US20030235718A1 - Magnetic recording medium and the method of manufacturing the same - Google Patents

Magnetic recording medium and the method of manufacturing the same Download PDF

Info

Publication number
US20030235718A1
US20030235718A1 US10/410,665 US41066503A US2003235718A1 US 20030235718 A1 US20030235718 A1 US 20030235718A1 US 41066503 A US41066503 A US 41066503A US 2003235718 A1 US2003235718 A1 US 2003235718A1
Authority
US
United States
Prior art keywords
magnetic recording
layer
nonmagnetic
magnetic
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/410,665
Inventor
Sadayuki Watanabe
Yasushi Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Assigned to FUJI ELECTRIC CO., LTD. reassignment FUJI ELECTRIC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAKAI, YASUSHI, WATANABE, SADAYUKI
Publication of US20030235718A1 publication Critical patent/US20030235718A1/en
Priority to US11/037,880 priority Critical patent/US7407685B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction

Definitions

  • Various compositions for the magnetic layer, various structures for the magnetic layer, and various materials for the nonmagnetic underlayer have been proposed to obtain a magnetic recording medium exhibiting a high recording density.
  • One of the magnetic layers used in practice employs a CoCr alloy and obtains isolated magnetic grains by segregating Cr to the crystal grain boundary.
  • Another one of the magnetic layers used in practice is the so-called granular magnetic layer that includes a nonmagnetic and nonmetallic material for the grain boundary thereof. For segregating sufficient amount of Cr into the grain boundary, it is necessary and indispensable to heat the substrate at 200° C. or higher during forming the conventional CoCr alloy magnetic layer.
  • the specific feature of the granular magnetic layer is that the nonmagnetic and nonmetallic material segregates even when the substrate is not heated during forming the granular magnetic layer.
  • the CoCr magnetic layer and the granular magnetic layer described above are employable for the perpendicular magnetic recording by controlling the crystal orientation therein by means of an underlayer.
  • both the CoCr magnetic layer and the granular magnetic layer it is required for both the CoCr magnetic layer and the granular magnetic layer to be thermally stable and cause less media noises.
  • For improving the thermal stability it is necessary to improve the crystalline magnetic anisotropy Ku.
  • For reducing the media noises it is necessary to minimize the crystal grain diameter in the magnetic recording layer and to reduce the magnetic interaction between the crystal grains.
  • the crystalline magnetic anisotropy Ku in the CoCr magnetic layer is improved by adding an appropriate amount of Pt thereto.
  • the magnetic interaction between the ferromagnetic crystal grains in the CoCr magnetic layer is reduced by promoting Cr segregation into the grain boundary by means of heating the substrate before forming the CoCr magnetic layer or by means of adding Ta or B to the CoCr magnetic layer.
  • the present invention relates to a magnetic recording medium, which can be mounted on various magnetic recording apparatuses, and the method of manufacturing such a magnetic recording medium, and the magnetic recording medium formed thereby.
  • the magnetic recording medium which can include a nonmagnetic substrate, an underlayer above the nonmagnetic substrate, a magnetic recording layer on the underlayer, and an overcoating layer on the magnetic recording layer.
  • the magnetic recording layer can be a granular magnetic layer, including ferromagnetic crystal grains and an oxide nonmagnetic grain boundary, or a nitride nonmagnetic grain boundary surrounding the ferromagnetic crystal grains.
  • the overcoating layer can contain a nonmagnetic metal or a nonmagnetic alloy diffused into the nonmagnetic grain boundary.
  • the magnetic recording medium according to the first aspect of the invention does not employ the conventional CoCrPt layer for the magnetic layer thereof but rather a granular magnetic layer including ferromagnetic crystal grains and a nonmagnetic oxide grain boundary or a nonmagnetic nitride grain boundary surrounding the ferromagnetic crystal grains.
  • the magnetic recording medium also can include a nonmagnetic metal layer or a nonmagnetic alloy layer deposited on the granular magnetic layer.
  • the coated atoms diffuse into the nonmagnetic crystal grain boundary of the granular magnetic layer without annealing, and promote isolation of the ferromagnetic crystal grains from each other.
  • the nonmagnetic metal or the nonmagnetic alloy can be composed of an element selected from the group consisting of Sc, Ti, V, Cr, Mn, Cu, Zn, Al, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
  • the nonmagnetic metal or the nonmagnetic alloy is selected from this group, the atoms coated on the granular magnetic layer diffuse easily into the nonmagnetic grain boundary of the granular magnetic layer.
  • Another aspect of the present invention is the method of manufacturing a magnetic recording medium, which can include steps of forming the underlayer above the nonmagnetic substrate, forming the magnetic recording layer on the underlayer, and forming the overcoating layer on the magnetic recording layer.
  • the overcoating layer can be removed after diffusing the nonmagnetic metal or the nonmagnetic alloy into the nonmagnetic grain boundary. By removing a part of or the entire of the overcoating layer, the magnetic spacing can be narrowed, the SNR can be improved, the magnetic layer surface can be flattened, and therefore, the head floating can be stabilized.
  • Another aspect of the present invention is a product formed by the above-described method.
  • FIG. 1 is a schematic cross sectional view of a perpendicular magnetic recording medium according to an embodiment of the invention.
  • FIG. 2 is a set of curves relating the coercivity Hc and the thickness for the magnetic recording media according to the first through third embodiments of the invention and the comparative magnetic recording medium.
  • FIG. 3 is a set of curves relating the normalized media noises and the line recording densities for the magnetic recording media according to the first through fourth embodiments of the invention and the comparative magnetic recording medium.
  • the perpendicular magnetic recording medium according to the invention includes at least a nonmagnetic substrate 1 , an underlayer 2 above the nonmagnetic substrate 1 , a magnetic recording layer 3 on the underlayer 2 , and an overcoating layer 4 on the magnetic recording layer 3 .
  • the overcoating layer 4 can be removed by etching after the overcoating layer 4 is formed.
  • a protective layer 5 can be formed on the overcoating layer 4 and a liquid lubricant layer 6 can be formed on the protective layer 5 .
  • a soft magnetic underlayer 11 can be formed below the underlayer 2 . The constituent layers will be described below in detail.
  • the nonmagnetic substrate can be composed of materials such as an Al alloy plate provided with NiP plating and a reinforced or crystallized glass plate used for the conventional magnetic recording. Since no heating step is employed in manufacturing the magnetic recording medium according to the present invention, the substrate 1 can be composed of plastic substrates, such as a polycarbonate plate and a polyolefin plate.
  • the underlayer 2 can be composed of metals having a hexagonal close packed (hcp) lattice structure, alloys containing one of the metals having the hcp lattice structure, metals having a face-centered cubic (fcc) lattice structure or alloys containing one of the metals having the fcc lattice.
  • the metals having the hcp lattice structure include, for example, Ti, Zr, Ru, Zn, Tc, and Re.
  • the metals having the fcc lattice structure include, for example, Cu, Rh, Pd, Ag, Ir, Pt, Au, Ni, and Co.
  • the underlayer 2 is preferably thin, 3 nm or thicker in thickness is preferable for facilitating sufficient crystal growth therein.
  • a seed layer 12 can be formed below the underlayer 2 to improve the crystalline orientation in the underlayer 2 .
  • a soft magnetic underlayer 11 can be formed below the underlayer 2 to converge the magnetic flux generated from a magnetic head.
  • the underlayer 11 can be composed of NiFe alloy crystals, Sendust (FeSiAl) alloys, FeTaC microcrystals, CoTaZr microcrystals, and amorphous Co alloys such as CoZrNb.
  • the soft magnetic underlayer 11 is preferably from 10 nm to 500 nm in thickness taking the productivity thereof into consideration.
  • the magnetic recording layer 3 is composed of a granular magnetic layer, including ferromagnetic crystal grains and a nonmagnetic oxide grain boundary or a nonmagnetic nitride grain boundary surrounding the ferromagnetic crystal grains.
  • alloys such as CoPt and FePt, CoPt alloys, and FePt alloys, to which Cr, Ni, Nb, Ta, B, and such an element are added, are preferable for the ferromagnetic crystal.
  • oxides and nitrides of Cr, Co, Si, Al, Ti, Ta, Hf, Zr, Y and Ce are preferable for the nonmagnetic grain boundary.
  • the materials described above exemplary are used for the ferromagnetic crystal grains and the nonmagnetic grain boundary, the atoms of the nonmagnetic metal or the nonmagnetic alloy coated on the granular magnetic layer are diffused easily into the nonmagnetic grain boundary without any help of annealing, isolation of the ferromagnetic grains is promoted, and the media noises are reduced.
  • the materials for the ferromagnetic crystal grain and the oxide and the nitride for the nonmagnetic grain boundary are not limited to those described above.
  • the overcoating layer can be composed of any of the nonmagnetic metals Sc, Ti, V, Cr, Mn, Cu, Zn, Al, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, and Au, or nonmagnetic alloys containing at least one of Sc, Ti, V, Cr, Mn, Cu, Zn, Al, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
  • the atoms in the overcoating layer 4 diffuse into the grain boundary in the magnetic recording layer 3 and reduce the magnetic interaction between the ferromagnetic crystal grains in the magnetic recording layer 3 .
  • the overcoating layer 4 is preferably 10 nm or less in thickness to reduce the magnetic spacing between the magnetic head and the magnetic recording medium.
  • a part of or the entire of the residual overcoating layer 4 remaining on magnetic recording layer 3 can be removed by etching.
  • the removal of a part of or the entire of the residual overcoating layer 4 facilitates to reduce the magnetic spacing and smooth the surface of the magnetic recording medium.
  • the removal can be conducted by Ar plasma etching, ECR plasma etching, ion beam etching, and similar etching technique.
  • the protective layer 5 can be composed of a thin film containing carbon as its main component.
  • the liquid lubricant layer 6 can be composed of a perfluoropolyether lubricant or a similar liquid lubricant.
  • the nonmagnetic substrate 1 is composed of a flat and smooth chemically reinforced glass substrate (N-5 Glass Substrate supplied from Hoya Corp.). After cleaning, the glass substrate is loaded in a vacuum chamber of a sputtering apparatus, and a soft magnetic underlayer is formed by sputtering, using a Co5Zr9Nb target, resulting in a CoZrNb soft magnetic underlayer 11 of 300 nm in thickness.
  • N-5 Glass Substrate supplied from Hoya Corp.
  • a seed layer 12 is formed using a Ni15Fe5Cr target, which is a Ni-based soft magnetic alloy target, under the Ar gas pressure of 5 mTorr, resulting in a NiFeCr seed layer of 10 nm in thickness.
  • an underlayer 2 is formed using a Ru target under the Ar gas pressure of 30 mTorr, resulting in a Ru underlayer of 20 nm in thickness.
  • a magnetic recording layer 3 is formed by sputtering using a 92(Co10Crl6Pt)-8SiO 2 target, resulting in a CoCrPt—SiO 2 magnetic recording layer of 20 nm in thickness.
  • an Mn overcoating layer is formed under the Ar gas pressure of 30 mTorr.
  • the thickness of the Mn overcoating layer 4 ranges from 1 nm to 20 nm.
  • a carbon protective layer 5 of 8 nm in thickness is formed on the overcoating layer 4 . Then, the laminate formed is taken out from the vacuum chamber.
  • a perfluoropolyether layer is formed by dip-coating, resulting in a perfluoropolyether liquid lubricant layer 6 of 2 nm in thickness.
  • the magnetic recording layer is formed by RF magnetron sputtering.
  • the other layers except the liquid lubricant layer are formed by DC magnetron sputtering.
  • double-layered perpendicular magnetic recording media are fabricated in the same manner as the double-layered perpendicular magnetic recording media according to the first embodiment except that the overcoating layer is composed of Ta in the second embodiment.
  • double-layered perpendicular magnetic recording media are fabricated in the same manner as the double-layered perpendicular magnetic recording media according to the first embodiment except that the overcoating layer is composed of Cu in the third embodiment.
  • double-layered perpendicular magnetic recording media are fabricated in the same manner as the double-layered perpendicular magnetic recording media according to the first embodiment except that the overcoating layer is composed of an Mn layer 3 nm in thickness, and the Mn overcoating layer is removed by an Ar plasma etching.
  • Comparative double-layered perpendicular magnetic recording medium C1 is fabricated in the same manner as the double-layered perpendicular magnetic recording media according to the first embodiment except that no overcoating layer is formed in the comparative double-layered perpendicular magnetic recording medium.
  • FIG. 2 is a set of curves relating the coercivities Hc and the thickness for the magnetic recording media E1 through E3 according to the first through third embodiments and the comparative magnetic recording medium C1.
  • the squareness ratio S of the magnetic recording media according to the first through third embodiments and the comparative magnetic recording medium is 1.0.
  • the coercivities Hc of the magnetic recording media E1-E3 that include an overcoating layer according to the first through third embodiments are improved as compared with the coercivity Hc of the comparative magnetic recording medium.
  • the coercivities Hc increase with increasing thickness of the overcoating layer and reach the respective maximum values when the thickness of the overcoating layer is between 3 nm and 5 nm. Thus, provision of an overcoating layer improves the coercivity Hc.
  • Table 1 below shows the comparative magnetic cluster size diameters d[nm] and the dispersions ⁇ [nm] of the magnetic recording media, each including an overcoating layer of 3 nm in thickness, according to the first through third embodiments and the comparative magnetic recording medium.
  • the magnetic cluster sizes are obtained from the magnetic force microscopic (MFM) measurements of the magnetic recording media demagnetized by AC demagnetization.
  • the magnetic cluster size diameters d[nm] and the dispersions ⁇ [nm] of the magnetic recording media including an overcoating layer according to the first through third embodiments are much smaller than the magnetic cluster size diameter d[nm] and the dispersion ⁇ [nm] of the comparative magnetic recording medium.
  • FIG. 3 is a set of curves relating the normalized media noises obtained from the evaluation results on the magnetic parametric performances and the linear recording densities for the magnetic recording media, each including an overcoating layer of 3 nm in thickness, according to the first through fourth embodiments, and the comparative magnetic recording medium C1 (without any overcoating layer).
  • the magnetic parametric performances are measured by a spin stand tester using a giant magnetoresistive (GMR) head.
  • GMR giant magnetoresistive
  • the normalized media noise in the magnetic recording medium according to the fourth embodiment is further reduced as compared with the normalized media noise in the magnetic recording medium according to the first embodiment.
  • the further reduced normalized media noise in the magnetic recording medium according to the fourth embodiment is attributable to the large increment of the output signals due to the smaller magnetic gap between the recording layer and the magnetic head.
  • Table 2 below shows the comparison of the SNRs at the linear recording densities of 400 kilo flux changes per inch (kFCI) and 600 kFCI of the magnetic recording media according to the first through fourth embodiments and the comparative magnetic recording medium.
  • the SNRs are obtained by evaluating the magnetic parametric performances in the similar manner as the normalized media noises.
  • the SNRs in the magnetic recording media according to the first through third embodiments, each including an overcoating layer are much higher than the SNRs in the comparative magnetic recording medium that does not include or use any overcoating layer.
  • the SNRs in the magnetic recording medium according to the fourth embodiment, where the overcoating layer thereof has been etched off after its formation, are even higher than the SNRs in the magnetic recording medium according to the first embodiment.
  • the removal of the overcoating layer is very effective means to obtaining a higher SNR.
  • the magnetic recording medium according to the invention is manufactured with excellent productivity.
  • the magnetic recording medium according to the invention facilitates to reduce the magnetic interaction therein, reducing the media noises and realizing a higher recording density. Since it is sufficient for the overcoating layer to be 10 nm or less in thickness, the magnetic gap between the magnetic recording head and the recording layer is not widened by much. A narrower magnetic spacing obtained by etching off the overcoating layer after its formation facilitates to further improve the SNR and obtain a higher recording density.
  • the magnetic recording medium includes a nonmagnetic substrate, an underlayer above the nonmagnetic substrate, a magnetic recording layer on the underlayer, and an overcoating layer on the magnetic recording layer.
  • the magnetic recording layer is a granular magnetic layer including ferromagnetic crystal grains and an oxide nonmagnetic grain boundary or a nitride nonmagnetic grain boundary surrounding the ferromagnetic crystal grains, and the overcoating layer contains a nonmagnetic metal or a nonmagnetic alloy to be diffused into the nonmagnetic grain boundary.
  • the atoms coated on the granular magnetic recording layer diffuse into the grain boundary and promote isolation of the ferromagnetic crystal grains from each other.
  • the magnetic recording medium manufactured according to the present invention provides excellent productivity, while producing products that have excellent magnetic recording properties, such as reduced media noise and a higher recording density.

Abstract

A method of manufacturing a magnetic recording media includes a magnetic recording layer of a granular magnetic layer that has ferromagnetic crystal grains and an oxide nonmagnetic grain boundary or a nitride nonmagnetic grain boundary surrounding the ferromagnetic crystal grains. It further has an overcoating layer on the granular magnetic recording layer. The overcoating layer contains a nonmagnetic metal or a nonmagnetic alloy that can be diffused into the nonmagnetic grain boundary. The atoms coated on the granular magnetic recording layer diffuse into the nonmagnetic grain boundary even without being annealed, and promote to isolate the ferromagnetic crystal grains from each other. The overcoating can be removed after its formation to reduce the magnetic gap between the magnetic recording layer and the magnetic recording head.

Description

    BACKGROUND
  • Various compositions for the magnetic layer, various structures for the magnetic layer, and various materials for the nonmagnetic underlayer have been proposed to obtain a magnetic recording medium exhibiting a high recording density. One of the magnetic layers used in practice employs a CoCr alloy and obtains isolated magnetic grains by segregating Cr to the crystal grain boundary. Another one of the magnetic layers used in practice is the so-called granular magnetic layer that includes a nonmagnetic and nonmetallic material for the grain boundary thereof. For segregating sufficient amount of Cr into the grain boundary, it is necessary and indispensable to heat the substrate at 200° C. or higher during forming the conventional CoCr alloy magnetic layer. In contrast, the specific feature of the granular magnetic layer is that the nonmagnetic and nonmetallic material segregates even when the substrate is not heated during forming the granular magnetic layer. For realizing a higher recording density, research and development have been explored vigorously on the perpendicular magnetic recording that orients the recording magnetization perpendicular to the recording plane of the medium in place of the parallel magnetic recording that orients the recording magnetization parallel to the recording plane of the medium. The CoCr magnetic layer and the granular magnetic layer described above are employable for the perpendicular magnetic recording by controlling the crystal orientation therein by means of an underlayer. [0001]
  • It is required for both the CoCr magnetic layer and the granular magnetic layer to be thermally stable and cause less media noises. For improving the thermal stability, it is necessary to improve the crystalline magnetic anisotropy Ku. For reducing the media noises, it is necessary to minimize the crystal grain diameter in the magnetic recording layer and to reduce the magnetic interaction between the crystal grains. The crystalline magnetic anisotropy Ku in the CoCr magnetic layer is improved by adding an appropriate amount of Pt thereto. The magnetic interaction between the ferromagnetic crystal grains in the CoCr magnetic layer is reduced by promoting Cr segregation into the grain boundary by means of heating the substrate before forming the CoCr magnetic layer or by means of adding Ta or B to the CoCr magnetic layer. The other technique for segregation promotion, as reported in Journal of Applied Physics, Vol. 87, No. 9. pp. 6869-6871 (May 1, 2000), effectively isolates ferromagnetic crystal grains by depositing an Mn layer of 20 nm in thickness on a CoCrPt magnetic layer and by annealing the laminate at 350° C. for several minutes to diffuse Mn into the grain boundary of the CoCrPt magnetic layer. [0002]
  • For reducing the media noises and for realizing a high magnetic recording density, it is necessary to minimize the grain diameter in the magnetic recording layer and to magnetically isolate the crystal grains in the magnetic recording layer without impairing the thermal stability. However, the productivity of the above described segregation promotion technique that deposits an Mn layer on a CoCrPt layer and anneals the laminate is not that good since it takes several minutes for Mn to sufficiently diffuse into the grain boundary of the CoCrPt layer. Moreover, it is difficult to obtain a large signal output for the segregation promotion technique that deposits an Mn layer on a CoCrPt layer since the spacing between the magnetic head and the magnetic recording layer is greater due to the Mn layer of 20 nm in thickness on the CoCrPt layer, causing a low signal to noise ratio (SNR). In addition, the magnetic head floats less stably since the magnetic layer surface becomes more uneven with an increasing layer thickness. [0003]
  • As described above, a higher recording density would hardly be provided to magnetic recording media, if one wanted to manufacture the magnetic recording media with excellent productivity by any of the conventional techniques. Thus, there is a need for a magnetic recording medium manufacturing technique that allows greater productivity, while producing a product that exhibits a high recording density. The present invention addresses this need. [0004]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a magnetic recording medium, which can be mounted on various magnetic recording apparatuses, and the method of manufacturing such a magnetic recording medium, and the magnetic recording medium formed thereby. [0005]
  • One aspect of the present invention is the magnetic recording medium, which can include a nonmagnetic substrate, an underlayer above the nonmagnetic substrate, a magnetic recording layer on the underlayer, and an overcoating layer on the magnetic recording layer. The magnetic recording layer can be a granular magnetic layer, including ferromagnetic crystal grains and an oxide nonmagnetic grain boundary, or a nitride nonmagnetic grain boundary surrounding the ferromagnetic crystal grains. The overcoating layer can contain a nonmagnetic metal or a nonmagnetic alloy diffused into the nonmagnetic grain boundary. [0006]
  • The magnetic recording medium according to the first aspect of the invention does not employ the conventional CoCrPt layer for the magnetic layer thereof but rather a granular magnetic layer including ferromagnetic crystal grains and a nonmagnetic oxide grain boundary or a nonmagnetic nitride grain boundary surrounding the ferromagnetic crystal grains. The magnetic recording medium also can include a nonmagnetic metal layer or a nonmagnetic alloy layer deposited on the granular magnetic layer. In contrast to the conventional CoCrPt magnetic recording layer, the coated atoms diffuse into the nonmagnetic crystal grain boundary of the granular magnetic layer without annealing, and promote isolation of the ferromagnetic crystal grains from each other. [0007]
  • The nonmagnetic metal or the nonmagnetic alloy can be composed of an element selected from the group consisting of Sc, Ti, V, Cr, Mn, Cu, Zn, Al, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, and Au. When the nonmagnetic metal or the nonmagnetic alloy is selected from this group, the atoms coated on the granular magnetic layer diffuse easily into the nonmagnetic grain boundary of the granular magnetic layer. [0008]
  • Another aspect of the present invention is the method of manufacturing a magnetic recording medium, which can include steps of forming the underlayer above the nonmagnetic substrate, forming the magnetic recording layer on the underlayer, and forming the overcoating layer on the magnetic recording layer. [0009]
  • The overcoating layer can be removed after diffusing the nonmagnetic metal or the nonmagnetic alloy into the nonmagnetic grain boundary. By removing a part of or the entire of the overcoating layer, the magnetic spacing can be narrowed, the SNR can be improved, the magnetic layer surface can be flattened, and therefore, the head floating can be stabilized. [0010]
  • Another aspect of the present invention is a product formed by the above-described method.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross sectional view of a perpendicular magnetic recording medium according to an embodiment of the invention. [0012]
  • FIG. 2 is a set of curves relating the coercivity Hc and the thickness for the magnetic recording media according to the first through third embodiments of the invention and the comparative magnetic recording medium. [0013]
  • FIG. 3 is a set of curves relating the normalized media noises and the line recording densities for the magnetic recording media according to the first through fourth embodiments of the invention and the comparative magnetic recording medium.[0014]
  • DETAILED DESCRIPTION
  • Now the invention will be described in detail hereinafter with reference to the accompanied drawing figures. Throughout the drawing figures, the constituent elements exhibiting similar functions are designated by the same reference numerals. [0015]
  • Referring to FIG. 1, which is a schematic cross sectional view of a perpendicular magnetic recording medium according to the invention, the perpendicular magnetic recording medium according to the invention includes at least a [0016] nonmagnetic substrate 1, an underlayer 2 above the nonmagnetic substrate 1, a magnetic recording layer 3 on the underlayer 2, and an overcoating layer 4 on the magnetic recording layer 3. The overcoating layer 4 can be removed by etching after the overcoating layer 4 is formed. A protective layer 5 can be formed on the overcoating layer 4 and a liquid lubricant layer 6 can be formed on the protective layer 5. For forming a double-layered perpendicular magnetic recording medium, a soft magnetic underlayer 11 can be formed below the underlayer 2. The constituent layers will be described below in detail.
  • The nonmagnetic substrate can be composed of materials such as an Al alloy plate provided with NiP plating and a reinforced or crystallized glass plate used for the conventional magnetic recording. Since no heating step is employed in manufacturing the magnetic recording medium according to the present invention, the [0017] substrate 1 can be composed of plastic substrates, such as a polycarbonate plate and a polyolefin plate.
  • The [0018] underlayer 2 can be composed of metals having a hexagonal close packed (hcp) lattice structure, alloys containing one of the metals having the hcp lattice structure, metals having a face-centered cubic (fcc) lattice structure or alloys containing one of the metals having the fcc lattice. The metals having the hcp lattice structure include, for example, Ti, Zr, Ru, Zn, Tc, and Re. The metals having the fcc lattice structure include, for example, Cu, Rh, Pd, Ag, Ir, Pt, Au, Ni, and Co. Although the underlayer 2 is preferably thin, 3 nm or thicker in thickness is preferable for facilitating sufficient crystal growth therein. A seed layer 12 can be formed below the underlayer 2 to improve the crystalline orientation in the underlayer 2.
  • For obtaining a double-layered perpendicular magnetic recording medium, a soft [0019] magnetic underlayer 11 can be formed below the underlayer 2 to converge the magnetic flux generated from a magnetic head. The underlayer 11 can be composed of NiFe alloy crystals, Sendust (FeSiAl) alloys, FeTaC microcrystals, CoTaZr microcrystals, and amorphous Co alloys such as CoZrNb. Although the optimum thickness of the soft magnetic underlayer 11 changes depending on the structure and the characteristics of the magnetic recording head, the soft magnetic underlayer 11 is preferably from 10 nm to 500 nm in thickness taking the productivity thereof into consideration.
  • The [0020] magnetic recording layer 3 is composed of a granular magnetic layer, including ferromagnetic crystal grains and a nonmagnetic oxide grain boundary or a nonmagnetic nitride grain boundary surrounding the ferromagnetic crystal grains. For example, alloys such as CoPt and FePt, CoPt alloys, and FePt alloys, to which Cr, Ni, Nb, Ta, B, and such an element are added, are preferable for the ferromagnetic crystal. For example, oxides and nitrides of Cr, Co, Si, Al, Ti, Ta, Hf, Zr, Y and Ce are preferable for the nonmagnetic grain boundary. As far as the materials described above exemplary are used for the ferromagnetic crystal grains and the nonmagnetic grain boundary, the atoms of the nonmagnetic metal or the nonmagnetic alloy coated on the granular magnetic layer are diffused easily into the nonmagnetic grain boundary without any help of annealing, isolation of the ferromagnetic grains is promoted, and the media noises are reduced. The materials for the ferromagnetic crystal grain and the oxide and the nitride for the nonmagnetic grain boundary are not limited to those described above. For obtaining a perpendicular magnetic recording medium, it is necessary for the c-axis of the Co crystal having a hcp lattice structure to orient perpendicular to the recording plane of the medium.
  • The overcoating layer can be composed of any of the nonmagnetic metals Sc, Ti, V, Cr, Mn, Cu, Zn, Al, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, and Au, or nonmagnetic alloys containing at least one of Sc, Ti, V, Cr, Mn, Cu, Zn, Al, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, and Au. The atoms in the [0021] overcoating layer 4 diffuse into the grain boundary in the magnetic recording layer 3 and reduce the magnetic interaction between the ferromagnetic crystal grains in the magnetic recording layer 3. The overcoating layer 4 is preferably 10 nm or less in thickness to reduce the magnetic spacing between the magnetic head and the magnetic recording medium.
  • Further for improving the SNR (signal to noise ratio) characteristics, a part of or the entire of the [0022] residual overcoating layer 4 remaining on magnetic recording layer 3, can be removed by etching. The removal of a part of or the entire of the residual overcoating layer 4 facilitates to reduce the magnetic spacing and smooth the surface of the magnetic recording medium. The removal can be conducted by Ar plasma etching, ECR plasma etching, ion beam etching, and similar etching technique.
  • The [0023] protective layer 5 can be composed of a thin film containing carbon as its main component. The liquid lubricant layer 6 can be composed of a perfluoropolyether lubricant or a similar liquid lubricant.
  • Now the invention will be described more in detail hereinafter with reference to the accompanied drawing figures, which illustrate the preferred embodiments of the invention. According to the first embodiment (El), the [0024] nonmagnetic substrate 1 is composed of a flat and smooth chemically reinforced glass substrate (N-5 Glass Substrate supplied from Hoya Corp.). After cleaning, the glass substrate is loaded in a vacuum chamber of a sputtering apparatus, and a soft magnetic underlayer is formed by sputtering, using a Co5Zr9Nb target, resulting in a CoZrNb soft magnetic underlayer 11 of 300 nm in thickness. Then, a seed layer 12 is formed using a Ni15Fe5Cr target, which is a Ni-based soft magnetic alloy target, under the Ar gas pressure of 5 mTorr, resulting in a NiFeCr seed layer of 10 nm in thickness. Then, an underlayer 2 is formed using a Ru target under the Ar gas pressure of 30 mTorr, resulting in a Ru underlayer of 20 nm in thickness.
  • Then, a [0025] magnetic recording layer 3 is formed by sputtering using a 92(Co10Crl6Pt)-8SiO2 target, resulting in a CoCrPt—SiO2 magnetic recording layer of 20 nm in thickness. Then, an Mn overcoating layer is formed under the Ar gas pressure of 30 mTorr. The thickness of the Mn overcoating layer 4 ranges from 1 nm to 20 nm. Finally, a carbon protective layer 5 of 8 nm in thickness is formed on the overcoating layer 4. Then, the laminate formed is taken out from the vacuum chamber. Then, a perfluoropolyether layer is formed by dip-coating, resulting in a perfluoropolyether liquid lubricant layer 6 of 2 nm in thickness. Thus, double-layered perpendicular magnetic recording media E1 according to the first embodiment are obtained. The magnetic recording layer is formed by RF magnetron sputtering. The other layers except the liquid lubricant layer are formed by DC magnetron sputtering.
  • In a second embodiment (E2) according to the present invention, double-layered perpendicular magnetic recording media are fabricated in the same manner as the double-layered perpendicular magnetic recording media according to the first embodiment except that the overcoating layer is composed of Ta in the second embodiment. [0026]
  • In a third embodiment (E3) according to the present invention, double-layered perpendicular magnetic recording media are fabricated in the same manner as the double-layered perpendicular magnetic recording media according to the first embodiment except that the overcoating layer is composed of Cu in the third embodiment. [0027]
  • According to the fourth embodiment (E4) according to the present invention, double-layered perpendicular magnetic recording media are fabricated in the same manner as the double-layered perpendicular magnetic recording media according to the first embodiment except that the overcoating layer is composed of an [0028] Mn layer 3 nm in thickness, and the Mn overcoating layer is removed by an Ar plasma etching.
  • Comparative double-layered perpendicular magnetic recording medium C1 is fabricated in the same manner as the double-layered perpendicular magnetic recording media according to the first embodiment except that no overcoating layer is formed in the comparative double-layered perpendicular magnetic recording medium. [0029]
  • First, the evaluation results on the magnetic characteristics of the magnetic recording media E1 through E3 according to the first through third embodiments and the comparative magnetic recording medium C1 will be described below. The magnetic characteristics are measured in terms of the Kerr effect. FIG. 2 is a set of curves relating the coercivities Hc and the thickness for the magnetic recording media E1 through E3 according to the first through third embodiments and the comparative magnetic recording medium C1. The squareness ratio S of the magnetic recording media according to the first through third embodiments and the comparative magnetic recording medium is 1.0. The coercivities Hc of the magnetic recording media E1-E3 that include an overcoating layer according to the first through third embodiments are improved as compared with the coercivity Hc of the comparative magnetic recording medium. The coercivities Hc increase with increasing thickness of the overcoating layer and reach the respective maximum values when the thickness of the overcoating layer is between 3 nm and 5 nm. Thus, provision of an overcoating layer improves the coercivity Hc. [0030]
  • Table 1 below shows the comparative magnetic cluster size diameters d[nm] and the dispersions σ[nm] of the magnetic recording media, each including an overcoating layer of 3 nm in thickness, according to the first through third embodiments and the comparative magnetic recording medium. The magnetic cluster sizes are obtained from the magnetic force microscopic (MFM) measurements of the magnetic recording media demagnetized by AC demagnetization. The magnetic cluster size diameters d[nm] and the dispersions σ[nm] of the magnetic recording media including an overcoating layer according to the first through third embodiments are much smaller than the magnetic cluster size diameter d[nm] and the dispersion σ[nm] of the comparative magnetic recording medium. This indicates that the atoms in the overcoating layer diffuse into the grain boundary of the CoCrPt—SiO[0031] 2 magnetic layer and promotes magnetic isolation of the magnetic grains.
    TABLE 1
    Examples d [nm] σ [nm]
    E1 17.6 7.4
    E2 20.5 9.2
    E3 26.3 11.7
    C1 31.4 12.6
  • Next, the evaluation results on the magnetic parametric performances of the magnetic recording media E1 through E4 according to the first through fourth embodiments and the comparative magnetic recording medium C1 will be described below. FIG. 3 is a set of curves relating the normalized media noises obtained from the evaluation results on the magnetic parametric performances and the linear recording densities for the magnetic recording media, each including an overcoating layer of 3 nm in thickness, according to the first through fourth embodiments, and the comparative magnetic recording medium C1 (without any overcoating layer). The magnetic parametric performances are measured by a spin stand tester using a giant magnetoresistive (GMR) head. As FIG. 3 clearly indicates, much less normalized media noises are generated in the magnetic recording media E1-E4 that include or used an overcoating layer according to the first through fourth embodiments than in the comparative magnetic recording medium. Comparing the magnetic recording media according to the first through third embodiments with each other, there exists a certain correlation between the diameter d and dispersion cF of the magnetic cluster size and the normalized media noise. In detail, the normalized media noise becomes lower from the magnetic recording medium according to the third embodiment exhibiting larger d and cy to the magnetic recording medium according to the first embodiment exhibiting smaller d and u. In other words, the promoted magnetic grain isolation facilitates to reduce the media noises. The normalized media noise in the magnetic recording medium according to the fourth embodiment, where the overcoating layer thereof has been etched off after its formation, is further reduced as compared with the normalized media noise in the magnetic recording medium according to the first embodiment. The further reduced normalized media noise in the magnetic recording medium according to the fourth embodiment is attributable to the large increment of the output signals due to the smaller magnetic gap between the recording layer and the magnetic head. [0033] Table [0032] 2 below shows the comparison of the SNRs at the linear recording densities of 400 kilo flux changes per inch (kFCI) and 600 kFCI of the magnetic recording media according to the first through fourth embodiments and the comparative magnetic recording medium. The SNRs are obtained by evaluating the magnetic parametric performances in the similar manner as the normalized media noises. By virtue of the higher Hc and lower media noises, the SNRs in the magnetic recording media according to the first through third embodiments, each including an overcoating layer, are much higher than the SNRs in the comparative magnetic recording medium that does not include or use any overcoating layer. The SNRs in the magnetic recording medium according to the fourth embodiment, where the overcoating layer thereof has been etched off after its formation, are even higher than the SNRs in the magnetic recording medium according to the first embodiment. Thus, it has been confirmed that the removal of the overcoating layer is very effective means to obtaining a higher SNR.
    TABLE 2
    SNR [dB]
    Examples @ 400 [kFCI @ 600 [kFCI]
    E1 16.4 4.56
    E2 15.1 3.38
    E3 14.7 2.79
    E4 17.6 5.23
    C1 11.3 0.14
  • By using a granular magnetic layer for the magnetic recording layer and by depositing an overcoating layer on the granular magnetic recording layer as described above, the atoms in the overcoating layer diffuse into the grain boundary of the granular magnetic layer and promote isolation of the ferromagnetic grain crystals in the magnetic recording layer from each other. Since this scheme does not need any annealing treatment, the magnetic recording medium according to the invention is manufactured with excellent productivity. The magnetic recording medium according to the invention facilitates to reduce the magnetic interaction therein, reducing the media noises and realizing a higher recording density. Since it is sufficient for the overcoating layer to be 10 nm or less in thickness, the magnetic gap between the magnetic recording head and the recording layer is not widened by much. A narrower magnetic spacing obtained by etching off the overcoating layer after its formation facilitates to further improve the SNR and obtain a higher recording density. [0033]
  • As described above, the magnetic recording medium according to the invention includes a nonmagnetic substrate, an underlayer above the nonmagnetic substrate, a magnetic recording layer on the underlayer, and an overcoating layer on the magnetic recording layer. The magnetic recording layer is a granular magnetic layer including ferromagnetic crystal grains and an oxide nonmagnetic grain boundary or a nitride nonmagnetic grain boundary surrounding the ferromagnetic crystal grains, and the overcoating layer contains a nonmagnetic metal or a nonmagnetic alloy to be diffused into the nonmagnetic grain boundary. The atoms coated on the granular magnetic recording layer diffuse into the grain boundary and promote isolation of the ferromagnetic crystal grains from each other. [0034]
  • The magnetic recording medium manufactured according to the present invention provides excellent productivity, while producing products that have excellent magnetic recording properties, such as reduced media noise and a higher recording density. [0035]
  • Given the disclosure of the present invention, one versed in the art would appreciate that there may be other embodiments and modifications within the scope and spirit of the present invention. Accordingly, all modifications and equivalents attainable by one versed in the art from the present disclosure within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention accordingly is to be defined as set forth in the appended claims. [0036]
  • The disclosure of the priority application, JP PA 2002-106928, in its entirety, including the drawings, claims, and the specification thereof, is incorporated herein by reference. [0037]

Claims (10)

What is claimed is:
1. A magnetic recording medium comprising:
a nonmagnetic substrate;
an underlayer above the nonmagnetic substrate;
a magnetic recording layer on the underlayer; and
an overcoating layer on the magnetic recording layer,
wherein the magnetic recording layer comprises a granular magnetic layer comprising ferromagnetic crystal grains and a nonmagnetic grain boundary comprising an oxide or a nitride surrounding the ferromagnetic crystal grains, and
wherein the overcoating layer comprises a nonmagnetic metal or a nonmagnetic alloy adapted to be diffused into the nonmagnetic grain boundary.
2. The magnetic recording medium according to claim 1, wherein the nonmagnetic metal or nonmagnetic alloy is composed of an element selected from the group consisting of Sc, Ti, V, Cr, Mn, Cu, Zn, Al, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Si, Sb, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
3. A method of manufacturing a magnetic recording medium, comprising the steps of:
forming an underlayer above a nonmagnetic substrate;
forming a magnetic recording layer on the underlayer; and
forming an overcoating layer on the magnetic recording layer,
wherein the magnetic recording layer comprises a granular magnetic layer comprising ferromagnetic crystal grains and a nonmagnetic grain boundary comprising an oxide or a nitride surrounding the ferromagnetic crystal grains, and
wherein the overcoating layer comprises a nonmagnetic metal or a nonmagnetic alloy adapted to be diffused into the nonmagnetic grain boundary.
4. The method according to claim 3, further comprising the step of removing the overcoating layer after diffusing the nonmagnetic metal or the nonmagnetic alloy into the nonmagnetic grain boundary.
5. The magnetic recording medium according to claim 3, wherein the nonmagnetic metal or the nonmagnetic alloy is composed of an element selected from the group consisting of Sc, Ti, V, Cr, Mn, Cu, Zn, Al, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
6. The magnetic recording medium according to claim 4, wherein the nonmagnetic metal or the nonmagnetic alloy is composed of an element selected from the group consisting of Sc, Ti, V, Cr, Mn, Cu, Zn, Al, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Hf, Ta, W, Re, Os, Ir, Pt, and Au.
7. A magnetic recording medium formed by the method according to claim 3.
8. A magnetic recording medium formed by the method according to claim 4.
9. A magnetic recording medium formed by the method according to claim 5.
10. A magnetic recording medium formed by the method according to claim 6.
US10/410,665 2002-04-09 2003-04-09 Magnetic recording medium and the method of manufacturing the same Abandoned US20030235718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/037,880 US7407685B2 (en) 2002-04-09 2005-01-18 Magnetic recording medium and the method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002106928 2002-04-09
JPJP2002-106928 2002-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/037,880 Division US7407685B2 (en) 2002-04-09 2005-01-18 Magnetic recording medium and the method of manufacturing the same

Publications (1)

Publication Number Publication Date
US20030235718A1 true US20030235718A1 (en) 2003-12-25

Family

ID=29727482

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/410,665 Abandoned US20030235718A1 (en) 2002-04-09 2003-04-09 Magnetic recording medium and the method of manufacturing the same
US11/037,880 Expired - Fee Related US7407685B2 (en) 2002-04-09 2005-01-18 Magnetic recording medium and the method of manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/037,880 Expired - Fee Related US7407685B2 (en) 2002-04-09 2005-01-18 Magnetic recording medium and the method of manufacturing the same

Country Status (3)

Country Link
US (2) US20030235718A1 (en)
MY (1) MY138932A (en)
SG (1) SG110035A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040247941A1 (en) * 2003-06-03 2004-12-09 Qixu Chen Granular perpendicular media with surface treatment for improved magnetic properties and corrosion resistance
US20040259362A1 (en) * 2003-02-11 2004-12-23 Jingsheng Chen Thin film magnetic recording media
US20050003236A1 (en) * 2003-06-26 2005-01-06 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20080055777A1 (en) * 2006-09-06 2008-03-06 Seagate Technology Llc Perpendicular magnetic recording media with improved scratch damage performance
US20090026066A1 (en) * 2001-12-07 2009-01-29 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
USRE41282E1 (en) * 2001-08-31 2010-04-27 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and a method of manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085871A (en) * 2004-09-17 2006-03-30 Ken Takahashi Manufacturing method of perpendicular magnetic recording medium, perpendicular magnetic recording medium and magnetic recording/reproducing device
US8722214B2 (en) 2008-12-22 2014-05-13 Seagate Technology Llc Hybrid grain boundary additives in granular media
US8268462B2 (en) * 2008-12-22 2012-09-18 Seagate Technology Llc Hybrid grain boundary additives
US8625213B1 (en) 2011-03-31 2014-01-07 Seagate Technology Llc Automated cluster size measurement
US8609263B1 (en) 2011-05-20 2013-12-17 WD Media, LLC Systems and methods for forming magnetic media with an underlayer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378339A (en) * 1986-09-19 1988-04-08 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPS63237210A (en) * 1987-03-25 1988-10-03 Sony Corp Magnetic recording medium
JPH05225560A (en) * 1992-02-12 1993-09-03 Nkk Corp Production of magnetic disk substrate made of titanium
JP2000268340A (en) 1999-03-12 2000-09-29 Fujitsu Ltd Magnetic recording medium and its manufacture
JP2001043526A (en) 1999-05-26 2001-02-16 Fuji Electric Co Ltd Magnetic recording medium and manufacture of the same
SG99358A1 (en) * 2000-02-23 2003-10-27 Fuji Electric Co Ltd Magnetic recording medium and method for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41282E1 (en) * 2001-08-31 2010-04-27 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and a method of manufacturing the same
US20090026066A1 (en) * 2001-12-07 2009-01-29 Fuji Electric Device Technology Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US8252152B2 (en) 2001-12-07 2012-08-28 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same and product thereof
US20040259362A1 (en) * 2003-02-11 2004-12-23 Jingsheng Chen Thin film magnetic recording media
US7208204B2 (en) * 2003-02-11 2007-04-24 Agency For Science, Technology And Research Thin film magnetic recording media
US20040247941A1 (en) * 2003-06-03 2004-12-09 Qixu Chen Granular perpendicular media with surface treatment for improved magnetic properties and corrosion resistance
US7169488B2 (en) * 2003-06-03 2007-01-30 Seagate Technology Llc Granular perpendicular media with surface treatment for improved magnetic properties and corrosion resistance
US20050003236A1 (en) * 2003-06-26 2005-01-06 Fuji Photo Film Co., Ltd. Magnetic recording medium
US20080055777A1 (en) * 2006-09-06 2008-03-06 Seagate Technology Llc Perpendicular magnetic recording media with improved scratch damage performance

Also Published As

Publication number Publication date
SG110035A1 (en) 2005-04-28
US7407685B2 (en) 2008-08-05
MY138932A (en) 2009-08-28
US20050123807A1 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US7407685B2 (en) Magnetic recording medium and the method of manufacturing the same
JP4019703B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
JP4626840B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US7150895B2 (en) Method of producing a magnetic recording medium and a magnetic recording medium formed thereby
JP4582978B2 (en) Method for manufacturing perpendicular magnetic recording medium
US7618722B2 (en) Perpendicular magnetic recording media and magnetic storage apparatus using the same
US7205020B2 (en) Magnetic recording medium and method for manufacturing same
US6696172B2 (en) Recording medium and method for manufacturing the same
JP2003217107A (en) Magnetic recording medium
KR20070067600A (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
JP2003123239A (en) Perpendicular magnetic recording medium
JP3988117B2 (en) Perpendicular magnetic recording medium and method of manufacturing perpendicular magnetic recording medium
JP4534711B2 (en) Perpendicular magnetic recording medium
JP4247575B2 (en) Method for manufacturing perpendicular magnetic recording medium
US20060147760A1 (en) Perpendicular magnetic recording medium
US7521136B1 (en) Coupling enhancement for medium with anti-ferromagnetic coupling
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
US20060014051A1 (en) Perpendicular magnetic recording medium and method of manufacturing the same
US6156422A (en) High density magnetic recording medium with high Hr and low Mrt
JP2003123243A (en) Magnetic recording medium and method of manufacturing the same
US7045225B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4123008B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4066845B2 (en) Magnetic recording medium and method for manufacturing the same
JP4072753B2 (en) Method for manufacturing perpendicular magnetic recording medium

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJI ELECTRIC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WATANABE, SADAYUKI;SAKAI, YASUSHI;REEL/FRAME:014429/0332

Effective date: 20030423

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION