JP2003245556A - Catalyst for reacting hydrocarbon and reaction method using this - Google Patents

Catalyst for reacting hydrocarbon and reaction method using this

Info

Publication number
JP2003245556A
JP2003245556A JP2002049355A JP2002049355A JP2003245556A JP 2003245556 A JP2003245556 A JP 2003245556A JP 2002049355 A JP2002049355 A JP 2002049355A JP 2002049355 A JP2002049355 A JP 2002049355A JP 2003245556 A JP2003245556 A JP 2003245556A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
hydrocarbon
moo
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002049355A
Other languages
Japanese (ja)
Other versions
JP4452011B2 (en
Inventor
Nobuo Fujikawa
伸夫 藤川
Kenichi Wakui
顕一 涌井
Noriyuki Ogami
典行 大上
Wataru Ueda
渉 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Eneos Corp
Original Assignee
Idemitsu Petrochemical Co Ltd
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd, Nippon Petrochemicals Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP2002049355A priority Critical patent/JP4452011B2/en
Publication of JP2003245556A publication Critical patent/JP2003245556A/en
Application granted granted Critical
Publication of JP4452011B2 publication Critical patent/JP4452011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst capable of manufacturing an oxygen-containing product having a high added value as an industrial material and olefins from alkanes as raw materials, and a manufacturing method. <P>SOLUTION: The catalyst is obtained by bonding a tellurium compound and an antimony compound to a molybdenum - cobalt composite oxide and a molybdenum - nickel composite oxide. In the method for manufacturing an oxygen-containing compound such as acrolein and acrylic acid and the method for dehydrating the alkanes, the alkanes are subjected to a partial oxidation reaction using this catalyst. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素の部分酸
化反応や飽和炭化水素の脱水反応、特にアルカン類の部
分酸化によるメタクリル酸,アクロレイン,メタクロレ
イン等の含酸素化合物の製造等に用いられる炭化水素反
応用触媒およびこれを用いた反応方法に関するものであ
る。
TECHNICAL FIELD The present invention is used for partial oxidation of hydrocarbons and dehydration of saturated hydrocarbons, and particularly for production of oxygen-containing compounds such as methacrylic acid, acrolein and methacrolein by partial oxidation of alkanes. The present invention relates to a hydrocarbon reaction catalyst and a reaction method using the same.

【0002】[0002]

【従来の技術】従来から、オレフィン類は工業用原料と
して広範囲に用いられているが、アルカン類はオレフィ
ン類に比べて著しく反応性に欠けているため、アルカン
類の利用は、燃料としての利用が中心であった。アルカ
ン類を工業原料として用いることにより、工業用原料コ
ストを低減し、工業用原料の需要供給の調整を容易なも
のとし、化石資源を節約をする等の利点を得ることがで
きるため、アルカン類を基幹原料とするプロセスの開発
検討がなされている。特に、従来、アクリル酸,メタク
リル酸,アクロレイン,メタクロレイン等の含酸素化合
物は、オレフィン類を原料として製造されているが、含
酸素化合物の原料をオレフィン類からアルカン類に転換
することが盛んに検討されている。
2. Description of the Related Art Conventionally, olefins have been widely used as industrial raw materials, but since alkanes are significantly less reactive than olefins, they are used as fuels. Was the center. By using alkanes as industrial raw materials, the cost of industrial raw materials can be reduced, the demand and supply of industrial raw materials can be easily adjusted, and advantages such as saving fossil resources can be obtained. The development of a process that uses as a basic raw material is under study. In particular, conventionally, oxygen-containing compounds such as acrylic acid, methacrylic acid, acrolein, and methacrolein have been produced from olefins as raw materials. However, the raw materials for oxygen-containing compounds are actively converted from olefins to alkanes. Is being considered.

【0003】従来、アルカン類の部分酸化反応は、アル
カン類の炭素数が小さいほど困難であり、例えば、アク
リル酸を製造するために行うプロパンの部分酸化反応
は、アクリル酸の収率が10%限界という至難の反応で
あった。近年、約50%の収率でアクリル酸を製造する
ことが可能な触媒が提案されているが(特開平10−5
7813号公報)、この触媒を用いると、酢酸、一酸化
炭素、二酸化炭素を生成する副反応が起こり易く、工業
的に実施するには選択性に問題があった。また、上記の
点に着目し、選択性の向上を図った触媒が提案されてい
るが(特開平10−120617号公報)、依然として
工業的に必要な選択性を得るには至っていない。このた
め、高選択性、高活性で、工業的実施に適した触媒が、
現在でも求められている。また、この触媒は、調製が容
易で再現性や安定性に優れていることも求められてい
る。
Conventionally, the partial oxidation reaction of alkanes is more difficult as the carbon number of alkanes is smaller. For example, the partial oxidation reaction of propane for producing acrylic acid has a yield of acrylic acid of 10%. It was a difficult reaction called the limit. In recent years, a catalyst capable of producing acrylic acid with a yield of about 50% has been proposed (JP-A-10-5).
No. 7813), when this catalyst is used, a side reaction which produces acetic acid, carbon monoxide, and carbon dioxide is likely to occur, and there is a problem in selectivity for industrial implementation. Further, a catalyst having improved selectivity has been proposed by paying attention to the above points (Japanese Patent Application Laid-Open No. 10-120617), but it has not yet reached the industrially required selectivity. Therefore, a catalyst with high selectivity and high activity, which is suitable for industrial implementation,
Still required today. Further, this catalyst is also required to be easily prepared and excellent in reproducibility and stability.

【0004】また、アルカン類を選択的に部分酸化する
にはオレフィン類の酸化よりもはるかに大きい活性化エ
ネルギーを必要とし、従来のオレフィン酸化触媒ではほ
とんど反応できない。また、500℃以上の高温におい
てアルカン類は活性化するが生成物の完全酸化が極めて
起こり易くなるため、オレフィン類の選択率が低くな
る。従って、アルカン類を有用な部分酸化生成物に選択
的に転換するには、300〜450℃程度の比較的低温
でアルカン類を活性化できるような触媒、しかも調製が
容易で安定性が極めて高い触媒を開発する必要があっ
た。なお、この触媒は低水蒸気濃度、高プロパン濃度で
働くことが望ましい。さらに工業的にはプロパンにもプ
ロピレンにも対応可能な触媒を開発できれば、原料の多
様化による運転の安定性を確保することができる。
Further, the selective partial oxidation of alkanes requires much larger activation energy than the oxidation of olefins, and almost no reaction is possible with conventional olefin oxidation catalysts. Further, alkanes are activated at a high temperature of 500 ° C. or higher, but complete oxidation of the product is extremely likely to occur, resulting in a low selectivity of olefins. Therefore, in order to selectively convert alkanes into useful partial oxidation products, a catalyst that can activate alkanes at a relatively low temperature of about 300 to 450 ° C., which is easy to prepare and has extremely high stability. It was necessary to develop a catalyst. It is desirable that this catalyst works at low steam concentration and high propane concentration. Further, industrially, if a catalyst that can handle both propane and propylene can be developed, it is possible to secure the operation stability by diversifying the raw materials.

【0005】ところで、モリブデン酸塩のうち、コバル
ト塩とニッケル塩はアルカン類に対して高い酸化脱水素
活性を示す化合物であるが、部分酸化選択率は低く、ク
ラッキングや完全酸化が強い傾向にある。一方、テルル
やアンチモン等の遷移金属元素は、プロピレンの部分酸
化触媒(ビスマス−モリブデン複合酸化物)などに配合
され、オレフィンのアリル酸化を補助する能力があるこ
とが知られているが、テルルやアンチモン等の元素単独
では、金属,金属酸化物,ヘテロポリ酸等の化合物の種
類を問わず、アルカン類を活性化する能力は乏しく、工
業的に満足できる結果が得られていない。
By the way, among molybdates, cobalt salts and nickel salts are compounds showing high oxidative dehydrogenation activity for alkanes, but their partial oxidation selectivity is low, and cracking and complete oxidation tend to be strong. . On the other hand, it is known that transition metal elements such as tellurium and antimony are blended with a partial oxidation catalyst of propylene (bismuth-molybdenum composite oxide) and the like and have the ability to assist the allyl oxidation of olefins. An element such as antimony alone has a poor ability to activate alkanes regardless of the type of compound such as metal, metal oxide, or heteropoly acid, and industrially satisfactory results have not been obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、アル
カン類を原料として、より工業原料として付加価値の高
い含酸素化成品やオレフィン類を製造できる触媒を提供
することである。
An object of the present invention is to provide a catalyst capable of producing an oxygen-containing chemical product or olefin having a high added value as an industrial raw material using alkanes as a raw material.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
について鋭意研究を重ねた結果、テルル化合物やアンチ
モン化合物をモリブデン−コバルト複合酸化物やモリブ
デン−ニッケル複合酸化物に結合させた触媒が本発明の
目的に添うものであることを見出した。すなわち、平面
構造を有するアンダーソン(Anderson)型ヘテ
ロポリ酸類やテルル酸等のオキソ酸類並びに酸化テルル
及び酸化アンチモン等の酸化物が、テルル化合物やアン
チモン化合物等の遷移金属化合物の前駆体として特に有
効であり、担体としては、モリブデン−コバルト複合酸
化物又はモリブデン−ニッケル複合酸化物が有効である
ことを見出した。また、このようなモリブデン−コバル
ト複合酸化物又はモリブデン−ニッケル複合酸化物に担
持した触媒を用いると、アルカン類を選択的に部分酸化
して各種の含酸素化合物に変換させることや飽和炭化水
素の脱水素反応にも用いることができ、アルカン類やオ
レフィン類からアセトアルデヒド,アクロレイン、アク
リル酸等の各種含酸素化合物等が得られることを見出し
た。本発明はかかる知見に基づいて完成したものであ
る。
As a result of intensive studies on the above problems, the present inventors have found that a catalyst in which a tellurium compound or an antimony compound is bonded to a molybdenum-cobalt composite oxide or a molybdenum-nickel composite oxide is used. It has been found that the object of the present invention is met. That is, Anderson type heteropolyacids having a planar structure, oxo acids such as telluric acid, and oxides such as tellurium oxide and antimony oxide are particularly effective as precursors of transition metal compounds such as tellurium compounds and antimony compounds. As a carrier, it was found that molybdenum-cobalt composite oxide or molybdenum-nickel composite oxide is effective. When a catalyst supported on such a molybdenum-cobalt composite oxide or a molybdenum-nickel composite oxide is used, the alkanes are selectively partially oxidized to be converted into various oxygen-containing compounds or saturated hydrocarbons. It has been found that it can be used for dehydrogenation reaction and various oxygen-containing compounds such as acetaldehyde, acrolein and acrylic acid can be obtained from alkanes and olefins. The present invention has been completed based on such findings.

【0008】すなわち、本発明は以下の炭化水素反応用
触媒及び、これを用いた反応方法を提供するものであ
る。 1.テルル化合物およびアンチモン化合物から選ばれた
少なくとも一種を、モリブデン−コバルト複合酸化物及
び/又はモリブデン−ニッケル複合酸化物に結合させた
ことを特徴とする炭化水素反応用触媒。 2.テルル化合物が、アンダーソン型ヘテロポリ酸又は
テルル酸とその有機塩および酸化テルルから選ばれた少
なくとも一種の化合物である上記1の炭化水素反応用触
媒。 3.アンチモン化合物がアンチモン酸化物、アンチモン
有機酸塩、アンチモン無機酸塩およびアンチモニルアン
モニウム錯塩から選ばれた少なくとも一種の化合物であ
る上記1又は2の炭化水素反応用触媒。 4.上記1〜3のいずれかの触媒を用いて炭化水素を反
応させることを特徴とする炭化水素の反応方法。 5.炭化水素の反応が、炭化水素の部分酸化反応である
上記4の炭化水素の反応方法。 6.炭化水素がアルカン類および/又はオレフィン類で
ある上記5の炭化水素の反応方法。 7.炭化水素がプロパンおよび/又はプロピレンであ
り、反応生成物がアセトアルデヒド,アクロレイン及び
はアクリル酸から選ばれた一種以上の含酸素化合物であ
る上記6の炭化水素の反応方法。 8.炭化水素の反応が、酸素不存在下での飽和炭化水素
の脱水素反応である上記4の炭化水素の反応方法。
That is, the present invention provides the following hydrocarbon reaction catalyst and a reaction method using the same. 1. A catalyst for a hydrocarbon reaction, comprising at least one selected from a tellurium compound and an antimony compound bound to a molybdenum-cobalt composite oxide and / or a molybdenum-nickel composite oxide. 2. The catalyst for hydrocarbon reaction according to 1 above, wherein the tellurium compound is at least one compound selected from Anderson heteropoly acid or telluric acid, an organic salt thereof and tellurium oxide. 3. The catalyst for hydrocarbon reaction according to 1 or 2 above, wherein the antimony compound is at least one compound selected from antimony oxide, antimony organic acid salt, antimony inorganic acid salt and antimonylammonium complex salt. 4. A method for reacting a hydrocarbon, which comprises reacting a hydrocarbon using the catalyst according to any one of 1 to 3 above. 5. 5. The hydrocarbon reaction method according to the above 4, wherein the reaction of the hydrocarbon is a partial oxidation reaction of the hydrocarbon. 6. 6. The method for reacting a hydrocarbon as described in 5 above, wherein the hydrocarbon is an alkane and / or an olefin. 7. 7. The method for reacting a hydrocarbon according to 6 above, wherein the hydrocarbon is propane and / or propylene, and the reaction product is acetaldehyde, acrolein, and one or more oxygen-containing compounds selected from acrylic acid. 8. 5. The hydrocarbon reaction method according to the above 4, wherein the reaction of hydrocarbon is a dehydrogenation reaction of saturated hydrocarbon in the absence of oxygen.

【0009】[0009]

【発明の実施の形態】本発明の炭化水素反応用触媒は、
テルル化合物やアンチモン化合物を、モリブデン−コバ
ルト又はモリブデン−ニッケルを主要元素とする複合酸
化物に結合させものである。該触媒に用いられるテルル
化合物としては、アンダーソン型ヘテロポリ酸又はテル
ル酸とその有機塩および酸化テルルがある。アンダーソ
ン型ヘテロポリ酸は、中心原子がFe,Co,Ni,R
h,Pt,Te,Al等の遷移金属原子であって、ポリ
原子がMo,Wである構造を有するものであり、具体的
には、H6 TeMo6 24,H9 CoMo6 24などが
挙げられる。また、これらの酸を部分的または完全にア
ンモニウムイオンやアルカリ金属,アルカリ土類金属,
遷移金属,各種のアミン類等のカチオンで置換した塩を
用いることもできる。ヘテロポリ酸の塩は水和物であっ
てもよい。本発明においては、中心原子がTeであるも
のが用いられ、(NH4 6 TeMo6 24,(N
4 6 TeMo6 24・7H2 Oが特に好ましい。ま
た、その対カチオン(NH4 基)が、プロトンまたはテ
トラブチルアンモニウム、セチルトリメチルアンモニウ
ム等の有機塩基カチオンで交換されたものでも良い。ま
た、オキソ酸のテルル酸(H6 TeO6 )については、
酸を部分的または完全にアンモニウムイオンやアルカリ
金属,アルカリ土類金属,遷移金属,各種のアミン類等
のカチオンで置換した塩、例えばテルル酸アンモニウム
〔(NH4)6TeO6 〕等を用いることもできる。な
お、この塩は水和物であってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The hydrocarbon reaction catalyst of the present invention comprises:
A tellurium compound or an antimony compound is bonded to a composite oxide containing molybdenum-cobalt or molybdenum-nickel as a main element. The tellurium compound used for the catalyst includes Anderson type heteropoly acid or telluric acid and its organic salt and tellurium oxide. Anderson-type heteropolyacid has a central atom of Fe, Co, Ni, R
It is a transition metal atom such as h, Pt, Te, or Al and has a structure in which the poly atom is Mo or W. Specifically, H 6 TeMo 6 O 24 , H 9 CoMo 6 O 24, etc. Is mentioned. In addition, these acids are partially or completely ammonium ion, alkali metal, alkaline earth metal,
A salt substituted with a cation such as a transition metal or various amines can also be used. The salt of the heteropoly acid may be a hydrate. In the present invention, the one in which the central atom is Te is used, and (NH 4 ) 6 TeMo 6 O 24 , (N
H 4) 6 TeMo 6 O 24 · 7H 2 O are particularly preferred. Further, the counter cation (NH 4 group) may be exchanged with a proton or an organic base cation such as tetrabutylammonium or cetyltrimethylammonium. Regarding the oxo acid telluric acid (H 6 TeO 6 ),
Use a salt obtained by partially or completely substituting an acid with a cation such as ammonium ion, alkali metal, alkaline earth metal, transition metal, or various amines, for example, ammonium tellurate [(NH 4 ) 6 TeO 6 ]. You can also The salt may be a hydrate.

【0010】アンチモン化合物の中でアンチモン酸化物
としては、三酸化二アンチモン、四酸化二アンチモン、
五酸化二アンチモンが挙げられ、アンチモン有機酸塩と
しては、酢酸アンチモン、酒石酸アンチモン等、アンチ
モン無機酸塩としては、硫酸アンチモン等、アンチモニ
ルアンモニウム錯塩としては、シュウ酸アンチモニルア
ンモニウム〔(NH4)3 [ Sb(C2 4 3]〕,酒石
酸アンチモニルアンモニウム〔(NH4)2 Sb2 (C4
2 6 2 〕などが挙げられる。
Among the antimony compounds, antimony oxides include diantimony trioxide, diantimony tetroxide,
Examples of the antimony organic acid salt include antimony acetate, antimony tartrate, and the like, antimony inorganic acid salts such as antimony sulfate, and antimonylammonium complex salts such as antimonylammonium oxalate [(NH 4 ). 3 [Sb (C 2 O 4 ) 3 ]], antimonylammonium tartrate [(NH 4 ) 2 Sb 2 (C 4
H 2 O 6 ) 2 ] and the like.

【0011】上記ヘテロポリ酸類やオキソ酸類等を担持
させる担体としては、モリブデン−コバルト複合酸化物
やモリブデン−ニッケル複合酸化物が用いられる。この
ような複合金属酸化物としては、化学量論組成化合物
(CoMoO4 ,NiMoO4)や種々のCo/Mo
比,Ni/Mo比の化合物、混合物あるいは担持触媒を
挙げることができ、Moが若干過剰の組成のもの(例え
ばCo0.92MoO3.92,Ni0.92MoO3.92)が好まし
い。また、補助成分としてV,Nb,Sb,P,Bi,
Ta,Cu,Cr,Fe、CoあるいはPt、Pd、R
e等の貴金属とNa、K、Cs等のアルカリ金属を加え
たもの、更には12モリブドン酸等のヘテロポリ酸を加え
たものであってもよい。
A molybdenum-cobalt composite oxide or a molybdenum-nickel composite oxide is used as a carrier for supporting the above-mentioned heteropolyacids or oxoacids. Examples of such complex metal oxides include stoichiometric compounds (CoMoO 4 , NiMoO 4 ) and various Co / Mo.
Ratio, Ni / Mo ratio compound, mixture or supported catalyst can be mentioned, and those having a composition with a slight excess of Mo (for example, Co 0.92 MoO 3.92 , Ni 0.92 MoO 3.92 ) are preferable. Further, as auxiliary components, V, Nb, Sb, P, Bi,
Ta, Cu, Cr, Fe, Co or Pt, Pd, R
A noble metal such as e and an alkali metal such as Na, K, Cs, or a heteropolyacid such as 12 molybdonic acid may be added.

【0012】ヘテロポリ酸類やその塩等をモリブデン−
コバルト複合酸化物やモリブデン−ニッケル複合酸化物
に担持させるには、通常の含浸法により行うことができ
る。他に、イオン交換やスパッタリングにより触媒を調
製することもできる。本発明の触媒は、これらを原料と
して熱処理や水熱合成等の操作を施した複合酸化物であ
っても良く、また、本発明の触媒自体を活性点としてシ
リカ、アルミナ等に分散担持した触媒も含まれる。この
ような触媒を用いることにより、高温でも安定であっ
て、しかも高い選択率で所望の含酸素化合物やオレフィ
ン類を得ることが可能である。モリブデン−コバルト複
合酸化物やモリブデン−ニッケル複合酸化物に対するヘ
テロポリ酸又はその塩などの担持量は、担体との相互作
用を最適にするとの観点から、0.5〜30重量%とする
ことが好ましく、5〜20重量%が特に好ましい。
Heteropoly acids and salts thereof are molybdenum-containing
The supporting on the cobalt composite oxide or the molybdenum-nickel composite oxide can be carried out by an ordinary impregnation method. Alternatively, the catalyst can be prepared by ion exchange or sputtering. The catalyst of the present invention may be a composite oxide obtained by subjecting these to raw materials and subjected to operations such as heat treatment and hydrothermal synthesis, and a catalyst in which silica, alumina or the like is dispersed and supported on the catalyst itself of the present invention as an active site. Is also included. By using such a catalyst, it is possible to obtain a desired oxygen-containing compound or olefin with high selectivity, which is stable even at high temperature. From the viewpoint of optimizing the interaction with the carrier, the supported amount of the heteropolyacid or its salt on the molybdenum-cobalt composite oxide or the molybdenum-nickel composite oxide is preferably 0.5 to 30% by weight. , 5 to 20% by weight is particularly preferable.

【0013】本発明の触媒を用いることにより、飽和炭
化水素の部分酸化反応、酸素不共存下でのアルカンその
他の基質の脱水素及び部分酸化、含酸素化成品の製造な
どを行なうことができる。更に、オレフィンの部分酸化
またはアルカン/オレフィンの混合原料の酸化に用いる
こともできるが、特にプロパンないしプロピレンの部分
酸化に用いることが好ましく、含酸素化合物を製造する
ことができる。ここで、含酸素化合物とは、例えば、プ
ロパンを基質とした場合、酢酸,アセトアルデヒド,ア
クロレイン,アクリル酸等を指し、ブタンを基質とした
場合、酢酸,アクリル酸,アセトアルデヒド,メタクリ
ル酸,メタクロレイン(特に基質がイソブタンのとき)
等を指す。
By using the catalyst of the present invention, it is possible to carry out a partial oxidation reaction of saturated hydrocarbons, dehydrogenation and partial oxidation of alkanes and other substrates in the absence of oxygen, and production of oxygen-containing chemical products. Further, although it can be used for partial oxidation of olefin or oxidation of mixed raw material of alkane / olefin, it is particularly preferably used for partial oxidation of propane or propylene, and an oxygen-containing compound can be produced. Here, the oxygen-containing compound means, for example, acetic acid, acetaldehyde, acrolein, acrylic acid when propane is used as a substrate, and acetic acid, acrylic acid, acetaldehyde, methacrylic acid, methacrolein (butane is used when butane is used as a substrate). Especially when the substrate is isobutane)
Etc.

【0014】なお、本発明の触媒は、通常、酸素分子と
アルカン分子との共存下で機能するが、酸素が存在しな
いか、または極めて低濃度の酸素が存在する条件におい
てアルカン類と触媒を反応させ、その後、触媒を任意の
濃度で酸素を含むガスと接触させて触媒を再生する非エ
アロビック酸化を行うこともできる。更にこの反応に
は、炭素−炭素結合の部分的開裂による含酸素化合物の
生成が副反応として進行する場合がある。また、酸素だ
けでなく例えばアンモニアのような基質を共存させてア
ンモ酸化のような反応を進行させることもできる。
The catalyst of the present invention usually functions in the coexistence of oxygen molecules and alkane molecules, but the alkanes are reacted with the catalyst under the condition that oxygen is absent or an extremely low concentration of oxygen is present. After that, the catalyst can be brought into contact with a gas containing oxygen at an arbitrary concentration to perform non-aerobic oxidation in which the catalyst is regenerated. Further, in this reaction, formation of an oxygen-containing compound by partial cleavage of carbon-carbon bond may proceed as a side reaction. Further, not only oxygen but also a substrate such as ammonia can coexist to promote a reaction such as ammoxidation.

【0015】本発明の触媒を用いてアルカン類から各種
含酸素化合物及びオレフィンを製造するには各種の条件
にて行なうことができるが、反応温度が200℃〜60
0℃、好ましくは300℃〜500℃程度が望ましい。
反応は通常大気圧下で実施されるが若干の加圧もしくは
減圧下でもよい。また、空間速度と酸素分圧を調整する
ための希釈用ガスとして、窒素,アルゴン,ヘリウム,
二酸化炭素,水蒸気等の不活性ガスを用いることができ
る。反応方式は固定床、流動床等のいずれも採用でき
る。
Various oxygen-containing compounds and olefins can be produced from alkanes using the catalyst of the present invention under various conditions, but the reaction temperature is from 200 ° C to 60 ° C.
0 ° C., preferably about 300 ° C. to 500 ° C. is desirable.
The reaction is usually carried out under atmospheric pressure, but may be under slight pressure or under reduced pressure. Further, as a diluting gas for adjusting the space velocity and the oxygen partial pressure, nitrogen, argon, helium,
An inert gas such as carbon dioxide or water vapor can be used. As the reaction system, either a fixed bed or a fluidized bed can be adopted.

【0016】モリブデン酸塩のうち、コバルト塩とニッ
ケル塩はアルカンに対し高い酸化脱水素活性を示す化合
物だが、部分酸化選択率は低く、クラッキングや完全酸
化が強い傾向がある。一方、テルルは、プロピレンの部
分酸化触媒(Bi-Mo複合酸化物)などに配合され、オレフ
ィンのアリル酸化の補助能力があることが知られている
が、単独では、金属テルルおよびその酸化物、テルル−
ヘテロポリ酸等の化合物の種類を問わず、アルカンの活
性化能力は乏しい。発明者は、アルカン活性化能力の高
いモリブデン酸塩上に、ごく薄くテルル化合物を担持す
ることにより、両者の欠点を補い合うものと考え、モリ
ブデン酸塩により活性化したアルカン中間体を、テルル
化合物が引き取って部分酸化を行なう触媒を調製しよう
と試みた。ここで問題となるのは、これらモリブデン酸
ニッケルとテルルの活性部位の距離であり、中間体の受
け渡しを円滑化するには両者は可能な限り接近し、理想
的には化合物として一体化していることが望ましい。こ
のためには、担体となるモリブデン酸ニッケルの表面に
均一に吸着し、理想的な活性部位を形成するテルル化合
物を開発することと、担体となるモリブデン酸塩につい
ても、組成比により反応性が異なるので、組成や調製法
について検討することが必要と考えた。
Among molybdates, cobalt salts and nickel salts are compounds showing high oxidative dehydrogenation activity for alkanes, but their partial oxidation selectivity is low and they tend to be strongly cracked or completely oxidized. On the other hand, tellurium is mixed with a partial oxidation catalyst of propylene (Bi-Mo composite oxide) and the like, and is known to have an auxiliary ability for allylic oxidation of olefins, but alone, metal tellurium and its oxide, Tellurium
Regardless of the type of compound such as heteropoly acid, the activation ability of alkane is poor. The inventor believes that by supporting a tellurium compound very thinly on a molybdate having a high ability to activate alkanes, the shortcomings of the two are compensated for, and the alkane intermediate activated by the molybdate is replaced by a tellurium compound. Attempts were made to prepare a catalyst for the partial oxidation. The problem here is the distance between the active sites of nickel molybdate and tellurium, and in order to facilitate the transfer of the intermediate, the two are as close as possible, ideally they are integrated as a compound. Is desirable. To this end, we have developed a tellurium compound that uniformly adsorbs on the surface of nickel molybdate, which is a carrier, and forms an ideal active site. Since it is different, we thought it necessary to examine the composition and preparation method.

【0017】本発明は、上記ような方針に基づき鋭意検
討した結果、平面構造を取るアンダーソン型ヘテロポリ
酸であるテルロモリブデン酸がテルル化合物の前駆体と
して有効であること、担体は特に化学量論比よりややM
o過剰組成のMo−Ni複合酸化物が有効であり、更に
微量のバナジウム等の添加が好ましいことを見出したも
のである。これらの触媒は種々の原料組成と接触時間と
反応温度で機能し、高プロパン濃度、低水蒸気濃度条件
でもプロパンからアクリル酸を製造可能である。また、
このようなテルロモリブデン酸/モリブデン酸ニッケル
触媒上でプロピレンを原料としてもアクロレインとアク
リル酸への酸化が選択的に進行することが確認され、こ
れにより工業的にはプロパン/プロピレン混合原料等に
も対応できることが分かる。
As a result of extensive studies based on the above policy, the present invention shows that telluromolybdic acid, which is an Anderson type heteropolyacid having a planar structure, is effective as a precursor of tellurium compounds, and that the carrier has a stoichiometric ratio. A little more M
It has been found that Mo-Ni composite oxide having an excessive composition is effective, and addition of a small amount of vanadium or the like is preferable. These catalysts function with various raw material compositions, contact times and reaction temperatures, and are capable of producing acrylic acid from propane even under high propane concentration and low steam concentration conditions. Also,
It has been confirmed that the oxidation to acrolein and acrylic acid selectively proceeds even when propylene is used as a raw material on such a telluromolybdic acid / nickel molybdate catalyst, which makes it industrially applicable to a propane / propylene mixed raw material. I know that I can handle it.

【0018】テルルを含有する複合酸化物触媒では多く
の場合、揮散により活性が経時的に低下する傾向がある
が、本発明の触媒ではこれは特に確認されていない。ま
た、テルルをアンチモンで代替した複合酸化物触媒で
は、例えば流動床のような非エアロビック条件において
も安定な活性を維持することができる。アンチモン/モ
リブデン酸ニッケル触媒の調製法としては酸化物混練法
を用いることができ、これにより触媒を大量かつ迅速に
調製可能である。この触媒系は12モリブドリン酸の微量
添加や溶液反応時間を調整する等で反応性を向上できる
ことが確認されている。
In many cases, the activity of the composite oxide catalyst containing tellurium tends to decrease over time due to volatilization, but this has not been particularly confirmed in the catalyst of the present invention. Further, the composite oxide catalyst in which tellurium is replaced by antimony can maintain stable activity even under non-aerobic conditions such as a fluidized bed. As a method for preparing the antimony / nickel molybdate catalyst, an oxide kneading method can be used, whereby a large amount of the catalyst can be prepared rapidly. It has been confirmed that this catalyst system can improve the reactivity by adding a small amount of 12 molybdophosphoric acid and adjusting the solution reaction time.

【0019】[0019]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明はこれらの例によってなんら限定され
るものではない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0020】実施例1(触媒組成:6wt%(NH4)6TeMo6O24
・7H2O /Ni0.92MoO3.92 ) (触媒調製)硝酸ニッケル六水塩[Ni(NO3)2・6H2O ]
40.000gを500mlのビーカーに入れ、蒸留水
275gを加え80℃に加熱攪拌して溶解した(A-
1)。パラモリブデン酸アンモニウム四水塩[(NH4)6M
o7O24 ・4H2O ]26.494gを100mlのビーカー
に入れ、蒸留水43gを加え80℃に加熱し攪拌して溶
解した(B-1)。炭酸水素アンモニウム[NH4HCO3]7.5
4gを100mlのビーカーに入れ、蒸留水55.6gを
加え攪拌して溶解した(C-1)。溶液(A-1)を80℃で攪
拌しながら溶液(B-1)を滴下し、次いでこの溶液のpH
が5になるまで溶液(C-1)をゆっくり滴下し、更に80
℃で攪拌しながら蒸発乾固した。この時適宜(C-1)液を
滴下しpH5を維持した。固形物をアルミナ製の坩堝に
入れ、120℃のオーブン中で24時間乾燥後、瑪瑙乳鉢
で粉砕し、Ni0.92MoO3.92 を含む触媒担体前駆体(D-1)
を得た。パラモリブデン酸アンモニウム80.156g
を500mlのSPCナスフラスコに入れ、蒸留水162
gを加え、超音波洗浄器に浸けて溶解した(E-1) 。テル
ル酸[H6TeO6]17.376gを100mlのビーカーに入
れ蒸留水81gを加え攪拌し溶解した(F-1) 。(E-1) 液
を攪拌しながら(F-1) 液を滴下して加え、得られた均一
溶液をロータリーエバポレーターを用い30℃で減圧
し、結晶が析出するまで濃縮した。濃縮物を吸引濾過
し、残滓を少量の冷水で洗浄した後、濾紙に挟んでドラ
フト中で一晩乾燥し、テルロモリブデン酸アンモニウム
の白色結晶[(NH 4)6Mo6TeO 24 ・7H2O] 69.5gを得た
(G-1) 。この物質の元素分析結果はTe:9.5wt% 、Mo:43.
5wt%、Ni:6.1wt% 、H2O:9.7wt%であった。担体前駆体(D
-1) 5.00gと担持物(G-1) 0.2272gを200
mlのSPCフラスコに取り、室温で蒸留水50gを加
え、超音波洗浄器にかけて緑色懸濁液とした。ロータリ
ーエバポレーターにより37℃で蒸発乾固した。得られ
た固形物をアルミナ製坩堝に入れ、マッフル炉を用いて
空気流通下において500℃で2時間焼成した。焼成
後、直ちにマッフル炉から坩堝を取り出して冷却し、瑪
瑙乳鉢で粉砕した後16〜36meshに成形して触媒とし
た。 (反応方法)触媒1gを反応管に充填し、窒素50ml
/分を流通しながら300℃まで昇温し、300℃から
はプロパン6ml/分、酸素4ml/分、窒素20ml
/分、及び水蒸気20ml/分の混合ガスを流通しなが
ら反応温度を350℃まで昇温し、その1時間後にオン
ラインガスクロマトグラフにより反応物の分析を行なっ
た。その後380℃まで昇温し、以後450℃まで一時
間に10℃ずつ段階的に昇温し、各温度における反応物
の分析を行なった。結果を第1表に示す。
Example 1 (Catalyst composition: 6 wt% (NHFour)6TeMo6Otwenty four
・ 7H2O / Ni0.92MoO3.92) (Catalyst preparation) Nickel nitrate hexahydrate [Ni (NO3)2・ 6H2O]
Add 40.000g to a 500ml beaker and add distilled water
275 g was added and heated to 80 ° C. with stirring to dissolve (A-
1). Ammonium paramolybdate tetrahydrate [(NHFour)6M
o7Otwenty four・ 4H2O] 26.494 g in a 100 ml beaker
, Add 43 g of distilled water, heat to 80 ° C and stir to dissolve
I understood (B-1). Ammonium hydrogen carbonate [NHFourHCO3] 7.5
Place 4g in a 100ml beaker and add 55.6g of distilled water.
The solution was stirred and dissolved (C-1). Stir the solution (A-1) at 80 ℃.
Solution (B-1) was added dropwise with stirring, and then the pH of this solution
Solution (C-1) is slowly added dropwise until the value reaches 5, then 80
It was evaporated to dryness with stirring at ° C. At this time, add (C-1) solution as appropriate.
The pH was maintained at 5 by dropping. Place the solid in an alumina crucible.
Put it in the oven and dry it in an oven at 120 ° C for 24 hours, then agate mortar
Crushed with Ni0.92MoO3.92-Containing catalyst carrier precursor (D-1)
Got Ammonium paramolybdate 80.156g
In a 500 ml SPC eggplant flask and add distilled water 162
g was added, and the solution was immersed in an ultrasonic cleaner to dissolve it (E-1). Tell
Acid [H6TeO6] Put 17.376g into a 100ml beaker
81 g of distilled water was added and stirred to dissolve (F-1). (E-1) liquid
The solution (F-1) was added dropwise with stirring to obtain the homogeneous solution.
The solution was depressurized at 30 ° C using a rotary evaporator.
And concentrated until crystals were precipitated. Suction filtration of the concentrate
After washing the residue with a small amount of cold water, insert it in filter paper and
Dried overnight in a loft, ammonium telluromolybdate
White crystals of [(NH Four)6Mo6TeOtwenty four ・ 7H2O] 69.5 g was obtained
(G-1). The elemental analysis results of this substance are Te: 9.5wt%, Mo: 43.
5wt%, Ni: 6.1wt%, H2O: It was 9.7 wt%. Carrier precursor (D
-1) 5.00 g and carrier (G-1) 0.2272 g to 200
Transfer to a 1 ml SPC flask and add 50 g of distilled water at room temperature.
Then, it was put on an ultrasonic cleaner to obtain a green suspension. Rotary
-Evaporated to dryness at 37 ° C by an evaporator. Obtained
Put the solids into an alumina crucible and use a muffle furnace.
Firing was performed at 500 ° C. for 2 hours under air circulation. Firing
Immediately after, remove the crucible from the muffle furnace, cool it, and
After crushing in an agate mortar, it is molded into 16-36 mesh to make a catalyst
It was (Reaction method) 1 g of catalyst was charged into a reaction tube, and 50 ml of nitrogen was added.
The temperature is raised to 300 ° C while circulating / min.
Is propane 6 ml / min, oxygen 4 ml / min, nitrogen 20 ml
/ Min, and steam mixed gas of 20 ml / min
The reaction temperature to 350 ° C and turn on 1 hour later.
Analyze the reactants with a line gas chromatograph
It was After that, the temperature is raised to 380 ° C and then temporarily to 450 ° C.
The reaction product at each temperature is increased stepwise by 10 ° C.
Was analyzed. The results are shown in Table 1.

【0021】実施例2(触媒組成:9wt%(NH4)6TeMo6O24
・7H2O/Ni0.92MoO3.92 ) 実施例1と同様にして調製した担体前駆体(D-1) 5.0
00gと担持物(G-1)0.3520gから、実施例1と
同様の操作により触媒を調製した。この触媒を用いて実
施例1と同様の反応を行い、同様に分析した。結果を第
1表に示す。
Example 2 (Catalyst composition: 9 wt% (NH 4 ) 6 TeMo 6 O 24
7H 2 O / Ni 0.92 MoO 3.92 ) Carrier precursor (D-1) 5.0 prepared in the same manner as in Example 1
A catalyst was prepared from 00 g and 0.3520 g of the supported material (G-1) by the same operation as in Example 1. Using this catalyst, the same reaction as in Example 1 was performed and the same analysis was performed. The results are shown in Table 1.

【0022】実施例3(触媒組成:9wt%(NH4)6TeMo6O24
・7H2O/Ni0.38MoO3.38 ) 実施例1において溶液(C-1) を滴下した後に完全に蒸発
乾固せず、液量を約100mlまで濃縮した段階で吸引濾
過した以外は実施例1と同様の操作を行った。吸引濾過
により得られたペーストを冷水50mlで3回洗浄した
後、一晩風乾した。次いで、得られた固形物をアルミナ
製の坩堝に入れ、120℃に調節したオーブンで24時
間乾燥させ、瑪瑙乳鉢で粉砕し触媒担体前駆体(D-4)を
得た。実施例1と同様にして調製した担持物(G-1)0.
1915gと、担体前駆体(D-4) 3.000gから実施
例1と同様の操作により触媒を調製した。この触媒を用
いて実施例1と同様の反応を行い、同様に分析した。結
果を第1表に示す。また、この触媒を分析した結果、N
i/Moモル比は0.38、表面積は17.0m2
g、細孔容積は3.9ml/gであった。
Example 3 (Catalyst composition: 9 wt% (NH 4 ) 6 TeMo 6 O 24
7H 2 O / Ni 0.38 MoO 3.38 ) Example 1 except that the solution (C-1) was not completely evaporated to dryness after dropping the solution (C-1) in Example 1, and suction filtration was performed at the stage of concentrating the liquid amount to about 100 ml. The same operation was performed. The paste obtained by suction filtration was washed 3 times with 50 ml of cold water and then air dried overnight. Next, the obtained solid substance was put into an alumina crucible, dried in an oven adjusted to 120 ° C. for 24 hours, and pulverized in an agate mortar to obtain a catalyst carrier precursor (D-4). Supported material (G-1) prepared in the same manner as in Example 1.
A catalyst was prepared from 1915 g and 3.000 g of the carrier precursor (D-4) by the same operation as in Example 1. Using this catalyst, the same reaction as in Example 1 was performed and the same analysis was performed. The results are shown in Table 1. In addition, as a result of analyzing this catalyst, N
The i / Mo molar ratio is 0.38 and the surface area is 17.0 m 2 /
g, the pore volume was 3.9 ml / g.

【0023】比較例1(触媒組成:Ni0.92Mo
3.92) 実施例1において担体前駆体(D-1)に[(NH4)6TeMo6O24
・7H2O](G-1) を含浸担持しない以外は実施例1と同様
に触媒を調製した。この触媒を用いて実施例1と同様の
反応を行い、同様に分析した。結果を第1表に示す。
Comparative Example 1 (Catalyst composition: Ni 0.92 Mo
O 3.92 ) [(NH 4 ) 6 TeMo 6 O 24 was added to the carrier precursor (D-1) in Example 1.
A catalyst was prepared in the same manner as in Example 1 except that [7H 2 O] (G-1) was not impregnated and supported. Using this catalyst, the same reaction as in Example 1 was performed and the same analysis was performed. The results are shown in Table 1.

【0024】実施例4(触媒組成:6wt%(NH4)6TeMo6O24
・7H2O /Ni0.92MoO3.92 ) 実施例1で得られた触媒1gを反応管に充填し窒素50
ml/分を流通しながら300℃まで昇温し、300℃
からはプロパン1ml/分、酸素4ml/分、窒素25
ml/分、及び水蒸気20ml/分の混合ガスを流通し
ながら420℃に昇温し、2時間後オンラインガスクロ
マトグラフにより反応物を分析した。その後プロパン流
量を2ml/分、窒素流量を24ml/分に変更し2時
間反応を行なった後、反応物を分析した。同様にプロパ
ン流量4ml/分、窒素流量22ml/分、及びプロパ
ン流量9.7ml/分、窒素流量16.3ml/分の条
件に変更し反応物を分析した。結果を第2表に示す。
Example 4 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O 24
7H 2 O / Ni 0.92 MoO 3.92 ) 1 g of the catalyst obtained in Example 1 was charged into a reaction tube and nitrogen was added to 50
While circulating ml / min, raise the temperature to 300 ° C
From propane 1 ml / min, oxygen 4 ml / min, nitrogen 25
The temperature was raised to 420 ° C. while flowing a mixed gas of ml / min and steam of 20 ml / min, and after 2 hours, the reaction product was analyzed by an online gas chromatograph. After that, the propane flow rate was changed to 2 ml / min and the nitrogen flow rate was changed to 24 ml / min, the reaction was performed for 2 hours, and then the reaction product was analyzed. Similarly, the reaction product was analyzed under the conditions that the propane flow rate was 4 ml / min, the nitrogen flow rate was 22 ml / min, and the propane flow rate was 9.7 ml / min and the nitrogen flow rate was 16.3 ml / min. The results are shown in Table 2.

【0025】実施例5(触媒組成:9wt%(NH4)6TeMo6O24
・7H2O/Ni0.38MoO3.38 ) 実施例3で得られた触媒を用いた以外は、実施例4と同
様に反応を行ない、同様に分析した。結果を第2表に示
す。
Example 5 (Catalyst composition: 9 wt% (NH 4 ) 6 TeMo 6 O 24
7H 2 O / Ni 0.38 MoO 3.38 ) The reaction was performed in the same manner as in Example 4 except that the catalyst obtained in Example 3 was used, and the same analysis was performed. The results are shown in Table 2.

【0026】比較例2(触媒組成:Ni0.92Mo
3.92) 比較例1で得られた触媒を用いた以外は、実施例4と同
様に反応を行ない、同様に分析した。結果を第2表に示
す。
Comparative Example 2 (Catalyst composition: Ni 0.92 Mo
O 3.92 ) The reaction was performed in the same manner as in Example 4 except that the catalyst obtained in Comparative Example 1 was used, and the same analysis was performed. The results are shown in Table 2.

【0027】実施例6(触媒組成:6wt%(NH4)6TeMo6O24
・7H2O /Ni0.92MoO3.92 ) 実施例1で得られた触媒1gを反応管に充填し窒素50
ml/分を流通しながら300℃まで昇温し、300℃
からはプロパン6ml/分、酸素4ml/分、窒素40
ml/分の混合ガスを流通しながら420℃に昇温し、
2時間後オンラインガスクロマトグラフにより反応物を
分析した。その後水蒸気流量を5ml/分、窒素流量を
35ml/分に変更し2時間反応を行なった後、反応物
を分析した。同様に水蒸気流量10ml/分、窒素流量
30ml/分、及び水蒸気流量30ml/分、窒素流量1
0ml/分の条件に変更し反応物を分析した。結果を第
2表に示す。
Example 6 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O 24
7H 2 O / Ni 0.92 MoO 3.92 ) 1 g of the catalyst obtained in Example 1 was charged into a reaction tube and nitrogen was added to 50
While circulating ml / min, raise the temperature to 300 ° C
From propane 6 ml / min, oxygen 4 ml / min, nitrogen 40
While flowing a mixed gas of ml / min, raise the temperature to 420 ° C,
After 2 hours, the reaction product was analyzed by online gas chromatography. After that, the steam flow rate was changed to 5 ml / min and the nitrogen flow rate was changed to 35 ml / min, the reaction was performed for 2 hours, and then the reaction product was analyzed. Similarly, steam flow rate 10 ml / min, nitrogen flow rate 30 ml / min, steam flow rate 30 ml / min, nitrogen flow rate 1
The reaction was analyzed by changing the conditions to 0 ml / min. The results are shown in Table 2.

【0028】実施例7(触媒組成:9wt%(NH4)6TeMo6O24
・7H2O/Ni0.38MoO3.38 ) 実施例3で得られた触媒を用いた以外は、実施例6と同
様に反応を行ない、同様に分析した。結果を第2表に示
す。
Example 7 (Catalyst composition: 9 wt% (NH 4 ) 6 TeMo 6 O 24
7H 2 O / Ni 0.38 MoO 3.38 ) The reaction was performed in the same manner as in Example 6 except that the catalyst obtained in Example 3 was used, and the same analysis was performed. The results are shown in Table 2.

【0029】比較例3(触媒組成:Ni0.92Mo
3.92) 比較例1で得られた触媒を用いた以外は、実施例6と同
様に反応を行ない、同様に分析した。結果を第2表に示
す。
Comparative Example 3 (Catalyst composition: Ni 0.92 Mo
O 3.92 ) The reaction was performed in the same manner as in Example 6 except that the catalyst obtained in Comparative Example 1 was used, and the same analysis was performed. The results are shown in Table 2.

【0030】実施例8(触媒組成:6wt%(NH4)6TeMo6O24
・7H2O /Ni0.92MoO3.92 ) 実施例1で得られた触媒を用い、以下のようにして反応
させた。すなわち、触媒1gを反応管に充填し窒素50
ml/分を流通しながら300℃まで昇温し、300℃
からはプロパン6ml/分、酸素9.5ml/分、窒素
14.5ml/分、水蒸気20ml/分の混合ガスを流
通しながら420℃に昇温し、2時間後オンラインガス
クロマトグラフにより反応物を分析した。その後酸素流
量を8ml/分、窒素流量を16ml/分に変更し2時
間反応を行なった後、反応物を分析した。同様に酸素流
量6ml/分、窒素流量18ml/分、及び酸素流量3
ml/分、窒素流量21ml/分の条件に変更し反応物
を分析した。結果を第2表に示す。
Example 8 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O 24
- using the resulting catalyst 7H 2 O / Ni 0.92 MoO 3.92 ) Example 1 was reacted in the following manner. That is, 1 g of catalyst was charged in a reaction tube and 50
While circulating ml / min, raise the temperature to 300 ° C
Is heated to 420 ° C while flowing a mixed gas of 6 ml / min of propane, 9.5 ml / min of oxygen, 14.5 ml / min of nitrogen, and 20 ml / min of steam, and after 2 hours, analyze the reaction products by online gas chromatography. did. Then, the oxygen flow rate was changed to 8 ml / min and the nitrogen flow rate was changed to 16 ml / min, the reaction was performed for 2 hours, and then the reaction product was analyzed. Similarly, oxygen flow rate 6 ml / min, nitrogen flow rate 18 ml / min, and oxygen flow rate 3
The reaction product was analyzed under the conditions of ml / min and nitrogen flow rate of 21 ml / min. The results are shown in Table 2.

【0031】実施例9(触媒組成:9wt%(NH4)6TeMo6O24
・7H2O/Ni0.38MoO3.38 ) 実施例3で得られた触媒を用いた以外は、実施例8と同
様に反応を行ない、同様に分析した。結果を第2表に示
す。
Example 9 (Catalyst composition: 9 wt% (NH 4 ) 6 TeMo 6 O 24
7H 2 O / Ni 0.38 MoO 3.38 ) The reaction was performed and analyzed in the same manner as in Example 8 except that the catalyst obtained in Example 3 was used. The results are shown in Table 2.

【0032】比較例4(触媒組成:Ni0.92Mo
3.92) 比較例1で得られた触媒を用いた以外は、実施例8と同
様に反応を行ない、同様に分析した。結果を第2表に示
す。
Comparative Example 4 (Catalyst composition: Ni 0.92 Mo
O 3.92 ) The reaction was performed in the same manner as in Example 8 except that the catalyst obtained in Comparative Example 1 was used, and the same analysis was performed. The results are shown in Table 2.

【0033】実施例10(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O /Ni0.92MoO3.92 ) 実施例1で得られた触媒0.5gを反応管に充填し窒素
50ml/分を流通しながら300℃まで昇温し、30
0℃からはプロパン20ml/分、酸素13.3ml/
分、窒素66.7ml/分、水蒸気66.7ml/分の
混合ガスを流通しながら420℃に昇温し、2時間後オ
ンラインガスクロマトグラフにより反応物を分析した。
その後、混合ガスの分圧を変えず流量をプロパン10m
l/分、酸素6.7ml/分、窒素33.3ml/分、
水蒸気33.3ml/分に変更し2時間反応を行なった
後、反応物を分析した。同様にプロパン6ml/分、酸
素4ml/分、窒素20ml/分、水蒸気20ml/
分、及びプロパン4ml/分、酸素2.7ml/分、窒
素13.3ml/分、水蒸気13.3ml/分の条件に変更
し反応物を分析した。結果を第3表に示す。
Example 10 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92) was heated catalyst 0.5g obtained in Example 1 to 300 ° C. while flowing nitrogen 50ml / min was filled into a reaction tube, 30
From 0 ° C, propane 20ml / min, oxygen 13.3ml /
Min, nitrogen 66.7 ml / min and steam 66.7 ml / min while flowing a mixed gas, the temperature was raised to 420 ° C., and after 2 hours, the reaction product was analyzed by an online gas chromatograph.
Then, the flow rate of propane is 10 m without changing the partial pressure of the mixed gas.
1 / min, oxygen 6.7 ml / min, nitrogen 33.3 ml / min,
After changing the steam to 33.3 ml / min and performing the reaction for 2 hours, the reaction product was analyzed. Similarly, propane 6 ml / min, oxygen 4 ml / min, nitrogen 20 ml / min, steam 20 ml / min
Min, propane 4 ml / min, oxygen 2.7 ml / min, nitrogen 13.3 ml / min, steam 13.3 ml / min, and the reaction products were analyzed. The results are shown in Table 3.

【0034】実施例11(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O /Ni0.92MoO3.92 ) 実施例1で得られた触媒2gを反応管に充填し窒素50
ml/分を流通しながら300℃まで昇温し、300℃
からはプロパン8ml/分、酸素5.3ml/分、窒素
26.7ml/分、水蒸気26.7ml/分の混合ガス
を流通しながら420℃に昇温し、2時間後オンライン
ガスクロマトグラフにより反応物を分析した。その後、
混合ガスの分圧を変えず流量をプロパン6ml/分、酸
素4ml/分、窒素20ml/分、水蒸気20ml/分に
変更し2時間反応を行なった後、反応物を分析した。同
様にプロパン4ml/分、酸素2.7ml/分、窒素1
3.3ml/分、水蒸気13.3ml/分、およびプロ
パン3ml/分、酸素2ml/分、窒素10ml/分、
水蒸気10ml/分の条件に変更し反応物を分析した。
結果を第3表に示す。
Example 11 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92) filled with a catalyst 2g obtained in Example 1 in a reaction tube of nitrogen 50
While circulating ml / min, raise the temperature to 300 ° C
Propane 8 ml / min, oxygen 5.3 ml / min, nitrogen 26.7 ml / min, steam 26.7 ml / min while flowing to 420 ° C., and after 2 hours online gas chromatograph Was analyzed. afterwards,
After changing the flow rate to 6 ml / min of propane, 4 ml / min of oxygen, 20 ml / min of nitrogen, and 20 ml / min of steam without changing the partial pressure of the mixed gas, the reaction was conducted for 2 hours, and then the reaction product was analyzed. Similarly, propane 4 ml / min, oxygen 2.7 ml / min, nitrogen 1
3.3 ml / min, steam 13.3 ml / min, and propane 3 ml / min, oxygen 2 ml / min, nitrogen 10 ml / min,
The reaction product was analyzed under the changed conditions of steam of 10 ml / min.
The results are shown in Table 3.

【0035】実施例12(触媒組成:9wt%(NH4)6TeMo6O
24・7H2O/Ni0.38MoO3.38 ) 実施例3で得られた触媒を用いた以外は、実施例10と
同様に反応を行ない、同様に分析した。結果を第3表に
示す。
Example 12 (Catalyst composition: 9 wt% (NH 4 ) 6 TeMo 6 O
Except for using the catalyst obtained in 24 · 7H 2 O / Ni 0.38 MoO 3.38) Example 3 performs the same reaction as Example 10, were analyzed in the same manner. The results are shown in Table 3.

【0036】実施例13(触媒組成:9wt%(NH4)6TeMo6O
24・7H2O/Ni0.38MoO3.38 ) 実施例3で得られた触媒を用いた以外は、実施例11と
同様に反応を行ない、同様に分析した。結果を第3表に
示す。
Example 13 (Catalyst composition: 9 wt% (NH 4 ) 6 TeMo 6 O
Except for using the catalyst obtained in 24 · 7H 2 O / Ni 0.38 MoO 3.38) Example 3 performs the same reaction as Example 11, were analyzed in the same manner. The results are shown in Table 3.

【0037】比較例5(触媒組成:Ni0.92Mo
3.92) 比較例1で得られた触媒を用いた以外は、実施例10と
同様に反応を行ない、同様に分析した。結果を第3表に
示す。
Comparative Example 5 (Catalyst composition: Ni 0.92 Mo
O 3.92 ) The reaction was performed in the same manner as in Example 10 except that the catalyst obtained in Comparative Example 1 was used, and the same analysis was performed. The results are shown in Table 3.

【0038】比較例6(触媒組成:Ni0.92Mo
3.92) 比較例1で得られた触媒(触媒組成:Ni0.92MoO
3.92)を用いた以外は、実施例11と同様に反応を行な
い、同様に分析した。結果を第3表に示す。
Comparative Example 6 (Catalyst composition: Ni 0.92 Mo
O 3.92 ) The catalyst obtained in Comparative Example 1 (catalyst composition: Ni 0.92 MoO
The reaction was carried out in the same manner as in Example 11 except that 3.92 ) was used, and the same analysis was performed. The results are shown in Table 3.

【0039】実施例14(触媒組成:6wt%(NH4)6Mo6TeO
24・7H2O /V0.017Ni0.92MoO3.96) (触媒調製)硝酸ニッケル 39.87gを1Lのビー
カーに入れ、蒸留水274gを加え、ホットプレートス
ターラー上で80℃に加熱攪拌して溶解した(A-20)。
パラモリブデン酸アンモニウム 26.41gとバナジ
ン酸アンモニウム[NH4VO3]0.29gを100mlのビ
ーカーに入れ水75gを加え、ホットプレートスターラ
ー上で60℃に加熱攪拌し溶解した(B-20)。実施例1
と同様に炭酸水素アンモニウム溶液(C-1)を調製した。
(A-20) 液を攪拌しながら(B-20)液を滴下した後、(C-
1)液をゆっくり滴下しpH5に調節し、液温80℃で攪
拌しながら蒸発乾固した。この時、適宜(C-1) 液を滴下
しpH5を維持した。以後、実施例1と同様に乾燥、粉
砕してV0.017Ni0.92MoO3.96 を含む触媒担体前駆体(D-2
0)を得た。担体前駆体(D-20)5.000gと、実施例
1で調製した担持物[(NH4)6Mo6TeO24 ・7H2](G-1)0.2
1gを200mlのSPCフラスコに取り、室温で蒸留水
50gを加え、超音波洗浄器にかけて緑色懸濁液とし
た。以下、実施例1と同様にロータリーエバポレーター
により蒸発乾固し、焼成、粉砕、成形して触媒とした。 (反応方法)触媒1gを反応管に充填し、窒素50ml
/分を流通しながら300℃まで昇温し、300℃から
はプロパン6ml/分、酸素4ml/分、窒素20ml
/分、及び水蒸気20ml/分の混合ガスを流通しなが
ら、3時間毎に反応温度を399℃、420℃に段階的
に昇温し、各反応温度においてオンラインガスクロマト
グラフにより反応物の分析を行なった。結果を第4表に
示す。
Example 14 (Catalyst composition: 6 wt% (NH 4 ) 6 Mo 6 TeO
The 24 · 7H 2 O / V 0.017 Ni 0.92 MoO 3.96) ( Catalyst Preparation) Nickel nitrate 39.87g beaker of 1L, distilled water 274g were added and dissolved by heating with stirring to 80 ° C. on a hot plate stirrer ( A-20).
26.41 g of ammonium paramolybdate and 0.29 g of ammonium vanadate [NH 4 VO 3 ] were placed in a 100 ml beaker, 75 g of water was added, and the mixture was heated and stirred at 60 ° C. on a hot plate stirrer to be dissolved (B-20). Example 1
An ammonium hydrogen carbonate solution (C-1) was prepared in the same manner as in.
After stirring solution (A-20) and adding solution (B-20), (C-
1) The liquid was slowly dropped to adjust the pH to 5, and the mixture was evaporated to dryness with stirring at a liquid temperature of 80 ° C. At this time, pH (5) was maintained by appropriately adding the liquid (C-1). Thereafter, the catalyst carrier precursor containing V 0.017 Ni 0.92 MoO 3.96 was dried and pulverized in the same manner as in Example 1 (D-2
I got 0). 5.000 g of the carrier precursor (D-20) and the carrier [(NH 4 ) 6 Mo 6 TeO 24 · 7H 2 ] (G-1) 0.2 prepared in Example 1.
1 g was placed in a 200 ml SPC flask, 50 g of distilled water was added at room temperature, and the mixture was ultrasonically washed to give a green suspension. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding. (Reaction method) 1 g of catalyst was charged into a reaction tube, and 50 ml of nitrogen was added.
The temperature rises to 300 ° C while circulating / min, and from 300 ° C propane 6 ml / min, oxygen 4 ml / min, nitrogen 20 ml.
/ Min and steam 20 ml / min while flowing a mixed gas, the reaction temperature is raised stepwise to 399 ° C and 420 ° C every 3 hours, and the reaction product is analyzed by an online gas chromatograph at each reaction temperature. It was The results are shown in Table 4.

【0040】実施例15(触媒組成:9wt%(NH4)6Mo6TeO
24 ・7H2O /V0.017Ni0.92MoO3.96 ) 実施例14と同様にして調製した担体前駆体(D-20)
5.000gと担持物(G-1)0.289gから、実施例
1と同様の操作により触媒を調製し、さらにこの触媒を
用いて反応温度を400℃、421℃とした他は実施例
14と同様の反応を行い、同様に分析した。結果を第4
表に示す。
Example 15 (Catalyst composition: 9 wt% (NH 4 ) 6 Mo 6 TeO
24 · 7H 2 O / V 0.017 Ni 0.92 MoO 3.96) support precursor was prepared in the same manner as in Example 14 (D-20)
A catalyst was prepared from 5.000 g and the supported material (G-1) 0.289 g by the same operation as in Example 1, and the reaction temperature was set to 400 ° C. and 421 ° C. using this catalyst. The same reaction was performed and the same analysis was performed. The fourth result
Shown in the table.

【0041】比較例7(触媒組成:6wt%(NH4)6Mo6TeO24
・7H2O /V0.008Ni0.92MoO3.94) 硝酸ニッケル40.028gを1Lのビーカーに入れ、
蒸留水275gを加え、ホットプレートスターラー上で
80℃に加熱攪拌して溶解した(A-22)。パラモリブデ
ン酸アンモニウム 26.51gとバナジン酸アンモニ
ウム[NH4VO3]0.13gを100mlのビーカーに入れ
水75gを加え、ホットプレートスターラー上で60℃
に加熱攪拌し溶解した(B-22)。実施例1と同様に炭酸
水素アンモニウム溶液(C-1)を調製した。(A-22)液を
攪拌しながら(B-22)液を滴下した後、(C-1)液をゆっ
くり滴下しpH5に調節し、液温80℃で攪拌しながら
蒸発乾固した。この時適宜(C-1)液を滴下しpH5を維
持した。以後、実施例1と同様に乾燥、粉砕してV0.008
Ni0.92MoO3.94 を含む触媒担体前駆体(D-22)を得た。担
体前駆体(D-22)5.000gと、実施例1で調製した
担持物[(NH4)6Mo6TeO24 ・7H2O](G-1) 0.19gを20
0mlのSPCフラスコに取り、室温で蒸留水50gを
加え、超音波洗浄器にかけて緑色懸濁液とした。以下、
実施例1と同様にロータリーエバポレーターにより蒸発
乾固し、焼成、粉砕、成形して触媒とした。この触媒を
用いて反応温度を399℃、420℃としたほかは実施
例14と同様の反応を行い、同様に分析した。結果を第
4表に示す
Comparative Example 7 (Catalyst composition: 6 wt% (NH 4 ) 6 Mo 6 TeO 24
・ 7H 2 O / V 0.008 Ni 0.92 MoO 3.94 ) Put 40.028 g of nickel nitrate in a 1 L beaker,
Distilled water (275 g) was added, and the mixture was heated and stirred at 80 ° C. on a hot plate stirrer to dissolve (A-22). 26.51 g of ammonium paramolybdate and 0.13 g of ammonium vanadate [NH 4 VO 3 ] are placed in a 100 ml beaker, 75 g of water is added, and the temperature is 60 ° C. on a hot plate stirrer.
It was heated and stirred to dissolve it (B-22). An ammonium hydrogen carbonate solution (C-1) was prepared in the same manner as in Example 1. The solution (A-22) was added dropwise with stirring the solution (B-22), and then the solution (C-1) was slowly added dropwise to adjust the pH to 5, and the solution was evaporated to dryness with stirring at a solution temperature of 80 ° C. At this time, the solution (C-1) was appropriately added dropwise to maintain pH 5. After that, it was dried and pulverized in the same manner as in Example 1 to obtain V 0.008.
A catalyst carrier precursor (D-22) containing Ni 0.92 MoO 3.94 was obtained. 20.50 g of the carrier precursor (D-22) and 0.19 g of the carrier [(NH 4 ) 6 Mo 6 TeO 24 · 7H 2 O] (G-1) prepared in Example 1 were used.
Into a 0 ml SPC flask, 50 g of distilled water was added at room temperature, and the mixture was ultrasonically washed to give a green suspension. Less than,
As in Example 1, a catalyst was obtained by evaporating to dryness using a rotary evaporator, calcining, pulverizing and molding. Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 399 ° C. and 420 ° C., and the same analysis was carried out. The results are shown in Table 4.

【0042】比較例8(触媒組成:9wt%(NH4)6Mo6TeO24
・7H2O /V0.008Ni0.92MoO3.94 ) 比較例7と同様にして調製した担体前駆体(D-22)5.
000gと担持物(G-1)0.289gから、実施例1と
同様の操作により触媒を調製し、さらにこの触媒を用い
て反応温度を399℃、420℃とした他は実施例1と
同様の反応を行い、同様に分析した。結果を第4表に示
す。
Comparative Example 8 (Catalyst composition: 9 wt% (NH 4 ) 6 Mo 6 TeO 24
7H 2 O / V 0.008 Ni 0.92 MoO 3.94 ) Carrier precursor (D-22) prepared in the same manner as in Comparative Example 7.
A catalyst was prepared from 000 g and 0.289 g of the supported material (G-1) by the same operation as in Example 1, and the reaction temperature was 399 ° C. and 420 ° C. using this catalyst. Was carried out and analyzed in the same manner. The results are shown in Table 4.

【0043】比較例9(触媒組成:6wt%(NH4)6Mo6TeO24
・7H2O /V0.08NiMo0.92O3.96 ) 硝酸ニッケル40.85gを1Lのビーカーに入れ、蒸
留水280gを加え、ホットプレートスターラー上で8
0℃に加熱攪拌して溶解した(A-24)。パラモリブデン
酸アンモニウム24.80gとバナジン酸アンモニウム
[NH4VO3]1.49gを200mlのビーカーに入れ水1
00gを加え、ホットプレートスターラー上で60℃に
加熱攪拌し溶解した(B-24)。実施例1と同様に炭酸水素
アンモニウム溶液(C-1)を調製した。(A-24)液を攪拌し
ながら(B-24)液を滴下した後、(C-1)液をゆっくり滴
下しpH5に調節し、液温80℃で攪拌しながら蒸発乾
固した。この時適宜(C-1)液を滴下しpH5を維持し
た。以後、実施例1と同様に乾燥、粉砕してV0.08NiMo
0.92O3.96を含む触媒担体前駆体(D-24)を得た。担体前
駆体(D-24)6.00gと、実施例1で調製した担持物
[(NH4)6Mo6TeO24・7H2O](G-1) 0.22gを200ml
のSPCフラスコに取り、室温で蒸留水500gを加
え、超音波洗浄器にかけて緑色懸濁液とした。以下、実
施例1と同様にロータリーエバポレーターにより蒸発乾
固し、焼成、粉砕、成形して触媒とした。この触媒を用
いて反応温度を399℃、420℃としたほかは実施例
14と同様の反応を行い、同様に分析した。結果を第4
表に示す
Comparative Example 9 (Catalyst composition: 6 wt% (NH 4 ) 6 Mo 6 TeO 24
・ 7H 2 O / V 0.08 NiMo 0.92 O 3.96 ) Nickel nitrate 40.85g is put in a 1L beaker, distilled water 280g is added, and it is 8 on a hot plate stirrer.
It was heated to 0 ° C. with stirring to dissolve (A-24). 24.80 g ammonium paramolybdate and ammonium vanadate
Add 1.49 g of [NH 4 VO 3 ] to a 200 ml beaker and water 1
00 g was added, and the mixture was heated and stirred at 60 ° C. on a hot plate stirrer to dissolve (B-24). An ammonium hydrogen carbonate solution (C-1) was prepared in the same manner as in Example 1. The liquid (B-24) was added dropwise while stirring the liquid (A-24), and then the liquid (C-1) was slowly added dropwise to adjust the pH to 5, and the mixture was evaporated to dryness while stirring at a liquid temperature of 80 ° C. At this time, the solution (C-1) was appropriately added dropwise to maintain pH 5. After that, it was dried and pulverized in the same manner as in Example 1 to obtain V 0.08 NiMo.
A catalyst carrier precursor (D-24) containing 0.92 O 3.96 was obtained. 6.00 g of carrier precursor (D-24) and the supported material prepared in Example 1
[(NH 4) 6 Mo 6 TeO 24 · 7H 2 O] (G-1) and 0.22 g 200 ml
Into an SPC flask of No. 3, 500 g of distilled water was added at room temperature, and the mixture was ultrasonically washed to give a green suspension. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding. Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 399 ° C. and 420 ° C., and the same analysis was carried out. The fourth result
Shown in the table

【0044】比較例10(触媒組成:9wt%(NH4)6Mo6TeO
24 ・7H2O /V0.08NiMo0.92O3.96) 比較例9と同様にして調製した担体前駆体(D-24 )5.
000gと担持物(G-1) 0.321gから、実施例1と
同様の操作により触媒を調製し、さらにこの触媒を用い
て反応温度を398℃、420℃とした他は実施例1と
同様の反応を行い、同様に分析した。結果を第4表に示
す。
Comparative Example 10 (Catalyst composition: 9 wt% (NH 4 ) 6 Mo 6 TeO
24 · 7H 2 O / V 0.08 NiMo 0.92 O 3.96) support precursor was prepared in the same manner as in Comparative Example 9 (D-24) 5.
A catalyst was prepared from 000 g and 0.321 g of the supported material (G-1) by the same operation as in Example 1, and the reaction temperature was 398 ° C. and 420 ° C. using this catalyst. Was carried out and analyzed in the same manner. The results are shown in Table 4.

【0045】実施例16(触媒組成:0.28wt%Sb/Ni0.83
MoO3.83 、アンチモン錯体含浸法) 硝酸ニッケル37.46gを1Lのビーカーに入れ、蒸
留水258gを加え、ホットプレートスターラー上で8
0℃に加熱攪拌して溶解した(A-26)。パラモリブデン酸
アンモニウム 27.29gを100mlのビーカーに
入れ水44gを加え、ホットプレートスターラー上で6
0℃に加熱攪拌し溶解した(B-26)。炭酸水素アンモニウ
ム 7.54gを100mlのビーカーに入れ、蒸留水
55.6gを加え攪拌して溶解した(C-26)。(A-26)液を
攪拌しながら(B-26)液を滴下した後、(C-26)液をゆっく
り滴下しpH5に調節し、液温80℃で攪拌しながら蒸
発乾固した。この時適宜(C-26)液を滴下しpH5を維
持した。以下、実施例1と同様に乾燥、粉砕しNi0.83Mo
O3.83 を含む触媒担体前駆体(D-26)を得た。三酸化二ア
ンチモン[Sb2O3,日本精鉱(株)製Patox-U]10.00
0gと酒石酸水素アンモニウム(NH4HC4H4O6)11.46
6gと蒸留水600mlを1Lの四首フラスコに入れ、
130℃の油浴に浸け攪拌しながら5時間還流した。酸
化アンチモンは徐々に溶解した。溶液を室温まで冷却し
た後、濾過し、濾液(無色透明)をエバポレーターを用
いて減圧し、結晶が析出するまで50℃にて濃縮した。
得られた濃縮物を吸引濾過し極少量の冷水で洗浄後、濾
紙に挟んで乾燥し、酒石酸アンチモニルアンモニウム
[白色結晶、(NH4)2Sb2(C4H2O2)2]を得た(H-26)。な
お、この物質の元素分析を行なった結果、Sb含量は3
7.0%であった。担体前駆体(D-26)6.00gと担持
物(H-26)0.035gを200mlのSPCフラスコに
取り、室温で蒸留水50gを加え、超音波洗浄器にかけ
て緑色懸濁液とした。ロータリーエバポレーターにより
37℃で蒸発乾固した。得られた固形物をアルミナ製坩
堝に入れ、マッフル炉を用いて空気流通下において50
0℃で2時間焼成した。焼成後、直ちにマッフル炉から
坩堝を取り出して冷却し、瑪瑙乳鉢で粉砕した後16〜
36meshに成形して触媒とした。この触媒を用いて反応
温度を401℃、420℃、427℃とした他は実施例
14と同様の反応を行い、同様に分析した。結果を第4
表に示す
Example 16 (Catalyst composition: 0.28 wt% Sb / Ni 0.83
MoO 3.83 , antimony complex impregnation method) 37.46 g of nickel nitrate was placed in a 1 L beaker, 258 g of distilled water was added, and 8 on a hot plate stirrer.
It was heated and stirred at 0 ° C. to be dissolved (A-26). Add 27.29 g of ammonium paramolybdate to a 100 ml beaker, add 44 g of water, and add 6 on a hot plate stirrer.
It was heated and stirred at 0 ° C. to dissolve (B-26). 7.54 g of ammonium hydrogen carbonate was placed in a 100 ml beaker, and 55.6 g of distilled water was added and dissolved by stirring (C-26). The solution (B-26) was added dropwise with stirring the solution (A-26), and then the solution (C-26) was slowly added dropwise to adjust the pH to 5, and the mixture was evaporated to dryness with stirring at a solution temperature of 80 ° C. At this time, the solution (C-26) was appropriately added dropwise to maintain pH 5. Thereafter, as in Example 1, dried and pulverized to obtain Ni 0.83 Mo.
A catalyst carrier precursor (D-26) containing O 3.83 was obtained. Antimony trioxide [Sb 2 O 3 , Patox-U made by Nippon Seiko Co., Ltd.] 10.00
0 g and ammonium hydrogen tartrate (NH 4 HC 4 H 4 O 6 ) 11.46
Put 6g and 600ml distilled water into a 1L four-necked flask,
It was immersed in an oil bath at 130 ° C. and refluxed for 5 hours with stirring. Antimony oxide gradually dissolved. The solution was cooled to room temperature, filtered, and the filtrate (colorless and transparent) was decompressed using an evaporator and concentrated at 50 ° C. until crystals were precipitated.
The obtained concentrate was suction filtered, washed with a very small amount of cold water, then sandwiched between filter papers and dried, and antimonylammonium tartrate [white crystals, (NH 4 ) 2 Sb 2 (C 4 H 2 O 2 ) 2 ] was obtained. Obtained (H-26). As a result of elemental analysis of this substance, the Sb content was 3
It was 7.0%. 6.00 g of the carrier precursor (D-26) and 0.035 g of the supported material (H-26) were placed in a 200 ml SPC flask, 50 g of distilled water was added at room temperature, and the mixture was ultrasonicated to give a green suspension. It was evaporated to dryness at 37 ° C. on a rotary evaporator. The solid obtained is put in an alumina crucible and heated in air using a muffle furnace to 50
It was calcined at 0 ° C. for 2 hours. Immediately after firing, remove the crucible from the muffle furnace, cool it, and crush it in an agate mortar.
It was molded into 36 mesh to obtain a catalyst. Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 401 ° C., 420 ° C. and 427 ° C., and the same analysis was carried out. The fourth result
Shown in the table

【0046】実施例17(触媒組成:0.58wt%Sb/Ni0.83
MoO3.83 、アンチモン錯体含浸法) 実施例16と同様にして調製した担体前駆体(D-26)6.
00gと担持物(H-26)0.075gとから、実施例1と
同様の操作により触媒を調製し、さらにこの触媒を用い
て反応温度を400℃、420℃としたほかは実施例1
4と同様の反応を行い、同様に分析した。結果を第4表
に示す。
Example 17 (Catalyst composition: 0.58 wt% Sb / Ni 0.83)
MoO 3.83 , antimony complex impregnation method) Carrier precursor prepared in the same manner as in Example 16 (D-26) 6.
Example 1 except that a catalyst was prepared from 00 g and 0.075 g of the supported material (H-26) by the same operation as in Example 1 and the reaction temperature was 400 ° C. or 420 ° C. using this catalyst.
The same reaction as in 4 was performed and analyzed in the same manner. The results are shown in Table 4.

【0047】実施例18(触媒組成:0.90wt%Sb/Ni0.83
MoO3.83 、アンチモン錯体含浸法) 実施例16と同様にして調製した担体前駆体(D-26))
6.00gと担持物(H-260.112gとから、実施例
1と同様の操作により触媒を調製し、さらにこの触媒を
用いて反応温度を400℃、420℃としたほかは実施
例14と同様の反応を行い、同様に分析した。結果を第
4表に示す。
Example 18 (Catalyst composition: 0.90 wt% Sb / Ni 0.83
MoO 3.83 , antimony complex impregnation method) Carrier precursor prepared in the same manner as in Example 16 (D-26))
A catalyst was prepared from 6.00 g and the supported material (H-260.112 g) by the same operation as in Example 1, and the reaction temperature was set to 400 ° C. and 420 ° C. using this catalyst. The same reaction was performed and analyzed in the same manner, and the results are shown in Table 4.

【0048】比較例11(触媒組成:0.28wt%Sb/Ni0.92
MoO3.92 、アンチモン錯体含浸法) 実施例1と同様にして調製した担体前駆体(D-1) 7.0
0gと、実施例16と同様に調製した担持物[(NH4)2Sb
2(C4H2O6)2](H-26)0.0435gから、実施例1と同
様の操作により触媒を調製し、さらにこの触媒を用いて
反応温度を400℃、421℃としたほかは実施例14
と同様の反応を行い、同様に分析した。結果を第4表に
示す。
Comparative Example 11 (Catalyst composition: 0.28 wt% Sb / Ni 0.92
MoO 3.92 , antimony complex impregnation method) Carrier precursor (D-1) 7.0 prepared in the same manner as in Example 1
0 g and the supported material [(NH 4 ) 2 Sb prepared in the same manner as in Example 16
A catalyst was prepared from 0.0435 g of 2 (C 4 H 2 O 6 ) 2 ] (H-26) by the same operation as in Example 1, and the reaction temperature was adjusted to 400 ° C. and 421 ° C. using this catalyst. Others are Example 14
The same reaction was performed and the same analysis was performed. The results are shown in Table 4.

【0049】比較例12(触媒組成:0.52wt%Sb/Ni0.92
MoO3.92 、アンチモン錯体含浸法) 実施例1と同様にして調製した担体前駆体(D-1) 5.0
0gと、実施例16と同様に調製した担持物[(NH4)2Sb
2(C4H2O6)2](H-26)0.0641gから、実施例1と同
様の操作により触媒を調製し、さらにこの触媒を用いて
反応温度を401℃、419℃、430℃としたほかは
実施例14と同様の反応を行い、同様に分析した。結果
を第4表に示す。
Comparative Example 12 (Catalyst composition: 0.52 wt% Sb / Ni 0.92
MoO 3.92 , antimony complex impregnation method) Carrier precursor (D-1) 5.0 prepared in the same manner as in Example 1
0 g and the supported material [(NH 4 ) 2 Sb prepared in the same manner as in Example 16
A catalyst was prepared from 0.0641 g of 2 (C 4 H 2 O 6 ) 2 ] (H-26) by the same operation as in Example 1, and the reaction temperature was adjusted to 401 ° C., 419 ° C., 430 ° C. using this catalyst. The same reaction as in Example 14 was carried out except that the temperature was changed to ° C, and the same analysis was performed. The results are shown in Table 4.

【0050】比較例13(触媒組成:0.90wt%Sb/Ni0.92
MoO3.92 、アンチモン錯体含浸法) 実施例1と同様にして調製した担体前駆体(D-1) 5.0
0gと、実施例16と同様に調製した担持物[(NH4)2Sb
2(C4H2O6)2](H-26)0.994gから、実施例1と同様
の操作により触媒を調製し、さらにこの触媒を用いて反
応温度を400℃、419℃、430℃としたほかは実
施例14と同様の反応を行い、同様に分析した。結果を
第4表に示す。
Comparative Example 13 (Catalyst composition: 0.90 wt% Sb / Ni 0.92
MoO 3.92 , antimony complex impregnation method) Carrier precursor (D-1) 5.0 prepared in the same manner as in Example 1
0 g and the supported material [(NH 4 ) 2 Sb prepared in the same manner as in Example 16
A catalyst was prepared from 0.994 g of 2 (C 4 H 2 O 6 ) 2 ] (H-26) by the same operation as in Example 1, and the reaction temperature was 400 ° C., 419 ° C., 430 ° C. using this catalyst. The same reaction as in Example 14 was carried out except that the temperature was changed to ° C, and the same analysis was performed. The results are shown in Table 4.

【0051】実施例19(触媒組成:0.58wt%Sb/Ni0.83Mo
O3.83 酸化アンチモン錯体混練法) 硝酸ニッケル37.46gと三酸化二アンチモン0.23
gを1Lのビーカーに入れ蒸留水258gを加え、ホッ
トプレートスターラー上で80℃に加熱攪拌した(A-3
2)。実施例1と同様にパラモリブデン酸アンモニウム溶
液(B-1) と炭酸水素アンモニウム溶液(C-1) を調製し
た。実施例1と同様の操作により、(A-32)液に (B-1)液
を滴下した後、(C-1) 液を用いてpH5に調節しながら
蒸発乾固した。固形物をアルミナ製の坩堝に入れ、12
0℃のオーブン中で24時間乾燥後、アルミナ製坩堝に
入れ、マッフル炉を用いて空気流通下において500℃
で2時間焼成した。焼成後、直ちにマッフル炉から坩堝
を取り出して冷却し、瑪瑙乳鉢で粉砕した後16〜36
meshに成形して触媒とした。この触媒を用いて反応温度
を402℃、421℃としたほかは実施例1と同様の反
応を行い、同様に分析した。結果を第5表に示す。
Example 19 (Catalyst composition: 0.58 wt% Sb / Ni 0.83 Mo
O 3.83 Antimony oxide complex kneading method) 37.46 g of nickel nitrate and 0.23 of diantimony trioxide
g in a 1 L beaker, 258 g of distilled water was added, and the mixture was heated and stirred at 80 ° C. on a hot plate stirrer (A-3
2). An ammonium paramolybdate solution (B-1) and an ammonium hydrogen carbonate solution (C-1) were prepared in the same manner as in Example 1. By the same operation as in Example 1, the solution (B-1) was added dropwise to the solution (A-32) and then evaporated to dryness while adjusting the pH to 5 using the solution (C-1). Put the solid in an alumina crucible,
After drying in an oven at 0 ° C for 24 hours, put it in an alumina crucible and use a muffle furnace at 500 ° C under air flow.
It was baked for 2 hours. Immediately after firing, take out the crucible from the muffle furnace, cool it, and crush it in an agate mortar.
It was molded into mesh and used as a catalyst. The same reaction as in Example 1 was carried out except that the reaction temperature was changed to 402 ° C. and 421 ° C. using this catalyst, and the same analysis was carried out. The results are shown in Table 5.

【0052】比較例14(触媒組成:0.58wt%Sb/Ni0.83
MoO3.83 、酸化アンチモン含浸法) 実施例16と同様の操作により調製した担体前駆体(D-2
6)6.00gと、三酸化二アンチモン0.032gを2
00mlのSPCフラスコに取り、室温で蒸留水50g
を加え、超音波洗浄器にかけて懸濁液とした。以後、実
施例1と同様の操作により触媒を調製し、さらにこの触
媒を用いて反応温度を400℃、419℃、430℃と
したほかは実施例14と同様の反応を行い、同様に分析
した。結果を第5表に示す。
Comparative Example 14 (Catalyst composition: 0.58 wt% Sb / Ni 0.83
MoO 3.83 , antimony oxide impregnation method) A carrier precursor prepared by the same operation as in Example 16 (D-2
6) 6.00 g and 2 parts of antimony trioxide 0.032 g
Transfer to a 00ml SPC flask and add 50g of distilled water at room temperature.
Was added and the mixture was applied to an ultrasonic cleaner to give a suspension. Thereafter, a catalyst was prepared by the same operation as in Example 1, and the same reaction as in Example 14 was carried out except that the reaction temperature was changed to 400 ° C., 419 ° C. and 430 ° C. using this catalyst, and the same analysis was conducted. . The results are shown in Table 5.

【0053】実施例20(触媒組成:0.58wt%Sb/Ni0.92
MoO3.92 、酸化アンチモン混練法によるスケールアッ
プ) 硝酸ニッケル125.49gと三酸化二アンチモン0.
672gを2Lのセパラブルフラスコに入れ、蒸留水8
63gを加え、攪拌軸と滴下ロート、リービッヒ冷却管
を取り付け油浴に浸けて80℃に加熱攪拌した(A-3
4)。パラモリブデン酸アンモニウム79.42gを、
200mlのビーカーに入れ水129gを加え、ホット
プレートスターラー上で60℃に加熱攪拌し溶解した
(B-34)。炭酸水素アンモニウム15.168gに蒸留
水115.6gを加え攪拌して室温で溶解した(C-3
4)。(A-34)液を攪拌しながら(B-34)液を滴下した
後、(C-34)液をゆっくり滴下しpH5に調節した。セ
パラブルフラスコを油浴から引き上げ、蓋を外してホッ
トプレートスターラー上に移し、スリーワンモーターで
攪拌しながら80℃に加熱し蒸発乾固した。この間(C-
34)液を滴下しながら溶液のpHを5に維持した。以
下、実施例19と同様に焼成、粉砕、成形して触媒とし
た。この触媒を用いて反応温度を399℃、420℃と
したほかは実施例14と同様の反応を行い、同様に分析
した。結果を第5表に示す。
Example 20 (Catalyst composition: 0.58 wt% Sb / Ni 0.92
MoO 3.92 , scale-up by antimony oxide kneading method) 125.49 g nickel nitrate and diantimony trioxide 0.
Place 672 g in a 2 L separable flask and add distilled water 8
63 g was added, a stirring shaft, a dropping funnel, and a Liebig cooling tube were attached, and the mixture was immersed in an oil bath and heated and stirred at 80 ° C (A-3
Four). 79.42 g of ammonium paramolybdate,
It was put in a 200 ml beaker, 129 g of water was added, and the mixture was heated and stirred at 60 ° C. on a hot plate stirrer to dissolve (B-34). Distilled water (115.6 g) was added to ammonium hydrogen carbonate (15.168 g) and stirred to dissolve at room temperature (C-3
Four). The liquid (B-34) was added dropwise while stirring the liquid (A-34), and then the liquid (C-34) was slowly added dropwise to adjust the pH to 5. The separable flask was pulled up from the oil bath, the lid was removed, and it was transferred onto a hot plate stirrer, heated to 80 ° C. with stirring with a three-one motor, and evaporated to dryness. During this period (C-
34) The pH of the solution was maintained at 5 while dropping the solution. Thereafter, in the same manner as in Example 19, calcination, pulverization and molding were carried out to obtain a catalyst. Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 399 ° C. and 420 ° C., and the same analysis was carried out. The results are shown in Table 5.

【0054】比較例15(触媒組成:0.58wt%Sb/Ni0.92
MoO3.92 、酒石酸錯体含浸法によるスケールアップ) 硝酸ニッケル125.52gを2Lのセパラブルフラス
コに入れ、蒸留水863gを加え、攪拌軸と滴下ロー
ト、リービッヒ冷却管を取り付け油浴に浸け80℃に加熱
攪拌し溶解した(A-35)。パラモリブデン酸アンモニウ
ム83.199gを、200mlのビーカーに入れ水1
39gを加え、ホットプレートスターラー上で60℃に
加熱攪拌し溶解した(B-35)。25wt%アンモニア水7
1mlに、室温において蒸留水433mlを加え希釈し
た(C-35)。溶液(A-35)を攪拌しながら溶液(B-35)
液を滴下した後、溶液(C-35)をゆっくり滴下しpH5
に調節し、80℃で攪拌しながら蒸発乾固した。この間
溶液(C-35)を滴下して溶液のpHを5に維持した。得
られた固形物をアルミナ製の坩堝に入れ、120℃のオ
ーブン中で24時間乾燥した。瑪瑙乳鉢で粉砕し、Ni
0.92MoO3.92 を含む触媒担体前駆体(D-35)を得た。担
体前駆体(D-35)60gと、実施例16と同様に調製した
担持物(H-26)0.768gを1LのSPCフラスコに
取り、室温で蒸留水480gを加え、超音波洗浄器にか
けて緑色懸濁液とした。以下、実施例1と同様に蒸発乾
固、乾燥、焼成、粉砕、成形して触媒とした。この触媒
を用いて反応温度を400℃、420℃としたほかは実
施例14と同様の反応を行い、同様に分析した。結果を
第5表に示す。
Comparative Example 15 (Catalyst composition: 0.58 wt% Sb / Ni 0.92
MoO 3.92 , scale-up by the tartaric acid complex impregnation method) 125.52 g of nickel nitrate was placed in a 2 L separable flask, 863 g of distilled water was added, a stirring shaft, a dropping funnel, and a Liebig cooling pipe were attached and heated to 80 ° C. It was dissolved by stirring (A-35). Add 83.199 g of ammonium paramolybdate to a 200 ml beaker and add water 1
39 g was added, and the mixture was heated and stirred at 60 ° C. on a hot plate stirrer to dissolve (B-35). 25 wt% ammonia water 7
1 ml was diluted with 433 ml of distilled water at room temperature (C-35). Solution (B-35) while stirring solution (A-35)
After dropping the solution, slowly add the solution (C-35) to pH 5
The mixture was adjusted to 80 ° C. and evaporated to dryness at 80 ° C. with stirring. During this period, the solution (C-35) was added dropwise to maintain the pH of the solution at 5. The obtained solid was put into an alumina crucible and dried in an oven at 120 ° C for 24 hours. Crush in an agate mortar, Ni
A catalyst carrier precursor (D-35) containing 0.92 MoO 3.92 was obtained. 60 g of the carrier precursor (D-35) and 0.768 g of the carrier (H-26) prepared in the same manner as in Example 16 were placed in a 1 L SPC flask, 480 g of distilled water was added at room temperature, and the mixture was placed on an ultrasonic cleaner. It was a green suspension. Thereafter, in the same manner as in Example 1, the catalyst was obtained by evaporation to dryness, drying, calcination, crushing and molding. The same reaction as in Example 14 was carried out except that the reaction temperature was adjusted to 400 ° C. and 420 ° C. using this catalyst, and the same analysis was performed. The results are shown in Table 5.

【0055】比較例16(触媒組成:0.58wt%Sb/Ni0.83
MoO3.83 、酸化アンチモン混練法、窒素2時間焼成) 空気でなく窒素雰囲気で焼成した以外は実施例19と同
様の操作により触媒を調製した。この触媒を用いて反応
温度を401℃、419℃、430℃としたほかは実施
例14と同様の反応を行い、同様に分析した。結果を第
5表に示す。
Comparative Example 16 (Catalyst composition: 0.58 wt% Sb / Ni 0.83
MoO 3.83 , antimony oxide kneading method, nitrogen firing for 2 hours) A catalyst was prepared in the same manner as in Example 19 except that firing was performed in a nitrogen atmosphere instead of air. Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 401 ° C., 419 ° C. and 430 ° C., and the same analysis was carried out. The results are shown in Table 5.

【0056】比較例17(触媒組成:0.58wt%Sb/Ni0.83
MoO3.83 、酸化アンチモン混練法、空気4時間焼成) 焼成時間を4時間とした以外は、実施例19と同様の操
作により触媒を調製した。この触媒を用いて反応温度を
398℃、419℃、433℃としたほかは実施例14
と同様の反応を行い、同様に分析した。結果を第5表に
示す。
Comparative Example 17 (Catalyst composition: 0.58 wt% Sb / Ni 0.83
MoO 3.83 , antimony oxide kneading method, air calcination for 4 hours) A catalyst was prepared in the same manner as in Example 19 except that the calcination time was 4 hours. Example 14 except that the reaction temperature was set to 398 ° C., 419 ° C., and 433 ° C. using this catalyst.
The same reaction was performed and the same analysis was performed. The results are shown in Table 5.

【0057】比較例18(触媒組成:0.58wt%Sb/Ni0.83
MoO3.83 、酸化アンチモン混練法、空気6時間焼成) 焼成時間を6時間とした以外は、実施例19と同様の操
作により触媒を調製した。この触媒を用いて反応温度を
398℃、420℃としたほかは実施例14と同様の反
応を行い、同様に分析した。結果を第5表に示す。
Comparative Example 18 (Catalyst composition: 0.58 wt% Sb / Ni 0.83
MoO 3.83 , antimony oxide kneading method, air calcination for 6 hours) A catalyst was prepared in the same manner as in Example 19 except that the calcination time was 6 hours. Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were set to 398 ° C. and 420 ° C., and the same analysis was carried out. The results are shown in Table 5.

【0058】比較例19(触媒組成:0.58wt%Sb/Ni0.83
MoO3.83 、(Sb2O3+Sb2O4) 混練法) 三酸化二アンチモン0.23gの代わりに、三酸化二ア
ンチモン0.116g及び四酸化二アンチモン[Sb2O4]
0.121gを使用した以外は実施例19と同様の操作
により触媒を調製した。この触媒を用いて反応温度を4
00℃、419℃としたほかは実施例14と同様の反応
を行い、同様に分析した。結果を第5表に示す。
Comparative Example 19 (Catalyst composition: 0.58 wt% Sb / Ni 0.83
MoO 3.83 , (Sb 2 O 3 + Sb 2 O 4 ) kneading method) Instead of 0.23 g of diantimony trioxide, 0.116 g of diantimony trioxide and diantimony tetroxide [Sb 2 O 4 ]
A catalyst was prepared in the same manner as in Example 19, except that 0.121 g was used. With this catalyst, the reaction temperature is 4
The same reaction as in Example 14 was carried out except that the temperature was changed to 00 ° C. and 419 ° C., and the same analysis was carried out. The results are shown in Table 5.

【0059】比較例20(触媒組成:0.58wt%Sb/Ni0.83
MoO3.83 、(Sb2O3+Sb2O5) 混練法) 三酸化二アンチモン0.23gのかわり、三酸化二アン
チモン0.116g及び五酸化二アンチモン[Sb2O5]
0.128gを使用した以外は実施例19と同様の操作
により触媒を調製した。この触媒を用いて反応温度を4
00℃、419℃としたほかは実施例14と同様の反応
を行い、同様に分析した。結果を第5表に示す。
Comparative Example 20 (Catalyst composition: 0.58 wt% Sb / Ni 0.83
MoO 3.83 , (Sb 2 O 3 + Sb 2 O 5 ) kneading method) Instead of 0.23 g of diantimony trioxide, 0.116 g of diantimony trioxide and antimony pentoxide [Sb 2 O 5 ]
A catalyst was prepared in the same manner as in Example 19, except that 0.128 g was used. With this catalyst, the reaction temperature is 4
The same reaction as in Example 14 was carried out except that the temperature was changed to 00 ° C. and 419 ° C., and the same analysis was carried out. The results are shown in Table 5.

【0060】実施例21(触媒組成:0.04%H4PMo12O40/
0.6%Sb/Ni0.83MoO3.83) 三酸化二アンチモン9.495gと12モリブドリン酸
H4PMo12O40・30H2O]0.648gを50mlビーカーに入
れ、蒸留水20mlを加えホットプレートスターラー上で
室温で30分攪拌した後、50℃まで昇温して蒸発乾固
した(I-41)。実施例16と同様に調製した担体前駆体
(D-26)6.00gとアンチモン化合物(I-41)0.031
gを200mlのSPCフラスコに入れ、蒸留水50g
を加え攪拌した後、実施例1と同様の操作によりエバポ
レーターを用いて蒸発乾固し、乾燥、焼成、成形して触
媒とした。この触媒を用いて反応温度を401℃、41
9℃としたほかは実施例1と同様の反応を行い、同様に
分析した。結果を第5表に示す。
Example 21 (Catalyst composition: 0.04% H 4 PMo 12 O 40 /
0.6% Sb / Ni 0.83 MoO 3.83 ) 9.495 g of diantimony trioxide and 12 molybdophosphoric acid
0.648 g of [H 4 PMo 12 O 40 · 30H 2 O] was placed in a 50 ml beaker, 20 ml of distilled water was added, and the mixture was stirred on a hot plate stirrer for 30 minutes at room temperature, then heated to 50 ° C. and evaporated to dryness ( I-41). Carrier precursor prepared as in Example 16
(D-26) 6.00 g and antimony compound (I-41) 0.031
g in a 200 ml SPC flask and 50 g of distilled water
After adding and stirring, the same procedure as in Example 1 was performed to evaporate to dryness using an evaporator, followed by drying, firing and molding to obtain a catalyst. Using this catalyst, the reaction temperature was 401 ° C, 41
The same reaction as in Example 1 was carried out except that the temperature was changed to 9 ° C., and the same analysis was performed. The results are shown in Table 5.

【0061】比較例21(触媒組成:0.04%H4PMo12O40/
0.6%Sb/Ni0.83MoO3.83) 三酸化二アンチモン9.50gと11モリブド1バナドリ
ン酸 H4PMo11O40・30H2O]0.637gを50mlビーカ
ーに入れ、蒸留水20mlを加えホットプレートスターラ
ー上で室温で30分攪拌した後、50℃まで昇温して蒸
発乾固した(I-42)。実施例16と同様に調製した担体前
駆体(D-26) 6.00gとアンチモン化合物(I-42)0.
031gを200mlのSPCフラスコに入れ、蒸留水
50gを加え攪拌した後、実施例1と同様の操作により
エバポレーターを用いて蒸発乾固し、乾燥、焼成、成形
して触媒とした。この触媒を用いて反応温度を400
℃、419℃としたほかは実施例1と同様の反応を行
い、同様に分析した。結果を第5表に示す。
Comparative Example 21 (Catalyst composition: 0.04% H 4 PMo 12 O 40 /
0.6% Sb / Ni 0.83 MoO 3.83 ) 9.50 g of diantimony trioxide and 11 molybdo 1 vanadolinic acid H 4 PMo 1 1 O 40 · 30 H 2 O] 0.637 g are put in a 50 ml beaker, 20 ml of distilled water is added, and a hot plate stirrer is added. After stirring at room temperature for 30 minutes above, the temperature was raised to 50 ° C. and evaporated to dryness (I-42). 6.00 g of the carrier precursor (D-26) prepared in the same manner as in Example 16 and the antimony compound (I-42) 0.
031 g was put in a 200 ml SPC flask, 50 g of distilled water was added, and the mixture was stirred, and then evaporated to dryness using an evaporator in the same manner as in Example 1, dried, calcined, and molded to obtain a catalyst. The reaction temperature is 400 with this catalyst.
The same reaction as in Example 1 was carried out except that the temperature was changed to 419 ° C and the same analysis was performed. The results are shown in Table 5.

【0062】比較例22(触媒組成:0.04%H4PMo12O40/
Ni0.83MoO3.83 ) 実施例16と同様に調製した担体前駆体(D-26)6.00
gと12モリブドリン酸H3PMo12O40・30H2O]0.0009
gを200mlのSPCフラスコに入れ、蒸留水50gを
加え攪拌した後、実施例1と同様の操作によりエバポレ
ーターを用いて蒸発乾固し、乾燥、焼成、成形して触媒
とした。この触媒を用いて反応温度を400℃、419
℃としたほかは実施例1と同様の反応を行い、同様に分
析した。結果を第5表に示す。
Comparative Example 22 (Catalyst composition: 0.04% H 4 PMo 12 O 40 /
Ni 0.83 MoO 3.83 ) Carrier precursor (D-26) 6.00 prepared as in Example 16
g and 12 molybdophosphoric acid H 3 PMo 12 O 40 · 30H 2 O] 0.0009
After putting 50 g in a 200 ml SPC flask and adding 50 g of distilled water and stirring, the mixture was evaporated to dryness using an evaporator in the same manner as in Example 1, dried, calcined and molded to obtain a catalyst. Using this catalyst, the reaction temperature was 400 ° C., 419
The same reaction as in Example 1 was carried out except that the temperature was changed to ° C, and the same analysis was performed. The results are shown in Table 5.

【0063】実施例22(触媒組成:0.58wt%Sb/Ni0.92
MoO3.92 、酸化アンチモン混練法、熱履歴40時間) 硝酸ニッケル37.46gと三酸化二アンチモン0.23
gを1Lの四口フラスコに入れ、蒸留水258gを加
え、攪拌羽根とジムロート冷却管と熱電対鞘管を取り付
け油浴に浸けて80℃に加熱攪拌した(A-44)。実施例
1と同様にパラモリブデン酸アンモニウム溶液(B-1)、
炭酸水素アンモニウム溶液(C-1) を調製した。(A-44)
液を攪拌しながら(B-1)液を滴下した後、(C-1)液
をゆっくり滴下しpH5に調節した。のべ40時間80
℃で加熱還流を続け、この間(C-1)液によりpH5を維
持した。以下、実施例4と同様に焼成、粉砕、成形して
触媒とした。この触媒を用いて反応温度を400℃、4
20℃としたほかは実施例1と同様の反応を行い、同様
に分析した。結果を第5表に示す。
Example 22 (Catalyst composition: 0.58 wt% Sb / Ni 0.92
MoO 3.92 , antimony oxide kneading method, thermal history 40 hours) Nickel nitrate 37.46 g and diantimony trioxide 0.23
g was put in a 1 L four-necked flask, 258 g of distilled water was added, a stirring blade, a Dimroth condenser tube and a thermocouple sheath tube were attached, and the mixture was immersed in an oil bath and heated and stirred at 80 ° C. (A-44). As in Example 1, ammonium paramolybdate solution (B-1),
An ammonium hydrogen carbonate solution (C-1) was prepared. (A-44)
After the liquid (B-1) was added dropwise while stirring the liquid, the liquid (C-1) was slowly added dropwise to adjust the pH to 5. Total 40 hours 80
The mixture was heated under reflux at 0 ° C., and pH (5) was maintained during this period by the liquid (C-1). Thereafter, the catalyst was obtained by calcination, pulverization and molding in the same manner as in Example 4. Using this catalyst, the reaction temperature is 400 ° C, 4
The same reaction as in Example 1 was carried out except that the temperature was set to 20 ° C., and the same analysis was carried out. The results are shown in Table 5.

【0064】比較例23(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、酢酸塩原料から調製) 酢酸ニッケル4水塩[Ni(OCOCH3)2 ・4H2O]34.23
gを1Lのビーカーに入れ、蒸留水275gを加え、ホ
ットプレートスターラー上で80℃に加熱攪拌し溶解し
た(A-45)。パラモリブデン酸アンモニウム26.49
3gを、100mlのビーカーに入れ水43gを加え、
ホットプレートスターラー上で60℃に加熱攪拌し溶解
した(B-45)。(A-46)液を攪拌しながら(B-46)液を
滴下するとpH5.0の白緑色スラリーが生じ、これを
80℃で攪拌しながら蒸発乾固した。以後、実施例1と
同様の操作により乾燥、粉砕しNi0.92MoO3.92 を含む触
媒担体前駆体(D-45)を得た。担体前駆体(D-45)4.
000gと、実施例1で調製した担持物[(NH4)6TeMo6O
24 ・7H2O](G-1)0.210gを200mlのSPCフ
ラスコに取り、室温で蒸留水50gを加え、超音波洗浄
器にかけて緑色懸濁液とした。以下、実施例1と同様に
ロータリーエバポレーターにより蒸発乾固し、焼成、粉
砕、成形して触媒とした。この触媒を用いて反応温度を
400℃、420℃としたほかは実施例14と同様の反
応を行い、同様に分析した。結果を第6表に示す
Comparative Example 23 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92, prepared from the acetate starting material) of nickel acetate tetrahydrate [Ni (OCOCH 3) 2 · 4H 2 O] 34.23
g was placed in a 1 L beaker, 275 g of distilled water was added, and the mixture was heated and stirred at 80 ° C. on a hot plate stirrer to dissolve (A-45). Ammonium paramolybdate 26.49
Add 3g into a 100ml beaker, add 43g of water,
It was heated and stirred at 60 ° C. on a hot plate stirrer to dissolve (B-45). The liquid (B-46) was added dropwise with stirring the liquid (A-46) to give a white-green slurry having a pH of 5.0, which was evaporated to dryness with stirring at 80 ° C. Thereafter, the catalyst carrier precursor (D-45) containing Ni 0.92 MoO 3.92 was obtained by drying and pulverizing in the same manner as in Example 1. Carrier precursor (D-45) 4.
000 g and the supported material [(NH 4 ) 6 TeMo 6 O prepared in Example 1
0.210 g of 24 · 7H 2 O] (G-1) was placed in a 200 ml SPC flask, 50 g of distilled water was added at room temperature, and the mixture was ultrasonicated to give a green suspension. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding. The same reaction as in Example 14 was carried out except that the reaction temperature was adjusted to 400 ° C. and 420 ° C. using this catalyst, and the same analysis was performed. The results are shown in Table 6.

【0065】比較例24(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、蟻酸塩原料から調製) 蟻酸ニッケル2水塩[Ni(OCOCH)2・4H2O]25.417
gを1Lのビーカーに入れ、蒸留水275gを加え、ホ
ットプレートスターラー上で80℃に加熱攪拌し溶解し
た。塩は完全に溶解せず、pH6.0の白緑色スラリー
となった(A-46)。パラモリブデン酸アンモニウム2
6.493gを、100mlのビーカーに入れ水43g
を加え、ホットプレートスターラー上で60℃に加熱攪
拌し溶解した(B-46)。炭酸水素アンモニウム[NH4HC
O3] 15gを水100mlに溶解した(C-46)。(A-4
6)液を攪拌しながら(B-46)液を滴下し、次いでpH
5.0になるまで(C-46)液を滴下し、更に80℃で攪
拌しながら蒸発乾固した。この間(C-46)液を滴下しなが
ら溶液のpHを5に維持した。以後、実施例1と同様の
操作により乾燥、粉砕しNi0.92MoO3.92 を含む触媒担体
前駆体(D-46)を得た。担体前駆体(D-46)6 .000
gと、実施例1で調製した担持物[(NH4)6TeMo6O24 ・7H2
O](G-1)0.307gを200mlのSPCフラスコに
取り、室温で蒸留水50gを加え、超音波洗浄器にかけ
て緑色懸濁液とした。以下、実施例1と同様にロータリ
ーエバポレーターにより蒸発乾固し、焼成、粉砕、成形
して触媒とした。この触媒を用いて反応温度を400
℃、420℃としたほかは実施例14と同様の反応を行
い、同様に分析した。結果を第6表に示す
Comparative Example 24 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92, prepared from formic acid salt material) nickel formate dihydrate [Ni (OCOCH) 2 · 4H 2 O] 25.417
g was placed in a 1 L beaker, 275 g of distilled water was added, and the mixture was heated and stirred at 80 ° C. on a hot plate stirrer to dissolve. The salt was not completely dissolved and became a white green slurry having a pH of 6.0 (A-46). Ammonium paramolybdate 2
6.493 g was added to a 100 ml beaker and 43 g of water was added.
Was added, and the mixture was heated and stirred at 60 ° C on a hot plate stirrer to dissolve (B-46). Ammonium hydrogen carbonate [NH 4 HC
15 g of O 3 ] was dissolved in 100 ml of water (C-46). (A-4
6) Add the liquid (B-46) dropwise while stirring the liquid, and then add the pH.
Liquid (C-46) was added dropwise until the mixture reached 5.0, and the mixture was evaporated to dryness at 80 ° C with stirring. During this period, the pH of the solution was maintained at 5 while dropping the (C-46) solution. Thereafter, the catalyst carrier precursor (D-46) containing Ni 0.92 MoO 3.92 was obtained by drying and pulverizing in the same manner as in Example 1. Carrier precursor (D-46) 6. 000
g, and the supported product [(NH 4 ) 6 TeMo 6 O 24 · 7H 2 prepared in Example 1
O] (G-1) (0.307 g) was placed in a 200 ml SPC flask, 50 g of distilled water was added at room temperature, and the mixture was subjected to an ultrasonic cleaner to give a green suspension. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding. The reaction temperature is 400 with this catalyst.
The same reaction as in Example 14 was carried out except that the temperature was changed to 420 ° C., and the same analysis was performed. The results are shown in Table 6.

【0066】比較例25(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、硫酸原料から調製) 硫酸ニッケル6水塩[NiSO4 ・6H2O ]22.14gを
500mlのビーカーに入れ、蒸留水170gを加え、
ホットプレートスターラー上で80℃に加熱攪拌し溶解
した(A-47)。パラモリブデン酸アンモニウム16.2
249gを、100mlのビーカーに入れ水26gを加
え、ホットプレートスターラー上で60℃に加熱攪拌し
溶解した(B-47)。炭酸水素アンモニウム[NH4HCO3]
7.5gを水55.6mlに溶解した(C-47)。(A-4
7)液を攪拌しながら(B-47)液を滴下し、次いでpH
5.0になるまで(C-47)液を滴下し、更に80℃で攪拌
しながら蒸発乾固した。この間(C-47)液を滴下しなが
ら溶液のpHを5に維持した。以後、実施例1と同様の
操作により乾燥、粉砕しNi0.92MoO3.92 を含む触媒担体
前駆体(D-47)を得た。担体前駆体(D-47)6 .000
gと、実施例1で調製した担持物[(NH4)6TeMo6O24 ・7H2
O](G-1)0.307gを200mlのSPCフラスコに
取り、室温で蒸留水50gを加え、超音波洗浄器にかけ
て緑色懸濁液とした。以下、実施例1と同様にロータリ
ーエバポレーターにより蒸発乾固し、焼成、粉砕、成形
して触媒とした。この触媒を用いて反応温度を401
℃、420℃としたほかは実施例14と同様の反応を行
い、同様に分析した。結果を第6表に示す
Comparative Example 25 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92, prepared from sulfate material) placed nickel sulfate hexahydrate [NiSO 4 · 6H 2 O] 22.14g beaker 500 ml, distilled water 170g was added,
It was heated and stirred at 80 ° C. on a hot plate stirrer to dissolve (A-47). Ammonium paramolybdate 16.2
249 g was placed in a 100 ml beaker, 26 g of water was added, and the mixture was heated and stirred at 60 ° C. on a hot plate stirrer to dissolve (B-47). Ammonium hydrogen carbonate [NH 4 HCO 3 ]
7.5 g was dissolved in 55.6 ml of water (C-47). (A-4
7) Add the solution (B-47) dropwise while stirring the solution, and then add the pH.
The solution (C-47) was added dropwise until it reached 5.0, and the mixture was evaporated to dryness at 80 ° C with stirring. During this period, the pH of the solution was maintained at 5 while dropping the (C-47) solution. Thereafter, the catalyst carrier precursor (D-47) containing Ni 0.92 MoO 3.92 was obtained by drying and pulverizing in the same manner as in Example 1. Carrier precursor (D-47) 6. 000
g, and the supported product [(NH 4 ) 6 TeMo 6 O 24 · 7H 2 prepared in Example 1
O] (G-1) (0.307 g) was placed in a 200 ml SPC flask, 50 g of distilled water was added at room temperature, and the mixture was subjected to an ultrasonic cleaner to give a green suspension. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding. The reaction temperature was adjusted to 401
The same reaction as in Example 14 was carried out except that the temperature was changed to 420 ° C., and the same analysis was performed. The results are shown in Table 6.

【0067】比較例26(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、クエン酸塩原料から調製) クエン酸ニッケル7水塩[Ni3(C6H5O7)2・4H2O]48.
494gを1Lのビーカーに入れ、蒸留水360gを加
え、ホットプレートスターラー上で70℃に加熱攪拌
後、28%アンモニア水80mlを徐々に添加。塩はゆ
っくり溶解し、pH9.1の暗緑色溶液となった(A-4
8)。パラモリブデン酸アンモニウム41.1808g
を、200mlのビーカーに入れ水67gを加え、ホッ
トプレートスターラー上で60℃に加熱攪拌し溶解(B-
48)。(A-48)液を攪拌しながら(B-48)液を滴下した
ところpH8.5の暗緑色均一溶液となり、70℃に加
熱攪拌を続ける内にpHは7〜8の白緑色スラリーへ変
化した。以後、70℃で蒸発乾固し、実施例1と同様の
操作によりNi0.92MoO3.92 を含む担体前駆体(D-48)を
得た。担体前駆体(D-48)6 .000gと、実施例1で
調製した担持物[(NH4)6TeMo6O24 ・7H2O](G-1)0.24
4gを200mlのSPCフラスコに取り、室温で蒸留
水50gを加え、超音波洗浄器にかけて緑色懸濁液とし
た。以下、実施例1と同様にロータリーエバポレーター
により蒸発乾固し、焼成、粉砕、成形して触媒とした。
この触媒を用いて反応温度を401℃、420℃とした
ほかは実施例14と同様の反応を行い、同様に分析し
た。結果を第6表に示す
Comparative Example 26 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92, citrate prepared from the raw material) nickel citrate heptahydrate [Ni 3 (C 6 H 5 O 7) 2 · 4H 2 O] 48.
Put 494 g in a 1 L beaker, add 360 g of distilled water, heat and stir at 70 ° C. on a hot plate stirrer, and gradually add 80 ml of 28% ammonia water. The salt slowly dissolved into a dark green solution with a pH of 9.1 (A-4
8). Ammonium paramolybdate 41.1808 g
Was added to a 200 ml beaker, 67 g of water was added, and the mixture was heated and stirred at 60 ° C on a hot plate stirrer to dissolve (B-
48). When the (B-48) solution was added dropwise while stirring the (A-48) solution, a dark green uniform solution having a pH of 8.5 was obtained, and the pH changed to a white-green slurry of 7 to 8 while continuing heating and stirring at 70 ° C. did. Thereafter, the mixture was evaporated to dryness at 70 ° C., and a carrier precursor (D-48) containing Ni 0.92 MoO 3.92 was obtained by the same operation as in Example 1. Carrier precursor (D-48) 6. 000 g and the supported material [(NH 4 ) 6 TeMo 6 O 24 · 7H 2 O] (G-1) 0.24 prepared in Example 1.
4 g was placed in a 200 ml SPC flask, 50 g of distilled water was added at room temperature, and the mixture was ultrasonically washed to give a green suspension. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding.
Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 401 ° C. and 420 ° C., and the same analysis was carried out. The results are shown in Table 6.

【0068】比較例27 (触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、塩化物原料から調製) 無水塩化ニッケル[NiCl2 ]26.08gを1Lのビー
カーに入れ、蒸留水400gを加え、ホットプレートス
ターラー上で80℃に加熱攪拌し溶解した(A-49)。パ
ラモリブデン酸アンモニウム38.754gを、200
mlのビーカーに入れ水65.2gを加え、ホットプレ
ートスターラー上で60℃に加熱攪拌し溶解した(B-4
9)。炭酸水素アンモニウム[NH4HCO3] 炭酸水素アンモ
ニウム[NH4HCO3] 15gを水100mlに溶解した(C-
49)。(A-49)液を攪拌しながら(B-49)液を滴下し、
次いでpH5.0になるまで(C-49)液を滴下し、更に8
0℃で攪拌しながら蒸発乾固した。この間(C-49)液を
滴下しながら溶液のpHを5に維持した。以後、実施例
1と同様の操作により乾燥、粉砕しNi0.92MoO3.92 を含
む触媒担体前駆体(D-49)を得た。担体前駆体(D-48)
6 .000gと、実施例1で調製した担持物[(NH4)6TeM
o6O24 ・7H2O](G-1)0.275gを200mlのSPC
フラスコに取り、室温で蒸留水60gを加え、超音波洗
浄器にかけて緑色懸濁液とした。以下、実施例1と同様
にロータリーエバポレーターにより蒸発乾固し、焼成、
粉砕、成形して触媒とした。この触媒を用いて反応温度
を400℃、419℃としたほかは実施例14と同様の
反応を行い、同様に分析した。結果を第6表に示す
Comparative Example 27 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92, putting nickel prepared from chloride material) chloride anhydride [NiCl 2] 26.08g beaker 1L, distilled water 400g was added, heated and stirred to 80 ° C. on a hot plate stirrer And dissolved (A-49). 38.754 g of ammonium paramolybdate, 200
In a beaker of ml, add 65.2 g of water, and heat and stir on a hot plate stirrer at 60 ° C. to dissolve (B-4
9). Ammonium hydrogen carbonate [NH 4 HCO 3 ] 15 g of ammonium hydrogen carbonate [NH 4 HCO 3 ] was dissolved in 100 ml of water (C-
49). While stirring the (A-49) liquid, the (B-49) liquid was dropped.
Then add (C-49) solution dropwise until the pH reaches 5.0, and add 8 more.
It was evaporated to dryness at 0 ° C. with stirring. During this period, the pH of the solution was maintained at 5 while dropping the (C-49) solution. Thereafter, the catalyst carrier precursor (D-49) containing Ni 0.92 MoO 3.92 was obtained by drying and pulverizing in the same manner as in Example 1. Carrier precursor (D-48)
6. 000 g and the supported material [(NH 4 ) 6 TeM prepared in Example 1
o 6 O 24 · 7H 2 O ] (G-1) 0.275g of 200 ml SPC
The mixture was placed in a flask, 60 g of distilled water was added at room temperature, and the mixture was ultrasonically washed to give a green suspension. Then, in the same manner as in Example 1, the mixture was evaporated to dryness by a rotary evaporator and then calcined,
It was crushed and molded into a catalyst. Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 400 ° C. and 419 ° C., and the same analysis was carried out. The results are shown in Table 6.

【0069】比較例28(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、塩基性炭酸ニッケルから調
製) 塩基性炭酸ニッケル[NiCO3・2Ni(OH)2 ]13.948
gを1Lのビーカーに入れ、蒸留水275gを加え、ホ
ットプレートスターラー上で80℃に加熱攪拌し白緑色
スラリーを得た(A-50)。パラモリブデン酸アンモニウ
ム26.494gを、100mlのビーカーに入れ水4
3.5gを加え、ホットプレートスターラー上で60℃に
加熱攪拌し溶解した(B-50)。(A-50)液を攪拌しなが
ら(B-50)液を滴下し、80℃で加熱攪拌を続け蒸発乾
固した。以後、実施例と同様の操作によりNi0.92MoO
3.92 を含む担体前駆体(D-50)を得た担体前駆体(D-5
0)5. 000gと、実施例1で調製した担持物[(NH4)6
TeMo6O24 ・7H2O](G-1)0.288gを200mlのS
PCフラスコに取り、室温で蒸留水60gを加え、超音
波洗浄器にかけて緑色懸濁液とした。以下、実施例1と
同様にロータリーエバポレーターにより蒸発乾固し、焼
成、粉砕、成形して触媒とした。この触媒を用いて反応
温度を400℃、420℃としたほかは実施例14と同
様の反応を行い、同様に分析した。結果を第6表に示す
Comparative Example 28 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92, prepared from basic nickel carbonate) basic nickel carbonate [NiCO 3 · 2Ni (OH) 2] 13.948
g was put in a 1 L beaker, 275 g of distilled water was added, and the mixture was heated and stirred at 80 ° C. on a hot plate stirrer to obtain a white-green slurry (A-50). Add 26.494 g of ammonium paramolybdate to a 100 ml beaker and add water 4
3.5 g was added, and the mixture was heated and stirred at 60 ° C. on a hot plate stirrer to dissolve (B-50). The liquid (B-50) was added dropwise while stirring the liquid (A-50), and the mixture was heated and stirred at 80 ° C. to evaporate to dryness. After that, Ni 0.92 MoO
The carrier precursor (D-50) containing 3.92 was obtained.
0) 5,000 g and the supported material [(NH 4 ) 6 prepared in Example 1
TeMo 6 O 24 · 7H 2 O ] (G-1) 0.288g of 200 ml S
It was taken in a PC flask, 60 g of distilled water was added at room temperature, and the mixture was ultrasonically washed to give a green suspension. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding. The same reaction as in Example 14 was carried out except that the reaction temperature was adjusted to 400 ° C. and 420 ° C. using this catalyst, and the same analysis was performed. The results are shown in Table 6.

【0070】比較例29(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、沈殿剤に0.7Mアンモニ
ア水を使用) 炭酸水素アンモニウム溶液(A-1)の代わりに0.7Mア
ンモニア水を使用した以外は実施例1と同様の操作によ
り Ni0.92MoO3.92を含む担体前駆体(D-51)を調製し
た。担体前駆体(D-51)6. 000gと、実施例1で調
製した担持物[(NH 4)6TeMo6O24 ・7H2O](G-1)0.285
gを200mlのSPCフラスコに取り、室温で蒸留水
60gを加え、超音波洗浄器にかけて緑色懸濁液とし
た。以下、実施例1と同様にロータリーエバポレーター
により蒸発乾固し、焼成、粉砕、成形して触媒とした。
この触媒を用いて反応温度を399℃、418℃とした
ほかは実施例14と同様の反応を行い、同様に分析し
た。結果を第6表に示す
Comparative Example 29 (Catalyst composition: 6 wt% (NHFour)6TeMo6O
twenty four・ 7H2O / Ni0.92MoO3.92, 0.7M ammonium as a precipitant
A. Use water) Instead of ammonium bicarbonate solution (A-1),
Same operation as in Example 1 except that ammonia water was used.
Ri Ni0.92MoO3.92A carrier precursor (D-51) containing
It was Prepared in Example 1 with 6,000 g of carrier precursor (D-51).
Made carrier [(NH Four)6TeMo6Otwenty four・ 7H2O] (G-1) 0.285
g in a 200 ml SPC flask and distilled water at room temperature
Add 60 g and apply ultrasonic wave to make a green suspension.
It was Thereafter, as in Example 1, a rotary evaporator is used.
After that, it was evaporated to dryness, calcined, pulverized and molded to obtain a catalyst.
Using this catalyst, the reaction temperatures were set to 399 ° C and 418 ° C.
Otherwise, the same reaction as in Example 14 was carried out, and the same analysis was carried out.
It was The results are shown in Table 6.

【0071】比較例30(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、沈殿剤に3Mアンモニア水
を使用) 炭酸水素アンモニウム溶液(A-1)の代わりに3Mアンモ
ニア水を使用した以外は実施例1と同様の操作により N
i0.92MoO3.92を含む担体前駆体(D-52)を調製した。担
体前駆体(D-52)6. 000gと、実施例1で調製した
担持物[(NH4)6TeMo6O24 ・7H2O](G-1)0.266gを2
00mlのSPCフラスコに取り、室温で蒸留水60g
を加え、超音波洗浄器にかけて緑色懸濁液とした。以
下、実施例1と同様にロータリーエバポレーターにより
蒸発乾固し、焼成、粉砕、成形して触媒とした。この触
媒を用いて反応温度を399℃、419℃としたほかは
実施例14と同様の反応を行い、同様に分析した。結果
を第6表に示す
Comparative Example 30 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92, N in the same manner as in Example 1 except for using a 3M aqueous ammonia instead of a 3M aqueous ammonia used) ammonium bicarbonate solution precipitant (A-1)
A carrier precursor (D-52) containing i 0.92 MoO 3.92 was prepared. 6,000 g of the carrier precursor (D-52) and 0.266 g of the carrier [(NH 4 ) 6 TeMo 6 O 24 · 7H 2 O] (G-1) prepared in Example 1 were used.
Transfer to a 00ml SPC flask and add 60g of distilled water at room temperature.
Was added, and the mixture was subjected to an ultrasonic cleaner to give a green suspension. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding. The same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 399 ° C. and 419 ° C. using this catalyst, and the same analysis was performed. The results are shown in Table 6.

【0072】比較例31(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、沈殿剤に6Mアンモニア水
を使用) 炭酸水素アンモニウム溶液(A-1)の代わりに6Mアンモ
ニア水を使用した以外は実施例1と同様の操作により N
i0.92MoO3.92を含む担体前駆体(D-53)を調製した。担
体前駆体(D-53)6. 000gと、実施例1で調製した
担持物[(NH4)6TeMo6O24 ・7H2O](G-1)0.265gを2
00mlのSPCフラスコに取り、室温で蒸留水60g
を加え、超音波洗浄器にかけて緑色懸濁液とした。以
下、実施例1と同様にロータリーエバポレーターにより
蒸発乾固し、焼成、粉砕、成形して触媒とした。この触
媒を用いて反応温度を400℃、420℃としたほかは
実施例14と同様の反応を行い、同様に分析した。結果
を第6表に示す
Comparative Example 31 (Catalyst composition: 6 wt% (NH 4 ) 6 TeMo 6 O
24 · 7H 2 O / Ni 0.92 MoO 3.92, N in the same manner as in Example 1 except for using a 6M aqueous ammonia instead of a 6M aqueous ammonia used) ammonium bicarbonate solution precipitant (A-1)
A carrier precursor (D-53) containing i 0.92 MoO 3.92 was prepared. 6,000 g of the carrier precursor (D-53) and 0.265 g of the carrier [(NH 4 ) 6 TeMo 6 O 24 · 7H 2 O] (G-1) prepared in Example 1 were used.
Transfer to a 00ml SPC flask and add 60g of distilled water at room temperature.
Was added, and the mixture was subjected to an ultrasonic cleaner to give a green suspension. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding. The same reaction as in Example 14 was carried out except that the reaction temperature was adjusted to 400 ° C. and 420 ° C. using this catalyst, and the same analysis was performed. The results are shown in Table 6.

【0073】比較例32(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、担体調製時にpH5.5で
調製) 溶液のpHを5でなく5.5に合わせた以外は実施例1
と同様の操作によりNi 0.92MoO3.92 を含む担体前駆体
(D-54)を調製した。担体前駆体(D-54)6.000g
と、実施例1で調製した担持物[(NH4)6TeMo6O24 ・7H2O]
(G-1)0.247gを200mlのSPCフラスコに取
り、室温で蒸留水60gを加え、超音波洗浄器にかけて
緑色懸濁液とした。以下、実施例1と同様にロータリー
エバポレーターにより蒸発乾固し、焼成、粉砕、成形し
て触媒とした。この触媒を用いて反応温度を400℃、
420℃としたほかは実施例14と同様の反応を行い、
同様に分析した。結果を第6表に示す
Comparative Example 32 (Catalyst composition: 6 wt% (NHFour)6TeMo6O
twenty four・ 7H2O / Ni0.92MoO3.92, At pH 5.5 when preparing the carrier
Preparation) Example 1 except that the pH of the solution was adjusted to 5.5 instead of 5.
By the same operation as Ni 0.92MoO3.92Carrier precursor containing
(D-54) was prepared. Carrier precursor (D-54) 6.000 g
And the carrier [(NHFour)6TeMo6Otwenty four・ 7H2O]
Transfer 0.247 g of (G-1) to a 200 ml SPC flask.
Then, add 60g of distilled water at room temperature and put on an ultrasonic cleaner.
It was a green suspension. Thereafter, as in Example 1, the rotary
Evaporate to dryness with an evaporator, bake, crush, and mold
As a catalyst. Using this catalyst, the reaction temperature is 400 ° C,
The same reaction as in Example 14 was carried out except that the temperature was 420 ° C.,
The same analysis was conducted. The results are shown in Table 6.

【0074】比較例33(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、担体調製時にpH6.0で
調製) 溶液のpHを5でなく6.0に合わせた以外は実施例1
と同様の操作によりNi 0.92MoO3.92 を含む担体前駆体
(D-55) を調製した。担体前駆体(D-55) 6.000g
と、実施例1で調製した担持物[(NH4)6TeMo6O24 ・7H2O]
(G-1)0.263gを200mlのSPCフラスコに取
り、室温で蒸留水60gを加え、超音波洗浄器にかけて
緑色懸濁液とした。以下、実施例1と同様にロータリー
エバポレーターにより蒸発乾固し、焼成、粉砕、成形し
て触媒とした。この触媒を用いて反応温度を400℃、
420℃としたほかは実施例14と同様の反応を行い、
同様に分析した。結果を第6表に示す
Comparative Example 33 (Catalyst composition: 6 wt% (NHFour)6TeMo6O
twenty four・ 7H2O / Ni0.92MoO3.92, PH 6.0 at the time of carrier preparation
Preparation) Example 1 except that the pH of the solution was adjusted to 6.0 instead of 5.
By the same operation as Ni 0.92MoO3.92Carrier precursor containing
(D-55) was prepared. Carrier precursor (D-55) 6.000 g
And the carrier [(NHFour)6TeMo6Otwenty four・ 7H2O]
Transfer 0.263 g of (G-1) to a 200 ml SPC flask.
Then, add 60g of distilled water at room temperature and put on an ultrasonic cleaner.
It was a green suspension. Thereafter, as in Example 1, the rotary
Evaporate to dryness with an evaporator, bake, crush, and mold
As a catalyst. Using this catalyst, the reaction temperature is 400 ° C,
The same reaction as in Example 14 was carried out except that the temperature was 420 ° C.,
The same analysis was conducted. The results are shown in Table 6.

【0075】比較例34(触媒組成:6wt%(NH4)6TeMo6O
24・7H2O/Ni0.92MoO3.92 、担体前駆体調製時にテルロ
モリブデン酸アンモニウムを共存) 硝酸ニッケル 40.000gを500mlのビーカー
に入れ、蒸留水275gを加え80℃に加熱攪拌して溶
解した(A-56)。パラモリブデン酸アンモニウム26.
494gと実施例1で調製したテルロモリブデン酸アン
モニウム[(NH4) 6Mo6TeO 24 ・7H2O] (G-1) 7.54gを
100mlのビーカーに入れ、蒸留水55.6gを加え
攪拌して溶解した(C-56)。溶液(A-56)を80℃で攪
拌しながら溶液(B-56)を滴下し、次いでこの溶液のp
Hが5になるまで溶液(C-56)をゆっくり滴下し、更に
80℃で攪拌しながら蒸発乾固した。この時適宜(C-5
6)液を滴下しpH5を維持した。得られた固形物を実
施例19と同様に乾燥、焼成、粉砕、成形して触媒とし
た。この触媒を用いて反応温度を400℃、418℃と
したほかは実施例14と同様の反応を行い、同様に分析
した。結果を第6表に示す。
Comparative Example 34 (Catalyst composition: 6 wt% (NHFour)6TeMo6O
twenty four・ 7H2O / Ni0.92MoO3.92, Telluro when preparing the carrier precursor
(Coexist with ammonium molybdate) Beaker of 500 ml of nickel nitrate 40.000 g
Add 275 g of distilled water and heat to 80 ° C with stirring to dissolve.
I understood (A-56). Ammonium paramolybdate 26.
494 g and the telluromolybdate prepared in Example 1
Monium [(NHFour) 6Mo6TeOtwenty four ・ 7H2O] (G-1) 7.54 g
Place in a 100 ml beaker and add 55.6 g of distilled water.
It was dissolved by stirring (C-56). Stir the solution (A-56) at 80 ℃.
The solution (B-56) was added dropwise with stirring, and then p of this solution was added.
Solution (C-56) was slowly added dropwise until H became 5, and
It was evaporated to dryness at 80 ° C. with stirring. At this time, appropriately (C-5
6) The solution was added dropwise to maintain pH 5. The resulting solid is
Drying, calcination, crushing and molding were carried out in the same manner as in Example 19 to obtain a catalyst.
It was Using this catalyst, the reaction temperature was set to 400 ° C, 418 ° C
The same reaction as in Example 14 was carried out except that
did. The results are shown in Table 6.

【0076】比較例35(触媒組成:1.1wt%HO6/Ni0.83
MoO3.83 、担体前駆体調製時にテルル酸を共存) 硝酸ニッケル37.46gを1Lのビーカーに入れ、蒸
留水258gを加え、ホットプレートスターラー上で8
0℃に加熱攪拌して溶解した(A-57)。パラモリブデン
酸アンモニウム27.29gとテルル酸0.365gを
100mlのビーカーに入れ水75gを加え、ホットプ
レートスターラー上で60℃に加熱攪拌し溶解した(B-
57)。炭酸水素アンモニウム7.54gを100mlの
ビーカーに入れ、蒸留水55.6gを加え攪拌して溶解
した(C-57)。(A-57)液を攪拌しながら(B-57)液を
滴下した後、(C-57)液をゆっくり滴下しpH5に調節
し、液温80℃で攪拌しながら蒸発乾固した。この時適
宜(C-57)液を滴下しpH5を維持した。得られた固形
物を実施例19と同様に乾燥、焼成、粉砕、成形して触
媒とした。この触媒を用いて反応温度を400℃、41
9℃、437℃とした他は実施例14と同様の反応を行
い同様に分析した。結果を第6表に示す。
Comparative Example 35 (Catalyst composition: 1.1 wt% HO 6 / Ni 0.83
MoO 3.83 and coexisting telluric acid at the time of preparing the carrier precursor) 37.46 g of nickel nitrate was placed in a 1 L beaker, 258 g of distilled water was added, and 8 on a hot plate stirrer.
It was heated and stirred at 0 ° C. to be dissolved (A-57). Ammonium paramolybdate (27.29 g) and telluric acid (0.365 g) were placed in a 100 ml beaker, water (75 g) was added, and the mixture was heated and stirred at 60 ° C. on a hot plate stirrer to dissolve (B-
57). 7.54 g of ammonium hydrogen carbonate was placed in a 100 ml beaker, and 55.6 g of distilled water was added and dissolved by stirring (C-57). After liquid (B-57) was added dropwise while stirring liquid (A-57), liquid (C-57) was slowly added dropwise to adjust to pH 5, and the mixture was evaporated to dryness at liquid temperature 80 ° C. with stirring. At this time, the solution (C-57) was appropriately added dropwise to maintain pH 5. The obtained solid was dried, calcined, crushed and molded in the same manner as in Example 19 to obtain a catalyst. Using this catalyst, the reaction temperature is 400 ° C, 41
The same reaction as in Example 14 was carried out except that the temperature was changed to 9 ° C and 437 ° C, and the same analysis was performed. The results are shown in Table 6.

【0077】比較例36(触媒組成:10.6wt%[(C4H7)
4N]6TeMo5O24 /Ni0.92MoO3.92 ) パラモリブデン酸アンモニウム8.016gを200m
lのビーカーに入れ、蒸留水16.2gを加えホットプ
レートスターラー上で60℃に加熱攪拌し溶解した(E-5
8)。テルル酸[H6TeO6]1.73gを50mlのビーカー
に入れ蒸留水8gを加え攪拌し溶解した(F-58)。臭化
テトラブチルアンモニウム14.64gを100mlの
ビーカーに入れ、蒸留水50gを加え室温で攪拌し溶解
した(J-58)。(E-58)液を攪拌しながら(F-58)液を滴
下して加え、更に(J-58)液を滴下したところ白沈が生じ
た。濾過、水洗してこの固形物(G-58)を回収した。元
素分析の結果、Te:5.2wt% 、Mo:33.0wt%、Br:0.1wt% 、
C:33.0wt% 、H:6.4wt%、N:3.3wt%であった。実施例1と
同様の方法により調製した担体前駆体(D-1)3.000
gと、担持物(G-58)0.356gを200mlのSP
Cフラスコに取り、アセトニトリル5gを加え攪拌し
た。以下、実施例1と同様にロータリーエバポレーター
により蒸発乾固し、焼成、粉砕、成形して触媒とした。
この触媒を用いて反応温度を399℃、420℃とした
他は実施例14と同様の反応を行い、同様に分析した。
結果を第6表に示す
Comparative Example 36 (Catalyst composition: 10.6 wt% [(C 4 H 7 )]
4 N] 6 TeMo 5 O 24 / Ni 0.92 MoO 3.92 ) 200 m of ammonium paramolybdate 8.016 g
It was put in a beaker of 1 l, 16.2 g of distilled water was added, and the mixture was heated and stirred at 60 ° C on a hot plate stirrer to dissolve (E-5
8). 1.73 g of telluric acid [H 6 TeO 6 ] was placed in a 50 ml beaker, 8 g of distilled water was added, and the mixture was stirred and dissolved (F-58). Tetrabutylammonium bromide (14.64 g) was placed in a 100 ml beaker, 50 g of distilled water was added, and the mixture was stirred at room temperature to dissolve (J-58). The solution (F-58) was added dropwise while the solution (E-58) was stirred, and when the solution (J-58) was further added dropwise, white precipitation occurred. The solid matter (G-58) was collected by filtration and washing with water. As a result of elemental analysis, Te: 5.2 wt%, Mo: 33.0 wt%, Br: 0.1 wt%,
It was C: 33.0 wt%, H: 6.4 wt%, N: 3.3 wt%. Carrier precursor (D-1) 3.000 prepared by the same method as in Example 1
g and 0.356 g of the supported material (G-58) in 200 ml of SP
The mixture was placed in a C flask, 5 g of acetonitrile was added, and the mixture was stirred. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding.
Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 399 ° C. and 420 ° C., and the same analysis was carried out.
The results are shown in Table 6.

【0078】比較例37(触媒組成:1.1wt%HO6/Ni0.83
MoO3.83 ) 実施例16と同様の方法により調製した担体前駆体(D-2
6)6.000gと、テルル酸0.045gを200ml
のSPCフラスコに取り、蒸留水50gを加え攪拌し
た。以下、実施例1と同様にロータリーエバポレーター
により蒸発乾固し、焼成、粉砕、成形して触媒とした。
この触媒を用いて反応温度を400℃、420℃とした
ほかは実施例14と同様の反応を行い、同様に分析し
た。結果を第6表に示す
Comparative Example 37 (Catalyst composition: 1.1 wt% HO 6 / Ni 0.83
MoO 3.83 ) A carrier precursor prepared by the same method as in Example 16 (D-2
6) 200 ml of 6.000 g and 0.045 g of telluric acid
Into an SPC flask of No. 1, 50 g of distilled water was added and stirred. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding.
The same reaction as in Example 14 was carried out except that the reaction temperature was adjusted to 400 ° C. and 420 ° C. using this catalyst, and the same analysis was performed. The results are shown in Table 6.

【0079】比較例38(触媒組成:1.1wt%HO6/Ni0.83
MoO3.83 ) 実施例16と同様の方法により調製した担体前駆体(D-2
6)6.000gと、テルル酸0.068gを200ml
のSPCフラスコに取り、蒸留水50gを加え攪拌し
た。以下、実施例1と同様にロータリーエバポレーター
により蒸発乾固し、焼成、粉砕、成形して触媒とした。
この触媒を用いて反応温度を391℃、420℃とした
ほかは実施例14と同様の反応を行い、同様に分析し
た。結果を第6表に示す
Comparative Example 38 (Catalyst composition: 1.1 wt% HO 6 / Ni 0.83
MoO 3.83 ) A carrier precursor prepared by the same method as in Example 16 (D-2
6) 200 ml of 6.000 g and telluric acid 0.068 g
Into an SPC flask of No. 1, 50 g of distilled water was added and stirred. Thereafter, in the same manner as in Example 1, a catalyst was obtained by evaporating to dryness with a rotary evaporator, calcining, pulverizing and molding.
Using this catalyst, the same reaction as in Example 14 was carried out except that the reaction temperatures were changed to 391 ° C. and 420 ° C., and the same analysis was carried out. The results are shown in Table 6.

【0080】実施例23 (6wt%(NH4)6TeMo6O24・7H2O/
Ni0.92MoO3.92 触媒によるプロピレン酸化) 実施例1で得られた触媒[6wt%(NH4)6TeMo6O24・7H2O/
Ni0.92MoO3.9]を用い、以下のようにして反応させた。
すなわち、触媒1gを反応管に充填し窒素50ml/分
を流通しながら250℃まで昇温し、250℃からはプ
ロピレン2.7ml/分、酸素4ml/分、窒素23.
3ml/分、水蒸気20ml/分の混合ガスを流通しな
がら299℃に昇温し、1時間後オンラインガスクロマ
トグラフにより反応物を分析した。その後、325℃、
352℃、360℃、370℃、380℃、390℃、
397℃に段階的に昇温し、各反応温度での反応物を分
析した。結果を第7表に示す。
[0080] Example 23 (6wt% (NH 4) 6 TeMo 6 O 24 · 7H 2 O /
Ni 0.92 MoO 3.92 catalytic propylene oxidation) catalyst obtained in Example 1 [6wt% (NH 4) 6 TeMo 6 O 24 · 7H 2 O /
Ni 0.92 MoO 3.9 ] and reacted as follows.
That is, 1 g of the catalyst was filled in a reaction tube and the temperature was raised to 250 ° C. while flowing 50 ml / min of nitrogen. From 250 ° C., 2.7 ml / min of propylene, 4 ml / min of oxygen and 23.
The mixture was heated to 299 ° C. while flowing a mixed gas of 3 ml / min and steam of 20 ml / min, and after 1 hour, the reaction product was analyzed by an online gas chromatograph. After that, 325 ℃,
352 ° C, 360 ° C, 370 ° C, 380 ° C, 390 ° C,
The temperature was raised stepwise to 397 ° C. and the reaction product at each reaction temperature was analyzed. The results are shown in Table 7.

【0081】実施例24(9wt%(NH4)6TeMo6O24・7H2O/
Ni0.38MoO3.38 触媒によるプロピレン酸化) 実施例3で得られた触媒[9wt%(NH4)6TeMo6O24・7H2O/
Ni0.38MoO3.38 ]を用い、反応温度を298℃、324
℃、351℃、375℃、388℃、400℃、409
℃、419℃とした以外は実施例23と同様に反応し、同
様に分析した。結果を第7表に示す。
[0081] Example 24 (9wt% (NH 4) 6 TeMo 6 O 24 · 7H 2 O /
Ni 0.38 MoO 3.38 catalytic propylene oxidation) catalyst obtained in Example 3 [9wt% (NH 4) 6 TeMo 6 O 24 · 7H 2 O /
Ni 0.38 MoO 3.38 ], and the reaction temperature is 298 ° C, 324
℃, 351 ℃, 375 ℃, 388 ℃, 400 ℃, 409
The reaction was performed in the same manner as in Example 23 except that the temperature was changed to 419 ° C. The results are shown in Table 7.

【0082】比較例39(Ni0.92MoO3.92触媒によ
るプロピレン酸化) 比較例1で得られた触媒[Ni0.92MoO3.92]を用
い、反応温度を296℃、325℃、356℃、370
℃、380℃、391℃、399℃とした以外は実施例
23と同様に反応し、同様に分析した。結果を第7表に示
す。
Comparative Example 39 (Propylene Oxidation with Ni 0.92 MoO 3.92 Catalyst) Using the catalyst [Ni 0.92 MoO 3.92 ] obtained in Comparative Example 1, the reaction temperature was 296 ° C., 325 ° C., 356 ° C., 370.
C., 380.degree. C., 391.degree. C., 399.degree. C.
It reacted similarly to 23 and analyzed similarly. The results are shown in Table 7.

【0083】[0083]

【表1】 [Table 1]

【0084】[0084]

【表2】 [Table 2]

【0085】[0085]

【表3】 [Table 3]

【0086】[0086]

【表4】 [Table 4]

【0087】[0087]

【表5】 [Table 5]

【0088】[0088]

【表6】 [Table 6]

【0089】[0089]

【表7】 [Table 7]

【0090】[0090]

【発明の効果】本発明の触媒は、300〜450℃程度
の比較的低温でアルカン類等を活性化でき、副生するC
OやCO2 が少なく、アセトアルデヒド,アクロレイ
ン,アクリル酸、メタクリル酸等の含酸素化合物を高い
選択率で効率よく得ることができ、さらには酸素不存在
下での脱水素反応にも適用できる。従って本発明によ
り、アルカン類等を原料として、より工業原料として付
加価値の高い含酸素化成品やオレフィン類を製造するこ
とができる。
EFFECTS OF THE INVENTION The catalyst of the present invention can activate alkanes and the like at a relatively low temperature of about 300 to 450 ° C. and produces C as a by-product.
Oxygen-containing compounds such as acetaldehyde, acrolein, acrylic acid, and methacrylic acid can be efficiently obtained with a high selectivity, with a small amount of O and CO 2, and can also be applied to a dehydrogenation reaction in the absence of oxygen. Therefore, according to the present invention, an alkane or the like as a raw material can be used to produce an oxygen-containing chemical product or olefin having a high added value as an industrial raw material.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 27/14 C07C 27/14 Z 45/32 45/32 47/07 47/07 47/22 47/22 B 51/215 51/215 57/05 57/05 // C07B 61/00 300 C07B 61/00 300 (72)発明者 大上 典行 山口県徳山市新宮町1番1号 (72)発明者 上田 渉 北海道札幌市北区北11条西10丁目 北海道 大学内 Fターム(参考) 4G069 AA03 AA08 BB06A BB06B BC26B BC54B BC59A BC59B BC68A BC68B BD01B BD06B BD07B BD10B CB07 CB10 CB17 DA06 EA02Y FB07 4H006 AA02 AC12 AC45 AC46 BA14 BA15 BA20 BA21 BA30 BA41 BE30 BS10 4H039 CA21 CA62 CA65 CC10 CC40Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C07C 27/14 C07C 27/14 Z 45/32 45/32 47/07 47/07 47/22 47/22 B 51 / 215 51/215 57/05 57/05 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Noriyuki Oue 1-1-1 Shingumachi, Tokuyama City, Yamaguchi Prefecture Inventor Wataru Ueda Hokkaido Sapporo Kita-ku, Kita 11-jo Nishi 10-chome Hokkaido University F-term (reference) 4G069 AA03 AA08 BB06A BB06B BC26B BC54B BC59A BC59B BC68A BC68B BD01B BD06B BD07B BD10B CB07 CB10 CB17 BA30 BA21 BA21 BA21 BA21 BA14 BA21 BA21 BA14 BA21 BA14 AC14 BA20 BA14 AC14 BA20 BA14 AC14 BS10 4H039 CA21 CA62 CA65 CC10 CC40

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 テルル化合物およびアンチモン化合物か
ら選ばれた少なくとも一種を、モリブデン−コバルト複
合酸化物及び/又はモリブデン−ニッケル複合酸化物に
結合させたことを特徴とする炭化水素反応用触媒。
1. A catalyst for hydrocarbon reaction, comprising at least one selected from tellurium compounds and antimony compounds bound to a molybdenum-cobalt composite oxide and / or a molybdenum-nickel composite oxide.
【請求項2】 テルル化合物が、アンダーソン型ヘテロ
ポリ酸又はテルル酸とその有機塩および酸化テルルから
選ばれた少なくとも一種の化合物である請求項1に記載
の炭化水素反応用触媒。
2. The catalyst for hydrocarbon reaction according to claim 1, wherein the tellurium compound is at least one compound selected from Anderson-type heteropoly acid or telluric acid, an organic salt thereof and tellurium oxide.
【請求項3】 アンチモン化合物が、アンチモン酸化
物、アンチモン有機酸塩、アンチモン無機酸塩およびア
ンチモニルアンモニウム錯塩から選ばれた少なくとも一
種の化合物である請求項1又は請求項2に記載の炭化水
素反応用触媒。
3. The hydrocarbon reaction according to claim 1, wherein the antimony compound is at least one compound selected from antimony oxide, antimony organic acid salt, antimony inorganic acid salt, and antimonylammonium complex salt. Catalyst.
【請求項4】 請求項1〜3のいずれかに記載の触媒を
用いて炭化水素を反応させることを特徴とする炭化水素
の反応方法。
4. A method for reacting hydrocarbons, which comprises reacting hydrocarbons using the catalyst according to claim 1.
【請求項5】 炭化水素の反応が、炭化水素の部分酸化
反応である請求項4に記載の炭化水素の反応方法。
5. The method for reacting a hydrocarbon according to claim 4, wherein the reaction of the hydrocarbon is a partial oxidation reaction of the hydrocarbon.
【請求項6】 炭化水素がアルカン類および/又はオレ
フィン類である請求項5に記載の炭化水素の反応方法。
6. The hydrocarbon reaction method according to claim 5, wherein the hydrocarbon is an alkane and / or an olefin.
【請求項7】 炭化水素がプロパンおよび/又はプロピ
レンであり、反応生成物がアセトアルデヒド,アクロレ
イン及びはアクリル酸から選ばれた一種以上の含酸素化
合物である請求項6に記載の炭化水素の反応方法。
7. The method for reacting a hydrocarbon according to claim 6, wherein the hydrocarbon is propane and / or propylene, and the reaction product is acetaldehyde, acrolein, and one or more oxygen-containing compounds selected from acrylic acid. .
【請求項8】 炭化水素の反応が、酸素不存在下での飽
和炭化水素の脱水素反応である請求項4に記載の炭化水
素の反応方法。
8. The method for reacting a hydrocarbon according to claim 4, wherein the reaction of the hydrocarbon is a dehydrogenation reaction of a saturated hydrocarbon in the absence of oxygen.
JP2002049355A 2002-02-26 2002-02-26 Hydrocarbon reaction catalyst and reaction method using the same Expired - Fee Related JP4452011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049355A JP4452011B2 (en) 2002-02-26 2002-02-26 Hydrocarbon reaction catalyst and reaction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049355A JP4452011B2 (en) 2002-02-26 2002-02-26 Hydrocarbon reaction catalyst and reaction method using the same

Publications (2)

Publication Number Publication Date
JP2003245556A true JP2003245556A (en) 2003-09-02
JP4452011B2 JP4452011B2 (en) 2010-04-21

Family

ID=28661891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049355A Expired - Fee Related JP4452011B2 (en) 2002-02-26 2002-02-26 Hydrocarbon reaction catalyst and reaction method using the same

Country Status (1)

Country Link
JP (1) JP4452011B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044668A (en) * 2005-08-12 2007-02-22 Nippon Kayaku Co Ltd Method for producing composite metal oxide catalyst and application of the catalyst
CN106179440A (en) * 2016-06-24 2016-12-07 浙江大学 N doping multi-stage porous charcoal and its preparation method and application

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852696B2 (en) * 1973-02-02 1983-11-24 ザ スタンダ−ド オイル コンパニ Arakajime Seizou Shita Matrix No Ganshinnioru Sugreta Shiyokubai
JPH0847642A (en) * 1994-05-31 1996-02-20 Nippon Shokubai Co Ltd Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid and production of unsaturated aldehyde and unsaturated carboxylic acid using the catalyst
JPH1066874A (en) * 1996-08-28 1998-03-10 Mitsubishi Rayon Co Ltd Preparation of catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JPH11503753A (en) * 1995-04-17 1999-03-30 モービル・オイル・コーポレイション Method for catalytic dehydrogenation of alkanes to alkenes and simultaneous burning of hydrogen
JPH11239724A (en) * 1998-02-25 1999-09-07 Mitsubishi Rayon Co Ltd Production of catalyst for synthesizing unsaturated aldehyde and/or unsaturated carboxylic acid, and production of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2000143244A (en) * 1998-07-24 2000-05-23 Mitsubishi Chemicals Corp Production of multiple metal oxide
JP2001058827A (en) * 1999-06-17 2001-03-06 Mitsubishi Chemicals Corp Production of compound oxide
JP2001079412A (en) * 1999-09-15 2001-03-27 Rohm & Haas Co Catalyst useful for oxidizing alkane
JP2001328812A (en) * 2000-05-19 2001-11-27 Mitsubishi Chemicals Corp Method for producing composite oxide
JP2002253970A (en) * 2000-06-29 2002-09-10 Idemitsu Petrochem Co Ltd Partially oxidizing catalyst for alkanes and method for producing oxygen-containing compound using the catalyst
JP2004504288A (en) * 2000-07-18 2004-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing acrylic acid by gas phase oxidation of propane by heterogeneous catalysis

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852696B2 (en) * 1973-02-02 1983-11-24 ザ スタンダ−ド オイル コンパニ Arakajime Seizou Shita Matrix No Ganshinnioru Sugreta Shiyokubai
JPH0847642A (en) * 1994-05-31 1996-02-20 Nippon Shokubai Co Ltd Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid and production of unsaturated aldehyde and unsaturated carboxylic acid using the catalyst
JPH11503753A (en) * 1995-04-17 1999-03-30 モービル・オイル・コーポレイション Method for catalytic dehydrogenation of alkanes to alkenes and simultaneous burning of hydrogen
JPH1066874A (en) * 1996-08-28 1998-03-10 Mitsubishi Rayon Co Ltd Preparation of catalyst for producing unsaturated aldehyde and unsaturated carboxylic acid
JPH11239724A (en) * 1998-02-25 1999-09-07 Mitsubishi Rayon Co Ltd Production of catalyst for synthesizing unsaturated aldehyde and/or unsaturated carboxylic acid, and production of unsaturated aldehyde and/or unsaturated carboxylic acid
JP2000143244A (en) * 1998-07-24 2000-05-23 Mitsubishi Chemicals Corp Production of multiple metal oxide
JP2001058827A (en) * 1999-06-17 2001-03-06 Mitsubishi Chemicals Corp Production of compound oxide
JP2001079412A (en) * 1999-09-15 2001-03-27 Rohm & Haas Co Catalyst useful for oxidizing alkane
JP2001328812A (en) * 2000-05-19 2001-11-27 Mitsubishi Chemicals Corp Method for producing composite oxide
JP2002253970A (en) * 2000-06-29 2002-09-10 Idemitsu Petrochem Co Ltd Partially oxidizing catalyst for alkanes and method for producing oxygen-containing compound using the catalyst
JP2004504288A (en) * 2000-07-18 2004-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing acrylic acid by gas phase oxidation of propane by heterogeneous catalysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044668A (en) * 2005-08-12 2007-02-22 Nippon Kayaku Co Ltd Method for producing composite metal oxide catalyst and application of the catalyst
CN106179440A (en) * 2016-06-24 2016-12-07 浙江大学 N doping multi-stage porous charcoal and its preparation method and application

Also Published As

Publication number Publication date
JP4452011B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
KR100191368B1 (en) Iron-antimony-molybdenum containing oxide catalyst composition and process for preparing the same
KR101772247B1 (en) Improved mixed metal oxide ammoxidation catalysts
US8258073B2 (en) Process for preparing improved mixed metal oxide ammoxidation catalysts
JP6629394B2 (en) Improved selective ammoxidation catalyst
EP2922633B1 (en) Process for the preparation of mixed metal oxide ammoxidation catalysts
US20110237821A1 (en) Attrition resistant mixed metal oxide ammoxidation catalysts
KR102431212B1 (en) Improved mixed metal oxide ammoxidation catalysts
JPH04126548A (en) Metal oxide catalyst composition containing iron and antimony and production thereof
KR102356413B1 (en) Ammoxidation catalyst with selective by-product HCN production
CN107073455B (en) Improved selective ammonia oxidation catalyst
JP3974989B2 (en) Preparation of vanadium antimonate-based catalysts using SnO2 xH2O
JP2003245556A (en) Catalyst for reacting hydrocarbon and reaction method using this
JPH0547265B2 (en)
US20170114007A1 (en) Ammoxidation catalysts containing samarium
JP3796132B2 (en) Preparation of composite oxide catalyst for gas phase ammoxidation reaction
JP2005254058A (en) Method for manufacturing metallic oxide catalyst containing iron, antimony, and tellurium
JP4761377B2 (en) Method for producing Mo-containing oxide having bronze structure
JP2000246108A (en) Metal oxide catalyst and production of acrylic acid using same
JP2002253970A (en) Partially oxidizing catalyst for alkanes and method for producing oxygen-containing compound using the catalyst
JPH11309374A (en) Production of molybdenum-containing oxide catalyst
JPS5842176B2 (en) Fuhouwa Carbon Sanno Seizouhou
JPH04128247A (en) Production of methacrolein and methacrylic acid

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160205

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees