JP2003240473A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2003240473A
JP2003240473A JP2002035732A JP2002035732A JP2003240473A JP 2003240473 A JP2003240473 A JP 2003240473A JP 2002035732 A JP2002035732 A JP 2002035732A JP 2002035732 A JP2002035732 A JP 2002035732A JP 2003240473 A JP2003240473 A JP 2003240473A
Authority
JP
Japan
Prior art keywords
metal
heat exchanger
porous member
gas
metal porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002035732A
Other languages
Japanese (ja)
Inventor
Hideo Kawamura
英男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ship and Ocean Foundation
Fuji Cera Tech Co Ltd
Original Assignee
Ship and Ocean Foundation
Fuji Cera Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ship and Ocean Foundation, Fuji Cera Tech Co Ltd filed Critical Ship and Ocean Foundation
Priority to JP2002035732A priority Critical patent/JP2003240473A/en
Publication of JP2003240473A publication Critical patent/JP2003240473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger in which a heat exchange efficiency is remarkably increased by satisfactorily joining a metal porous member to a metal flat plate. <P>SOLUTION: This heat exchanger comprises an exhaust gas pipe 41, a cylindrical body 42 forming a partition wall 2 formed of a metal plate forming a fluid passage 7 disposed in the exhaust gas pipe 41, an inlet pipe 8 for leading natural gas therein passing through the exhaust gas pipe 41 and installed in the cylindrical body 42 and an outlet pipe 9 for feeding natural gas, metal porous members 3 with open pores disposed in the cylindrical body 42, and fins 4 formed of metal porous members 3 vertically installed on the outer peripheral surface of the cylindrical body 42. The metal porous members 3 are diffusively joined to the inner wall surface of the tube body 42, a metal flat plate 10 forming the partition wall 2 is longitudinally extended in the cylindrical body 42, and the metal flat plate 10 is diffusively joined to the metal porous members 3. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は,物体間での熱交
換に適用でき,例えば,排気ガスが有する熱エネルギー
を利用して天然ガスを熱分解して改質燃料に改質するの
に適用できる熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can be applied to heat exchange between objects, for example, to thermally decompose natural gas using the thermal energy of exhaust gas to reform into reformed fuel. The heat exchanger that can be.

【0002】[0002]

【従来の技術】従来,熱交換装置として,特開平11−
6601号公報に開示されたものがある。該熱交換装置
は,エンジンからの排気ガスで蒸気を加熱する排気通路
に設けられた第1段熱交換器と第2段熱交換器から成
る。第1段熱交換器は,第1ケーシング内に配置された
蒸気が流れる蒸気通路と,蒸気通路に配置された排気ガ
スが流れる排気ガス通路とから構成されている。第2段
熱交換器は,第1ケーシングの下方に設けられた第2ケ
ーシング内に配置された水を貯留できる水・蒸気通路
と,水・蒸気通路の周りに配置された排気ガスが流れる
排気ガス通路とから構成されている。各通路には,多孔
質セラミック部材が配置されている。
2. Description of the Related Art Conventionally, as a heat exchange device, JP-A-11-
There is one disclosed in Japanese Patent No. 6601. The heat exchange device includes a first-stage heat exchanger and a second-stage heat exchanger provided in an exhaust passage that heats steam with exhaust gas from the engine. The first-stage heat exchanger is composed of a steam passage arranged in the first casing, through which steam flows, and an exhaust gas passage arranged in the steam passage, in which exhaust gas flows. The second-stage heat exchanger has a water / steam passage arranged in the second casing provided below the first casing and capable of storing water, and an exhaust gas arranged around the water / steam passage for flowing exhaust gas. It is composed of a gas passage. A porous ceramic member is arranged in each passage.

【0003】また,特開平11−93777号公報に
は,熱交換器を天然ガス改質装置に適用したものが開示
されている。該天然ガス改質装置は,天然ガス主成分の
CH4をCOとH2 の改質燃料に熱分解するものであ
り,熱効率を改善すると共に排気ガス中のCO2 を熱分
解に使用して放出する排気ガス中のCO2 含有量を低減
するものである。天然ガス改質装置は,排気ガスパイプ
内に排気ガス通路を形成する排気ガス通路体を配置し,
排気ガスパイプの外側にガス燃料が流れるガス燃料ケー
スを配置し,ガス燃料ケース内にガス燃料通路を形成す
る多孔質セラミックスから成る多孔質部材を配置し,多
孔質部材の表面にCH4 とCO2 をCOとH 2 の改質燃
料に変換させる作用を有する触媒を被覆し,更にガス燃
料パイプの外周に断熱材を配置したものである。
Further, in Japanese Patent Laid-Open No. 11-93777,
Discloses a heat exchanger applied to a natural gas reformer
Has been done. The natural gas reformer is a
CHFourCO and H2Which is pyrolyzed into the reformed fuel of
To improve thermal efficiency and reduce CO in exhaust gas.2The heat
CO in exhaust gas emitted when used for solution2Reduced content
To do. Natural gas reformer is an exhaust gas pipe
The exhaust gas passage body that forms the exhaust gas passage is placed inside,
A gas fuel case in which gas fuel flows outside the exhaust gas pipe
Gas to form a gas fuel passage in the gas fuel case.
A porous member made of porous ceramics is
CH on the surface of the porous memberFourAnd CO2CO and H 2Reformed combustion of
Coated with a catalyst that has the function of converting to gas
A heat insulating material is arranged on the outer circumference of the material pipe.

【0004】[0004]

【発明が解決しようとする課題】ところで,エンジンか
ら排出される排気ガスが有する熱エネルギーを回収する
システムは,高効率の熱交換器を用いることが有効であ
る。即ち,遮熱形ターボコンパウンドエンジンとして,
燃料を天然ガスとし,燃焼室を遮熱構造とした場合に,
該エンジンにおいて,燃料エネルギーを最大限に動力に
変換して利用するには,排気ガスの熱エネルギーを最大
限に活用し,動力に変換しなければならない。熱交換器
として,ガスとガスとの間での熱交換では,その熱交換
効率が重要であり,熱交換効率が良いほど熱の利用率が
よく,全体の熱効率も良くなる。熱交換器の性能では,
作動流体の熱伝達率と熱伝導率とが影響し,スムーズに
熱を移動させるためには,その抵抗が小さい方が良い。
By the way, it is effective to use a high-efficiency heat exchanger for the system for recovering the thermal energy of the exhaust gas discharged from the engine. That is, as a heat shield type turbo compound engine,
When the fuel is natural gas and the combustion chamber has a heat shield structure,
In the engine, in order to convert fuel energy into maximum power and use it, the thermal energy of exhaust gas must be maximized and converted into power. As a heat exchanger, in heat exchange between gases, the heat exchange efficiency is important. The higher the heat exchange efficiency, the better the heat utilization rate, and the better the overall heat efficiency. In terms of heat exchanger performance,
The heat transfer coefficient and the heat conductivity of the working fluid influence, and in order to move heat smoothly, it is better that the resistance is small.

【0005】熱通過率Kの式は,次式に示されるとおり
である。熱通過率(K)の単位はKcal/m2 ・℃・hで
ある。 1/K=(1/αg)(As/Ag)+( δ/λ) (As /Awl)+
(1/αc)(As/Ac) 但し,αg は高温ガス熱伝達率,λは固体熱伝導率,α
c は低温部熱伝達率,δは壁体の壁厚又は熱伝導体の長
さ,Asは熱伝達経路平均面積,Ag,Awl, Ac は熱移動部
材の接触面積である。上記の式に熱交換器の諸数字を当
て嵌めてみると,特にガス側の熱伝達率の値が小さく,
熱伝導の大きな抵抗になっていることが解る。また,材
料の熱伝導率の項と比較すると,その値は約10倍であ
り,熱伝達率が大きくならないと,熱交換器の性能が向
上しないことになる。しかしながら,上記式の全ての項
には,熱伝達と熱伝導する面積があり,それらの面積の
増減によって,熱移動体の熱移動量を制御できる。例え
ば,ガスからの熱が固体を通って他の流体に移動する
時,熱伝達面積を大きくすれば,熱通過率Kは大きくな
る。従って,ガスの通過する部分は,その材料を面積の
極めて大きい形状,例えば,フィン形状,蛇腹形状等に
構成する手段が取られている。しかしながら,フィンを
熱通過面に設けても,熱伝達面は3〜4倍程度になるに
過ぎず,10倍まで引き上げることは到底難しい。
The equation of the heat transmission rate K is as shown in the following equation. The unit of the heat transmission rate (K) is Kcal / m 2 · ° C · h. 1 / K = (1 / αg) (As / Ag) + (δ / λ) (As / Awl) +
(1 / αc) (As / Ac) where αg is the high temperature gas heat transfer coefficient, λ is the solid heat conductivity, α
c is the heat transfer coefficient at low temperature, δ is the wall thickness of the wall or the length of the heat conductor, As is the average area of the heat transfer path, and Ag, Awl, Ac are the contact areas of the heat transfer member. When the numbers of the heat exchanger are applied to the above equation, the heat transfer coefficient on the gas side is particularly small,
It can be seen that it has a large resistance to heat conduction. Further, when compared with the term of the thermal conductivity of the material, the value is about 10 times, and unless the heat transfer coefficient becomes large, the performance of the heat exchanger cannot be improved. However, all terms in the above equation have areas for heat transfer and heat conduction, and the heat transfer amount of the heat transfer body can be controlled by increasing or decreasing those areas. For example, when heat from a gas moves through a solid to another fluid, increasing the heat transfer area increases the heat transfer rate K. Therefore, a means for forming a material having an extremely large area, for example, a fin shape, a bellows shape, or the like, is used for the portion through which the gas passes. However, even if the fins are provided on the heat passage surface, the heat transfer surface is only about 3 to 4 times, and it is extremely difficult to raise it to 10 times.

【0006】近年,耐熱金属を発泡体とし,金属多孔質
部材を形成する研究が進み,その用途として,フィルタ
等が良いとして,多くの研究が進んでいる。金属多孔質
部材の材料は,三次元的に金属が絡まり,交差している
ので,同一体積あたりの外表面積はフィンに比較し,6
倍ほどである。そこで,金属多孔質部材を金属平板に接
合し,作動流体を通過させれば,ガスは多孔質材料の隙
間部をその面に衝突しながら通過し,熱を固体に伝達す
る。固体に伝達された熱は,2つの作動流体を隔壁とす
る平板に伝導され,他の作動流体に熱を移動する。他の
作動流体側でも熱伝達率が小さいので,その値に見合っ
た熱伝達面積が必要である。例えば,(1/αg)(As/A
g)の値を小さくさせ,通常の熱伝導体では高温ガス側
の熱伝達率の割合を10,固体の熱伝導率の割合1,液
体側熱伝達率の割合を3とすると,K=1/(10+1
+3)=0.071になり,これに対し,多孔質材を用
いて熱伝達側の面積を増加させ,熱伝達面と熱伝導面を
等価にすることができれば,K=1/(1+1+1)=
0.333となり,熱通過率K(Kcal/m2 ・℃・h)
の値は4.7倍になる。
[0006] In recent years, research has been advanced to form a metal porous member by using a heat-resistant metal as a foam, and as its application, many researches have been advanced on the assumption that a filter or the like is good. In the material of the metal porous member, since the metal is entangled and intersects three-dimensionally, the outer surface area per same volume is 6
About twice as much. Therefore, if a metal porous member is joined to a metal flat plate and a working fluid is passed through, the gas passes through the gap of the porous material while colliding with the surface, and transfers heat to the solid. The heat transferred to the solid is conducted to a flat plate having two working fluids as partition walls, and the heat is transferred to another working fluid. Since the heat transfer coefficient is small on the other working fluid side as well, a heat transfer area commensurate with that value is required. For example, (1 / αg) (As / A
If the value of g) is made small and the ratio of the heat transfer coefficient on the high-temperature gas side is 10 for the normal heat conductor, the ratio of the heat transfer coefficient of the solid is 1, and the ratio of the heat transfer coefficient on the liquid side is 3, then K = 1. / (10 + 1
+3) = 0.071. On the other hand, if the area on the heat transfer side can be increased by using a porous material and the heat transfer surface and the heat transfer surface can be made equivalent, K = 1 / (1 + 1 + 1) =
0.333, heat transfer rate K (Kcal / m 2 · ° C · h)
The value of becomes 4.7 times.

【0007】[0007]

【課題を解決するための手段】この発明の目的は,上記
のことより,金属多孔質部材を用いて熱伝達側の面積を
増加させると共に金属多孔質部材と隔壁とを拡散接合さ
せて熱伝導率をアップさせ,それによって熱通過率Kを
アップさせ,エンジン等の熱効率の良くし,例えば,天
然ガスをCOとH2 との改質燃料に改質する燃料改質装
置に適用できる熱交換器を提供することである。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to increase the area of a heat transfer side by using a metal porous member and to diffuse-bond the metal porous member and a partition wall for heat conduction. Rate, thereby increasing the heat transmission rate K, improving the thermal efficiency of the engine, etc., for example, heat exchange applicable to a fuel reformer that reforms natural gas into reformed fuel of CO and H 2. Is to provide a vessel.

【0008】この発明は,温度の互いに異なる一方の物
体から他方の物体へ熱移動させる熱交換器において,前
記物体間は金属製隔壁によって互いに遮蔽されており,
少なくとも一方の前記物体が占める熱交換領域には金属
多孔質部材が配設され,前記金属多孔質部材と前記隔壁
とは互いに接触する接合部が接合金属材で互いに接合さ
れ,前記接合部における前記金属多孔質部材には前記接
合金属材が含浸し埋設されていることを特徴とする熱交
換器に関する。
According to the present invention, in a heat exchanger for transferring heat from one object having a different temperature to another object, the objects are shielded from each other by a metal partition wall.
A metal porous member is disposed in a heat exchange area occupied by at least one of the objects, and a joint portion in which the metal porous member and the partition wall are in contact with each other is joined to each other with a joining metal material. The present invention relates to a heat exchanger characterized in that the metal joining member is impregnated and embedded in the metal porous member.

【0009】前記金属多孔質部材は,オープンポアを持
つ材料であり,一方の前記物体がガスの場合には,ガス
流動に対して大きな抵抗を持たないようにポア部が大き
く開かれ,前記隔壁に対する前記金属多孔質部材の接合
面の伝熱部面積は,前記隔壁の伝熱部面積の1/10〜
1/15程度に構成されている。
The porous metal member is a material having open pores, and when one of the objects is a gas, the pore is largely opened so as not to have a great resistance to gas flow, and the partition wall is formed. The heat transfer area of the joint surface of the porous metal member is 1/10 to 10 of the heat transfer area of the partition wall.
It is configured to be about 1/15.

【0010】この熱交換器では,一方の前記物体がガス
であり,他方の前記物体が液体の場合には,前記ガスが
通過する領域には背の高い多数の前記金属多孔質部材が
並列に配設され,前記液体が通過する領域には背の低い
前記金属多孔質部材が一部に配設されている。
In this heat exchanger, when one of the objects is a gas and the other object is a liquid, a large number of tall metal porous members are arranged in parallel in a region through which the gas passes. The metal porous member having a short height is partially provided in a region where the liquid passes.

【0011】又は,一方の前記物体が固体の場合には,
前記隔壁は前記固体と一体構造に構成されている。
Alternatively, when one of the objects is a solid,
The partition wall is formed integrally with the solid body.

【0012】或いは,この熱交換器は,前記物体がガス
同志である場合には,一方の前記ガスが流れる入口と出
口とを備えたガス管,他方のガスが流れる前記ガス管内
に配置された前記隔壁を構成する金属製筒体,及び前記
ガス管を貫通し且つ前記筒体にそれぞれ設けられた入口
管と出口管を有し,前記筒体内には前記金属多孔質部材
が配設されると共に,前記筒体の外周面には前記金属多
孔質部材から形成されたフィンが立設され,前記フィン
と前記金属多孔質部材とは前記筒体の壁面に前記接合金
属材による拡散接合によって互いに接合されているもの
である。
[0012] Alternatively, the heat exchanger is arranged in a gas pipe having an inlet and an outlet through which one of the gases flows, and inside the gas pipe through which the other gas flows, when the objects are gases. A metal cylinder forming the partition wall, and an inlet pipe and an outlet pipe penetrating the gas pipe and provided in the cylinder, respectively, and the metal porous member is arranged in the cylinder. At the same time, a fin formed of the metal porous member is erected on the outer peripheral surface of the cylindrical body, and the fin and the metal porous member are mutually joined to the wall surface of the cylinder by diffusion bonding with the bonding metal material. It is joined.

【0013】この熱交換器では,前記筒体内には金属平
板が長手方向に延びており,前記金属平板と前記筒体内
に配置された前記金属多孔質部材とは前記接合金属材に
よって互いに接合されている。
In this heat exchanger, a metal flat plate extends in the longitudinal direction in the cylinder body, and the metal flat plate and the metal porous member arranged in the cylinder body are bonded to each other by the bonding metal material. ing.

【0014】前記フィンは前記筒体の外周面に櫛歯状に
間隔を置いて立設し,前記ガスの通過接触面積が大きく
形成されている。
The fins are erected on the outer peripheral surface of the cylindrical body at intervals in a comb-like shape, and are formed to have a large contact area for passage of the gas.

【0015】この熱交換器において,前記金属多孔質部
材と前記金属平板の接合面は,前記金属多孔質部材の面
を研削加工し,前記金属多孔質部材の切削加工面に金属
が良く馴染むような前記接合金属材を塗布し,前記金属
多孔質部材を前記筒体内に配置し,1050℃〜115
0℃の真空槽内で前記金属多孔質部材と前記筒体とを押
圧接合したものである。
In this heat exchanger, the joining surface between the metal porous member and the metal flat plate is formed by grinding the surface of the metal porous member so that the metal is well fitted to the cut surface of the metal porous member. The above-mentioned joining metal material is applied, the above-mentioned metal porous member is arranged in the above-mentioned cylinder, and 1050 ° C-115
The metal porous member and the cylindrical body are pressure-bonded in a vacuum chamber at 0 ° C.

【0016】前記ガス管の外側には熱的遮熱機能を有す
る真空層を形成する外側管で覆われている。
The outer side of the gas pipe is covered with an outer pipe forming a vacuum layer having a thermal heat shield function.

【0017】この熱交換器において,前記ガス管を流れ
る前記ガスは排気ガスであり,また,前記筒体内を流れ
る流体は天然ガスであり,前記天然ガスが前記筒体内を
流れることによってH2 とCOとに熱分解されて改質燃
料に改質されるものである。
In this heat exchanger, the gas flowing in the gas pipe is exhaust gas, the fluid flowing in the cylinder is natural gas, and the natural gas flows in the cylinder to generate H 2 gas. It is thermally decomposed into CO and reformed into reformed fuel.

【0018】この熱交換器において,前記ガス管は排気
マニホルドであり,前記筒体は前記排気マニホルドの分
岐管と集合管との境界の集合部内に配置されているもの
である。
In this heat exchanger, the gas pipe is an exhaust manifold, and the tubular body is arranged in a collecting portion at a boundary between a branch pipe and a collecting pipe of the exhaust manifold.

【0019】この熱交換器は,前記物体が高温液体及び
ガスの場合には,前記金属多孔質部材はニッケル,クロ
ーム,鋼等の成分を主成分する金属から構成され,ま
た,前記物体が水等の液体の場合には,前記金属多孔質
部材はアルミニウム,銅等の金属,又はニッケルやクロ
ム材にアルミニウムが被覆された金属から構成されてい
る。
In this heat exchanger, when the object is a high temperature liquid and a gas, the metal porous member is composed of a metal containing nickel, chrome, steel or the like as a main component, and the object is water. In the case of a liquid such as the above, the metal porous member is made of a metal such as aluminum or copper, or a metal obtained by coating a nickel or chromium material with aluminum.

【0020】この熱交換器では,前記金属多孔質部材の
表面には,熱伝導率の大きい銀,銅,アルミニウム等の
金属がコーティングされている。
In this heat exchanger, the surface of the metal porous member is coated with a metal having a high thermal conductivity, such as silver, copper or aluminum.

【0021】この熱交換器では,前記金属多孔質部材の
表面には,アルミニウムを付着させ,前記表面を酸化処
理させ,前記表面にプラチナ,パナジウム,ニッケル,
ルテニウム,酸化アルミニウム等の触媒金属の微粒子が
付着されている。
In this heat exchanger, aluminum is attached to the surface of the metal porous member, the surface is oxidized, and platinum, vanadium, nickel,
Fine particles of catalytic metal such as ruthenium and aluminum oxide are attached.

【0022】この熱交換器において,前記接合金属材
は,ニッケルが55wt%,クロームが25wt%,ア
ルミニウムが10wt%,及びシリカが10wt%から
成る合成粉末で構成されている。
In this heat exchanger, the joining metal material is composed of a synthetic powder of 55 wt% nickel, 25 wt% chrome, 10 wt% aluminum, and 10 wt% silica.

【0023】この熱交換器は,上記のように構成されて
おり,金属多孔質部材の金属部と隔壁との接触面が接合
面となり,その他のオープンポアには接合金属材が含浸
し,埋設された拡散接合の状態になっている。従って,
隔壁と金属多孔質部材との間での熱伝導は極めて良好に
なり,熱交換が極めて高効率に達成される。また,この
熱交換器は,筒体とフィン,筒体とその内部の金属多孔
質部材,及び筒体の内部の金属多孔質部材と金属平板
は,フラックスを介して互いに接合部分において拡散接
合し,組織が連続して極めて強固に接合され,それによ
って熱伝達が良好になり,熱交換効率を向上させること
ができる。また,金属多孔質部材は,その表面積が大き
くなり,通気性が良好であり,スポンジ状の固体となっ
て熱交換を行う流体の接触面積が大きくなり,熱交換効
率が大幅にアップされた。また,この熱交換器では,金
属多孔質部材の面が平板の一面と接合され,平板の他面
には金属多孔質部材から成るフィンが接合されており,
金属多孔質部材で面粗度の異なる固体が接着された構造
に構成されている。また,放熱する側の面と受熱する側
の面との間には金属平板が位置し,該金属平板は流体に
対して隔壁を形成しているので,金属多孔質部材を通過
する流体とフィンを通過する流体との混合はなく,効率
的に熱が移動することができる。
This heat exchanger is constructed as described above, and the contact surface between the metal part of the metal porous member and the partition wall serves as a joint surface, and the other open pores are impregnated with the joint metal material and embedded. It is in the state of diffusion bonding. Therefore,
The heat conduction between the partition wall and the porous metal member is extremely good, and the heat exchange is achieved with extremely high efficiency. In this heat exchanger, the cylindrical body and the fins, the cylindrical body and the metal porous member inside the cylindrical body, and the metallic porous member and the metal flat plate inside the cylindrical body are diffusion-bonded to each other at a joint portion via a flux. , The structures are continuously and extremely strongly joined, which improves the heat transfer and improves the heat exchange efficiency. Further, the metal porous member has a large surface area, has good air permeability, becomes a sponge-like solid, and has a large contact area with a fluid for heat exchange, resulting in a large increase in heat exchange efficiency. Further, in this heat exchanger, the surface of the metal porous member is joined to one surface of the flat plate, and the fin made of the metal porous member is joined to the other surface of the flat plate.
The metal porous member has a structure in which solids having different surface roughness are bonded. Further, since the metal flat plate is located between the surface on the heat radiating side and the surface on the heat receiving side, and the metal flat plate forms a partition wall for the fluid, the fluid and the fin passing through the metal porous member are There is no mixing with the fluid passing through and heat can be transferred efficiently.

【0024】[0024]

【発明の実施の形態】以下,図面を参照して,この発明
による熱交換器の実施例を説明する。図1はこの発明に
よる熱交換器における金属多孔質部材と隔壁との接合部
の原理を説明するための拡大断面図,図2はこの発明に
よる熱交換器の一実施例を示す断面図,図3はこの発明
による熱交換器の別の実施例を示す断面図,図4はこの
発明による熱交換器の更に別の実施例を示す断面図,図
5は図4のI−I断面における熱交換器を示す断面図,
及び図6は図4の符号Aにおける熱交換器の拡大断面図
である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a heat exchanger according to the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged sectional view for explaining the principle of a joint between a metal porous member and a partition in a heat exchanger according to the present invention, and FIG. 2 is a sectional view showing an embodiment of the heat exchanger according to the present invention. 3 is a cross-sectional view showing another embodiment of the heat exchanger according to the present invention, FIG. 4 is a cross-sectional view showing yet another embodiment of the heat exchanger according to the present invention, and FIG. 5 is a cross-sectional view taken along line I-I of FIG. Sectional view showing the exchanger,
6 and 6 are enlarged cross-sectional views of the heat exchanger indicated by reference sign A in FIG.

【0025】まず,図1を参照して,この発明による熱
交換器の基本的な構成について説明する。この発明によ
る熱交換器は,温度の互いに異なる一方の物体から他方
の物体へ熱移動させる熱交換器であり,物体間は金属製
隔壁2によって互いに遮蔽されており,少なくとも一方
の物体が占める熱交換領域には金属多孔質部材3が配設
され,特に,図1に示すように,金属多孔質部材3と隔
壁2とは互いに接触する接合部が接合金属材1で互いに
接合され,接合部における金属多孔質部材2には接合金
属材1が含浸し埋設され即ち接合部が拡散接合されてい
る。即ち,金属多孔質部材3は,金属線,金属粒等の金
属材料が積層され,該金属材料の接触部や交差部が接合
された金属部と,隣接する金属部間に形成されたオープ
ンポアとから構成されている。特に,隔壁と金属多孔質
部材3との接合部では金属多孔質部材3のオープンポア
には,接合金属材1が含浸し,埋設された拡散接合の状
態になっており,隔壁と金属多孔質部材3との間には熱
遮断面がなく熱伝導率がアップされている。
First, the basic structure of the heat exchanger according to the present invention will be described with reference to FIG. The heat exchanger according to the present invention is a heat exchanger that transfers heat from one object having a different temperature to the other object, and the objects are shielded from each other by a metallic partition wall 2, and the heat occupied by at least one object is A metal porous member 3 is disposed in the exchange area. In particular, as shown in FIG. 1, the joint portions of the metal porous member 3 and the partition wall 2 that are in contact with each other are joined together by the joining metal material 1, The metal porous member 2 is impregnated with the bonding metal material 1 and embedded therein, that is, the bonding portion is diffusion bonded. That is, the metal porous member 3 is formed by laminating metal materials such as metal wires and metal particles, and the open pores formed between the metal portions to which the contact portions or intersections of the metal materials are joined and the adjacent metal portions. It consists of and. In particular, at the joint between the partition wall and the metal porous member 3, the open pores of the metal porous member 3 are in a state of diffusion bonding in which the bonding metal material 1 is impregnated and embedded, and the partition wall and the metal porous member 3 are embedded. Since there is no heat-shielding surface between the member 3 and the member 3, the thermal conductivity is increased.

【0026】この熱交換器において,金属多孔質部材3
は,オープンポアを持つ材料であり,一方の物体が気体
即ちガスの場合には,ガス流動に対して大きな抵抗を持
たないようにポア部が大きく開かれ,隔壁2に対する金
属多孔質部材3の接合面20の伝熱部面積は,隔壁2の
伝熱部面積の1/10〜1/15程度に構成されてい
る。言い換えれば,金属多孔質部材3の金属部と隔壁2
との接合面20が,隔壁2の全面の1/10〜1/15
程度に構成され,その他のオープンポアには接合金属材
1が含浸し,埋設された拡散接合の状態になっている。
従って,この熱交換器では,隔壁2と金属多孔質部材3
との間での熱伝導が極めて良好になり,熱交換が極めて
高効率に達成されることになる。
In this heat exchanger, the metal porous member 3
Is a material having open pores, and when one of the objects is a gas, that is, gas, the pore portion is greatly opened so as not to have a great resistance to gas flow, and the metal porous member 3 with respect to the partition wall 2 is The heat transfer area of the joint surface 20 is configured to be about 1/10 to 1/15 of the heat transfer area of the partition wall 2. In other words, the metal portion of the metal porous member 3 and the partition wall 2
The joint surface 20 with is 1/10 to 1/15 of the entire surface of the partition wall 2.
The other open pores are impregnated with the bonding metal material 1 and are in a buried diffusion bonding state.
Therefore, in this heat exchanger, the partition wall 2 and the metal porous member 3 are
The heat conduction between and becomes extremely good, and heat exchange is achieved with extremely high efficiency.

【0027】図2を参照して,この発明による熱交換器
の一実施例を説明する。この熱交換器は,一方の物体が
ガスであり,他方の物体が液体の場合には,ハウジング
27内に隔壁2を構成する隔壁プレート30が配置され
ている。ガスGが通過するガス通路31の領域には,背
の高い多数の金属多孔質部材3から成る金属多孔質ブロ
ック28が隙間43を形成するように隔置して並列に配
設され,金属多孔質ブロック28は,隔壁プレート30
に接合面20において接合金属材1によってそれぞれ拡
散接合されている。また,液体Lが通過する液体通路3
2の領域には背の低い金属多孔質部材3から成る金属多
孔質ブロック29が一部に配設され,金属多孔質ブロッ
ク29は,隔壁プレート30に接合面20において接合
金属材1によってそれぞれ拡散接合されている。
An embodiment of the heat exchanger according to the present invention will be described with reference to FIG. In this heat exchanger, when one object is gas and the other object is liquid, a partition plate 30 forming the partition 2 is arranged in the housing 27. In the region of the gas passage 31 through which the gas G passes, metal porous blocks 28 made of a large number of tall metal porous members 3 are arranged in parallel so as to form a gap 43. The quality block 28 is a partition plate 30.
In addition, diffusion bonding is performed on the bonding surface 20 by the bonding metal material 1. The liquid passage 3 through which the liquid L passes
A metal porous block 29 made of a short metal porous member 3 is partially provided in the region 2 and the metal porous block 29 is diffused to the partition plate 30 at the bonding surface 20 by the bonding metal material 1. It is joined.

【0028】図3を参照して,この発明による熱交換器
の別の実施例を説明する。この熱交換器は,一方の物体
が固体33の場合には,固体33との境界部に位置する
隔壁部39は,固体33と一体構造に構成されている。
固体33には,水等の液体Lが流れる液体通路36を形
成するケーシング34が固定されている。ケーシング3
4には,液体通路36へ水等の液体Lを送り込む入口間
37と熱交換された水が送り出される出口管38が取り
付けられている。液体通路36内には,隔壁2を構成す
る隔壁部39と金属平板40が配置され,隔壁部39と
金属平板40とに,図1の金属多孔質部材3を構成する
金属多孔質部材35との接合面20において接合金属材
1によって互いに拡散接合されている。
Another embodiment of the heat exchanger according to the present invention will be described with reference to FIG. In this heat exchanger, when one object is the solid 33, the partition wall 39 located at the boundary with the solid 33 is formed integrally with the solid 33.
A casing 34 forming a liquid passage 36 through which the liquid L such as water flows is fixed to the solid 33. Casing 3
An inlet pipe 37 for sending the liquid L such as water to the liquid passage 36 and an outlet pipe 38 for sending out the heat-exchanged water are attached to the liquid passage 4. In the liquid passage 36, a partition wall portion 39 and a metal flat plate 40 that form the partition wall 2 are arranged, and the partition wall portion 39 and the metal flat plate 40 include a metal porous member 35 that forms the metal porous member 3 of FIG. The joining surfaces 20 are diffusion-bonded to each other by the joining metal material 1.

【0029】次に,図4〜図6を参照して,この発明に
よる熱交換器の更に別の実施例を説明する。この熱交換
器は,ガスが導入されるガス入口5とガスが送り出され
るガス出口6とを備えたガスが通過するガス管41,ガ
ス管41内に配置された流体通路7を構成する金属板か
ら成る隔壁2を構成する筒体42,ガス管41を貫通し
且つ筒体42に設けられた流体が導入される入口管8と
流体が送り出される出口管9,筒体42内に配置された
オープンポアを有する金属多孔質部材3,及び筒体42
の外周面に立設した金属多孔質材から構成されているフ
ィン4を有する。入口管8の端部にはフランジ部26が
設けられ,出口管9の端部にはフランジ部25が設けら
れている。入口管8のフランジ部26は天然ガスの供給
タンクから送り出される燃料管に接続され,また,出口
管9のフランジ部25はエンジンに改質燃料を供給する
ため吸気管や改質燃料管に接続されている。
Next, still another embodiment of the heat exchanger according to the present invention will be described with reference to FIGS. This heat exchanger comprises a gas plate 41 having a gas inlet 5 into which a gas is introduced and a gas outlet 6 from which a gas is sent out, and a metal plate constituting a fluid passage 7 arranged in the gas pipe 41. And a tubular body 42 that composes the partition wall 2 that is made up of an inlet pipe 8 that penetrates the gas pipe 41 and that is provided in the tubular body 42, into which the fluid is introduced, an outlet pipe 9 through which the fluid is delivered, and a tubular body 42 that are disposed inside the tubular body 42. Metal porous member 3 having open pores and cylindrical body 42
Has fins 4 formed of a metal porous material standing on the outer peripheral surface of the. A flange portion 26 is provided at the end of the inlet pipe 8 and a flange portion 25 is provided at the end of the outlet pipe 9. The flange portion 26 of the inlet pipe 8 is connected to the fuel pipe fed from the natural gas supply tank, and the flange portion 25 of the outlet pipe 9 is connected to the intake pipe and the reformed fuel pipe for supplying the reformed fuel to the engine. Has been done.

【0030】ガス管41内には,図1に示す隔壁2を構
成する筒体42が配置され,また,筒体42は,金属製
の外管22と外管22内に複数配置され且つ図1に示す
隔壁2を構成する金属平板10から構成されている。外
管22は,熱交換部16を構成している。金属多孔質部
材3は,筒体42の内壁面に接合金属材1によって拡散
接合されている。筒体42内には,金属平板10が長手
方向に延びており,金属平板10と筒体42内に配置さ
れた金属多孔質部材3とは,接合金属材1によって拡散
接合されている。フィン4は,筒体42の外周面に櫛歯
状に隙間19を置いて立設し,金属多孔質材21から作
製され,ガスの通過接触面積が大きく形成されている。
Inside the gas pipe 41, a cylinder 42 constituting the partition wall 2 shown in FIG. 1 is arranged, and a plurality of cylinders 42 are arranged inside the metal outer tube 22 and the outer tube 22. It is comprised from the metal flat plate 10 which comprises the partition wall 2 shown in FIG. The outer tube 22 constitutes the heat exchange section 16. The metal porous member 3 is diffusion bonded to the inner wall surface of the cylindrical body 42 by the bonding metal material 1. A metal flat plate 10 extends in the longitudinal direction in the cylindrical body 42, and the metal flat plate 10 and the metal porous member 3 arranged in the cylindrical body 42 are diffusion bonded by the bonding metal material 1. The fin 4 is erected on the outer peripheral surface of the cylindrical body 42 with a gap 19 in a comb shape and is made of a porous metal material 21 and has a large gas passage contact area.

【0031】金属多孔質部材3と金属平板10の接合面
は,金属多孔質部材3の面を研削加工し,金属多孔質部
材3の切削加工面に金属に良く馴染むような接合金属材
1であるフラックスを塗布し,金属多孔質部材3を筒体
42内に配置し,1000℃〜1150℃の真空槽内で
前記金属多孔質部材3と筒体42とを接合する。
The joining surface of the metal porous member 3 and the metal flat plate 10 is formed by grinding the surface of the metal porous member 3 and joining metal material 1 which is well suited to the metal on the cutting surface of the metal porous member 3. A certain flux is applied, the metallic porous member 3 is placed in the cylindrical body 42, and the metallic porous member 3 and the cylindrical body 42 are bonded in a vacuum chamber at 1000 ° C to 1150 ° C.

【0032】接合金属材1即ちフラックスは,ニッケル
が55wt%,クロームが25wt%,アルミニウムが
10wt%,及びシリカが10wt%から成る合成粉末
で構成されている。また,金属多孔質部材3の表面に
は,熱伝導率の大きい銀,銅,アルミニウム等の金属が
コーティングされている。
The joining metal material 1, that is, the flux, is composed of a synthetic powder of 55 wt% nickel, 25 wt% chrome, 10 wt% aluminum, and 10 wt% silica. The surface of the metallic porous member 3 is coated with a metal having a high thermal conductivity, such as silver, copper or aluminum.

【0033】ガス管41は,二重壁に形成され,二重壁
間は熱的遮熱機能を有する真空層11に形成されてい
る。金属多孔質部材3の表面には,アルミニウムを付着
させ,表面を酸化処理させ,表面にプラチナ,パナジウ
ム等の触媒金属の微粒子を付着させたものである。金属
多孔質部材部材3を構成する金属は,ニッケル,クロー
ム,鋼等の成分を主成分する金属から構成されている。
The gas pipe 41 is formed in double walls, and the space between the double walls is formed in the vacuum layer 11 having a thermal heat shield function. Aluminum is adhered to the surface of the metal porous member 3, the surface is oxidized, and fine particles of a catalytic metal such as platinum and vanadium are adhered to the surface. The metal forming the metal porous member member 3 is composed of a metal containing nickel, chrome, steel or the like as a main component.

【0034】ガス管41を流れるガスは排気ガスであ
り,また,筒体42内を流れる流体は天然ガスであり,
天然ガスが筒体42内を流れることによってH2 とCO
とに熱分解されて改質燃料に改質される。
The gas flowing through the gas pipe 41 is exhaust gas, and the fluid flowing inside the cylinder 42 is natural gas.
As natural gas flows in the cylinder 42, H 2 and CO
And is thermally decomposed into reformed fuel.

【0035】−実施例− 一般に,平板同士をフラックスを用いて接合するのは,
比較的に容易であるが,多孔質材と平板を接合させるこ
とは難しい。平板にフラックスを塗りつけ,多孔質材を
重ね合わせ,加圧したまま高温炉中に放置すると,接合
できるはずであるが,なかなか接合できないのが現状で
ある。そこで,金属多孔質材と金属平板との接合を試み
た材料について,詳細に検討した結果,次のことが解っ
た。 1.金属多孔質材と金属平板との接合には,1000℃
以上に加熱できる雰囲気炉が必要である。 2.金属多孔質材と金属平板との接合部には,両材料が
拡散接合できる複合材料のフラックスが必要である。 3.金属多孔質材と金属平板との両材料を余り加圧して
接合すると,金属多孔質材料が熱変形して潰れてしま
う。 4.金属多孔質材と金属平板とを空気中で接合処理する
と,フラックス部に酸化が起こり,接合を害する。 5.金属多孔質材が余りに密だと,毛管現象によりフラ
ックスが金属多孔質材に滲み込んでしまい,接合が良好
に行われない。
-Example-Generally, joining flat plates using flux is
It is relatively easy, but it is difficult to join the porous material and flat plate. If the flat plates are coated with flux, the porous materials are overlaid, and they are left under pressure in a high-temperature furnace, they should be able to join, but the current situation is that they cannot be joined. Therefore, as a result of detailed examination of the material in which the porous metal material and the flat metal plate were joined, the following was found. 1. 1000 ℃ for joining metal porous material and metal flat plate
An atmosphere furnace capable of heating above is required. 2. At the joint between the metal porous material and the metal flat plate, a flux of a composite material capable of diffusion bonding the two materials is required. 3. If both the metal porous material and the metal flat plate are pressed together with excessive pressure, the metal porous material is thermally deformed and crushed. 4. When the metal porous material and the metal flat plate are bonded in the air, the flux is oxidized and the bonding is impaired. 5. If the metal porous material is too dense, the flux will seep into the metal porous material due to the capillary phenomenon, resulting in poor bonding.

【0036】そこで,この発明による熱交換器では,上
記のことを考慮して,金属多孔質材と金属平板との接合
に当たって次のように特定した。 1.金属多孔質材と金属平板との接合には,真空炉を用
いて接合温度を1000℃とする。 2.金属多孔質材と金属平板との接合のフラックスの割
合として,Cr:18〜20%,Si:10%,C:
0.2%,及び残部がNiである。 3.上記フラックスにパラジウム2〜3%を添加する。 4.金属多孔質材と金属平板との接合では,余り加圧力
を増加させない。 以上の条件により,肉厚1mmの平板と厚さ10mmの
金属多孔質板を重ねて接合処理を30分間実施した。そ
の結果,両材料を接合することができた。
In view of the above, the heat exchanger according to the present invention is specified as follows when joining the porous metal material and the flat metal plate. 1. For joining the metal porous material and the metal flat plate, a joining temperature is set to 1000 ° C. using a vacuum furnace. 2. As the flux ratio for joining the metal porous material and the metal flat plate, Cr: 18 to 20%, Si: 10%, C:
0.2% and the balance Ni. 3. Add 2-3% of palladium to the flux. 4. The joining of the porous metal material and the flat metal plate does not increase the pressing force so much. Under the above conditions, a flat plate having a thickness of 1 mm and a porous metal plate having a thickness of 10 mm were stacked and the bonding treatment was performed for 30 minutes. As a result, both materials could be joined.

【0037】金属平板として,SUS304を用い,金
属多孔質材としてNi−Cr複合材を用いて接合試験を
実施し,接合ができた試験片を作製した。この試験片を
切断し,接合状況を観察した結果,金属多孔質材の繊維
組織と金属平板とがロウ材を介して拡散接合しており,
接合面20に不完全接合部が見当たらなかった。従っ
て,上記試験条件によって,金属多孔質部材と金属平板
との接合ができることを確認した。金属多孔質部材と金
属平板の接合試験条件は,次の通りである。金属平板1
0は,SUS304のスチールであり,金属多孔質部材
3は,Ni78wt%とCr22wt%である。また,
接合金属材1であるフラックスは,Ni:54wt%,
Cr:34wt%,Si:10wt%,C:0.5wt
%及び残部がバナジウムである。接合条件は,1000
℃〜1150℃である。また,使用した炉は,真空炉で
ある。
A joining test was carried out by using SUS304 as the metal flat plate and using a Ni--Cr composite material as the metal porous material to prepare a test piece that could be joined. As a result of cutting the test piece and observing the joining state, the fiber structure of the metal porous material and the metal flat plate are diffusion-bonded through the brazing material,
No incomplete joint was found on the joint surface 20. Therefore, it was confirmed that the metal porous member and the metal flat plate could be joined under the above test conditions. The joining test conditions for the metallic porous member and the metallic flat plate are as follows. Metal plate 1
0 is SUS304 steel, and the metal porous member 3 is 78 wt% Ni and 22 wt% Cr. Also,
The flux that is the joining metal material 1 is Ni: 54 wt%,
Cr: 34 wt%, Si: 10 wt%, C: 0.5 wt
% And the balance is vanadium. Joining condition is 1000
C to 1150C. The furnace used is a vacuum furnace.

【0038】次に,この熱交換器は,上記のように構成
されており,排気マニホルド12として適用した場合の
実施例について説明する。この熱交換器を排気マニホル
ド12として適用した場合には,ガス管41は排気マニ
ホルド12の外管を構成する。筒体42は,排気マニホ
ルドの分岐管13と集合管14との境界の集合部15内
に配置されている。分岐管13と集合管14は,二重管
に形成され,二重管の中間部には,空気層17に形成さ
れている。分岐管13の端部にはフランジ部23が設け
られ,また,集合管14の端部にはフランジ部24が設
けられている。分岐管13のフランジ部23は,シリン
ダヘッドに形成された排気ポートに接続される。また,
集合管14のフランジ部24は,排気ガスを排気する排
気管に接続されている。フィン4の分岐管13側には,
隔壁プレート18が接合され,エンジンから排出された
排気ガスEGは,各気筒に接続された分岐管13を通っ
て隔壁プレート18にガイドされて迂回し,フィン4の
側面からフィン4を横断して流れ,集合管14へと排出
されるように構成されている。
Next, a description will be given of an embodiment in which this heat exchanger is constructed as described above and applied as the exhaust manifold 12. When this heat exchanger is applied as the exhaust manifold 12, the gas pipe 41 constitutes the outer pipe of the exhaust manifold 12. The cylindrical body 42 is arranged in the collecting portion 15 at the boundary between the branch pipe 13 and the collecting pipe 14 of the exhaust manifold. The branch pipe 13 and the collecting pipe 14 are formed as a double pipe, and an air layer 17 is formed at an intermediate portion of the double pipe. A flange portion 23 is provided at an end portion of the branch pipe 13, and a flange portion 24 is provided at an end portion of the collecting pipe 14. The flange portion 23 of the branch pipe 13 is connected to an exhaust port formed in the cylinder head. Also,
The flange portion 24 of the collecting pipe 14 is connected to an exhaust pipe that exhausts exhaust gas. On the side of the branch pipe 13 of the fin 4,
Exhaust gas EG exhausted from the engine, which is joined to the partition plate 18, is guided by the partition plate 18 through the branch pipe 13 connected to each cylinder to bypass and cross the fin 4 from the side surface of the fin 4. It is configured to flow and be discharged to the collecting pipe 14.

【0039】この熱交換器は,エンジンに供給される燃
料としての天然ガスFを改質する機能を果たすものであ
る。天然ガスFは,筒体42の入口管8から流入し,金
属多孔質部材3を横断し,その時に,排気ガスEGの熱
エネルギによってCOとH2に熱分解し,改質燃料とな
って出口管9から送り出され,改質燃料はエンジンへ供
給されて着火燃焼して消費される。排気ガスEGは,分
岐管13からフィン4を横断し,その時に天然ガスへ熱
エネルギを与え,天然ガスが熱分解する。
This heat exchanger has a function of reforming the natural gas F as a fuel supplied to the engine. The natural gas F flows in from the inlet pipe 8 of the tubular body 42, traverses the metal porous member 3, and at that time, is thermally decomposed into CO and H 2 by the heat energy of the exhaust gas EG and becomes a reformed fuel. The reformed fuel sent from the outlet pipe 9 is supplied to the engine, ignited and burned and consumed. The exhaust gas EG crosses the fins 4 from the branch pipe 13 and at that time gives thermal energy to the natural gas, and the natural gas is thermally decomposed.

【0040】この熱交換器は,上記実施例では筒体42
を流れる流体が天然ガスの例を説明したが,天然ガスの
みでなく,水を使用することもできる。筒体42に流す
流体が水の場合には,水は排気ガスEGから熱エネルギ
を受熱して水蒸気になる。水蒸気は,例えば,ランキン
サイクルにおいて蒸気タービンを駆動し,蒸気タービン
の駆動によって発電機を駆動し,電気エネルギーとして
回収したり,蒸気タービンの駆動によって駆動力を確保
することができる。
In this embodiment, the heat exchanger has a cylindrical body 42.
Although the example has been described where the fluid flowing through is natural gas, not only natural gas but also water can be used. When the fluid flowing in the cylinder 42 is water, the water receives heat energy from the exhaust gas EG and becomes water vapor. For example, steam can drive a steam turbine in a Rankine cycle, drive a generator by driving the steam turbine, recover electrical energy, or secure driving force by driving the steam turbine.

【0041】[0041]

【発明の効果】この発明による熱交換器は,上記のよう
に構成されているので,隔壁と金属多孔質部材との接合
面が接合金属材即ちフラックスによって拡散接合され,
隔壁と金属多孔質部材との間に熱遮断面が無くなり,両
者間の熱伝導率が向上し,物体間の熱交換効率が大幅に
アップする。また,金属多孔質部材を天然ガス,排気ガ
ス等の流体が流れることにより,流体が金属多孔質部材
に接触する面積が大幅に増大し,熱交換効率を大幅にア
ップさせることができる。
Since the heat exchanger according to the present invention is configured as described above, the joint surface between the partition wall and the porous metal member is diffusion-joined by the joining metal material, that is, the flux.
The heat insulating surface between the partition wall and the porous metal member is eliminated, the thermal conductivity between the two is improved, and the heat exchange efficiency between the objects is greatly improved. In addition, since a fluid such as natural gas or exhaust gas flows through the metal porous member, the area in which the fluid contacts the metal porous member is greatly increased, and the heat exchange efficiency can be greatly increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による熱交換器における金属多孔質部
材と隔壁との接合部の原理を説明するための拡大断面図
である。
FIG. 1 is an enlarged cross-sectional view for explaining the principle of a joint portion between a metal porous member and a partition in a heat exchanger according to the present invention.

【図2】この発明による熱交換器の一実施例を示す断面
図である。
FIG. 2 is a sectional view showing an embodiment of the heat exchanger according to the present invention.

【図3】この発明による熱交換器の別の実施例を示す断
面図である。
FIG. 3 is a sectional view showing another embodiment of the heat exchanger according to the present invention.

【図4】この発明による熱交換器の更に別の実施例を示
す断面図である。
FIG. 4 is a sectional view showing still another embodiment of the heat exchanger according to the present invention.

【図5】図4のI−I断面における熱交換器を示す断面
図である。
5 is a cross-sectional view showing the heat exchanger taken along the line I-I in FIG.

【図6】図4の符号Aにおける熱交換器の拡大断面図で
ある。
6 is an enlarged cross-sectional view of the heat exchanger indicated by reference sign A in FIG.

【符号の説明】[Explanation of symbols]

1 接合金属材 2 金属隔壁 3 金属多孔質部材 4 フィン(金属多孔質部材) 5 ガス入口 6 ガス出口 7 流体通路 8 入口管 9 出口管 10 金属平板 11 真空層 12 排気マニホルド 13 分岐管 14 集合管 15 集合部 16 熱交換部 17 空気層 18 隔壁プレート 19 隙間 20 接合面 21 多孔質材 22 外管 23,24,25,26 フランジ部 27 ハウジング 28 金属多孔質部材(背が高い) 29 金属多孔質部材(背が低い) 30 金属隔壁 31 ガス通路 32 液体通路 33 固体(物体) 34 ハウジング 35 金属多孔質部材 36 液体通路 37 入口管 38 出口管 39 金属隔壁 40 金属平板 41 ガス管 42 筒体 EG 排気ガス(物体) F 燃料(物体) G ガス(物体) L 液体 1 joining metal material 2 metal partition 3 Metal porous member 4 fins (metal porous member) 5 gas inlet 6 gas outlet 7 fluid passage 8 inlet tubes 9 outlet pipe 10 Metal flat plate 11 vacuum layer 12 Exhaust manifold 13 Branch pipe 14 Collecting pipe 15 Assembly Department 16 heat exchange section 17 Air layer 18 Partition plate 19 gap 20 Bonding surface 21 Porous material 22 outer tube 23, 24, 25, 26 Flange part 27 housing 28 Metal porous member (tall) 29 Metallic porous member (short) 30 metal partition 31 gas passage 32 liquid passage 33 Solid (Object) 34 housing 35 Metal Porous Member 36 Liquid passage 37 Inlet pipe 38 Outlet pipe 39 Metal partition 40 metal plate 41 gas pipe 42 cylinder EG Exhaust gas (object) F Fuel (object) G gas (object) L liquid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 35/30 310 B23K 35/30 310D C22C 19/05 C22C 19/05 B F28D 7/10 F28D 7/10 A F28F 13/18 F28F 13/18 D Fターム(参考) 3L103 AA05 AA35 BB19 BB39 CC02 CC26 CC27 DD09 DD15 DD38 DD63 4E067 AA03 AA09 AA20 AB05 AC07 AD07 BA00 DB01 DC03 DC06 EB01 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) B23K 35/30 310 B23K 35/30 310D C22C 19/05 C22C 19/05 B F28D 7/10 F28D 7/10 A F28F 13/18 F28F 13/18 D F term (reference) 3L103 AA05 AA35 BB19 BB39 CC02 CC26 CC27 DD09 DD15 DD38 DD63 4E067 AA03 AA09 AA20 AB05 AC07 AD07 BA00 DB01 DC03 DC06 EB01

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 温度の互いに異なる一方の物体から他方
の物体へ熱移動させる熱交換器において,前記物体間は
金属製隔壁によって互いに遮蔽されており,少なくとも
一方の前記物体が占める熱交換領域には金属多孔質部材
が配設され,前記金属多孔質部材と前記隔壁とは互いに
接触する接合部が接合金属材で互いに接合され,前記接
合部における前記金属多孔質部材には前記接合金属材が
含浸し埋設されていることを特徴とする熱交換器。
1. A heat exchanger for transferring heat from one body having a different temperature to another body, wherein the bodies are shielded from each other by a metal partition wall, and a heat exchange area occupied by at least one body is provided. Is provided with a metal porous member, and the metal porous member and the partition wall are joined to each other at their joints which are in contact with each other, and the metal porous member in the joint has the metal joint member. A heat exchanger characterized by being impregnated and buried.
【請求項2】 前記金属多孔質部材は,オープンポアを
持つ材料であり,一方の前記物体がガスの場合には,ガ
ス流動に対して大きな抵抗を持たないようにポア部が大
きく開かれ,前記隔壁に対する前記金属多孔質部材の接
合面の伝熱部面積は,前記隔壁の伝熱部面積の1/10
〜1/15程度に構成されていることを特徴とする請求
項1に記載の熱交換器。
2. The porous metal member is a material having open pores, and when one of the objects is a gas, the pore portion is largely opened so as not to have great resistance to gas flow, The heat transfer area of the joint surface of the metal porous member to the partition is 1/10 of the heat transfer area of the partition.
The heat exchanger according to claim 1, wherein the heat exchanger is configured to have a size of about 1/15.
【請求項3】 一方の前記物体がガスであり,他方の前
記物体が液体の場合には,前記ガスが通過する領域には
背の高い多数の前記金属多孔質部材が並列に配設され,
前記液体が通過する領域には背の低い前記金属多孔質部
材が一部に配設されていることを特徴とする請求項1又
は2に記載の熱交換器。
3. When one of the objects is a gas and the other object is a liquid, a large number of tall metal porous members are arranged in parallel in a region through which the gas passes,
The heat exchanger according to claim 1 or 2, wherein the short metal porous member is partially provided in a region through which the liquid passes.
【請求項4】 一方の前記物体が固体の場合には,前記
隔壁は前記固体と一体構造に構成されていることを特徴
とする請求項1又は2に記載の熱交換器。
4. The heat exchanger according to claim 1, wherein when one of the objects is a solid, the partition wall is formed integrally with the solid.
【請求項5】 前記物体がガス同志である場合には,一
方の前記ガスが流れる入口と出口とを備えたガス管,他
方のガスが流れる前記ガス管内に配置された前記隔壁を
構成する金属製筒体,及び前記ガス管を貫通し且つ前記
筒体にそれぞれ設けられた入口管と出口管を有し,前記
筒体内には前記金属多孔質部材が配設されると共に,前
記筒体の外周面には前記金属多孔質部材から形成された
フィンが立設され,前記フィンと前記金属多孔質部材と
は前記筒体の壁面に前記接合金属材による拡散接合によ
って互いに接合されていることを特徴とする請求項1又
は2に記載の熱交換器。
5. A metal constituting a gas pipe having an inlet and an outlet through which one of the gases flows, and the partition wall arranged in the gas pipe through which the other gas flows, when the objects are gases. A cylindrical body, and an inlet pipe and an outlet pipe penetrating the gas pipe and provided in the cylindrical body, respectively. The metallic porous member is disposed in the cylindrical body, and A fin formed of the metal porous member is erected on the outer peripheral surface, and the fin and the metal porous member are joined to each other on the wall surface of the cylindrical body by diffusion joining with the joining metal material. The heat exchanger according to claim 1 or 2, which is characterized.
【請求項6】 前記筒体内には前記隔壁を構成する金属
平板が長手方向に延びており,前記金属平板と前記筒体
内に配置された前記金属多孔質部材とは前記接合金属材
によって互いに接合されていることを特徴とする請求項
5に記載の熱交換器。
6. A metal flat plate forming the partition wall extends in the longitudinal direction in the cylinder, and the metal flat plate and the metal porous member arranged in the cylinder are bonded to each other by the bonding metal material. The heat exchanger according to claim 5, wherein the heat exchanger is provided.
【請求項7】 前記フィンは前記筒体の外周面に櫛歯状
に間隔を置いて立設し,前記ガスの通過接触面積が大き
く形成されていることを特徴とする請求項5又は6に記
載の熱交換器。
7. The fins are erected on the outer peripheral surface of the cylindrical body at intervals in a comb-like shape with a large contact area for passing the gas. The heat exchanger described.
【請求項8】 前記金属多孔質部材と前記金属平板の接
合面は,前記金属多孔質部材の面を研削加工し,前記金
属多孔質部材の切削加工面に金属が良く馴染むような前
記接合金属材を塗布し,前記金属多孔質部材を前記筒体
内に配置し,1050℃〜1150℃の真空槽内で前記
金属多孔質部材と前記筒体とを押圧接合したことを特徴
とする請求項5〜7のいずれか1項に記載の熱交換器。
8. The joining surface of the metal porous member and the flat metal plate is such that the surface of the metal porous member is ground and the metal is well fitted to the cut surface of the metal porous member. 6. A material is applied, the metallic porous member is arranged in the cylindrical body, and the metallic porous member and the cylindrical body are pressure-bonded to each other in a vacuum chamber at 1050 ° C. to 1150 ° C. The heat exchanger according to claim 1.
【請求項9】 前記ガス管の外側には熱的遮熱機能を有
する真空層を形成する外側管で覆われていることを特徴
とする請求項5〜8のいずれか1項に記載の熱交換器。
9. The heat according to claim 5, wherein the outer side of the gas pipe is covered with an outer pipe forming a vacuum layer having a thermal heat shield function. Exchanger.
【請求項10】 前記ガス管を流れる前記ガスは排気ガ
スであり,また,前記筒体内を流れる流体は天然ガスで
あり,前記天然ガスが前記筒体内を流れることによって
2 とCOとに熱分解されて改質燃料に改質されること
を特徴とする請求項5〜9のいずれか1項に記載の熱交
換器。
10. The gas flowing through the gas pipe is exhaust gas, the fluid flowing through the cylinder is natural gas, and the natural gas flows through the cylinder to generate H 2 and CO. The heat exchanger according to claim 5, wherein the heat exchanger is decomposed and reformed into a reformed fuel.
【請求項11】 前記ガス管は排気マニホルドであり,
前記筒体は前記排気マニホルドの分岐管と集合管との境
界の集合部内に配置されていることを特徴とする請求項
5〜10のいずれか1項に記載の熱交換器。
11. The gas pipe is an exhaust manifold,
The heat exchanger according to any one of claims 5 to 10, wherein the cylindrical body is arranged in a collecting portion at a boundary between a branch pipe and a collecting pipe of the exhaust manifold.
【請求項12】 前記金属多孔質部材の表面には,熱伝
導率の大きい銀,銅,アルミニウム等の金属がコーティ
ングされていることを特徴とする請求項1〜11のいず
れか1項に記載の熱交換器。
12. The surface of the metal porous member is coated with a metal having a high thermal conductivity, such as silver, copper, or aluminum, according to any one of claims 1 to 11. Heat exchanger.
【請求項13】 前記物体が高温液体及びガスの場合に
は,前記金属多孔質部材はニッケル,クローム,鋼等の
成分を主成分する金属から構成され,また,前記物体が
水等の液体の場合には,前記金属多孔質部材はアルミニ
ウム,銅等の金属,又はニッケルやクロム材にアルミニ
ウムが被覆された金属から構成されていることを特徴と
する請求項1に記載の熱交換器。
13. When the object is a high temperature liquid or gas, the metal porous member is composed of a metal containing a component such as nickel, chrome or steel as a main component, and the object is a liquid such as water. In this case, the heat-exchanger according to claim 1, wherein the metal porous member is made of a metal such as aluminum or copper, or a metal of nickel or chrome material coated with aluminum.
【請求項14】 前記金属多孔質部材の表面にはアルミ
ニウムを付着させ,前記表面を酸化処理させ,前記表面
にプラチナ,パナジウム,ニッケル,ルテニウム,酸化
アルミニウム等の触媒金属の微粒子を付着させたことを
特徴とする請求項1〜13のいずれか1項に記載の熱交
換器。
14. Aluminum is adhered to the surface of the metal porous member, the surface is oxidized, and fine particles of a catalytic metal such as platinum, vanadium, nickel, ruthenium, and aluminum oxide are adhered to the surface. The heat exchanger according to any one of claims 1 to 13, characterized in that.
【請求項15】 前記接合金属材は,ニッケルが55w
t%,クロームが25wt%,アルミニウムが10wt
%,及びシリカが10wt%から成る合成粉末で構成さ
れていることを特徴とする請求項1〜14のいずれか1
項に記載の熱交換器。
15. The joining metal material comprises 55 w of nickel.
t%, chrome 25wt%, aluminum 10wt
%, And silica composed of 10 wt% of synthetic powder.
The heat exchanger according to item.
JP2002035732A 2002-02-13 2002-02-13 Heat exchanger Pending JP2003240473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002035732A JP2003240473A (en) 2002-02-13 2002-02-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002035732A JP2003240473A (en) 2002-02-13 2002-02-13 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2003240473A true JP2003240473A (en) 2003-08-27

Family

ID=27777836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002035732A Pending JP2003240473A (en) 2002-02-13 2002-02-13 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2003240473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207968A (en) * 2005-01-31 2006-08-10 Denso Corp Heat transfer device
JP2013545922A (en) * 2010-11-11 2013-12-26 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Fuel reformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207968A (en) * 2005-01-31 2006-08-10 Denso Corp Heat transfer device
JP2013545922A (en) * 2010-11-11 2013-12-26 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Fuel reformer

Similar Documents

Publication Publication Date Title
KR101720571B1 (en) Thermoelectric-based power generation systems and methods
JP5066139B2 (en) Thermoelectric generator with improved energy conversion efficiency using convective heat flow
JP4479117B2 (en) Fuel reformer
US20070028860A1 (en) Recuperative reforming reactor
JP2000513690A (en) Small hydrocarbon fuel gas reformer assembly
KR970705195A (en) Gas or steam turbine power system (ULTRA-HIGH EFFICIENCY TURBINE AND FUEL CELL COMBINATION)
US7059130B2 (en) Heat exchanger applicable to fuel-reforming system and turbo-generator system
JP4905877B2 (en) Cogeneration system and operation method thereof
JP2002238272A (en) Generating station utilizing high-temperature exhaust heat
JP2003240473A (en) Heat exchanger
EP2384395B1 (en) Energy recovery system for an internal combustion engine
JPH116602A (en) Structure of heat exchanger
EP0884550A2 (en) Heat exchanger, heat exchange apparatus comprising the same, and heat exchange apparatus-carrying gas engine
US20100316919A1 (en) Fuel cell stack with heat recuperator
EP1418397B1 (en) Heat exchanger applicable to fuel-reforming system and turbo-generator system
JP2006329500A (en) Structure of water heater
JP4202093B2 (en) Turbine power generation system incorporating a heat exchanger having a porous metal member
JP4777536B2 (en) Porous thermoelectric generator
JP2005002928A (en) Method for cooling high temperature part of gas turbine and gas turbine using the same
JPS59125396A (en) Heat exchanger
JP2023176697A (en) Hydrogen production apparatus
JP3365862B2 (en) Gas turbine device with air-cooled tube nest combustion type combustor
JPH116601A (en) Gas engine having heat-exchange device and energy recovering device incorporating heat-exchange device
JP2001183076A (en) Structure of heat exchanger
JP2885074B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Effective date: 20070522

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821