JP2003244967A - Three-phase constant current power source - Google Patents

Three-phase constant current power source

Info

Publication number
JP2003244967A
JP2003244967A JP2002043770A JP2002043770A JP2003244967A JP 2003244967 A JP2003244967 A JP 2003244967A JP 2002043770 A JP2002043770 A JP 2002043770A JP 2002043770 A JP2002043770 A JP 2002043770A JP 2003244967 A JP2003244967 A JP 2003244967A
Authority
JP
Japan
Prior art keywords
phase
frequency
voltage
constant current
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002043770A
Other languages
Japanese (ja)
Inventor
Juichi Irie
寿一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Technology Licensing Organization Co Ltd
Original Assignee
Kansai Technology Licensing Organization Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co Ltd filed Critical Kansai Technology Licensing Organization Co Ltd
Priority to JP2002043770A priority Critical patent/JP2003244967A/en
Publication of JP2003244967A publication Critical patent/JP2003244967A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that since a conventional three-phase inverter for converting DC power into a three-phase AC supplies a constant current irrespective of a load change, the current value of the load side is detected and feed-back controlled, bus this cannot be a complete constant current source. <P>SOLUTION: A high-frequency voltage V<SB>a</SB>is converted into a high-frequency current I<SB>b</SB>via an immittance converter IMT, and the current I<SB>b</SB>is distributed to three phases by using three semiconductor switches (S<SB>1</SB>, S<SB>2</SB>and S<SB>3</SB>) having conducting angles of 120° and different in the conducting angles at 120° from one another. Thus, when the voltage V<SB>a</SB>is constant, three-phase constant current outputs I<SB>2</SB>of low frequencies are obtained. As the voltage V<SB>a</SB>, a DC current of a solar battery SB is converted into a high-frequency voltage via an inverter INV, and the converted voltage can be used. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、イミタンス変換器
を用いることにより、直流電源から、負荷側の電圧に影
響されずに三相負荷または電力系統に定電流を供給する
ことを可能にする電気回路に関する。本発明に係る装置
は、たとえば、太陽光発電された直流をインバータで高
周波電圧に変換し、三相の配電系統または電力系統に定
電流で電力を供給する回路として使用することができ
る。また、2つの独立した三相電力系統を安定に連系す
るための回路としても使用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an immittance converter to supply a constant current from a DC power supply to a three-phase load or a power system without being affected by the voltage on the load side. Regarding the circuit. The device according to the present invention can be used, for example, as a circuit that converts direct-current generated by solar power generation into a high-frequency voltage with an inverter and supplies electric power to a three-phase distribution system or a power system with a constant current. It can also be used as a circuit for stably interconnecting two independent three-phase power systems.

【0002】[0002]

【従来の技術】図5は、第1の三相電力系統↑Va、↑V
b、↑Vcと第2の三相電力系統↑Vu、↑Vv、↑Vwを三個
の連系リアクトルLintで連系し、電力を伝送する従来の
回路の回路図である(記号「↑Va」は「ベクトルVa」を
表す)。一方の三相電力系統↑Va、↑Vb、↑Vcが、太陽
光発電された電力を三相インバータで三相電圧に変換し
たものである場合も同様である。このように、2つの電
力系統は電圧源であるから直接接続することはできず、
連系リアクトルLintによって電圧変化を吸収し、電圧位
相の進んでいる系統から電圧位相の遅れている系統に電
力を伝送する。
2. Description of the Related Art FIG. 5 shows a first three-phase power system ↑ Va, ↑ V.
b, ↑ Vc and the second three-phase power system ↑ Vu, ↑ Vv, ↑ Vw are interconnected by three interconnected reactors Lint, and a circuit diagram of a conventional circuit for transmitting electric power (symbol “↑ Va Represents the "vector Va"). The same applies to the case where one of the three-phase power systems ↑ Va, ↑ Vb, and ↑ Vc is generated by converting solar-generated power into a three-phase voltage by a three-phase inverter. In this way, the two power systems cannot be directly connected because they are voltage sources,
The interconnection reactor Lint absorbs the voltage change and transmits the power from the system with the advanced voltage phase to the system with the delayed voltage phase.

【0003】この回路において、三相交流は平衡である
ものとすると、a相電流↑Iaは、
In this circuit, assuming that the three-phase alternating current is balanced, the a-phase current ↑ Ia is

【数1】 で表すことができる。ただし、ωは電源角周波数(=2π
f)、Lintはリアクトルのインダクタンスである。
[Equation 1] Can be expressed as However, ω is the power supply angular frequency (= 2π
f), L int is the inductance of the reactor.

【0004】 したがって、連系リアクトルLでの電圧降
下ω・Lint・Iaが電圧Va、Vuより充分小さいとき、図6か
ら明らかなように、電流Iaの大きさの調整は↑Va、↑Vu
の位相差qを変えることによって実現可能であることが
理解される。↑Va、↑Vuのうち位相の進んでいる方が遅
れている方に電力を供給する。
[0004] Therefore, the voltage drop in the interconnection reactor L
Lower ω ・ Lint・ When Ia is sufficiently smaller than the voltages Va and Vu, see Fig. 6.
As is clear from the above, adjustment of the magnitude of the current Ia is ↑ Va, ↑ Vu
Can be realized by changing the phase difference q of
To be understood. Of ↑ Va and ↑ Vu, the phase advance is slower
Supply power to those who are

【0005】 図7は他の従来技術であるイミタンス変換
器を表している。イミタンス変換器はリアクトルLとコ
ンデンサCより成る4端子回路であって、T接続で直列L1
−並列C−直列L2の構造を持ち、L1、 L2のインダクタン
スおよびCの静電容量は
[0005] FIG. 7 shows another prior art immittance transformation.
It represents a vessel. The immittance converter is connected to the reactor L and
4 terminal circuit consisting of capacitor C, series L1 with T connection
-Parallel C-series L2 structure, L1 and L2 inductor
And the capacitance of C is

【数2】 を満たすように選ばれる。ただし、L=L1=L2、ωは入力
電圧V1の角周波数である。
[Equation 2] Chosen to meet. However, L = L1 = L2, and ω is the angular frequency of the input voltage V1.

【0006】式(2)が満たされるとき、図7の回路の電
圧、電流の関係は以下のような4端子定数の行列で表す
ことができる。
When the equation (2) is satisfied, the relationship between the voltage and the current in the circuit of FIG. 7 can be expressed by the following four-terminal constant matrix.

【数3】 4端子定数のAとDが0であることがイミタンス変換器の
特徴で、V1とI2が比例し、I1とV2が比例する。したがっ
て、入力V1が定電圧源で一定電圧であれば、出力はI2一
定すなわち定電流出力となる。
[Equation 3] The characteristic of the immittance converter is that the four-terminal constants A and D are 0. V1 and I2 are proportional, and I1 and V2 are proportional. Therefore, if the input V1 is a constant voltage source and a constant voltage, the output is a constant I2, that is, a constant current output.

【0007】[0007]

【発明が解決しようとする課題】このようなイミタンス
変換器を用いた定電流電源が本発明者により特開平09-1
63757号に開示されているが、これは単相電源であっ
た。本発明は、これを三相交流定電流電源に適用するこ
とを課題としたものである。
A constant current power source using such an immittance converter is disclosed by the present inventor in Japanese Patent Laid-Open No. 09-1.
As disclosed in 63757, this was a single phase power supply. An object of the present invention is to apply this to a three-phase AC constant current power supply.

【0008】従来、本発明とは別の方法で直流電源を三
相交流に変換する三相インバータ回路は存在した。その
ような従来の回路では、負荷変動に無関係に一定の電流
を供給するために、負荷側の電流値を検出してフィード
バック制御をかけていた。しかし、これには次のような
問題点がある。 (1)負荷変動を検出して制御をかける方式であるため、
完璧な定電流源にはなり得ない。 (2)定電圧出力を定電流出力に変化させる強いフィード
バック制御は発振状態になりやすく、系統が不安定にな
る。 (3)負荷や周辺条件等を考慮した修正設計が難しい。 (4)定電流を保てる電圧範囲は、ゼロ〜電源電圧の間で
しか行えない。
Conventionally, there has been a three-phase inverter circuit for converting a DC power supply into a three-phase AC by a method different from the present invention. In such a conventional circuit, in order to supply a constant current irrespective of load fluctuation, the current value on the load side is detected and feedback control is performed. However, this has the following problems. (1) Since it is a method that controls load fluctuations,
It cannot be a perfect constant current source. (2) The strong feedback control that changes the constant voltage output to the constant current output easily causes an oscillation state and the system becomes unstable. (3) It is difficult to modify the design considering the load and surrounding conditions. (4) The voltage range in which the constant current can be maintained can be performed only between zero and the power supply voltage.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る三相定電流電源は、高周波電圧
をイミタンス変換器を通じて高周波電流に変換し、この
高周波電流を導通角120度で順次120度ずつ導通位相を異
にする半導体スイッチを3個用いて三相各相に分配する
ことを特徴とするものである。これにより、上記高周波
電圧が一定の時、低周波の三相定電流出力が得られる。
A three-phase constant-current power supply according to the present invention, which has been made to solve the above-mentioned problems, converts a high-frequency voltage into a high-frequency current through an immittance converter, and the high-frequency current has a conduction angle of 120. It is characterized by using three semiconductor switches whose conduction phases are sequentially different by 120 degrees for each phase and distributing them to each of the three phases. Thus, when the high frequency voltage is constant, a low frequency three-phase constant current output can be obtained.

【0010】[0010]

【発明の実施の形態】上記の高周波電圧は、直流電圧か
ら、半導体スイッチを用いたインバータにより正負のパ
ルス波形を持つ高周波電圧を得、そのパルス波形のパル
ス幅を変化することにより基本波の振幅を可変としたも
の(PWM)とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The above-mentioned high frequency voltage is obtained by obtaining a high frequency voltage having positive and negative pulse waveforms from a DC voltage by an inverter using a semiconductor switch, and changing the pulse width of the pulse waveform to obtain the amplitude of the fundamental wave. Can be made variable (PWM).

【0011】また、上記イミタンス変換器は、リアクト
ルLとコンデンサCより成る4端子回路であって、T接続で
直列L−並列C−直列Lの構造を持ち、L・Cの共振周波数
が上記高周波電圧の周波数に等しく、その電圧に比例し
た高周波電流を出力する回路として構成される。
Further, the immittance converter is a four-terminal circuit consisting of a reactor L and a capacitor C, has a structure of series L-parallel C-series L in a T connection, and the resonance frequency of L · C is the above high frequency. It is configured as a circuit that outputs a high frequency current equal to the frequency of the voltage and proportional to the voltage.

【0012】上記3個の半導体スイッチは、上記高周波
電圧の周波数と上記低周波三相定電流出力の周波数の和
の周波数または差の周波数でオン・オフを繰り返すよう
に駆動される。
The three semiconductor switches are driven so as to be repeatedly turned on and off at the sum frequency or the difference frequency of the frequency of the high frequency voltage and the frequency of the low frequency three-phase constant current output.

【0013】以上の回路構成例を図1に示す。図1にお
いて直流電圧源DCSを太陽電池とすると、この回路は、
太陽光発電された直流をインバータINVで高周波電圧源
に変換し、その電力を、本発明に係るイミタンス変換器
IMTと三相スイッチ回路3SWにより三相の配電系統ACSに
連系して逆供給する回路となる。このように、本発明に
係る回路により、太陽光発電された電力を安定して三相
配電系統ACSに連系することができるようになる。ま
た、三相配電系統ACSに代えて三相負荷LDを接続するこ
とにより、負荷LD側の電圧に影響されずに定電流を流す
ことを可能にする。
FIG. 1 shows an example of the above circuit configuration. Assuming that the DC voltage source DCS is a solar cell in FIG.
The direct current generated by solar power generation is converted into a high frequency voltage source by the inverter INV, and the electric power is converted into the immittance converter according to the present invention
The IMT and the three-phase switch circuit 3SW are connected to the three-phase distribution system ACS to provide a reverse supply circuit. As described above, the circuit according to the present invention makes it possible to stably connect the solar power to the three-phase power distribution system ACS. Further, by connecting the three-phase load LD instead of the three-phase distribution system ACS, it is possible to flow a constant current without being affected by the voltage on the load LD side.

【0014】インバータINVにおける電流iA及び電圧V
1、電流i1の波形を図2に示す。また、三相スイッチ回
路3SWに入力される高周波電流i2と各半導体スイッチS
a、Sb、Scの駆動信号、及びそれらにより切り取られた
部分電流ia、ib、icと生成された低周波電流Ia、Ib、Ic
の波形を図3に示す。
Current iA and voltage V in inverter INV
1 and the waveform of the current i1 are shown in FIG. In addition, the high-frequency current i2 input to the three-phase switch circuit 3SW and each semiconductor switch S
Drive signals of a, Sb, Sc, and partial currents ia, ib, ic cut by them, and low-frequency currents Ia, Ib, Ic generated by them
Is shown in FIG.

【0015】本発明の別の利用態様として、図4に示す
ような、2つの三相電源系統ACS1、ACS2の連系回路を挙
げることができる。この場合、前記の高周波電圧を次の
ように生成することになる。すなわち、三相電源系統AC
S1に接続した導通角120度で順次120度ずつ導通位相を異
にする3個の半導体スイッチを、高周波電圧の周波数と
三相電源系統ACS1の周波数の和の周波数または差の周波
数でオン・オフを繰り返すように駆動する。これによ
り、上記イミタンス変換器のL・Cの共振周波数に等しい
高周波電圧を得ることができる。
As another mode of use of the present invention, an interconnection circuit of two three-phase power supply systems ACS1 and ACS2 as shown in FIG. 4 can be mentioned. In this case, the high frequency voltage is generated as follows. That is, three-phase power system AC
Three semiconductor switches connected to S1 and having different conduction phases of 120 degrees at a conduction angle of 120 degrees are turned on / off at the sum frequency of the high-frequency voltage frequency and the three-phase power system ACS1 frequency or the difference frequency. Drive to repeat. This makes it possible to obtain a high-frequency voltage equal to the resonance frequencies of L and C of the immittance converter.

【0016】そして、上記三相定電流の負荷を、第2の
三相電源系統ACS2とする。上記3個の半導体スイッチの
導通位相を所定の値にすることにより、上記第1の三相
定電流出力の第2の三相交流系統の電圧に対する位相を
所定の値とし、第2の三相交流系統に供給する有効電力
・無効電力を調節することが可能となる。
The three-phase constant current load is the second three-phase power supply system ACS2. By setting the conduction phase of the three semiconductor switches to a predetermined value, the phase of the first three-phase constant current output with respect to the voltage of the second three-phase AC system is set to a predetermined value, and the second three-phase It becomes possible to adjust the active power / reactive power supplied to the AC system.

【0017】[0017]

【発明の効果】本発明は、直流電源から、電圧源を含む
三相負荷または電力系統に電力を供給する必要がある場
合、たとえば太陽光発電された直流をインバータで高周
波電圧源に変換した電力を三相の配電系統に連系して逆
供給する場合に、高周波電圧源を三相電流源に変換する
ことで、負荷側の電圧に影響されずに電流を流すことを
可能にし、2つの電源系統を安定に連系することを可能
にする。
INDUSTRIAL APPLICABILITY The present invention, when it is necessary to supply electric power from a DC power supply to a three-phase load or a power system including a voltage source, for example, electric power obtained by converting solar-generated DC into a high-frequency voltage source by an inverter. In the case of connecting the three-phase power supply system to the three-phase distribution system for reverse supply, by converting the high-frequency voltage source into a three-phase current source, it is possible to flow current without being affected by the voltage on the load side. Enables stable interconnection of the power supply system.

【0018】また、三相負荷が交流電動機である場合は
三相定電流源駆動となり、独特の制御特性を得ることが
できる。
Further, when the three-phase load is an AC motor, it is driven by a three-phase constant current source, and a unique control characteristic can be obtained.

【0019】さらに、イミタンス変換器の入力側、出力
側の両方をスイッチによって三相に配分すれば周波数お
よび電圧の異なる三相系統を連系することができる。
Furthermore, if both the input side and the output side of the immittance converter are divided into three phases by switches, it is possible to connect three-phase systems having different frequencies and voltages.

【0020】[0020]

【実施例】本発明を、図8に示す太陽電池(SB)−三相
交流負荷回路(3LD)に適用した。この回路において、
イミタンス変換器IMTの特性インピーダンスZ0=10Ωと
し、a-a'間に20kHzの方形波の400V電圧源を接続すると
いうシミュレーションを行った。このとき、図9に示す
ように、高周波インバータINVの出力電流Iaは負荷抵抗R
1、R2、R3の大きさに応じて増加するのに対し、三相負
荷への出力電流I2は一定に保持されることが確認され
た。
EXAMPLE The present invention was applied to the solar cell (SB) -three-phase AC load circuit (3LD) shown in FIG. In this circuit,
A simulation was conducted in which the characteristic impedance Z0 of the immittance converter IMT was set to 10 Ω and a 400 V voltage source of 20 kHz square wave was connected between a and a '. At this time, as shown in FIG. 9, the output current Ia of the high frequency inverter INV is equal to the load resistance R
It was confirmed that the output current I2 to the three-phase load was kept constant, while it increased according to the magnitudes of 1, R2, and R3.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施態様である、直流電源−イン
バータ−イミタンス変換器−三相スイッチ回路で構成さ
れる三相定電流電源の回路図。
FIG. 1 is a circuit diagram of a three-phase constant current power supply which is an embodiment of the present invention and includes a DC power supply, an inverter, an immittance converter, and a three-phase switch circuit.

【図2】 図1の回路のインバータにおける入力・出力
波形図。
2 is an input / output waveform diagram in the inverter of the circuit of FIG.

【図3】 図1の回路の三相スイッチ回路におけるスイ
ッチ駆動信号等の波形図。
3 is a waveform diagram of a switch drive signal and the like in the three-phase switch circuit of the circuit of FIG.

【図4】 本発明のもう一つの実施態様である、三相交
流電源の連系回路の回路図。
FIG. 4 is a circuit diagram of an interconnection circuit of a three-phase AC power source, which is another embodiment of the present invention.

【図5】 従来の三相交流電源の連系回路の回路図。FIG. 5 is a circuit diagram of a conventional three-phase AC power supply interconnection circuit.

【図6】 電源連系回路における両電源電圧の位相の差
を示すベクトル図。
FIG. 6 is a vector diagram showing a phase difference between both power supply voltages in a power supply interconnection circuit.

【図7】 イミタンス変換器の回路図。FIG. 7 is a circuit diagram of an immittance converter.

【図8】 本発明の一実施例である太陽電池−三相交流
負荷回路の回路図。
FIG. 8 is a circuit diagram of a solar cell-three-phase AC load circuit according to an embodiment of the present invention.

【図9】 図8の回路のシミュレーション結果を示すグ
ラフ。
9 is a graph showing a simulation result of the circuit of FIG.

【符号の説明】[Explanation of symbols]

DCS…直流電源 INV…インバータ IMT…イミタンス変換器 3SW…三相半導体スイッチ回路 ACS…三相電源(配電)系統 LD…負荷 DCS ... DC power supply INV ... Inverter IMT ... Imittance converter 3SW ... Three-phase semiconductor switch circuit ACS: Three-phase power supply (distribution) system LD ... load

フロントページの続き Fターム(参考) 5H007 BB06 BB07 CA01 CB02 CB04 CB05 CC09 DA06 EA02 5H410 CC02 CC03 DD03 DD09 DD10 EA10 EA35 EA39 EB05 EB09 EB38 EB39 FF11 FF22 FF26 5H420 BB02 BB12 BB13 BB15 BB16 CC03 CC04 DD04 DD06 EA11 EA39 EA40 EA49 EB01 EB05 EB09 EB22 EB38 EB39 FF11 FF26 Continued front page    F-term (reference) 5H007 BB06 BB07 CA01 CB02 CB04                       CB05 CC09 DA06 EA02                 5H410 CC02 CC03 DD03 DD09 DD10                       EA10 EA35 EA39 EB05 EB09                       EB38 EB39 FF11 FF22 FF26                 5H420 BB02 BB12 BB13 BB15 BB16                       CC03 CC04 DD04 DD06 EA11                       EA39 EA40 EA49 EB01 EB05                       EB09 EB22 EB38 EB39 FF11                       FF26

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 高周波電圧をイミタンス変換器を通じて
高周波電流に変換し、この高周波電流を導通角120度で
順次120度ずつ導通位相を異にする半導体スイッチを3個
用いて三相各相に分配し、上記高周波電圧が一定の時、
低周波の三相定電流出力を得ることを特徴とする三相定
電流電源。
1. A high-frequency voltage is converted into a high-frequency current through an immittance converter, and the high-frequency current is distributed to three-phase and three-phase by using three semiconductor switches which sequentially differ in conduction phase by 120 degrees at a conduction angle of 120 degrees. However, when the high frequency voltage is constant,
A three-phase constant current power supply characterized by obtaining a low-frequency three-phase constant current output.
【請求項2】 上記高周波電圧は、直流電圧より半導体
スイッチを用いたインバータにより正負のパルス波形を
持つ高周波電圧を得、そのパルス波形のパルス幅を変化
することにより基本波の振幅を可変としたものであるこ
とを特徴とする請求項1に記載の三相定電流電源。
2. The high-frequency voltage has a positive-negative pulse waveform obtained from an inverter using a semiconductor switch from a DC voltage, and the amplitude of the fundamental wave is made variable by changing the pulse width of the pulse waveform. The three-phase constant current power supply according to claim 1, which is a power supply.
【請求項3】 上記イミタンス変換器は、リアクトルL
とコンデンサCより成る4端子回路であって、T接続で直
列L−並列C−直列Lの構造を持ち、L・Cの共振周波数が
上記高周波電圧の周波数に等しく、その電圧に比例した
高周波電流を出力する回路であることを特徴とする請求
項1又は2に記載の三相定電流電源。
3. The immittance converter is a reactor L.
It is a 4-terminal circuit consisting of a capacitor C and a series L-parallel C-series L structure with T connection, and the resonance frequency of LC is equal to the frequency of the high frequency voltage, and the high frequency current proportional to that voltage. The three-phase constant current power source according to claim 1 or 2, which is a circuit that outputs
【請求項4】 上記3個の半導体スイッチは、上記高周
波電圧の周波数と上記低周波三相定電流出力の周波数の
和の周波数または差の周波数でオン・オフを繰り返すよ
うに駆動されることを特徴とする請求項1〜3のいずれ
かに記載の三相定電流電源。
4. The three semiconductor switches are driven so as to be repeatedly turned on and off at a sum frequency or a difference frequency of the frequency of the high frequency voltage and the frequency of the low frequency three-phase constant current output. The three-phase constant current power source according to any one of claims 1 to 3.
【請求項5】 上記高周波電圧は、三相交流電源とそれ
に接続した導通角120度で順次120度ずつ導通位相を異に
する3個の半導体スイッチにより生成され、その3個の半
導体スイッチは高周波電圧の周波数と三相交流電源の周
波数の和の周波数または差の周波数でオン・オフを繰り
返すように駆動されることにより、上記イミタンス変換
器の共振周波数に等しい高周波電圧を得ることを特徴と
する請求項1〜3のいずれかに記載の三相定電流電源。
5. The high-frequency voltage is generated by a three-phase AC power source and three semiconductor switches connected to the three-phase AC power source, which sequentially differ in conduction phase by 120 degrees, and the three semiconductor switches are high-frequency. It is characterized in that a high frequency voltage equal to the resonance frequency of the immittance converter is obtained by being driven so as to be repeatedly turned on and off at a frequency of a sum of a frequency of a voltage and a frequency of a three-phase AC power source or a frequency of a difference. The three-phase constant current power source according to claim 1.
【請求項6】 上記三相定電流の負荷は第2の三相交流
系統であり、上記3個の半導体スイッチの導通位相を所
定の値にすることにより、上記三相定電流出力の第2の
三相交流系統の電圧に対する位相を所定の値とし、第2
の三相交流系統に供給する有効電力・無効電力を調節す
ることを特徴とする請求項1〜5のいずれかに記載の三
相定電流電源。
6. The load of the three-phase constant current is a second three-phase alternating current system, and the second phase of the three-phase constant current output is obtained by setting the conduction phase of the three semiconductor switches to a predetermined value. The phase for the voltage of the three-phase AC system of
The three-phase constant current power source according to any one of claims 1 to 5, wherein active power / reactive power supplied to the three-phase AC system is adjusted.
JP2002043770A 2002-02-20 2002-02-20 Three-phase constant current power source Pending JP2003244967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002043770A JP2003244967A (en) 2002-02-20 2002-02-20 Three-phase constant current power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002043770A JP2003244967A (en) 2002-02-20 2002-02-20 Three-phase constant current power source

Publications (1)

Publication Number Publication Date
JP2003244967A true JP2003244967A (en) 2003-08-29

Family

ID=27783426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002043770A Pending JP2003244967A (en) 2002-02-20 2002-02-20 Three-phase constant current power source

Country Status (1)

Country Link
JP (1) JP2003244967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113269A (en) * 2009-11-26 2011-06-09 Sanken Electric Co Ltd Power conversion device
JP2014168342A (en) * 2013-02-28 2014-09-11 Ricoh Co Ltd Switching regulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113269A (en) * 2009-11-26 2011-06-09 Sanken Electric Co Ltd Power conversion device
JP2014168342A (en) * 2013-02-28 2014-09-11 Ricoh Co Ltd Switching regulator

Similar Documents

Publication Publication Date Title
Feng et al. Modified phase-shifted PWM control for flying capacitor multilevel converters
Axelrod et al. A cascade boost-switched-capacitor-converter-two level inverter with an optimized multilevel output waveform
CN1950999B (en) Power converter apparatus and methods using a phase reference derived from a DC bus voltage
US9577541B2 (en) Single switch infinite-level power inverters
US20080074911A1 (en) Multiphase Power Converters and Multiphase Power Converting Methods
CN102301579A (en) Power conversion device
KR20160122923A (en) Apparatus and method for generating offset voltage of 3-phase inverter
WO2017152181A1 (en) Cascaded packed u-cell multilevel inverter
JP4735188B2 (en) Power converter
CN103337977A (en) Method of controlling running of modularized multi-level converter in low frequency model
JP2009100505A (en) 3-level power converter
JP6837576B2 (en) Power converter
JP2003244967A (en) Three-phase constant current power source
US20230042964A1 (en) Method for operating a power electronic converter device with floating cells
Bode et al. Hysteresis current regulation for single-phase multilevel inverters using asynchronous state machines
CN110165919B (en) Combined three-phase inverter power supply suitable for multiple load forms
JPH0678550A (en) Controlling method and device for parallel operation of inverter, and uninterruptible power supply device
Chinnari et al. Implementation of hysteresis voltage control for different inverter topologies
Syed et al. MPC of single phase inverter for PV system
Li et al. A harmonic constrained minimum energy controller for a single-phase grid-tied inverter using model predictive control
CN115413360A (en) Power converter for photovoltaic energy sources
Aihsan et al. Harmonic Analysis of Three-Phase Asymmetrical Multilevel Inverter with Reduced Number of Switches
Sarowar et al. A novel control scheme for buck-boost DC to AC converter for variable frequency applications
Antchev et al. Comparative Analysis of Hysteresis and Fuzzy-Logic Hysteresis Current Control of a Single-Phase GridConnected Inverter
Sha et al. Principle, Design and Analysis of a Novel Discrete Pulse Control for Single-Phase Voltage Source Inverter