JP2003242623A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JP2003242623A
JP2003242623A JP2002360375A JP2002360375A JP2003242623A JP 2003242623 A JP2003242623 A JP 2003242623A JP 2002360375 A JP2002360375 A JP 2002360375A JP 2002360375 A JP2002360375 A JP 2002360375A JP 2003242623 A JP2003242623 A JP 2003242623A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
intermediate layer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002360375A
Other languages
Japanese (ja)
Inventor
Masa Nakamura
雅 中村
Takahiro Shimizu
貴宏 清水
Hiroyuki Uwazumi
洋之 上住
Naoki Takizawa
直樹 滝澤
Tadaaki Oikawa
忠昭 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002360375A priority Critical patent/JP2003242623A/en
Publication of JP2003242623A publication Critical patent/JP2003242623A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium having a sufficiently high coercive force with low noise. <P>SOLUTION: The magnetic recording medium consists of the constitution in which a magnetic layer 4 has a granular structure composed of ferromagnetic crystal particles having a hexagonal closest packing structure and nonmagnetic grain boundaries of oxides, etc., interposed between the ferromagnetic crystal particles; a ground surface layer 2 has a nonmagnetic intermediate layer 3 having a body-centered cubic lattice structure and having the hexagonal closest packing structure essentially consisting of at least one element among Ru, Os and Re between the magnetic layer and the ground surface layer; the rate of mismatching (Δ=|d<SB>1</SB>-d<SB>2</SB>|/d<SB>1</SB>) between the inter-crystal plane spacing (d<SB>1</SB>) of the crystal particles constituting the magnetic layer and the inter-crystal spacing (d<SB>2</SB>) of the crystal particles constituting the nonmagnetic intermediate layer is kept within 10%; the crystal particles of a grain size ≥8 nm among the crystal particles constituting the nonmagnetic intermediate layer are ≤10%; and the standard deviation value of the grain sizes is ≤1.4 nm. These layers are deposited without prior heating of the substrate 1 before the deposition of the layers. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体に関
し、より詳細には、パソコンなどの外部記憶装置をはじ
めとする各種磁気記録装置に搭載する、低ノイズで、か
つ、充分に高い保磁力を有する高性能かつ高信頼性の磁
気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly, it has a low noise and sufficiently high coercive force to be mounted on various magnetic recording devices such as external storage devices such as personal computers. And a high-performance and highly-reliable magnetic recording medium.

【0002】[0002]

【従来の技術】近年の高度情報化社会を支える情報の記
録装置の一つに磁気記憶装置があり、情報の大量化に伴
って、磁気記憶装置に用いられる磁気記録媒体には記録
密度の向上と低ノイズ化が要求されている。高記録密度
を実現するためには、磁化反転が生じる単位を小さくし
なければならず、そのためには、磁性粒子のサイズを微
細化することが必要である。また、ノイズを低減するた
めには、磁性粒子のサイズの微細化と同時に、磁気的な
粒子間相互作用による磁化の揺らぎを低減することが重
要である。従来の、磁性層にCoCrPt合金を用いた
媒体では、低ノイズ化において、粒界へ充分なCrを偏
析させるために、多量のCrを添加するが、そうした場
合、磁性粒子自体の磁気異方性Ku値の低下を招き、媒
体としての熱安定性が劣化してしまう。また、この磁気
異方性Ku値を向上させるために、Pt添加量を増大さ
せると、逆にCrの粒界への偏析を阻害させその結果、
媒体ノイズが増大してしまうというトレードオフの関係
がある。
2. Description of the Related Art A magnetic storage device is one of the information recording devices that has been supporting the advanced information society in recent years, and the recording density of a magnetic recording medium used in the magnetic storage device has been improved as the amount of information has increased. And low noise is required. In order to realize a high recording density, it is necessary to reduce the unit in which the magnetization reversal occurs, and for that purpose, it is necessary to miniaturize the size of the magnetic particles. In order to reduce noise, it is important to reduce the size of magnetic particles and at the same time reduce the fluctuation of magnetization due to magnetic interaction between particles. In a conventional medium using a CoCrPt alloy for the magnetic layer, a large amount of Cr is added in order to segregate enough Cr to the grain boundary in order to reduce noise, but in such a case, the magnetic anisotropy of the magnetic particle itself is added. This leads to a decrease in the Ku value, which deteriorates the thermal stability of the medium. Further, if the amount of Pt added is increased in order to improve the magnetic anisotropy Ku value, conversely, segregation of Cr at the grain boundaries is inhibited, and as a result,
There is a trade-off relationship that the medium noise increases.

【0003】これらの課題を解決するために、様々な磁
性層組成や構造、及び、種々の非磁性下地層やシード層
の材料等が提案されており、特に、一般にグラニュラ磁
性層と呼ばれる、酸化物や窒化物等の非磁性マトリクス
に囲まれた磁性結晶粒子構造を有する媒体が提案されて
いる。グラニュラ媒体は、磁性粒子間が非磁性物質の介
在によりほぼ完全に磁気的に絶縁されており、個々の粒
子(4〜10nm程度)が最小の磁化単位となり、少な
くともこの程度のサイズまでの微小な高密度記録が可能
となるのみならず、非磁性マトリクスの包囲による粒子
間交換相互作用の抑制も期待できる。更に、このグラニ
ュラ磁性層の特徴として、従来のCoCrPt系磁性層
とは違い、粒界への偏析を担うのは主にSi酸化物であ
ることから、Crを多量に添加する必要がなくなること
である。このことは、グラニュラ磁性層においては、粒
界へは強制的にSi酸化物が析出されるために、磁気異
方性Ku値の低下を招くことなく偏析を促進させ、低ノ
イズ化との両立がきることを意味している。また今後
は、より高記録密度化が求められるが、その為には磁性
層膜厚の薄膜化が必要不可欠である。この磁性層の薄膜
化は磁気エネルギーKuV(Ku:磁気異方性、V:活性
化体積)の低下を招く。そこで、この磁気エネルギーの
低下を抑制するために、磁気異方性Ku値を増大させる
ことが必要不可欠となることから、磁性層組成により多
くのPtを添加する必要がある。しかしながら、従来の
CoCrPt系磁性層では、多量のPt添加は、Crの
粒界への偏析を阻害させ、ノイズ増大を招くが、グラニ
ュラ磁性層では、多量のPtを添加しても、Si酸化物
が容易に粒界へ偏析されるために、粒の孤立化を維持し
ながら、Pt量を増やせるというメリットがある。
In order to solve these problems, various magnetic layer compositions and structures, and various non-magnetic underlayer and seed layer materials have been proposed, and in particular, an oxide called a granular magnetic layer is generally used. A medium having a magnetic crystal grain structure surrounded by a non-magnetic matrix such as a substance or a nitride has been proposed. In the granular medium, magnetic particles are almost completely magnetically insulated by the interposition of a non-magnetic substance, and each particle (about 4 to 10 nm) serves as a minimum magnetization unit, and a fine particle of at least this size is used. Not only high-density recording becomes possible, but also suppression of inter-particle exchange interaction by enclosing a non-magnetic matrix can be expected. Further, as a characteristic of this granular magnetic layer, unlike the conventional CoCrPt-based magnetic layer, since it is mainly the Si oxide that is responsible for segregation to the grain boundaries, it is not necessary to add a large amount of Cr. is there. This means that in the granular magnetic layer, Si oxide is forcibly deposited on the grain boundaries, so that segregation is promoted without causing a decrease in the magnetic anisotropy Ku value, and compatibility with low noise is achieved. It means that you are struck. Further, in the future, higher recording density will be required, but for that purpose, it is essential to reduce the thickness of the magnetic layer. This thinning of the magnetic layer causes a decrease in magnetic energy KuV (Ku: magnetic anisotropy, V: activation volume). Therefore, in order to suppress this decrease in magnetic energy, it is essential to increase the magnetic anisotropy Ku value. Therefore, it is necessary to add more Pt to the magnetic layer composition. However, in a conventional CoCrPt-based magnetic layer, addition of a large amount of Pt hinders segregation of Cr at grain boundaries and causes an increase in noise. However, in a granular magnetic layer, even if a large amount of Pt is added, Si oxide is added. Is easily segregated to the grain boundaries, which has the advantage that the Pt amount can be increased while maintaining the isolation of the grains.

【0004】例えば、SiO等の酸化物が添加された
CoNiPtターゲットを用いてRFスパッタリング成
膜を行なうことで、各々の磁性結晶粒が非磁性の酸化物
で囲まれて個々に分離した構造を持つグラニュラ記録膜
が形成でき、低ノイズ化が実現されることが報告されて
いる(特許文献1参照)。このようなグラニュラ磁性膜
は、非磁性非金属の粒界相が磁性粒子を物理的に分離す
るため、磁性粒子間の磁気的な相互作用が低下し、記録
ビットの遷移領域に生じるジグザグ磁壁の形成を抑制す
ることにより、低ノイズ特性が得られると考えられてい
る。また、六方最密充填構造を有する磁性層を成膜する
下地として、体心立方構造を有する下地層を予め成膜し
ておくことが報告されており(特許文献2および3参
照)、また、磁性層と下地層との間に非磁性の体心立方
構造を有する中間層を設ける構成の磁気記録媒体につい
ても報告がなされている(特許文献4参照)。
For example, by performing RF sputtering film formation by using a CoNiPt target to which an oxide such as SiO 2 is added, a structure in which each magnetic crystal grain is surrounded by a non-magnetic oxide and individually separated is formed. It has been reported that a granular recording film can be formed and low noise can be realized (see Patent Document 1). In such a granular magnetic film, the non-magnetic non-metal grain boundary phase physically separates the magnetic particles, so that the magnetic interaction between the magnetic particles is reduced and the zigzag magnetic domain wall generated in the transition region of the recording bit is reduced. It is believed that low noise characteristics can be obtained by suppressing the formation. Further, it has been reported that an underlayer having a body-centered cubic structure is previously formed as an underlayer on which a magnetic layer having a hexagonal close-packed structure is formed (see Patent Documents 2 and 3). A magnetic recording medium having a structure in which an intermediate layer having a non-magnetic body-centered cubic structure is provided between a magnetic layer and an underlayer has also been reported (see Patent Document 4).

【0005】[0005]

【特許文献1】米国特許第5,679,473号明細書[Patent Document 1] US Pat. No. 5,679,473

【特許文献2】特開平11−213371号公報[Patent Document 2] JP-A-11-213371

【特許文献3】特開2000−123445号公報[Patent Document 3] Japanese Patent Laid-Open No. 2000-123445

【特許文献4】特開2000−82210号公報[Patent Document 4] Japanese Patent Laid-Open No. 2000-82210

【0006】[0006]

【発明が解決しようとする課題】グラニュラ磁性層を用
いて優れた電磁変換特性を有する媒体を実現するために
は、ターゲット中に含まれるSiOのような酸化物等
とCo系合金とを膜中で良好に分離させる必要があり、
かつ、磁性粒子のサイズを均一化してノイズを低減させ
ることが重要である。また、更なる高記録密度化に伴っ
て、グラニュラ磁性層中のPt量を増加させると、磁性
層のCoCrPt合金の格子定数がPt量にのみ比例し
て増大するために、従来のCoCr系中間層では、磁性
層間との格子定数の不整合が増大していき、格子整合性
が劣化することが予想される。
In order to realize a medium having excellent electromagnetic conversion characteristics by using a granular magnetic layer, an oxide such as SiO 2 contained in a target and a Co-based alloy are formed into a film. Need to be separated well in
At the same time, it is important to make the size of the magnetic particles uniform and reduce noise. Further, when the amount of Pt in the granular magnetic layer is increased with further increase in recording density, the lattice constant of the CoCrPt alloy in the magnetic layer increases in proportion only to the amount of Pt. In the layer, it is expected that the lattice constant mismatch between the magnetic layers will increase and the lattice matching will deteriorate.

【0007】しかしながら、非磁性非金属の粒界相が磁
性粒子を物理的に分離する構造により低ノイズ化が実現
できたとしても、六方最密構造や体心立方構造を有し、
かつ、磁性層結晶との結晶面間隔の差が比で15%以上
の材料を用いて非磁性の中間層を成膜した場合には、こ
の非磁性中間層と磁性層結晶との間の格子整合性が劣る
ため、非磁性中間層の上に磁性層を成膜することによっ
て磁性層を構成する磁性粒子の粒径サイズを簡易に制御
することには限界がある。すなわち、更なる低ノイズの
磁気記録媒体を実現するためには、結晶サイズの微細化
と磁性粒子サイズの均一化とをより高度に制御すること
が求められることとなる。
However, even if low noise can be realized by the structure in which the non-magnetic non-metal grain boundary phase physically separates magnetic particles, it has a hexagonal close-packed structure and a body-centered cubic structure.
In addition, when a non-magnetic intermediate layer is formed by using a material having a difference in crystal plane distance from the magnetic layer crystal of 15% or more, the lattice between the non-magnetic intermediate layer and the magnetic layer crystal is formed. Due to poor matching, there is a limit to easily controlling the particle size of the magnetic particles forming the magnetic layer by forming the magnetic layer on the non-magnetic intermediate layer. That is, in order to realize a magnetic recording medium having a further low noise, it is required to control the crystal size and the magnetic particle size to a higher degree.

【0008】本発明は、このような問題に鑑みてなされ
たもので、その目的とするところは、非磁性中間層の構
造と粒径分布とを制御することにより、その上に設けた
磁性層の構造と結晶粒子の粒径とを制御して低ノイズ化
を実現するとともに、磁性膜の結晶粒子間の距離を制御
することにより、磁性結晶粒子間の相互作用を低減さ
せ、磁性結晶粒子を小さくした場合でも充分に高い保磁
力を有する磁気記録媒体を提供することにある。本発明
者らが、グラニュラ磁性層の粒径制御による低ノイズ化
について詳細に検討した結果、磁性層を成膜させるに際
しては、結晶構造が磁性層の強磁性結晶粒のそれと同じ
六方最密充填構造を有する結晶質の非磁性中間層を設け
ると、この上に成長する磁性層中のCo粒子が、非磁性
中間層の結晶質(結晶粒子)に対応して成長し、非磁性
中間層の結晶粒子粒界多孔質領域或いは非晶質に対応し
て磁性層中酸化物が析出・成長することが判明した。す
なわち、非磁性中間層の結晶粒子サイズを制御すること
により、その上に成長する磁性層の結晶粒子サイズの制
御が可能となり、優れた諸磁気特性が実現できることが
明らかとなった。換言すれば、スパッタ法により作製し
た非磁性中間層の結晶粒子の上に磁性層結晶粒子をエピ
タキシャルに成長させ、その結果、非磁性中間層の結晶
配向性を磁性層に引き継がせることで磁性層の結晶配向
性を制御でき、かつ、磁性層を構成する結晶粒子の周囲
に介在する非晶質相の結晶粒界を形成せしめ、グラニュ
ラ構造の磁性層の結晶状態を制御することが可能となる
のである。
The present invention has been made in view of the above problems, and an object of the present invention is to control the structure and particle size distribution of a nonmagnetic intermediate layer to thereby provide a magnetic layer thereon. By controlling the structure of and the grain size of the crystal grains to realize low noise, and controlling the distance between the crystal grains of the magnetic film, the interaction between the magnetic crystal grains is reduced and the magnetic crystal grains are Another object is to provide a magnetic recording medium having a sufficiently high coercive force even when it is made small. The present inventors have made a detailed study on noise reduction by controlling the grain size of the granular magnetic layer. As a result, when forming the magnetic layer, the hexagonal close-packed crystal structure has the same crystal structure as that of the ferromagnetic crystal grains of the magnetic layer. When a crystalline non-magnetic intermediate layer having a structure is provided, the Co particles in the magnetic layer grown on the crystalline non-magnetic intermediate layer grow corresponding to the crystalline material (crystal particles) of the non-magnetic intermediate layer, It was found that the oxide in the magnetic layer was deposited and grew corresponding to the crystalline grain boundary porous region or amorphous. That is, it was revealed that by controlling the crystal grain size of the non-magnetic intermediate layer, the crystal grain size of the magnetic layer grown thereon can be controlled, and excellent magnetic properties can be realized. In other words, the magnetic layer crystal grains are epitaxially grown on the crystal grains of the non-magnetic intermediate layer produced by the sputtering method, and as a result, the crystal orientation of the non-magnetic intermediate layer can be taken over by the magnetic layer. It is possible to control the crystal orientation of the magnetic layer and to form the crystal grain boundaries of the amorphous phase around the crystal grains forming the magnetic layer, thereby controlling the crystal state of the granular magnetic layer. Of.

【0009】[0009]

【課題を解決するための手段】本発明はこのような目的
を達成するために、請求項1に記載の発明は、基板上
に、非磁性の下地層と、磁性層と、保護層と、潤滑剤膜
とを順次成膜して積層された構成の磁気記録媒体におい
て、前記磁性層が、六方最密充填構造を有する強磁性結
晶粒子と、該強磁性結晶粒子間に介在する酸化物等の非
磁性粒界とから構成されるグラニュラ構造を有し、前記
下地層が、体心立方格子構造を有することを特徴とす
る。また、請求項2に記載の発明は、請求項1に記載の
磁気記録媒体において、前記磁性層の組成において、含
有されるPt量が12at%以上20at%以下である
ことを特徴とする。
In order to achieve such an object, the present invention provides a nonmagnetic underlayer, a magnetic layer, a protective layer, and a nonmagnetic underlayer on a substrate. In a magnetic recording medium having a structure in which a lubricant film is sequentially formed and laminated, the magnetic layer has ferromagnetic crystal grains having a hexagonal close-packed structure, and oxides interposed between the ferromagnetic crystal grains. And a non-magnetic grain boundary, and the underlayer has a body-centered cubic lattice structure. The invention according to claim 2 is the magnetic recording medium according to claim 1, characterized in that the composition of the magnetic layer contains Pt in an amount of 12 at% or more and 20 at% or less.

【0010】また、請求項3ないし4に記載の発明は、
請求項1に記載の磁気記録媒体において、前記磁性層と
前記下地層との間に、六方最密充填構造を有する非磁性
中間層を備え、該非磁性中間層が、Ru、Os、Reの
少なくとも1つの元素を主成分とする非磁性金属であ
り、前記磁性層を構成する結晶粒子の結晶面間隔
(d)と前記非磁性中間層を構成する結晶粒子の結晶
面間隔(d)の不整合度(Δ=|d−d|/
)が、10%以内であることを特徴とし、更に好ま
しくは前記不整合度が2.5%以上7.0%以下である
ことを特徴とする。また、請求項5に記載の発明は、請
求項4に記載の磁気記録媒体において、前記非磁性中間
層を構成する結晶粒子のうち、粒径8nm以上の結晶粒
子が10%以下であり、かつ、粒径の標準偏差値が1.
4nm以下であることを特徴とする。ただし、本明細書
における「標準偏差」は不偏分散の平方根である。
The inventions according to claims 3 to 4 are:
The magnetic recording medium according to claim 1, further comprising a nonmagnetic intermediate layer having a hexagonal close-packed structure between the magnetic layer and the underlayer, the nonmagnetic intermediate layer containing at least Ru, Os, and Re. It is a non-magnetic metal containing one element as a main component, and has a crystal plane spacing (d 1 ) of the crystal grains forming the magnetic layer and a crystal plane spacing (d 2 ) of the crystal grains forming the non-magnetic intermediate layer. Inconsistency (Δ = | d 1 −d 2 | /
It is characterized in that d 1 ) is within 10%, more preferably, the degree of mismatch is 2.5% or more and 7.0% or less. According to a fifth aspect of the present invention, in the magnetic recording medium according to the fourth aspect, 10% or less of the crystal grains constituting the nonmagnetic intermediate layer have a grain size of 8 nm or more, and , The standard deviation of particle size is 1.
It is characterized by being 4 nm or less. However, the "standard deviation" in this specification is the square root of the unbiased variance.

【0011】また、請求項6に記載の発明は、請求項1
乃至5のいずれかに記載の磁気記録媒体において、前記
基板が、成膜前の加熱がなされていないものであること
を特徴とする。更に、請求項7に記載の発明は、請求項
1乃至6のいずれかに記載の磁気記録媒体において、前
記基板は樹脂基板であることを特徴とする。
The invention according to claim 6 is the same as claim 1.
The magnetic recording medium according to any one of items 1 to 5, wherein the substrate is not heated before film formation. Further, the invention according to claim 7 is the magnetic recording medium according to any one of claims 1 to 6, wherein the substrate is a resin substrate.

【0012】[0012]

【発明の実施の形態】以下に、図面を参照して本発明の
実施の形態について説明する。 (実施例1)図1は、本発明の磁気記録媒体の構成例を
説明するための図で、基板1の上に、下地層2と、非磁
性中間層3と、磁性層4と、保護層5と、潤滑剤膜6と
が順次積層されて構成されている。ここでは、基板1と
して、3.5″直径の表面が平滑なポリオレフィン樹脂
ディスクを用い、これを洗浄後、スパッタ装置内に導入
してDCスパッタ法により下地層2を成膜させた。この
下地層2は、体心立方格子構造を有する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a diagram for explaining a structural example of a magnetic recording medium of the present invention, in which an underlayer 2, a non-magnetic intermediate layer 3, a magnetic layer 4 and a protective layer are formed on a substrate 1. The layer 5 and the lubricant film 6 are sequentially laminated and configured. Here, as the substrate 1, a 3.5 ″ diameter polyolefin resin disk having a smooth surface was used, which was washed and then introduced into a sputtering apparatus to form an underlayer 2 by a DC sputtering method. The stratum 2 has a body-centered cubic lattice structure.

【0013】下地層2の上に非磁性中間層3を成膜速度
2.3nm/sec、放電Arガス圧30mTorrの
条件下でDCスパッタ法により20nm形成した。これ
に続いて、SiOを10mol%添加したCoCrP
tターゲットを用い、RFスパッタ法により放電Arガ
ス圧15mTorrの条件下でグラニュラの磁性層4を
層厚10nmで形成した。Co,Cr,Ptの組成比は
表1に示す各種組成比を用いている。次いで、カーボン
の保護層5を8nm積層した後、スパッタ装置内の真空
中から取り出し、液体潤滑剤を塗布して潤滑剤膜6を
1.5nm形成した。ここで、非磁性中間層3の組成
は、Ti・30at%Cr、Co・35at%Cr、O
s、Re、又はRuとした。なお、非磁性中間層3の成
膜に先立つ基板1の加熱は行っていない。
A nonmagnetic intermediate layer 3 was formed on the underlayer 2 by DC sputtering under the conditions of a film forming rate of 2.3 nm / sec and a discharge Ar gas pressure of 30 mTorr. Following this, CoCrP containing 10 mol% of SiO 2 was added.
Using a t target, a granular magnetic layer 4 having a layer thickness of 10 nm was formed by an RF sputtering method under a discharge Ar gas pressure of 15 mTorr. Various composition ratios shown in Table 1 are used for the composition ratios of Co, Cr and Pt. Then, a carbon protective layer 5 was deposited to a thickness of 8 nm, taken out from the vacuum in the sputtering apparatus, and a liquid lubricant was applied to form a lubricant film 6 having a thickness of 1.5 nm. Here, the composition of the nonmagnetic intermediate layer 3 is as follows: Ti.30 at% Cr, Co.35 at% Cr, O
s, Re, or Ru. The substrate 1 was not heated prior to the formation of the nonmagnetic intermediate layer 3.

【0014】このようにして作製した磁気記録媒体の保
磁力Hcを振動試料型磁力計VSMにより測定し、記録
再生特性をGMRヘッドを用いてスピンスタンドテスタ
ーで測定した。線記録密度270kFCIにおける対信
号雑音比SNRを評価した。いくつかの測定結果を表1
に示す。
The coercive force Hc of the magnetic recording medium thus manufactured was measured by a vibrating sample magnetometer VSM, and the recording / reproducing characteristics were measured by a spin stand tester using a GMR head. The signal-to-noise ratio SNR at a linear recording density of 270 kFCI was evaluated. Table 1 with some measurement results
Shown in.

【0015】[0015]

【表1】 中間層がTiCrの場合は、不整合度は12%以上と非
常に大きく、そのため磁性層と中間層間のエピタキシャ
ル成長が阻害されており、粒径とそのバラツキが大きい
ので、Hc及びSNRの特性はRu及びRe中間層の場
合と比べて劣る。またCoCr合金の場合は、不整合度
はRu及びRe中間層よりも小さいが、成膜プロセスに
よる粒径の微細化が困難であることから、結果として磁
性結晶粒が大きく、その結果SNRはRu及びRe中間
層の場合に比べて大きく劣る。非磁性中間層3を構成す
る結晶粒子の結晶面間隔(d)と磁性層4を構成する
結晶粒子の結晶面間隔(d)の不整合度(Δ=|d
−d|/d)が、10%以内、さらに好ましくは
2.5%以上7.0%以内であるRe、Os、Ruから
なる六方最密充填構造を有する非磁性中間層において、
HcやSNRが大きく向上することが確認された。 (実施例2)本実施例では、図1に示した非磁性中間層
の結晶粒径制御のための下地層をスパッタ法で成膜し、
その上に非磁性中間層を成膜した。中間層材料はRuに
限定した。成膜速度は2.3nm/secと1.1nm
/secの2種類実施した。その他の成膜条件等は、実
施例1で説明した条件と同様である。
【table 1】 When the intermediate layer is TiCr, the degree of mismatch is as large as 12% or more, which hinders the epitaxial growth between the magnetic layer and the intermediate layer, and the grain size and its variation are large. Therefore, the characteristics of Hc and SNR are Ru. And Re are inferior to the case of the intermediate layer. In the case of the CoCr alloy, the degree of mismatch is smaller than that of the Ru and Re intermediate layers, but it is difficult to reduce the grain size by the film forming process. As a result, the magnetic crystal grains are large, and as a result, the SNR is Ru. And the Re intermediate layer is significantly inferior. Mismatch degree (Δ = | d 1 ) between the crystal plane spacing (d 2 ) of the crystal grains forming the non-magnetic intermediate layer 3 and the crystal plane spacing (d 1 ) of the crystal grains forming the magnetic layer 4
-D 2 | / d 1 ) is 10% or less, more preferably 2.5% or more and 7.0% or less, in the non-magnetic intermediate layer having a hexagonal close-packed structure composed of Re, Os, and Ru,
It was confirmed that Hc and SNR were greatly improved. (Example 2) In this example, an underlayer for controlling the crystal grain size of the non-magnetic intermediate layer shown in FIG. 1 was formed by sputtering.
A non-magnetic intermediate layer was formed thereon. The intermediate layer material was limited to Ru. Deposition rate is 2.3 nm / sec and 1.1 nm
/ Sec was implemented. Other film forming conditions and the like are the same as the conditions described in the first embodiment.

【0016】非磁性中間層の材料としてはRuを用い、
DCスパッタ法により成膜速度2.3nm/sec、放
電Arガス圧70mTorrの条件下で20nm成膜し
た非磁性中間層の断面をTEMにより観察した結果、基
板に対して垂直方向に柱状結晶で多孔質な構造が観察さ
れ、この柱状結晶は、成長途中で結晶粒子が大きくなる
などの異常成長することなく結晶成長していることが確
認できた。更に、下地層と非磁性中間層との界面近傍
に、いわゆる「初期成長層」も観察されなかった。ま
た、TEMによる平面観察を行なって結晶粒子サイズを
求めたところ、平均粒径はおよそ6nmであり、結晶粒
子サイズの分布は正規分布をしており、標準偏差は1.
8nmであった。
Ru is used as the material of the non-magnetic intermediate layer,
As a result of TEM observation of the cross section of the non-magnetic intermediate layer formed by the DC sputtering method under the conditions of the film forming rate of 2.3 nm / sec and the discharge Ar gas pressure of 70 mTorr, the cross section of the nonmagnetic intermediate layer was columnar and was porous in the direction perpendicular to the substrate. A high quality structure was observed, and it was confirmed that the columnar crystals were grown without abnormal growth such as crystal grains becoming large during the growth. Furthermore, no so-called "initial growth layer" was observed near the interface between the underlayer and the nonmagnetic intermediate layer. Further, when the crystal grain size was obtained by performing plane observation with a TEM, the average grain size was about 6 nm, the crystal grain size distribution had a normal distribution, and the standard deviation was 1.
It was 8 nm.

【0017】また、非磁性中間層を構成する結晶粒子の
微細化を目的に、成膜速度を1.1nm/secに設定
し、放電Arガス圧70mTorrの条件下で層厚20
nmとなるように形成した。このようにして得られた非
磁性中間層を断面TEMにより観察した結果、基板に対
して垂直方向に柱状結晶で多孔質な構造が観察された。
この柱状結晶は、結晶成長途中で結晶粒子が大きくなる
などの異常成長をすることなく成長していることが確認
できた。更に、下地層と非磁性中間層との界面近傍に、
初期成長層も観察されなかった。また、TEMによる平
面観察を行なって結晶粒子サイズを求めたところ、平均
粒径はおよそ5nmであり、結晶粒子サイズの分布は正
規分布をしており、標準偏差は1.4nmであった。
Further, for the purpose of refining the crystal grains constituting the non-magnetic intermediate layer, the film forming rate is set to 1.1 nm / sec and the layer thickness 20 is set under the condition of the discharge Ar gas pressure of 70 mTorr.
It was formed to have a thickness of nm. As a result of observing the non-magnetic intermediate layer thus obtained with a cross-section TEM, a columnar crystal and porous structure was observed in the direction perpendicular to the substrate.
It was confirmed that the columnar crystals grew without abnormal growth such as crystal grains becoming large during the crystal growth. Furthermore, in the vicinity of the interface between the underlayer and the non-magnetic intermediate layer,
No initial growth layer was observed either. Further, when the crystal grain size was obtained by performing a plane observation with a TEM, the average grain size was about 5 nm, the crystal grain size distribution was a normal distribution, and the standard deviation was 1.4 nm.

【0018】成膜速度以外の成膜条件を一定にして成膜
した非磁性中間層の結晶構造を面内X線回折法により解
析して、結晶配向性の成膜速度依存性を調べた。その結
果、2θ=18°付近に現れるRuの(002)の強い
ピークに加え、2θ=17°、19°付近にRu(10
0)、Ru(101)の弱いピークが観測された。この
結果を上述のTEM観察の結果と合わせて解析すること
により、RuのC軸が面内に優先的に配向していること
が確認され、成膜速度を制御することにより、結晶配向
性を維持したまま粒径サイズとその分布の制御が可能で
あることが確認できた。 (実施例3)本実施例では、図1に示した非磁性中間層
の結晶粒径制御のための下地層をスパッタ法で成膜し、
その上に非磁性中間層を成膜した。非磁性中間層の材料
にはRuを用い、DCスパッタ法により成膜速度2.3
nm/sec、放電Arガス圧70mTorrの条件下
で層厚が異なる非磁性中間層を形成した。その他の成膜
条件等は、実施例1で説明した条件と同様である。
The crystal structure of the non-magnetic intermediate layer formed under the constant film forming conditions other than the film forming rate was analyzed by the in-plane X-ray diffraction method to examine the film forming rate dependence of the crystal orientation. As a result, in addition to the strong Ru (002) peak that appears near 2θ = 18 °, Ru (10) appears near 2θ = 17 ° and 19 °.
0) and Ru (101) weak peaks were observed. By analyzing this result together with the result of the above-mentioned TEM observation, it was confirmed that the C axis of Ru was preferentially oriented in the plane, and the crystal orientation was controlled by controlling the film formation rate. It was confirmed that it is possible to control the particle size and its distribution while maintaining it. (Embodiment 3) In this embodiment, an underlayer for controlling the crystal grain size of the non-magnetic intermediate layer shown in FIG. 1 is formed by sputtering.
A non-magnetic intermediate layer was formed thereon. Ru was used as the material for the non-magnetic intermediate layer, and the film formation rate was 2.3 by the DC sputtering method.
Nonmagnetic intermediate layers having different layer thicknesses were formed under the conditions of nm / sec and discharge Ar gas pressure of 70 mTorr. Other film forming conditions and the like are the same as the conditions described in the first embodiment.

【0019】膜厚が比較的薄い10nmの非磁性中間層
及び比較的厚い50nmの非磁性中間層とを平面TEM
観察し、その結果を基に画像解析により結晶粒子サイズ
を求めたところ、平均粒径は各々6nmと8nmであっ
た。また、粒子サイズ分布は正規分布をしており、標準
偏差は各々1.4nmと2.2nmであった。なお、こ
れらの非磁性中間層を断面TEM観察したところ、何れ
の膜も柱状構造を有していることが確認され、下地層と
非磁性中間層との界面近傍には初期成長層は観察されな
かった。本実施例では、更に、図1に示した非磁性中間
層の結晶粒径制御のための下地層をスパッタ法で成膜
し、その上に非磁性中間層を成膜した。その他の成膜条
件等は、実施例1で説明した条件と同様である。非磁性
中間層の材料にはRuを用い、DCスパッタ法により成
膜速度2.3nm/sec、膜厚を20nmと固定し、
Arガス圧を上述の70mTorrの0.7倍(49m
Torr)及び1.2倍(84mTorr)に設定して
成膜した。
A non-magnetic intermediate layer with a relatively thin film thickness of 10 nm and a non-magnetic intermediate layer with a relatively thick film thickness of 50 nm are used as a planar TEM.
Observation and determination of crystal grain size by image analysis based on the results showed that the average grain sizes were 6 nm and 8 nm, respectively. The particle size distribution has a normal distribution with standard deviations of 1.4 nm and 2.2 nm, respectively. Cross-sectional TEM observation of these nonmagnetic intermediate layers confirmed that all films had a columnar structure, and an initial growth layer was observed near the interface between the underlayer and the nonmagnetic intermediate layer. There wasn't. In this example, an underlayer for controlling the crystal grain size of the nonmagnetic intermediate layer shown in FIG. 1 was further formed by the sputtering method, and the nonmagnetic intermediate layer was formed thereon. Other film forming conditions and the like are the same as the conditions described in the first embodiment. Ru was used as the material of the non-magnetic intermediate layer, and the film formation rate was fixed to 2.3 nm / sec and the film thickness was fixed to 20 nm by the DC sputtering method.
Ar gas pressure is 0.7 times 70 mTorr (49 m
Torr) and 1.2 times (84 mTorr).

【0020】このようにして成膜した非磁性中間層を平
面TEM観察し、その結果を基に画像解析により結晶粒
子サイズを求めたところ、平均粒径は各々8nmと5n
mであった。また、粒子サイズ分布は正規分布をしてお
り、標準偏差は各々2.4nmと1.9nmであった。
なお、これらの非磁性中間層を断面TEM観察したとこ
ろ、何れの膜も柱状構造を有していることが確認され、
下地層と非磁性中間層との界面近傍には初期成長層等は
観察されなかった。これらの非磁性中間層の結晶配向性
を面内X線回折法及びTEM観察により解析した結果、
RuのC軸が面内に優先的に配向していることが確認さ
れた。成膜条件による結晶配向性に顕著な差異は認めら
れないものの、非磁性中間層の層厚を厚くすると、結晶
欠陥や結晶成長に起因して結晶粒径のばらつきが増大す
る。また、Arガス圧を低下させると結晶粒径が大きく
なり、かつ、膜も緻密になるために結晶粒間の結晶粒界
領域が狭くなることが確認された。
The nonmagnetic intermediate layer thus formed was observed by a plane TEM, and the crystal grain size was determined by image analysis based on the results. The average grain sizes were 8 nm and 5 n, respectively.
It was m. The particle size distribution was a normal distribution with standard deviations of 2.4 nm and 1.9 nm, respectively.
Incidentally, cross-sectional TEM observation of these non-magnetic intermediate layers confirmed that all films had a columnar structure,
No initial growth layer or the like was observed near the interface between the underlayer and the non-magnetic intermediate layer. As a result of analyzing the crystal orientation of these non-magnetic intermediate layers by in-plane X-ray diffraction method and TEM observation,
It was confirmed that the C axis of Ru was preferentially oriented in the plane. Although there is no significant difference in the crystal orientation depending on the film forming conditions, when the layer thickness of the non-magnetic intermediate layer is increased, the variation in crystal grain size is increased due to crystal defects and crystal growth. It was also confirmed that when the Ar gas pressure was reduced, the crystal grain size increased, and the film became dense, so that the crystal grain boundary region between the crystal grains became narrow.

【0021】このように、非磁性中間層の層厚や成膜時
のArガス圧によって、非磁性中間層を構成する結晶粒
の粒径と構造の制御が可能であることが確認された。な
お、非磁性中間層の層厚が5nm以下の場合には、成膜
装置の構成上安定して成膜することが困難であり、ま
た、100nm以上では成膜に長時間を要することとな
るので製造上の制限がある。 (実施例4)本実施例では、実施例2で説明した条件下
で成膜した非磁性中間層の上に、Co系合金の磁性層を
成膜して磁気記録媒体を作製した。すなわち、非磁性中
間層のRuを成膜速度2.3nm/sec、放電Arガ
ス圧70mTorrの条件下で20nmを形成し、この
上に、SiOを10mol%添加したCo76Cr
12Pt12ターゲットを用い、RFスパッタ法により
放電Arガス圧15mTorr下でグラニュラ磁性層を
10nm成膜した。これに次いで、カーボンの保護膜を
8nm積層した後、真空中から取り出し、その後、液体
潤滑剤を1.5nm塗布して潤滑剤膜を形成し、図1に
示した構成の磁気記録媒体を作製した。なお、これらの
成膜に先立つ基板加熱は行っていない。
As described above, the thickness of the non-magnetic intermediate layer and the time of film formation
Crystal grains that form the non-magnetic intermediate layer due to the Ar gas pressure of
It was confirmed that it is possible to control the particle size and structure of. Na
If the thickness of the non-magnetic intermediate layer is 5 nm or less, film formation
It is difficult to form a stable film because of the device configuration.
If the thickness is 100 nm or more, it takes a long time to form the film.
Therefore, there are manufacturing restrictions. (Example 4) In this example, the conditions described in Example 2 were used.
Co-based alloy magnetic layer on the non-magnetic intermediate layer
A film was formed to produce a magnetic recording medium. That is, in non-magnetic
Ru of the interlayer is deposited at a film-forming rate of 2.3 nm / sec and discharge Ar gas
20nm is formed under the condition of pressure 70mTorr.
On top, SiOTwoCo added with 10 mol%76Cr
12Pt12RF sputtering method using a target
The granular magnetic layer was formed under a discharge Ar gas pressure of 15 mTorr.
A 10 nm film was formed. Next to this, a carbon protective film
After stacking 8 nm, take out from the vacuum and then liquid
Apply 1.5 nm of lubricant to form a lubricant film.
A magnetic recording medium having the structure shown was produced. Note that these
The substrate was not heated prior to film formation.

【0022】図2は、このようにして得られた磁気記録
媒体の磁性層の構造を平面TEM観察した結果で、磁性
層を構成する磁性結晶粒子は、非磁性相の領域で囲まれ
たグラニュラ構造をしていることが確認できた。また、
粒界近傍を高分解能観察条件で格子像観察した結果か
ら、Co合金結晶粒子は結晶質であり、粒界は非晶質で
あることがわかった。なお、結晶粒子間の平均距離は、
1.1nmであり、その標準偏差は2.0nmであっ
た。更に、結晶粒子サイズを求めたところ、平均粒径で
4.9nmであった。図3は、本実施例の磁気記録媒体
のRu非磁性中間層及び磁性層を構成する結晶粒径分布
を説明するための図で、磁性層を構成する結晶粒径分布
は、粒径4nm付近と8nm付近とにピークがあり、そ
のばらつきを求めると標準偏差÷平均粒径で0.4であ
った。
FIG. 2 shows the result of a plane TEM observation of the structure of the magnetic layer of the magnetic recording medium thus obtained. The magnetic crystal grains forming the magnetic layer are granular grains surrounded by a nonmagnetic phase region. It was confirmed that it had a structure. Also,
From the result of the lattice image observation in the vicinity of the grain boundary under the high resolution observation condition, it was found that the Co alloy crystal grain was crystalline and the grain boundary was amorphous. The average distance between crystal grains is
It was 1.1 nm and its standard deviation was 2.0 nm. Furthermore, when the crystal grain size was determined, the average grain size was 4.9 nm. FIG. 3 is a diagram for explaining the crystal grain size distribution constituting the Ru nonmagnetic intermediate layer and the magnetic layer of the magnetic recording medium of the present embodiment. The crystal grain size distribution constituting the magnetic layer has a grain size of about 4 nm. There is a peak at around 8 nm, and when the variation is determined, the standard deviation divided by the average particle diameter is 0.4.

【0023】図4は、この磁性膜を断面TEM観察した
結果で、非磁性中間層と磁性層との間には結晶格子のつ
ながりが見られ、磁性層を構成する結晶粒子は非磁性中
間層との界面からエピタキシャル成長していることがわ
かる。また、Co合金の結晶質相と粒界の非晶質相とで
は磁性膜の成長機構が異なり、異なる金属組織を有して
いることがわかった。面内X線回折結果より、2θ=1
9°付近にCo(002)の強いピークが観測され、θ
−2θ法によるX線回折結果とTEM観察結果と合わせ
て考えると、Coの(100)が優先的に配向している
ことがわかる。この磁性層の磁気特性を振動試料型磁力
計(VSM)により測定した結果、保磁力が2.9kO
e、M−Hループにおけるヒステリシスの角型性の指標
である角形比Sが0.8、保持力角形比Sが0.8で
あり、良好な磁気特性を有していた。このように、角型
に近いヒステリシスを示すのは、非磁性相の粒界領域が
形成されることに起因して磁性層の成長機構が今までと
異なったために、磁性層を構成する磁性結晶粒子間の相
互作用が低減された結果である。 (実施例5)本実施例では、図1に示した非磁性中間層
の結晶粒径制御のための下地層をスパッタ法で成膜し、
その上に非磁性中間層を成膜した。非磁性中間層の材料
にはRuを用い、DCスパッタ法により成膜速度1.1
nm/sec、放電Arガス圧70mTorrの条件下
で層厚が異なる非磁性中間層を成膜した。その他の成膜
条件等は、実施例1で説明したのと同様の条件で磁気記
録媒体を作製している。なお、成膜に先立つ基板加熱は
行っていない。
FIG. 4 is a cross-sectional TEM observation result of this magnetic film. A crystal lattice connection is seen between the non-magnetic intermediate layer and the magnetic layer, and the crystal grains forming the magnetic layer are non-magnetic intermediate layers. It can be seen that epitaxial growth occurs from the interface with. It was also found that the crystalline phase of the Co alloy and the amorphous phase of the grain boundaries have different growth mechanisms of the magnetic film and have different metal structures. From the result of in-plane X-ray diffraction, 2θ = 1
A strong peak of Co (002) was observed near 9 °, and θ
Considering together the X-ray diffraction result by the −2θ method and the TEM observation result, it can be seen that Co (100) is preferentially oriented. As a result of measuring the magnetic characteristics of this magnetic layer with a vibrating sample magnetometer (VSM), the coercive force is 2.9 kO.
e, the squareness ratio S, which is an index of the squareness of the hysteresis in the MH loop, was 0.8, and the coercive force squareness ratio S * was 0.8, and had good magnetic properties. As described above, the reason why the hysteresis is close to the square shape is that the growth mechanism of the magnetic layer is different from that of the past due to the formation of the grain boundary region of the non-magnetic phase. This is the result of the reduced interaction between particles. (Embodiment 5) In this embodiment, an underlayer for controlling the crystal grain size of the non-magnetic intermediate layer shown in FIG. 1 is formed by sputtering.
A non-magnetic intermediate layer was formed thereon. Ru was used as the material of the non-magnetic intermediate layer, and the film formation rate was 1.1 by the DC sputtering method.
Non-magnetic intermediate layers having different layer thicknesses were formed under the conditions of nm / sec and discharge Ar gas pressure of 70 mTorr. Other film forming conditions and the like are the same as those described in Example 1, and the magnetic recording medium is manufactured. The substrate was not heated prior to film formation.

【0024】このようにして得られた磁性層を平面TE
M観察した結果、磁性層を構成する結晶粒子は非磁性相
の領域で囲まれたグラニュラ構造をしていることが確認
できた。また、高分解能条件下で格子像観察した結果か
ら、Co合金結晶粒子は結晶質であり、粒界は非晶質で
あることがわかった。なお、結晶粒子間の平均距離は
1.5nmで、その標準偏差は1.4nmであった。更
に、結晶粒径を求めたところ、平均粒径で4.0nmで
あった。図5は、本実施例の磁気記録媒体のRu非磁性
中間層及び磁性層を構成する結晶粒径分布を説明するた
めの図で、磁性層を構成する結晶粒径分布は、粒径6n
m付近にピークがあり、そのばらつきを求めると標準偏
差÷平均粒径で0.2であった。
The magnetic layer thus obtained is treated with a planar TE.
As a result of M observation, it was confirmed that the crystal grains forming the magnetic layer had a granular structure surrounded by a region of the non-magnetic phase. Further, from the result of the lattice image observation under the high resolution condition, it was found that the Co alloy crystal grains were crystalline and the grain boundaries were amorphous. The average distance between the crystal grains was 1.5 nm, and the standard deviation was 1.4 nm. Furthermore, when the crystal grain size was determined, the average grain size was 4.0 nm. FIG. 5 is a diagram for explaining the crystal grain size distribution constituting the Ru non-magnetic intermediate layer and the magnetic layer of the magnetic recording medium of the present embodiment. The crystal grain size distribution constituting the magnetic layer has a grain size of 6n.
There was a peak in the vicinity of m, and the variation was found to be standard deviation / average particle size of 0.2.

【0025】この膜の断面構造をTEMにより観察した
ところ、非磁性中間層と磁性層との間には、格子のつな
がりが見られ、磁性層を構成する結晶粒子は非磁性中間
層との界面からエピタキシャル成長していることがわか
った。また、磁性層中の結晶相と粒界相とでは、その成
長機構の相違に起因して異なる金属組織を有しているこ
とがわかった。面内X線回折結果より、2θ=19°付
近にCo(002)の強いピークが観測され、θ−2θ
法によるX線回折結果とTEM観察結果と合わせて考え
ると、Coの(100)が優先的に配向していることが
わかる。この磁性層の磁気特性をVSMにより測定した
結果、保磁力が3.5kOe、M−Hループにおけるヒ
ステリシスの角型性の指標である角形比Sが0.9、保
持力角形比Sが0.8であり、良好な磁気特性を有し
ていた。このように、角型に近いヒステリシスを示すの
は、粒径分布が正規分布となったこと、及び、非磁性中
間層の粒界の存在に起因して磁性層の成長機構が今まで
と異なったために、磁性結晶粒子間の相互作用が低減さ
れたことの結果である。 (実施例6)表2は、実施例4と実施例5に示した磁気
特性を有する磁性膜を用いた磁気ディスクの記録再生特
性評価結果を纏めたものである。ここで、記録再生特性
はGMRヘッドを用いてスピンスタンドテスターで測定
した孤立再生波形の再生出力を線記録密度160kFC
Iにて評価したものである。
When the cross-sectional structure of this film was observed by TEM, a lattice connection was found between the non-magnetic intermediate layer and the magnetic layer, and the crystal grains constituting the magnetic layer had an interface with the non-magnetic intermediate layer. It was found that the film was epitaxially grown. It was also found that the crystal phase and the grain boundary phase in the magnetic layer have different metal structures due to the difference in their growth mechanism. From the in-plane X-ray diffraction result, a strong peak of Co (002) was observed near 2θ = 19 °, and θ−2θ
Considering together the X-ray diffraction result by the method and the TEM observation result, it can be seen that Co (100) is preferentially oriented. As a result of measuring the magnetic characteristics of this magnetic layer by VSM, the coercive force was 3.5 kOe, the squareness ratio S, which is an index of the squareness of hysteresis in the MH loop, was 0.9, and the coercive force squareness ratio S * was 0. It was 0.8 and had good magnetic properties. As described above, the hysteresis that is close to the square shape is caused by the fact that the grain size distribution becomes a normal distribution and that the growth mechanism of the magnetic layer is different from before because of the existence of grain boundaries in the non-magnetic intermediate layer. As a result, the interaction between the magnetic crystal grains is reduced. (Example 6) Table 2 is a summary of the recording / reproducing characteristic evaluation results of the magnetic disks using the magnetic films having the magnetic characteristics shown in Examples 4 and 5. Here, the recording / reproducing characteristic is the linear recording density of 160 kFC when the reproducing output of the isolated reproducing waveform measured by the spin stand tester using the GMR head is used.
It is evaluated by I.

【0026】[0026]

【表2】 実施例5の磁気記録媒体は、実施例4の磁気記録媒体と
比較してノイズが35%小さくなり、SNRは16%向
上した。これは、磁性層の粒径解析結果にあるように、
非磁性中間層の8nm以上の結晶粒径を40%(図3に示
した実施例4のデータ)から10%(図5に示した実施
例5のデータ)に制御させたことにより、磁性層の結晶
粒径4nm以下の粒子を15%から5%に低減でき、更
に、粒径のばらつき(標準偏差÷平均粒径)を0.2に
抑制できたことに起因して、ノイズを大きく低減できS
NR値も大きく向上することが分かった。粒径の標準偏
差が1.4nmである中間層の上に磁性層を積層した実
施例5が優れたノイズ特性を示し、中間層の粒径の標準
偏差は1.4nm以下が好ましいことが示された。
[Table 2] The magnetic recording medium of Example 5 had noise reduced by 35% and SNR improved by 16% as compared with the magnetic recording medium of Example 4. This is due to the results of particle size analysis of the magnetic layer,
By controlling the crystal grain size of 8 nm or more of the non-magnetic intermediate layer from 40% (data of Example 4 shown in FIG. 3) to 10% (data of Example 5 shown in FIG. 5), the magnetic layer Particles with a crystal grain size of 4 nm or less can be reduced from 15% to 5%, and the variation in the grain size (standard deviation / average grain size) can be suppressed to 0.2. Done S
It was found that the NR value was also greatly improved. Example 5 in which the magnetic layer was laminated on the intermediate layer having a standard deviation of the particle diameter of 1.4 nm showed excellent noise characteristics, and it was shown that the standard deviation of the particle diameter of the intermediate layer is preferably 1.4 nm or less. Was done.

【0027】これは、非磁性中間層に存在する結晶粒径
8nm以上の粒子は、その上に成長する磁性粒子を分離
する特性があり、磁性層の結晶粒径、ばらつき、及び、
金属元素の粒界偏析の制御を困難にする作用があるた
め、非磁性中間層の結晶粒子の粒径8nm以上の割合を
10%以下に低減すると、非磁性中間層の結晶粒子に1
対1に対応した磁性層結晶粒子の割合が増加するためで
ある。更に、この結晶成長では、より緻密な格子整合を
助長し、磁性層と非磁性中間層における上下層界面との
格子整合性が良くなり、また、非磁性中間層の柱状多孔
質構造により偏析構造が促進されるため、良好な電磁変
換特性を得ることができることによる。
This is because the particles having a crystal grain size of 8 nm or more existing in the non-magnetic intermediate layer have a characteristic of separating the magnetic grains growing thereon, and the crystal grain size of the magnetic layer, the variation, and
Since it has the effect of making it difficult to control the grain boundary segregation of the metal element, if the ratio of the crystal grains in the non-magnetic intermediate layer having a grain size of 8 nm or more is reduced to 10% or less, the crystal grains in the non-magnetic intermediate layer have a
This is because the ratio of the magnetic layer crystal grains corresponding to the pair 1 increases. Furthermore, in this crystal growth, more precise lattice matching is promoted, the lattice matching between the upper and lower interfaces of the magnetic layer and the nonmagnetic intermediate layer is improved, and the columnar porous structure of the nonmagnetic intermediate layer causes the segregation structure. Is promoted, so that good electromagnetic conversion characteristics can be obtained.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
磁性層と下地層との間に、Ru、Os、Reの少なくと
も1つの元素を主成分とする六方最密充填構造を有する
非磁性中間層を備え、磁性層を構成する結晶粒子の結晶
面間隔(d)と非磁性中間層を構成する結晶粒子の結
晶面間隔(d)の不整合度(Δ=|d−d|/d
)が、10%以内であるように構成したので、ノイズ
の低減を実現でき、優れた磁気特性と電磁変換特性を有
する磁気記録媒体を提供することが実現できる。さら
に、磁性層の結晶粒子間の距離を制御することにより、
磁性結晶粒子間の相互作用の低減が可能となり、磁性結
晶粒子サイズを小さくした場合においても、室温におい
て充分に高い保磁力を有するため、熱擾乱の影響が少な
く、安定な高密度記録化の実現が可能となる。
As described above, according to the present invention,
At least Ru, Os, and Re are provided between the magnetic layer and the underlayer.
Also has a hexagonal close-packed structure with one element as the main component
Crystals of crystalline particles that have a non-magnetic intermediate layer and that make up the magnetic layer
Surface spacing (d1) And the crystal grains forming the non-magnetic intermediate layer
Crystal face spacing (dTwo) Inconsistency (Δ = | d1-DTwo| / d
1) Is configured to be within 10%, so noise
Can be realized and has excellent magnetic characteristics and electromagnetic conversion characteristics.
It is possible to provide a magnetic recording medium that performs Furthermore
By controlling the distance between the crystal grains of the magnetic layer,
It is possible to reduce the interaction between magnetic crystalline particles,
Even if the crystal grain size is reduced
And has a sufficiently high coercive force, so the effect of thermal disturbance is small.
In addition, it is possible to realize stable and high density recording.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気記録媒体の断面構造を示す模式図
である。
FIG. 1 is a schematic diagram showing a cross-sectional structure of a magnetic recording medium of the present invention.

【図2】実施例4の磁気記録媒体の磁性層構造を示す平
面TEM像である。
2 is a plane TEM image showing the magnetic layer structure of the magnetic recording medium of Example 4. FIG.

【図3】実施例4の磁気記録媒体の非磁性中間層と磁性
層の結晶粒径分布を説明するための図である。
FIG. 3 is a diagram for explaining a crystal grain size distribution of a non-magnetic intermediate layer and a magnetic layer of a magnetic recording medium of Example 4.

【図4】実施例4の磁気記録媒体の非磁性中間層及び磁
性層領域の断面TEM像である。
FIG. 4 is a sectional TEM image of a non-magnetic intermediate layer and a magnetic layer region of a magnetic recording medium of Example 4.

【図5】実施例5の磁気記録媒体の非磁性中間層と磁性
層の結晶粒径分布を説明するための図である。
FIG. 5 is a diagram for explaining a crystal grain size distribution of a non-magnetic intermediate layer and a magnetic layer of a magnetic recording medium of Example 5.

【符号の説明】[Explanation of symbols]

1 基板 2 下地層 3 非磁性中間層 4 磁性層 5 保護層 6 潤滑剤膜 1 substrate 2 Underlayer 3 Non-magnetic intermediate layer 4 Magnetic layer 5 protective layer 6 Lubricant film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上住 洋之 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 滝澤 直樹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 及川 忠昭 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5D006 BB01 BB02 BB07 BB09 CA01 CA05 CA06 CB01 5D112 AA03 FA04 GA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Uesumi             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. (72) Inventor Naoki Takizawa             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. (72) Inventor Tadaaki Oikawa             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. F-term (reference) 5D006 BB01 BB02 BB07 BB09 CA01                       CA05 CA06 CB01                 5D112 AA03 FA04 GA02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、非磁性の下地層と、磁性層
と、保護層と、潤滑剤膜とを順次成膜して積層された構
成の磁気記録媒体において、 前記磁性層が、六方最密充填構造を有する強磁性結晶粒
子と、該強磁性結晶粒子間に介在する酸化物を主とする
非磁性粒界とから構成されるグラニュラ構造を有し、
前記下地層が、体心立方格子構造を有することを特徴と
する磁気記録媒体。
1. A magnetic recording medium having a structure in which a non-magnetic underlayer, a magnetic layer, a protective layer, and a lubricant film are sequentially laminated on a substrate, wherein the magnetic layer is hexagonal. Having a granular structure composed of a ferromagnetic crystal grain having a closest packing structure and a non-magnetic grain boundary mainly composed of an oxide interposed between the ferromagnetic crystal grains,
A magnetic recording medium, wherein the underlayer has a body-centered cubic lattice structure.
【請求項2】 前記磁性層の組成において、含有される
Pt量が12at%以上20at%以下であることを特
徴とする請求項1記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the Pt content in the composition of the magnetic layer is 12 at% or more and 20 at% or less.
【請求項3】 前記磁性層と前記下地層との間に、六方
最密充填構造を有する非磁性中間層を備え、 該非磁性中間層が、Ru、Os、Reの少なくとも1つ
の元素を主成分とする非磁性金属であり、 前記磁性層を構成する結晶粒子の結晶面間隔(d)と
前記非磁性中間層を構成する結晶粒子の結晶面間隔(d
)の不整合度(Δ=|d−d|/d)が、10
%以内であることを特徴とする請求項1に記載の磁気記
録媒体。
3. A nonmagnetic intermediate layer having a hexagonal close-packed structure is provided between the magnetic layer and the underlayer, and the nonmagnetic intermediate layer contains at least one element of Ru, Os, and Re as a main component. And the crystal plane spacing (d 1 ) of the crystal grains constituting the magnetic layer and the crystal plane spacing (d) of the crystal grains constituting the nonmagnetic intermediate layer.
2 ) the degree of mismatch (Δ = | d 1 −d 2 | / d 1 ) is 10
The magnetic recording medium according to claim 1, wherein the content is within%.
【請求項4】 前記不整合度が、2.5%以上7.0%
以下であることを特徴とする請求項3に記載の磁気記録
媒体。
4. The degree of inconsistency is 2.5% or more and 7.0%.
The magnetic recording medium according to claim 3, wherein:
【請求項5】 前記非磁性中間層を構成する結晶粒子の
うち、粒径8nm以上の結晶粒子が10%以下であり、
かつ、粒径の標準偏差値が1.4nm以下であることを
特徴とする請求項4に記載の磁気記録媒体。
5. Of the crystal grains forming the non-magnetic intermediate layer, 10% or less of the crystal grains having a grain size of 8 nm or more,
The magnetic recording medium according to claim 4, wherein the standard deviation of the particle diameter is 1.4 nm or less.
【請求項6】 前記基板が、成膜前の加熱がなされてい
ないものであることを特徴とする請求項1乃至5のいず
れかに記載の磁気記録媒体。
6. The magnetic recording medium according to claim 1, wherein the substrate is not heated before film formation.
【請求項7】 前記基板は樹脂基板であることを特徴と
する請求項1乃至6のいずれかに記載の磁気記録媒体。
7. The magnetic recording medium according to claim 1, wherein the substrate is a resin substrate.
JP2002360375A 2001-12-14 2002-12-12 Magnetic recording medium Withdrawn JP2003242623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360375A JP2003242623A (en) 2001-12-14 2002-12-12 Magnetic recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001382164 2001-12-14
JP2001-382164 2001-12-14
JP2002360375A JP2003242623A (en) 2001-12-14 2002-12-12 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2003242623A true JP2003242623A (en) 2003-08-29

Family

ID=27790884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360375A Withdrawn JP2003242623A (en) 2001-12-14 2002-12-12 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2003242623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879468B2 (en) 2007-03-05 2011-02-01 Fuji Electric Device Technology Co., Ltd. Magnetic recording media and method of manufacture of the same
US8034413B2 (en) 2007-11-09 2011-10-11 Fuji Electric Co., Ltd. Method for manufacturing magnetic recording media
US8945364B2 (en) 2009-11-18 2015-02-03 Fuji Electric Co., Ltd. Magnetic recording medium and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879468B2 (en) 2007-03-05 2011-02-01 Fuji Electric Device Technology Co., Ltd. Magnetic recording media and method of manufacture of the same
US8034413B2 (en) 2007-11-09 2011-10-11 Fuji Electric Co., Ltd. Method for manufacturing magnetic recording media
US8470391B2 (en) 2007-11-09 2013-06-25 Fuji Electric Co., Ltd. Magnetic recording media
US8945364B2 (en) 2009-11-18 2015-02-03 Fuji Electric Co., Ltd. Magnetic recording medium and method for producing the same
US9190092B1 (en) 2009-11-18 2015-11-17 Fuji Electric Co., Ltd. Magnetic recording medium and method for producing the same

Similar Documents

Publication Publication Date Title
JP4019703B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US7183011B2 (en) Magnetic recording medium
JP4582978B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP5397926B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
US7781079B2 (en) Perpendicular magnetic recording medium, its manufacturing method, and a magnetic storage apparatus
US20080206601A1 (en) Perpendicular magnetic recording medium and method of manufacturing the same
US8119264B2 (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
WO2002039433A1 (en) Magnetic recording medium and magnetic recording apparatus
JP6205871B2 (en) Magnetic recording medium
US9734857B2 (en) Stack including a magnetic zero layer
JPH08171716A (en) Magnetic alloy and its manufacture
JP2009059431A (en) Magnetic recording medium and magnetic recording and reproducing apparatus
US7833640B2 (en) Intermediate tri-layer structure for perpendicular recording media
JP2003123239A (en) Perpendicular magnetic recording medium
US7687158B2 (en) Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing apparatus
JP2002190108A (en) Magnetic recording medium and its production method
JP2006120231A (en) Perpendicular magnetic recording medium
US7247395B2 (en) Magnetic recording medium exhibiting low noise and high coercive force
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US20030235718A1 (en) Magnetic recording medium and the method of manufacturing the same
US20070207348A1 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and magnetic storage unit
JP2003203330A (en) Magnetic recording medium
JP4540288B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2015153447A (en) Perpendicular magnetic recording medium, method of producing perpendicular magnetic recording medium, and perpendicular recording and reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20070618

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A761 Written withdrawal of application

Effective date: 20070910

Free format text: JAPANESE INTERMEDIATE CODE: A761