.15 to 0.40, Z represents a 0.01-0.10)
The Cr maximum content point is the composition formula: [Cr 1− ( Y + Z) B Y Zr Z ] N (wherein Y is 0.05 to 0.40 and Z is 0.01 to 0.10 in atomic ratio ). ),
And the distance between the B highest content point and the Cr highest content point adjacent to each other is 0.01 to 0.1 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance in a high-speed heavy-cutting process with a hard coating layer.
JP2003145566A 2003-05-23 2003-05-23 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting Expired - Fee Related JP4379908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145566A JP4379908B2 (en) 2003-05-23 2003-05-23 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145566A JP4379908B2 (en) 2003-05-23 2003-05-23 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2004345037A JP2004345037A (en) 2004-12-09
JP4379908B2 true JP4379908B2 (en) 2009-12-09

Family

ID=33532662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145566A Expired - Fee Related JP4379908B2 (en) 2003-05-23 2003-05-23 Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Country Status (1)

Country Link
JP (1) JP4379908B2 (en)

Also Published As

Publication number Publication date
JP2004345037A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4367032B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4120467B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP2004338058A (en) Cutting tool made of surface coated hard metal with hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting condition
JP3969260B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4150913B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed heavy cutting conditions and manufacturing method thereof
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP4379908B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4150914B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4379907B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4120442B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4320714B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed heavy cutting
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4320715B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed heavy cutting
JP4120458B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP4120456B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4150915B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed heavy cutting conditions and manufacturing method thereof
JP4379912B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2005028457A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed cutting of hard-to-cut material
JP3972294B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees