JP2003240701A - Evaluation method for water sealing performance of multilayer cover soil and device therefor - Google Patents

Evaluation method for water sealing performance of multilayer cover soil and device therefor

Info

Publication number
JP2003240701A
JP2003240701A JP2002037852A JP2002037852A JP2003240701A JP 2003240701 A JP2003240701 A JP 2003240701A JP 2002037852 A JP2002037852 A JP 2002037852A JP 2002037852 A JP2002037852 A JP 2002037852A JP 2003240701 A JP2003240701 A JP 2003240701A
Authority
JP
Japan
Prior art keywords
soil
water
grained
coarse
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002037852A
Other languages
Japanese (ja)
Other versions
JP3723779B2 (en
Inventor
Masato Suzuki
正人 鈴木
Atsushi Imai
淳 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JDC Corp
Original Assignee
JDC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDC Corp filed Critical JDC Corp
Priority to JP2002037852A priority Critical patent/JP3723779B2/en
Publication of JP2003240701A publication Critical patent/JP2003240701A/en
Application granted granted Critical
Publication of JP3723779B2 publication Critical patent/JP3723779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method for water insulation performance of multilayer cover soil and device therefor that can evaluate the water sealing performance of a soil layer formed out of coarse grain soil and fine grain soil constituting the coarse grain layer and fine grain layer of a multilayer cover soil. <P>SOLUTION: The evaluation method in which, by performing a test using a two-dimensional test tank with the coarse grain soil and fine grain soil to be used filled in layers to the multiple cover layer formed by filling the coarse grain soil, fine grain soil, and field-generated soil in order of lower position on the upper surface of landfilled solid waste, the flow data of penetrating water is measured, is characterized in that the property values of the coarse grain soil and fine grain soil are determined by reversely analyzing the measured flow data, and then the water sealing performance of the soil layer formed with the coarse grain soil and fine grain soil is analyzed and evaluated based on the determined property values. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、放射性廃棄物、あ
るいは産業・一般廃棄物の埋立処理場に構築する多層覆
土の遮水性能評価方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for evaluating the water impermeability of multi-layered soil constructed in a landfill for radioactive waste or industrial / general waste.

【0002】[0002]

【従来の技術】安全で快適な環境を維持するためには、
廃棄物を生活圏から隔離することが有効であり、従来よ
り、埋め立てた廃棄物を土で覆土することが一般に行わ
れている。覆土に浸透した一部の雨水は、廃棄物層を通
過する間に汚染水となるため、処分場の下流域では浄化
処理をする必要がある。また、底部遮水工が不完全な場
合には、地下に浸透して地下水汚染を引き起こす。浄化
処理費用を抑え、併せて地下水汚染リスクを軽減する上
で、覆土の遮水機能を向上させ、降雨浸透量を抑えるこ
とが有効である。そこで、従来より以下のような覆土が
行われてきた。 単層覆土 現地発生土や残土を締め固めた厚さ0.5〜1.5mの
覆土。 遮水材料併用型覆土 の覆土の層内に遮水シートを挟みこんだり、覆土の表
面にアスファルト舗装を施すなど、土と遮水材料を併用
することによって、遮水機能を向上させた覆土。 ベントナイト混合土併用型覆土 覆土の一部(厚さ0.3〜0.5m)に、ベントナイト
と土砂を混合して遮水性を高めたベントナイト混合土を
使用し、遮水機能を向上させた覆土。 多層覆土 の覆土の下位に細粒土(厚さ0.15〜0.5m)、
その下位に粗粒土(0.15〜0.3m)を、層境界に
勾配(3%以上)をつけて設置する覆土。発生土を通過
して細粒土に浸透し下方に移動した水は、浸透量が少な
い場合、粗粒土との境界面付近で流れの方向を勾配に沿
って横向きに変え、細粒土中を通って側方へ排除され
る。このため、廃棄物層への浸透水量は減少する。これ
は、層を構成する粒の大きさが小さいほど毛細管吸引力
が大きく保水性が大きいことを利用し、層を構成する粒
が大きく保水性の小さい粗粒層の上層に、小さい粒で構
成した保水性の大きい細粒層を設けることにより、降雨
等による浸透水を細粒層で止まらせるようするととも
に、覆土に導水勾配を付して粗粒層と細粒層の境界面に
沿って流下させるようにしている(特開平2001−1
7933号公報)。
2. Description of the Related Art In order to maintain a safe and comfortable environment,
It is effective to isolate the waste from the living area, and it has been a general practice to cover the landfilled waste with soil. Some rainwater that has penetrated the cover soil becomes contaminated water while passing through the waste layer, so it is necessary to purify it in the downstream area of the disposal site. In addition, if the bottom impermeable construction is incomplete, it penetrates underground and causes groundwater pollution. In order to reduce the cost of purification treatment and reduce the risk of groundwater contamination, it is effective to improve the water-blocking function of the soil cover and reduce the amount of rainfall infiltration. Therefore, the following soil covering has been conventionally performed. Single-layer soil cover 0.5-1.5 m thick soil cover that is made by compacting locally generated soil and residual soil. Water-impervious material type soil-covered soil that has improved water-impervious function by using soil and water-impervious material such as sandwiching a water-impervious sheet in the soil-covering layer or applying asphalt pavement to the surface of the soil. Mixed soil with bentonite mixed soil Covering soil with improved water impermeability by using bentonite mixed soil with mixed water with bentonite and earth and sand to enhance water impermeability as part of the soil (thickness 0.3 to 0.5 m) . Fine-grained soil (thickness 0.15 to 0.5 m) under the soil cover of the multi-layered soil,
Coarse soil with coarse-grained soil (0.15-0.3 m) placed below it with a gradient (3% or more) at the layer boundary. The water that has passed through the generated soil and infiltrated into the fine-grained soil and moved downward changes the flow direction laterally along the gradient near the boundary surface with the coarse-grained soil when the amount of infiltration is small. It is eliminated to the side through. Therefore, the amount of permeated water to the waste layer is reduced. This takes advantage of the fact that the smaller the size of the particles that make up the layer, the greater the capillary suction force and the greater the water retention, and that the particles that make up the layer are large and the water retention is small. By providing a fine-grained layer with a large water-holding capacity, it is possible to stop permeated water due to rainfall etc. in the fine-grained layer, and to add a water-conducting gradient to the cover soil to extend along the boundary surface between the coarse-grained layer and the fine-grained layer. It is made to flow down (Japanese Patent Laid-Open No. 2001-1
7933).

【0003】[0003]

【発明が解決しようとする課題】しかし、前記従来の覆
土法には以下のような問題点がある。は単層覆土の遮
水性は使用する土の性質によるところが大きいが、一般
に遮水性能は低く、降水量の2〜5割が廃棄物層に浸透
すると言われている。は遮水シートやアスファルト舗
装の耐久性や継ぎ手部の信頼性に課題がある他、シート
については劣化時に、それ自身が汚染発生源となる恐れ
もある。のベントナイト混合土型は、他の覆土法に比
べてコストが高いこと、施工が難しいことが課題であ
る。の多層覆土は、遮水性能を左右する細粒土と粗粒
土の不飽和浸透特性(水分特性曲線や不飽和浸透性)を
精度良く求めることが技術的に困難であり、覆土の遮水
性能を評価し、設計する手段がないことなどが課題であ
る。
However, the conventional soil covering method has the following problems. Although the water-imperviousness of single-layered soil depends largely on the nature of the soil used, it is generally said that the water-impervious property is low and that 20 to 50% of precipitation penetrates the waste layer. Has problems with durability of water-impervious sheets and asphalt pavements and reliability of joints, and the sheets themselves may become sources of pollution when they deteriorate. The bentonite mixed soil type is problematic in that its cost is higher than other soil covering methods and that construction is difficult. It is technically difficult to accurately calculate the unsaturated seepage characteristics (moisture characteristic curve and unsaturated seepage) of fine-grained soil and coarse-grained soil that affect the water impermeability of the multi-layered soil. The problem is that there is no means to evaluate and design the performance.

【0004】上記のように、それぞれに課題が存在する
が、多層覆土は、長期的に安定な土質材料のみで構築す
るため、他の覆土と比較して耐久性や経済性に優れ、ま
た施工しやすいといった優位性がある。さらに廃棄物に
よってはその分解・浄化促進のために少量の浸透水を必
要とする場合がある。この場合、遮水シート等を用いた
覆土では浸透水量を調整することは困難であるが、多層
覆土では、材料、層厚、勾配、覆土長を変えることによ
って浸透水量の調整が可能であるなど、他の覆土に比べ
て利点が多い。
As described above, there are problems in each, but since the multi-layered soil is constructed only with a long-term stable soil material, it is superior in durability and economy as compared with other soils, and can be constructed. It has the advantage of being easy to do. Furthermore, depending on the waste, a small amount of permeated water may be required to promote its decomposition and purification. In this case, it is difficult to adjust the amount of infiltrated water by covering the soil with a water-impervious sheet, but in the case of multi-layered soil, the amount of infiltrated water can be adjusted by changing the material, layer thickness, gradient, and soil cover length. , Has many advantages over other soil cover.

【0005】そこで、本発明は、上記多層覆土における
課題を解決するためになされたもので、多層覆土に用い
られる粗粒土と細粒土により形成される土層の遮水性能
を評価する多層覆土の遮水性能評価方法および装置を提
供することにある。
Therefore, the present invention has been made in order to solve the problems in the above-mentioned multi-layered soil, and is a multi-layered one for evaluating the water-impervious performance of the soil layer formed by the coarse-grained soil and the fine-grained soil used for the multi-layered soil. An object is to provide a method and apparatus for evaluating the water impermeability of soil cover.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、多層覆土の遮水性能評価方法は、埋立廃棄物の上表
面に、粗粒土、細粒土、遮水性の良い現地発生土を下位
から順に盛土して形成する多層覆土に使用予定の前記粗
粒土および前記細粒土を層状に詰めた二次元試験槽を用
いた試験を行って浸透水の流動データを測定し、当該流
動データを逆解析して前記粗粒土および前記細粒土の物
性値を求め、求められた物性値を基に前記粗粒土および
前記細粒土により形成される土層の遮水性能を解析・評
価することを特徴とする。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the method for evaluating the water-impervious property of a multi-layered soil is as follows. The flow data of the permeated water is measured by performing a test using a two-dimensional test tank in which the coarse-grained soil and the fine-grained soil that are to be used in a multi-layered soil to be formed by embedding in order from the lower side are packed. The physical properties of the coarse-grained soil and the fine-grained soil are calculated by back-analyzing the flow data, and the water impermeability of the soil layer formed by the coarse-grained soil and the fine-grained soil is determined based on the obtained physical property values. Characterized by analysis and evaluation.

【0007】また、本発明に係る多層覆土の遮水性能評
価装置は、埋立廃棄物の上表面に敷設する多層覆土に使
用される粗粒土、細粒土、現地発生土のうち、前記粗粒
土を下層、細粒土を上層にして二次元試験槽内に土層を
形成するとともに当該土層内に水圧計を埋設し、給水設
備により土層上から散水を行い、前記土層内を透過する
浸透水の圧力水頭を前記水圧計により測定するととも
に、前記二次元試験槽の底面に一定間隔で設けられた各
排水孔から排出される浸透水の排出量を測定する排出量
測定手段を備えたことを特徴とする。
In addition, the water-impervious performance evaluation apparatus for a multi-layered soil according to the present invention is characterized in that the coarse-grained soil, fine-grained soil, or locally-generated soil used for multi-layered soil laid on the upper surface of landfill waste is the above-mentioned coarse soil. The soil layer is formed in the two-dimensional test tank with the grain soil as the lower layer and the fine grain layer as the upper layer, and the water pressure gauge is embedded in the soil layer, and water is sprinkled from above the soil layer by the water supply facility. Discharge amount measuring means for measuring the pressure head of the permeated water that permeates through the water pressure gauge and measuring the discharge amount of the permeated water discharged from each drain hole provided at a constant interval on the bottom surface of the two-dimensional test tank. It is characterized by having.

【0008】[0008]

【作用】上記構成によれば、埋立廃棄物の上表面に敷設
する多層覆土に使用される粗粒土、細粒土、現地発生土
のうち、粗粒土と細粒土により粗粒土が下層、細粒土が
上層とした土層を二次元試験槽内に形成する。形成した
土層上から給水設備により散水を行い、土層内を水を浸
透させる。土層内には水圧計を埋設されており、これに
より浸透水の土層内における圧力水頭を測定することが
できる。また、二次元試験槽の底面には一定間隔で排水
孔が設けられ、試験槽内を透過してきた浸透水を排出す
るようになっている。ここから排出される浸透水の排出
量を排出量測定手段により測定することにより、各区分
における浸透水の排出量を測定することができる。そし
て、得られたデータを解析することにより、多層覆土に
用いる細粒土および粗粒土により形成される土層の遮水
及び透水性能を評価し、多層覆土の設計に応用すること
が可能である。
[Advantage] According to the above-mentioned structure, the coarse-grained soil, the fine-grained soil, and the locally-generated soil used for the multi-layered soil laid on the upper surface of the landfill waste are generated by the coarse-grained soil and the fine-grained soil. The soil layer with the lower layer and the fine grain soil as the upper layer is formed in the two-dimensional test tank. Water is sprinkled from the formed soil layer by a water supply facility to infiltrate the soil layer. A water pressure gauge is embedded in the soil layer, which allows the pressure head in the soil layer to be measured. In addition, drain holes are provided at regular intervals on the bottom surface of the two-dimensional test tank so that the permeated water that has permeated the inside of the test tank is discharged. The discharge amount of the permeated water discharged from each section can be measured by measuring the discharge amount of the permeated water by the discharge amount measuring means. Then, by analyzing the obtained data, it is possible to evaluate the water impermeability and water permeability of the soil layer formed by the fine-grained soil and coarse-grained soil used for the multi-layered soil, and apply it to the design of the multi-layered soil. is there.

【0009】[0009]

【発明の実施の形態】以下に、本発明に係る多層覆土の
遮水性評価装置を図面を用いて詳細に説明する。図4に
多層覆土を利用した廃棄物埋設構造の縦断面図を示す。
図4において、廃棄物表面を覆う多層覆土は、廃棄物1
の表面部に導水勾配を付して現地発生土2で覆った後、
粗粒層3とこれに引き続いて細粒層4を敷設し、最後に
全体を遮水性の良い現地発生土及び表土5で覆う構成と
なっている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a water barrier evaluation apparatus for a multi-layered soil according to the present invention will be described in detail with reference to the drawings. FIG. 4 shows a vertical cross-sectional view of a waste burying structure using multi-layered soil.
In FIG. 4, the multi-layered soil covering the surface of the waste is the waste 1
After applying a water-conducting gradient to the surface of the and covering it with locally generated soil 2,
The coarse particle layer 3 and the fine particle layer 4 are laid next to the coarse particle layer 3 and finally the whole is covered with locally generated soil and top soil 5 having good water-blocking properties.

【0010】図4において、多層覆土を構成する粗粒層
3は礫、砂利、砕石などの粗粒物により形成することが
できるが、これは細粒層に必要な粒度との関係でパイピ
ング則を充足するような粒度に設定する。次いで、粗粒
層3の上面部に砂などの細粒物を利用して細粒層4を敷
設する。
In FIG. 4, the coarse particle layer 3 constituting the multi-layered soil can be formed by coarse particles such as gravel, gravel, and crushed stone. This is due to the piping rule in relation to the particle size required for the fine particle layer. Set the granularity so that Next, the fine particle layer 4 is laid on the upper surface of the coarse particle layer 3 using fine particles such as sand.

【0011】このような層構成とすることにより、現地
発生土層2の上層には空隙の大きい粗粒層3が存在する
が、それらの更に上層側には空隙が小さい細粒層4が存
在して、ここが降雨などによる浸透水の保水層となる。
ここで重要なのは、粗粒層3の上層に細粒層4を敷設
し、降雨などによる浸透水が、毛細管現象により細粒層
4内に止まるようにし、下層の粗粒層3が浸透水を遮水
層2側に浸出させないように断絶する機能をもたせるこ
とである。この機能は、いわば傾いた(導水勾配を付し
た)スノコ(粗粒層3)の上に雑巾(細粒層4)が置い
てあり、湿った雑巾の中を水が移動するような機能を持
たせることにたとえることができる。したがって、細粒
層4としては保水性が大きく、かつ浸透水を側方へ排除
できる透水性を有した材料を用い、粗粒層3としては毛
管水帯が小さく、負圧側で難透水性を示し、浸透水の浸
入を抑制できる材料を用いて構成すればよい。これを図
で示せば、図3に示されるものとなる。図3(1)は圧
力水頭を体積含水率の一般的な関係を示したもので、細
粒材は粗粒材に比較して、負の圧力が大きくなっても水
分が低下し難い、即ち保水力が大きい。また、図3
(2)は圧力水頭と不飽和透水係数の一般的な関係を示
したもので、粗粒材の浸透性は負の圧力水頭が大きくな
ると急激に小さくなるのに対して、細粒材では透水性の
低下は緩やかであり、このため同図中(ア)における圧
力水頭を境に両材料の透水性は逆転する。なお、粘性土
は図3の細粒材と定性的には同様の傾向を示すが、透水
性が悪い(不飽和透水係数が小さい)ため、多層覆土の
細粒材としては適さない。
With such a layer structure, the coarse-grained layer 3 having large voids exists in the upper layer of the locally-generated soil layer 2, but the fine-grained layer 4 having small voids exists in the upper layer side thereof. Then, this becomes a water retention layer for seepage water due to rainfall.
What is important here is that the fine grain layer 4 is laid on the upper layer of the coarse grain layer 3 so that the permeated water due to rainfall or the like is stopped in the fine grain layer 4 by the capillary phenomenon, and the lower coarse particle layer 3 absorbs the permeated water. It is to have a function of disconnecting so as not to seep out to the water-blocking layer 2 side. This function has a function that the water moves in the moist cloth, because the wiping cloth (fine particle layer 4) is placed on the slatted sludge (coarse water guiding gradient) (coarse particle layer 3). It can be compared to having it. Therefore, as the fine particle layer 4, a material having a large water retention property and a water permeability capable of laterally removing the permeated water is used, and the coarse particle layer 3 has a small capillary water zone and exhibits a low water permeability on the negative pressure side. The material may be a material that can suppress the infiltration of permeated water. If this is shown in a figure, it will become what is shown in FIG. FIG. 3 (1) shows a general relationship between the pressure head and the volumetric water content. Compared with the coarse-grained material, the fine-grained material is less likely to have reduced water content even when the negative pressure is increased, that is, Large water retention capacity. Also, FIG.
(2) shows the general relationship between the pressure head and the unsaturated hydraulic conductivity. The permeability of coarse-grained materials decreases sharply when the negative pressure head increases, whereas the permeability of fine-grained materials decreases. The deterioration of the property is gradual, and therefore the water permeability of both materials is reversed at the boundary of the pressure head in (a) in the figure. Although the cohesive soil shows the same qualitative tendency as the fine-grained material shown in FIG. 3, it is not suitable as a fine-grained material for the multi-layered soil because of its poor water permeability (small unsaturated hydraulic conductivity).

【0012】また、粗粒層3の上層に細粒層4が敷設さ
れるため、これらの境界部分が混層状態になることを防
止する必要がある。このため両層は原則としてパイピン
グ則を満足するように設定する。すなわち、層境界が明
瞭となるように粗粒層3と細粒層4の粒度分布を調整す
るのである。
Further, since the fine grain layer 4 is laid on the coarse grain layer 3, it is necessary to prevent the boundary portion of these layers from being mixed. Therefore, in principle, both layers are set to satisfy the piping rule. That is, the grain size distributions of the coarse grain layer 3 and the fine grain layer 4 are adjusted so that the layer boundary becomes clear.

【0013】このように、多層覆土により遮水を行う場
合、粗粒層と細粒層を構成する粗粒土と細粒土の選択と
組み合わせが重要である。そこで、本発明に係る多層覆
土の遮水性能評価装置では、以下に述べる構成で粗粒層
および細粒層を構成する材料とその組み合わせの評価を
行う。
As described above, when water is shielded by the multi-layered soil, it is important to select and combine the coarse-grained soil and the fine-grained soil constituting the coarse-grained layer and the fine-grained layer. In view of this, in the water barrier performance evaluation apparatus for a multi-layered soil according to the present invention, the materials and their combinations that form the coarse-grained layer and the fine-grained layer are evaluated in the configurations described below.

【0014】図1に本実施形態に係る多層覆土の遮水性
能評価装置を示す。図1において、10は二次元試験
槽、12は二次元試験槽上端から給水を行う給水設備で
ある。材料の評価のためのデータは、この二次元試験槽
内に粗粒土14および細粒土16の土層を形成し、給水
設備12より水を給水することにより土層内に広がる浸
透水の挙動を、浸透水の圧力水頭を土層内に埋設された
水圧計18(テンシオメータ)により、二次元試験槽底
面に設けられた排水孔から排出される浸透水の排出量を
排出量測定手段である電子天秤26により測定する。
FIG. 1 shows an apparatus for evaluating water impermeability of a multilayered soil according to this embodiment. In FIG. 1, 10 is a two-dimensional test tank, and 12 is a water supply facility for supplying water from the upper end of the two-dimensional test tank. The data for material evaluation is that the soil layers of the coarse-grained soil 14 and the fine-grained soil 16 are formed in this two-dimensional test tank, and water is supplied from the water supply equipment 12 to spread permeated water into the soil layer. The behavior is measured by measuring the discharge amount of the seepage water discharged from the drainage hole provided on the bottom of the two-dimensional test tank by the water pressure gauge 18 (tensiometer) with the pressure head of the seepage water buried in the soil layer. It is measured by an electronic balance 26.

【0015】二次元試験槽10は、下辺および側面にア
クリル板が用いられており、内部が観察できるようにな
っている。二次元試験槽10の一端下部には図示しない
ジャッキが設置され、勾配の変更を可能としている。ま
た、二次元試験槽10の下辺には下辺に到達した浸透水
を横方向に一定の領域ごとに区分して採水できるように
仕切板20が一定間隔で設けられ、仕切板20の間には
排水孔22が設けられている。この排水孔22にはチュ
ーブ24が接続されており、排水孔22から排出された
浸透水はこのチューブ24を通じて電子天秤26に載せ
られたビーカ28に流入するようになっている。このよ
うな構成とし、二次元試験槽下辺に達した浸透水を二次
元試験槽10の横方向にデータを必要とする区分ごとに
採水することにより、土層内における浸透水の流動状況
について解析するための情報を得ることができる。
The two-dimensional test tank 10 uses acrylic plates on the lower side and side surfaces so that the inside can be observed. A jack (not shown) is installed under one end of the two-dimensional test tank 10 so that the gradient can be changed. Further, partition plates 20 are provided on the lower side of the two-dimensional test tank 10 at regular intervals so that the permeated water that has reached the lower side can be laterally divided into fixed regions and sampled. Is provided with a drainage hole 22. A tube 24 is connected to the drain hole 22, and the permeated water discharged from the drain hole 22 flows into the beaker 28 mounted on the electronic balance 26 through the tube 24. With such a configuration, the infiltrated water reaching the lower side of the two-dimensional test tank is sampled in the lateral direction of the two-dimensional test tank 10 for each section that requires data, so that the flow state of the infiltrated water in the soil layer Information can be obtained for analysis.

【0016】給水設備12は、アクリル製タンクの底面
に一定間隔でノズルを取り付け、定量ポンプ30から送
られてくる水の圧力によって各ノズルから均等に散水す
るようにしている。給水量は、定量ポンプ30の回転速
度によって制御することができる。これにより、一定時
間に決まった量を給水することができ、また、給水量を
自在に変えることができる。
In the water supply equipment 12, nozzles are attached to the bottom surface of an acrylic tank at regular intervals, and water is evenly sprayed from each nozzle by the pressure of water sent from the metering pump 30. The water supply amount can be controlled by the rotation speed of the metering pump 30. As a result, a fixed amount of water can be supplied at a fixed time, and the amount of water supplied can be freely changed.

【0017】電子天秤26には、二次元試験槽10の下
辺から排水された浸透水が流入するビーカ28が載せら
れており、排水量を測定するようになっている。この電
子天秤26は情報処理端末32に接続されており、情報
処理端末32による制御により5分間隔で排水量を記録
する。また、水圧計18により測定される圧力水頭のデ
ータは、データ収録機34により5分間隔で記録され
る。この構成により、土層内における浸透水の挙動につ
いて、連続的にデータを得ることが可能である。
A beaker 28 into which the permeated water discharged from the lower side of the two-dimensional test tank 10 flows is placed on the electronic balance 26, and the amount of discharged water is measured. The electronic balance 26 is connected to the information processing terminal 32, and records the drainage amount at intervals of 5 minutes under the control of the information processing terminal 32. The data of the pressure head measured by the water pressure gauge 18 is recorded by the data recorder 34 at 5 minute intervals. With this configuration, it is possible to continuously obtain data on the behavior of seepage water in the soil layer.

【0018】次に評価の手順について説明する。まず、
図2(a)に示されるように、図示しないジャッキによ
り全体を傾斜させた二次元試験槽10の中に、下流端の
一部を残して粗粒土14を厚さ0.2m前後詰め、残さ
れた下流端の一部に細粒土16を詰めた後、粗粒土14
の表面に水圧計(テンシオメータ)18を設置し、さら
に全体の表面に細粒土16を厚さ0.1〜0.3m詰め
る。このとき、粗粒土14には、礫、砂利、砕石など
を、細粒土16には砂などの細粒物を利用することがで
きる。次いで、二次元試験槽10の上端から給水設備1
2により一定流量の水を給水し、層境界における浸透水
の圧力水頭の経時変化を水圧計18により測定し、水圧
計18に接続されたデータ収録機34により5分間隔で
測定結果を記録する。
Next, the evaluation procedure will be described. First,
As shown in FIG. 2 (a), the coarse-grained soil 14 is packed to a thickness of about 0.2 m in a two-dimensional test tank 10 which is entirely inclined by a jack (not shown), leaving a part of the downstream end. After filling the part of the remaining downstream end with the fine-grained soil 16, the coarse-grained soil 14
A water pressure gauge (tensiometer) 18 is installed on the surface of the, and the whole surface is filled with the fine-grained soil 16 in a thickness of 0.1 to 0.3 m. At this time, gravel, gravel, crushed stone, or the like can be used for the coarse-grained soil 14, and fine-grained material such as sand can be used for the fine-grained soil 16. Next, from the upper end of the two-dimensional test tank 10, the water supply equipment 1
2. A constant flow rate of water is supplied by 2, and the change over time of the pressure head of the permeated water at the layer boundary is measured by the water pressure gauge 18, and the measurement results are recorded at 5 minute intervals by the data recorder 34 connected to the water pressure gauge 18. .

【0019】層境界に到達した浸透水は、図2(b)〜
(c)に示すように、境界面に沿いながら導水勾配に沿
って流下・浸透し、二次元試験槽10の下辺に設けられ
た排水孔22より排出される。この時の浸透水の挙動は
粗粒土14と細粒土の物性の差や導水勾配の大きさ、時
間あたりの給水量などのパラメータに依存している。す
なわち、例えば細粒土16が粗粒土14に比較して、保
水性や透水性に優れ、浸透水の排除能力に余裕があると
きは、層境界に達した浸透水はほとんど粗粒土14には
浸透せず、境界付近を下方に向かって流下し、多くは下
流端の細粒層下部の排水孔から排出される。一方、材料
選定が不適切な場合や時間あたりの給水量が排除能力を
上回った場合は、粗粒土14に移動する浸透水が多くな
り、粗粒層下部の排水孔からも排出されるようになる。
このようにして排水孔22から排水された浸透水は、チ
ューブ24を通して電子天秤28に載せられたビーカ2
6に流入する。電子天秤28では随時流入量を測定して
おり、これにより下辺排水の位置と流量の経時変化が測
定され、接続された情報処理端末32で測定されたデー
タを5分間隔で記録する。
The permeated water that has reached the layer boundary is shown in FIG.
As shown in (c), it flows down and permeates along the water transfer gradient along the boundary surface, and is discharged from the drain holes 22 provided on the lower side of the two-dimensional test tank 10. The behavior of the permeated water at this time depends on parameters such as the difference in physical properties between the coarse-grained soil 14 and the fine-grained soil, the magnitude of the water guiding gradient, and the amount of water supplied per hour. That is, for example, when the fine-grained soil 16 is superior in water retention and water permeability to the coarse-grained soil 14 and has a sufficient capacity for removing permeated water, most of the permeated water reaching the layer boundary is the coarse-grained soil 14. It does not permeate into the water and flows downward near the boundary, and most of it is discharged from the drainage hole at the lower part of the fine grain layer at the downstream end. On the other hand, if the material selection is inappropriate or the amount of water supplied per hour exceeds the exclusion capacity, the amount of permeated water that moves to the coarse-grained soil 14 will increase, and it will also be discharged from the drainage holes below the coarse-grained layer. become.
The permeated water drained from the drain hole 22 in this manner passes through the tube 24 and is placed on the electronic balance 28.
Inflow to 6. The electronic balance 28 measures the inflow amount at any time, whereby the position of the lower side drainage and the change over time in the flow rate are measured, and the data measured by the connected information processing terminal 32 is recorded at 5-minute intervals.

【0020】試験は、時間あたり給水量を変えて繰り返
し行い、粗粒土下辺の排水孔からの排出が始まる限界の
時間あたり給水量と、それ以上に時間あたり給水量を増
やしたときの両材料(粗粒土・細粒土)からの下辺排水
の比率を求める。
The test is repeated by changing the amount of water supplied per hour, and the limit of the amount of water supplied per hour at which discharge from the drainage hole on the lower side of the coarse-grained soil begins, and the amount of water supplied when the amount of water supplied per hour is increased beyond that Calculate the ratio of bottom drainage from (coarse-grained soil / fine-grained soil).

【0021】次に、これらの試験で得られた圧力水頭と
下辺排水の挙動をシミュレーション解析しながら、細粒
材(細粒土)と粗粒材(粗粒土)の物性値(水分特性曲
線、不飽和透水係数など)を微調整し、挙動を正確に再
現できる物性値を求める。
Next, the physical property values (moisture characteristic curve) of the fine-grained material (fine-grained soil) and the coarse-grained material (coarse-grained soil) were analyzed while conducting a simulation analysis of the behaviors of the pressure head and the bottom drainage obtained in these tests. , Unsaturated hydraulic conductivity, etc.) are finely adjusted to obtain physical properties that can accurately reproduce the behavior.

【0022】覆土の遮水性評価では、はじめに、最上位
となる現地発生土を一次元でモデル化し、建設予定地の
降水・蒸発散量の日変化モデルを入力値として解析し、
発生土を通過して下方へ浸透する水量の日変化を一年分
求める。次いで、覆土を構成する細粒土と粗粒土を二次
元断面でモデル化し、細粒土の上表面に上記解析で得ら
れた現地発生土を通過する浸透水量の日変化を与えて解
析し、細粒土内を通り側方へ排出される水量を求める。
これらの解析は、有限要素法による飽和不飽和浸透粒解
析によって容易に行うことができる。
In the water impermeability evaluation of the soil cover, firstly, the highest level locally generated soil is modeled in one dimension, and the daily change model of precipitation and evapotranspiration at the planned construction site is analyzed as an input value.
The daily change in the amount of water that passes through the generated soil and permeates downward is calculated for one year. Next, the fine-grained soil and coarse-grained soil that make up the cover soil were modeled in a two-dimensional cross-section, and the upper surface of the fine-grained soil was analyzed by giving a diurnal change in the amount of infiltrated water passing through the locally generated soil obtained in the above analysis , Calculate the amount of water discharged laterally through the fine-grained soil.
These analyzes can be easily performed by saturated unsaturated permeation particle analysis by the finite element method.

【0023】以上のような評価を行うことにより、対象
となる土質材料を用いて実際に細粒土の側方排水挙動を
確認し、そのシミュレーションを通して不飽和浸透特性
を求めるため、信頼性の高い不飽和浸透特性が得られ
る。また、覆土の遮水性評価では、物性の非線形性が強
い不飽和領域の非定常解析となるため、現地発生土、細
粒土、粗粒土からなる覆土全体をモデル化し解析する
と、多大な計算時間を要するという問題があるが、上記
のように、現地発生土を対象とした解析と、細粒土およ
び粗粒土を対象とした解析とを別々に行うことにより、
計算時間は大幅に短縮でき、層厚や勾配など種々の構造
条件が遮水性能に及ぼす影響を効率的に比較検討でき
る。なお、このような分割解析した場合の解析結果は、
覆土全体をモデル化した場合と有意な差は認められな
い。
By performing the above-described evaluation, the lateral drainage behavior of the fine-grained soil is actually confirmed by using the target soil material, and the unsaturated permeation characteristics are obtained through the simulation, so that the reliability is high. Unsaturated penetration characteristics are obtained. In addition, since the non-steady state analysis of unsaturated regions where the nonlinearity of physical properties is strong is performed in the evaluation of the water impermeability of the soil cover, a large calculation is required if the entire soil cover consisting of locally generated soil, fine-grained soil and coarse-grained soil is modeled and analyzed. Although there is a problem that it takes time, as described above, by performing analysis separately for locally generated soil and analysis for fine-grained soil and coarse-grained soil,
The calculation time can be greatly shortened, and the effect of various structural conditions such as layer thickness and gradient on the impermeable performance can be efficiently compared and studied. In addition, the analysis result of such division analysis is
No significant difference is observed when modeling the entire cover soil.

【0024】[0024]

【発明の効果】以上説明したように、本発明に係る多層
覆土の遮水性能評価方法および装置によれば、多層覆土
に用いる細粒土の側方排水挙動を確認し、そのシミュレ
ーションを通して不飽和浸透特性を求めるため、信頼性
の高い不飽和浸透特性が得られる。これにより、多層覆
土に用いる細粒土および粗粒土により形成される土層の
遮水及び透水性能を評価し、多層覆土の設計に応用する
ことが可能である。
As described above, according to the method and apparatus for evaluating the water impermeability of a multi-layered soil according to the present invention, the lateral drainage behavior of fine-grained soil used for the multi-layered soil is confirmed, and unsaturated is obtained through the simulation. Since the permeation characteristics are obtained, highly reliable unsaturated permeation characteristics can be obtained. This makes it possible to evaluate the water impermeability and water permeability of the soil layer formed by the fine-grained soil and the coarse-grained soil used for the multi-layered soil and apply it to the design of the multi-layered soil.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る多層覆土の遮水性能評価装置の
実施形態を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a water-impervious performance evaluation device for multi-layered soil according to the present invention.

【図2】 土層内における浸透水の流動状況を示す説明
図である。
FIG. 2 is an explanatory diagram showing a flow state of permeated water in a soil layer.

【図3】 細粒材と粗粒材の物性を示すグラフである。FIG. 3 is a graph showing physical properties of a fine-grained material and a coarse-grained material.

【図4】 多層覆土を利用した廃棄物埋設構造の縦断面
図である。
FIG. 4 is a vertical cross-sectional view of a waste burying structure using multi-layered soil.

【符号の説明】[Explanation of symbols]

1………廃棄物、2………現地発生土、3………粗粒
層、4………細粒層、10………二次元試験槽、12…
……給水装置、14………粗粒土、16………細粒土、
18………水圧計、20………仕切板、22………排水
孔、24………チューブ、26………電子天秤、28…
……ビーカ、30………定量ポンプ、32………情報処
理端末、34………データ収録機。
1 ………… Waste, 2 ・ ・ ・ …… Soil generated locally, 3 ……… Coarse-grained layer, 4 ……… Fine-grained layer, 10 ……… Two-dimensional test tank, 12…
…… Water supply device, 14 ………… Coarse grain soil, 16 ………… Fine grain soil,
18 ... Water pressure gauge, 20 ... Partition plate, 22 ... Drain hole, 24 ... Tube, 26 ... Electronic balance, 28 ...
...... Beaker, 30 ………… Metering pump, 32 ………… Information processing terminal, 34 ………… Data recorder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 埋立廃棄物の上表面に、粗粒土、細粒
土、現地発生土を下位から順に盛土して形成する多層覆
土に使用予定の前記粗粒土および前記細粒土を層状に詰
めた二次元試験槽を用いた試験を行って浸透水の流動デ
ータを測定し、当該流動データを逆解析して前記粗粒土
および前記細粒土の物性値を求め、求められた物性値を
基に前記粗粒土および前記細粒土により形成される土層
の遮水性能を解析・評価することを特徴とする多層覆土
の遮水性能評価方法。
1. A layered structure of the coarse-grained soil and the fine-grained soil to be used for a multi-layered cover formed by embedding coarse-grained soil, fine-grained soil, and locally-generated soil in order from the bottom on the upper surface of landfill waste. To measure the flow data of the permeated water by performing a test using a two-dimensional test tank packed in, to obtain the physical property values of the coarse-grained soil and the fine-grained soil by back-analyzing the flow data, and obtain the determined physical properties. A method of evaluating water-imperviousness of a multi-layered soil, characterized by analyzing and evaluating the water-imperviousness of a soil layer formed by the coarse-grained soil and the fine-grained soil based on the values.
【請求項2】 埋立廃棄物の上表面に、粗粒土、細粒
土、現地発生土を下位から順に積み上げて形成する多層
覆土に使用予定の前記粗粒土と前記細粒土を、前記粗粒
土を下層、細粒土を上層にして二次元試験槽内に土層を
形成するとともに当該土層内に水圧計を埋設し、給水設
備により土層上から散水を行うことにより、前記土層内
を透過する浸透水の圧力水頭を前記水圧計により測定す
るとともに、前記二次元試験槽の底面に一定間隔で設け
られた排水孔から排出される浸透水の排出量を測定する
排出量測定手段を備えたことを特徴とする多層覆土の遮
水性能評価装置。
2. The coarse-grained soil and the fine-grained soil, which are to be used for a multi-layered soil formed by stacking coarse-grained soil, fine-grained soil, and locally-generated soil in order from the bottom on the upper surface of landfill waste, By forming a soil layer in a two-dimensional test tank with coarse-grained soil as the lower layer and fine-grained soil as the upper layer, and embedding a water pressure gauge in the soil layer, and by performing watering from the soil layer with a water supply facility, Discharge to measure the pressure head of the permeated water that permeates the soil layer with the water pressure gauge and to measure the amount of permeated water discharged from the drain holes provided at regular intervals on the bottom surface of the two-dimensional test tank. A water-impervious performance evaluation device for multi-layered soil, comprising a measuring means.
JP2002037852A 2002-02-15 2002-02-15 Multi-layer soil-proof performance evaluation equipment Expired - Lifetime JP3723779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002037852A JP3723779B2 (en) 2002-02-15 2002-02-15 Multi-layer soil-proof performance evaluation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002037852A JP3723779B2 (en) 2002-02-15 2002-02-15 Multi-layer soil-proof performance evaluation equipment

Publications (2)

Publication Number Publication Date
JP2003240701A true JP2003240701A (en) 2003-08-27
JP3723779B2 JP3723779B2 (en) 2005-12-07

Family

ID=27779322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002037852A Expired - Lifetime JP3723779B2 (en) 2002-02-15 2002-02-15 Multi-layer soil-proof performance evaluation equipment

Country Status (1)

Country Link
JP (1) JP3723779B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021117A (en) * 2004-07-08 2006-01-26 Kajima Corp Soil covering structure in waste final disposal plant
JP2007038174A (en) * 2005-08-05 2007-02-15 Nishimatsu Constr Co Ltd Covering material and water collecting and draining system
JP2008211984A (en) * 2007-02-28 2008-09-18 Shimane Univ Soil managing method
JP2009520481A (en) * 2005-12-21 2009-05-28 ソレイン セッチニ アムビエンテ スカ ソシエタ ペル アチオニ A method for obtaining biologically stabilized forestland substrate from an integrated cycle of municipal solid waste treatment
CN102590060A (en) * 2012-01-20 2012-07-18 中国科学院南京土壤研究所 Different-gradient soil stable infiltration instrument
CN103149143A (en) * 2013-03-04 2013-06-12 黄河水利委员会黄河水利科学研究院 Device and method for determining permeability coefficient of coarse-grained soil with super large grain size
CN104020026A (en) * 2014-06-05 2014-09-03 煤炭科学技术研究院有限公司 Manufacturing method of experimental model similar to dump slope deformation in water soaking substrate condition
CN106932326A (en) * 2017-05-11 2017-07-07 湘潭大学 A kind of indoor domatic seepage tests model groove and test method
CN107421874A (en) * 2017-09-08 2017-12-01 湘潭大学 A kind of horizontal seepage flow test device and its application method
CN108801875A (en) * 2018-05-16 2018-11-13 东华理工大学 The laterally abutted anisotropic unsaturated soil rainfall infiltration apparatus for demonstrating of one kind and method
CN110082275A (en) * 2019-05-22 2019-08-02 陕西秦海检测科技有限公司 It is large-scale simple with the vertical seepage deformation tester of coarse-grained soil and test method
CN110108603A (en) * 2019-05-13 2019-08-09 河海大学 A kind of experimental rig and method measuring multi-layered Soils particle migration amount
CN111650359A (en) * 2020-06-22 2020-09-11 长江水利委员会长江科学院 Indoor soil erosion test tank device capable of adjusting temporary covering and blocking measures and test method thereof
CN112161898A (en) * 2020-10-17 2021-01-01 山东省地矿工程勘察院 Test device for simulating karst fracture-pipeline water flow and solute transport rule
CN112666058A (en) * 2020-11-10 2021-04-16 宁波大学 Experimental device and method suitable for optimizing performance of coastal sponge city permeable pavement system
CN112816387A (en) * 2020-12-31 2021-05-18 北京市水利规划设计研究院 Method and device for determining permeability coefficient and storage medium
CN114878436A (en) * 2022-06-01 2022-08-09 桂林理工大学 Transparent soil-based rainfall landslide visualization model and preparation method thereof
CN115598038A (en) * 2022-12-14 2023-01-13 叙镇铁路有限责任公司(Cn) Indoor test determination device for blockage recovery capability of modified permeable pavement
CN111650359B (en) * 2020-06-22 2024-04-26 长江水利委员会长江科学院 Indoor soil erosion test groove device capable of adjusting temporary thatch cover and blocking measures and test method thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021117A (en) * 2004-07-08 2006-01-26 Kajima Corp Soil covering structure in waste final disposal plant
JP4684582B2 (en) * 2004-07-08 2011-05-18 鹿島建設株式会社 Soil cover structure at the final disposal site
JP4737398B2 (en) * 2005-08-05 2011-07-27 西松建設株式会社 Coating material and drainage system
JP2007038174A (en) * 2005-08-05 2007-02-15 Nishimatsu Constr Co Ltd Covering material and water collecting and draining system
JP2009520481A (en) * 2005-12-21 2009-05-28 ソレイン セッチニ アムビエンテ スカ ソシエタ ペル アチオニ A method for obtaining biologically stabilized forestland substrate from an integrated cycle of municipal solid waste treatment
JP2008211984A (en) * 2007-02-28 2008-09-18 Shimane Univ Soil managing method
CN102590060A (en) * 2012-01-20 2012-07-18 中国科学院南京土壤研究所 Different-gradient soil stable infiltration instrument
CN103149143A (en) * 2013-03-04 2013-06-12 黄河水利委员会黄河水利科学研究院 Device and method for determining permeability coefficient of coarse-grained soil with super large grain size
CN104020026A (en) * 2014-06-05 2014-09-03 煤炭科学技术研究院有限公司 Manufacturing method of experimental model similar to dump slope deformation in water soaking substrate condition
CN106932326A (en) * 2017-05-11 2017-07-07 湘潭大学 A kind of indoor domatic seepage tests model groove and test method
CN106932326B (en) * 2017-05-11 2023-09-19 湘潭大学 Indoor slope seepage test model groove and test method
CN107421874A (en) * 2017-09-08 2017-12-01 湘潭大学 A kind of horizontal seepage flow test device and its application method
CN107421874B (en) * 2017-09-08 2023-10-10 湘潭大学 Horizontal seepage test device and use method thereof
CN108801875A (en) * 2018-05-16 2018-11-13 东华理工大学 The laterally abutted anisotropic unsaturated soil rainfall infiltration apparatus for demonstrating of one kind and method
CN108801875B (en) * 2018-05-16 2024-01-23 东华理工大学 Device and method for demonstrating rainfall infiltration of unsaturated soil adjacent to different types transversely
CN110108603A (en) * 2019-05-13 2019-08-09 河海大学 A kind of experimental rig and method measuring multi-layered Soils particle migration amount
CN110082275A (en) * 2019-05-22 2019-08-02 陕西秦海检测科技有限公司 It is large-scale simple with the vertical seepage deformation tester of coarse-grained soil and test method
CN111650359A (en) * 2020-06-22 2020-09-11 长江水利委员会长江科学院 Indoor soil erosion test tank device capable of adjusting temporary covering and blocking measures and test method thereof
CN111650359B (en) * 2020-06-22 2024-04-26 长江水利委员会长江科学院 Indoor soil erosion test groove device capable of adjusting temporary thatch cover and blocking measures and test method thereof
CN112161898B (en) * 2020-10-17 2022-09-02 山东省地矿工程勘察院 Test device for simulating karst fracture-pipeline water flow and solute transport rule
CN112161898A (en) * 2020-10-17 2021-01-01 山东省地矿工程勘察院 Test device for simulating karst fracture-pipeline water flow and solute transport rule
CN112666058B (en) * 2020-11-10 2023-04-07 宁波大学 Experimental device and method suitable for optimizing performance of coastal sponge city permeable pavement system
CN112666058A (en) * 2020-11-10 2021-04-16 宁波大学 Experimental device and method suitable for optimizing performance of coastal sponge city permeable pavement system
CN112816387A (en) * 2020-12-31 2021-05-18 北京市水利规划设计研究院 Method and device for determining permeability coefficient and storage medium
CN114878436A (en) * 2022-06-01 2022-08-09 桂林理工大学 Transparent soil-based rainfall landslide visualization model and preparation method thereof
CN114878436B (en) * 2022-06-01 2023-08-22 桂林理工大学 Rainfall landslide visual model based on transparent soil and preparation method thereof
CN115598038A (en) * 2022-12-14 2023-01-13 叙镇铁路有限责任公司(Cn) Indoor test determination device for blockage recovery capability of modified permeable pavement

Also Published As

Publication number Publication date
JP3723779B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
Ng et al. Physical and numerical modeling of an inclined three-layer (silt/gravelly sand/clay) capillary barrier cover system under extreme rainfall
Ng et al. Water infiltration into a new three-layer landfill cover system
Korfiatis et al. Moisture transport in a solid waste column
Collins et al. Hydrologic comparison of four types of permeable pavement and standard asphalt in eastern North Carolina
Zornberg et al. Geosynthetic capillary barriers: current state of knowledge
JP3723779B2 (en) Multi-layer soil-proof performance evaluation equipment
Baram et al. Water percolation through a clayey vadose zone
Emerson et al. Hydraulic evolution and total suspended solids capture of an infiltration trench
Rahardjo et al. Performance of an instrumented slope covered by a capillary barrier system
Tami et al. Design and laboratory verification of a physical model of sloping capillary barrier
US7309189B2 (en) Fluid distribution and collection in landfills and contaminated sites
Braga et al. Temperature effects on the infiltration rate through an infiltration basin BMP
Gwendoline et al. Influence of climate change on the ability of a cover with capillary barrier effects to control acid generation
Horst et al. Multiyear performance of a pervious concrete infiltration basin BMP
Reder et al. The role of the lowermost boundary conditions in the hydrological response of shallow sloping covers
Zheng et al. Cover systems with synthetic water‐repellent soils
Bin Alam et al. Comparison of percolation of flat and slope section vegetated lysimeters using field soil water characteristic curve
Qian et al. Laboratory investigation into factors affecting performance of capillary barrier system in unsaturated soil
Dierkes et al. Pollution retention of different permeable pavements with reservoir structure at high hydraulic loads
O’Kane et al. Predicting field performance of lysimeters used to evaluate cover systems for mine waste
Rao et al. Effect of bottleneck-causing clogging on infiltration-runoff of pervious concrete pavement system
Castro et al. Numerical Analysis of Infiltration in One-Dimensional Unsaturated Soil–Geotextile Column
Weeks et al. Evaluation of soil top-cover systems to minimize infiltration into a sanitary landfill: A case study
Steffen Bioretention hydrologic performance in a semiarid climate
Dye Moisture movement through expansive soil and impact on performance of residential structures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

R150 Certificate of patent or registration of utility model

Ref document number: 3723779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term