JP4202093B2 - Turbine power generation system incorporating a heat exchanger having a porous metal member - Google Patents

Turbine power generation system incorporating a heat exchanger having a porous metal member Download PDF

Info

Publication number
JP4202093B2
JP4202093B2 JP2002325052A JP2002325052A JP4202093B2 JP 4202093 B2 JP4202093 B2 JP 4202093B2 JP 2002325052 A JP2002325052 A JP 2002325052A JP 2002325052 A JP2002325052 A JP 2002325052A JP 4202093 B2 JP4202093 B2 JP 4202093B2
Authority
JP
Japan
Prior art keywords
steam
water
metal
porous member
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002325052A
Other languages
Japanese (ja)
Other versions
JP2004156565A (en
Inventor
英男 河村
Original Assignee
フジセラテック株式会社
財団法人シップ・アンド・オーシャン財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フジセラテック株式会社, 財団法人シップ・アンド・オーシャン財団 filed Critical フジセラテック株式会社
Priority to JP2002325052A priority Critical patent/JP4202093B2/en
Priority to AT03257048T priority patent/ATE442566T1/en
Priority to DE60329154T priority patent/DE60329154D1/en
Priority to EP03257048A priority patent/EP1418397B1/en
Priority to US10/703,520 priority patent/US7059130B2/en
Publication of JP2004156565A publication Critical patent/JP2004156565A/en
Application granted granted Critical
Publication of JP4202093B2 publication Critical patent/JP4202093B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は,エンジン,燃焼器等の熱源から排出される排気ガスが持つ熱エネルギを動力に変換するため金属多孔質部材を流体通路に配設した熱交換器を組み込んだタービン発電システムに関する。
【0002】
【従来の技術】
従来,エンジン,燃焼器等の熱源から排出される排気ガスが持つ熱エネルギ等を動力に変換するためには,排気タービンを用いて熱回収する方法が一般的である。特に,エンジンの排気管に連結して用いられるターボコンパウンド方式では,蒸気タービンを用いる方法が一般的に使われる。エンジンに排気タービンを連結する場合には,排気タービンの入口圧力を余り上昇させると,エンジンの排気行程に負荷がかかり過ぎ,かえって動力損失を招くことになる。従って,排気タービンには,余り大きな入口圧力を与えず,動力変換させるためには,蒸気力を用いることが効果的である。
【0003】
また,ガス通路にセラミック製多孔質部材を配置した熱交換装置は,エンジンからの排気ガスで蒸気を加熱する排気通路に設けられた第1段熱交換器と第2段熱交換器から成る。第1段熱交換器は,第1ケーシング内に配置された蒸気が流れる蒸気通路と,蒸気通路に配置された排気ガスが流れる排気ガス通路とから構成されている。第2段熱交換器は,第1ケーシングの下方に設けられた第2ケーシング内に配置された水を貯留できる水・蒸気通路と,水・蒸気通路の周りに配置された排気ガスが流れる排気ガス通路とから構成されている。各通路には,多孔質セラミック部材が配置されている(例えば,特許文献1参照)。
【0004】
また,ランキンサイクルとして,水を水蒸気に変換する蒸気発生装置,該蒸気発生装置で発生した水蒸気で駆動される蒸気タービン,該蒸気タービンから排出される水蒸気を水に復水させるコンデンサ,及び該コンデンサから排出される水を蒸気発生装置へ送還するポンプから成るものが知られている。該ランキンサイクルにおけるコンデンサは,蒸気タービンから排出された水蒸気が流入する流体通路を形成し且つ永久磁石から成る回転子を設けた内筒,該内筒内の流体通路に配置された第1多孔部材,上記内筒の外側に取り付けられたスパイラル状に延びるフィン部から成る第2多孔部材,及び該第2多孔部材のフィン部と該フィン部に隣接した領域で形成される空気通路を形成するように上記内筒を回転自在に支持し且つ回転子に対応したステータを備えた外筒から構成されている(例えば,特許文献2参照)。
【0005】
また,エンジンからの排気ガスを排出する排気通路に設けられたターボチャージャの後流に熱交換器を持つエネルギ回収装置を設けたものが知られている。該エネルギ回収装置は,熱交換装置で発生した高温の蒸気によって蒸気タービンを駆動し,蒸気タービンに設けた発電機によって発電するのに適用されている。エネルギ回収装置を備えたガスエンジンは,天然ガス等のガス体を燃料とし,例えば,コージェネレーションシステムに適用できるものであり,熱交換器を組み込んだ熱交換装置を備えており,CH4 を主成分とする天然ガス燃料を収容した燃料タンク,ガス燃料を燃焼室の副室へ供給する燃料加圧ポンプ,ターボチャージャの後流の排気通路に設けられた第1熱交換器,第1熱交換器で発生した蒸気によって駆動される蒸気タービン,及び第1熱交換器の後流に設けられ且つ蒸気タービンから排出される流体(低温蒸気と水)を蒸気に変換して該蒸気を第1熱交換器に供給する第2熱交換器を有し,蒸気タービンで駆動される発電機は,タービンの回転力を電力として取り出して排気ガスエネルギを電気エネルギとして回収するものである(例えば,特許文献3参照)。
【0006】
【特許文献1】
特開平11−6601号公報(第1頁,図1)
【特許文献2】
特開平11−51582号公報(第1,2頁,図1)
【特許文献3】
特開平11−6602号公報(第5,6頁,図4)
【0007】
【発明が解決しようとする課題】
しかしながら,上記のように,熱交換器にセラミックス製多孔質部材を用いると,セラミックスは衝撃荷重に弱く,多孔質部材として製作すると破損し易い欠点がある。また,上記のようなランキンサイクルに設けたコンデンサでは,放熱するフィン部の熱交換面積が大きく,簡単にエンジンに取り付けられない欠点がある。更に,上記のようなエネルギ回収装置では,排気タービンと蒸気タービンとが独立した別機器として取り付けられているので,構造が複雑になり製造コストが高くなり,実用性に乏しいものである。ところで,エンジン,燃焼器等の熱源から排出される排気ガスが持つ熱エネルギ等を動力に変換するため,蒸気タービンを用いる場合には,蒸気力は,蒸気圧力を大幅に上昇させるより,蒸気タービンの出口側に熱交換器を接続し,該熱交換器によって蒸気温度を下げ,水滴化させ,圧力を0.05kg/cm2 以下に低減させることが,蒸気タービンの効率向上に寄与する。従って,蒸気タービンの出口側に効率の良い熱交換器即ちコンデンサを接続し,蒸気を水に変換するシステム化が必要である。また,上記のように,熱交換器にセラミックス製多孔質部材を用いると,セラミックスは衝撃荷重に弱く,多孔質部材として製作すると破損し易い欠点がある。
【0008】
また,エンジンから排出される排気ガスが有する熱エネルギーを回収するシステムは,高効率の熱交換器を用いることが有効である。即ち,遮熱形ターボコンパウンドエンジンとして,燃料を天然ガスとし,燃焼室を遮熱構造とした場合に,該エンジンにおいて,燃料エネルギを最大限に動力に変換して利用するには,排気ガスの熱エネルギを最大限に活用し,動力に変換しなければならない。熱交換器として,ガスとガスとの間での熱交換では,その熱交換効率が重要であり,熱交換効率が良いほど熱の利用率がよく,全体の熱効率も良くなる。熱交換器の性能では,作動流体の熱伝達率と熱伝導率とが影響し,スムーズに熱を移動させるためには,その抵抗が小さい方が良い。
【0009】
近年,耐熱金属を発泡体とし,金属多孔質部材を形成する研究が進み,その用途として,フィルタ等が良いとして,多くの研究が進んでいる。金属多孔質部材は,三次元的に金属が絡まって交差しているので,同一体積あたりの外表面積はフィンに比較し,6倍程度大きいものである。そこで,金属多孔質部材を2つの作動流体を分離する隔壁の金属平板に接合し,隔壁によって受熱領域と放熱領域とに区画し,受熱領域に一方のガス等の作動流体を通過させれば,作動流体は多孔質材料の隙間をその面に衝突接触しながら通過し,流体が持つ熱を金属多孔質部材の固体に伝達する。固体に伝達された熱は隔壁の金属平板に伝導され,他方の作動流体に熱を移動させることになる。
【0010】
そこで,熱交換器において,流体通路に金属多孔質部材を配設し,金属多孔質部材を熱交換面に持つことにより,高効率の熱交換器が構成される。エンジンの排気ガスの熱エネルギを再利用するために,排気ガスの熱エネルギを蒸気に変換したり,使用済みの蒸気を水に戻したりするためには,効率の良い熱交換器が必要である。熱交換器の伝熱について,理論的に考察すると,高温ガスから固体への熱移動は,ガス体の熱伝達率が大きい程,多量の熱が伝熱される。ガス体の熱伝達率は,流速と動粘度の関数であるレイノルズ数,ガス物性値特性を示すプラントル数,熱伝導率,レイノルズ数の関数であるヌセルト数によって決まる。
これを数式で示すと,次の通りである。
αg1 =Nu・λ/X
Nu=K・Rem ・Prn
Re=U・X/ν
但し,αg1 :熱伝達率,Nu:ヌセルト数,λ:熱伝導率,K:定数,Re:レイノルズ数,Pr:プラントル数,U:代表速度,ν:動粘度,X:代表長さ。
ここで,熱伝達率を数式で考えると,最も大きな影響を与える要素は,レイノルズ数であり,レイノルズ数は,速度の関数であると言って差し支えない。固体表面に流れる流体では,固体の表面の流れがゼロであり,固体の表面から遠くなるに従って流体の流速が大きくなるので,固体表面の近傍の流量特性を関数として,レイノルズ数が決まる。
【0011】
また,気体から固体への熱伝達を増加させるには,次の条件が考えられる。
1.気体と固体との間で,固体の気体への接触面積を増加させること。
2.気体流れの中に固体が広く分散し,網目状に分布していること。
3.集熱部分から伝熱される熱伝導部分は,熱伝導率の大きな材料で構成され,多くの熱を熱交換器の流体間の隔壁に伝熱されること。
4.集熱材と隔壁は固体として確実に接合され,熱を効果的に伝熱すること。
5.伝熱された熱は,固体の熱放散体を通って効果的に熱放散すること。
上記1〜上記5の条件を満たす構造を概念図で示すと,図1に示すような原理図になる。
【0012】
熱伝達・伝導体では,気体の速度を大きくして,レイノルズ数を大きくし,伝熱量を増大させるよりは,気体の速度を余り上げずに,固体の伝達面積を大きくした方が熱を大きく移動させることができる。
図3及び図4を参照して,熱交換器における受熱と放熱とを伝達計算で求めると,次のとおりである。
図4に示すように,フィン3を備えた円形の管4で形成される通路を備えた熱交換器における熱伝達量Qは,次の式のように熱通過率K(単位:W/m2 ・K)に関係している。
Q=K・Ar ・ΔT
但し,Q:熱伝達量,K:熱通過率,Ar :基準面積,ΔT:温度差。
【0013】
また,図4に示すように,フィン3を備えた管4の内外に形成された受熱側と放熱側との通路が形成されている熱交換器における熱通過率Kは,次の一般式1で示される。

Figure 0004202093
但し,hi :内径側熱伝達率(W/m2 ・K),ho :外径側熱伝達率(W/m2 ・K),λ:管の熱伝導率(W/m・K),di :管の内径(m),do :管の外径(m),Af :管の内側のフィン部面積(m2 ),φf :フィン効率,Ab :フィン間の外周面積(m2 ),Ar :基準面積(フィンの1ピッチ間の外周面積,m2 ),ln :
natural logarithm.。
また,上記式1において,ln (do/di )の項は,管4のdo とdi とが大きく異なる場合に,〔di /2〕ln (do/di )で修正している。また,フィン付き管4では,di /do (Af φf +Ab )/Ar で修正している。その理由は,伝熱面積が基準に対して大幅に変化するからである。
また,管4のdo とdi とが余り変わらない場合には,熱通過率Kは,次の一般式2で示される。
Figure 0004202093
【0014】
上記のことから,熱交換効率の基本的な原理を図3を参照して説明すると,次のとおりである。図3では,熱交換器を構成する受熱領域7と放熱領域8とが隔壁2で区画され,受熱領域7には高温ガスGAが流れ,放熱領域8には低温ガスGBが流れるように構成されている。受熱領域7と放熱領域8には,隔壁2に接合層9によって一体構造に接合された1本の足部5に複数の枝部6が一体構造に構成されており,これらの足部5と枝部6が複雑に多数集まって金属多孔質部材1が構成されるものである。通常,熱通過率Kは,伝熱側,受熱側の熱伝達率の係数で決まるが,作動流体を分離する隔壁2の外面にフィン3(図4),金属多孔質部材1等を付けた熱交換器では,面積効果を考慮して計算すると,実験値と一致する。従って,熱交換器において,受熱側,放熱側の面積を増加するように,図3に示す基本原理の構造を用いると,1本の足部5に対して,四方に拡散されている枝部6が受熱面積となり,熱通過率は3〜5倍に増加させることができる。従って,熱交換器において,熱通過率をアップさせるため,流体が接触する面積を如何に大きくし,特に,流体を区画した隔壁との接合に如何に一体構造に構成するかの課題があり,また,このような熱交換器をタービン発電システムに如何に組み込むかによって,蒸気タービンを持つランキンサイクルを高効率に構成できるかの課題がある。
【0015】
【課題を解決するための手段】
この発明の目的は,上記の課題を解決するため,排気ガスが有する熱エネルギを高効率に回収して電力や動力として有効に利用するため,排気管に熱交換器を組み込んだランキンサイクルを利用し,該熱交換器として排気ガス等の流路に配置した金属多孔質部材を流体流れを区画する隔壁に一体構造に接続させ,金属多孔質部材と隔壁とを物理的に連続して接合し,排気ガスから受熱領域で受熱した熱エネルギを放熱領域に伝達させて放熱させ,熱通過率を3〜5倍に増加させて熱交換効率をアップすることを特徴とする金属多孔質部材を有する熱交換器を組み込んだタービン発電システムを提供することである。
【0016】
この発明は,エンジン,燃焼器等の熱源から排出される排気ガスによって駆動される排気タービン,前記排気タービンから排出される排気ガスの熱エネルギによって高温水蒸気を発生させる金属多孔質部材を設けた第1熱交換器,前記第1熱交換器で発生した高温水蒸気で駆動される蒸気タービン,前記排気タービンと前記蒸気タービンとを両端に設けた軸に設置された発電機,前記蒸気タービンから吐き出される水蒸気を冷却して水滴化するため蒸気管に金属多孔質部材を設けたコンデンサ,前記コンデンサで発生した水を前記第1熱交換器へ送り込むための水ポンプ,及び前記水ポンプと前記第1熱交換器との間に組み込まれ且つ前記熱源を循環して加熱された熱源循環用オイルによって前記水ポンプで送り込まれた前記水を加熱して水蒸気に変換する第2熱交換器を有し,
前記第1熱交換器は,前記排気ガスが通過する前記金属多孔質部材が配設された外筒,及び前記外筒内に配置され且つ前記水蒸気が通過する前記金属多孔質部材が配設された内筒を有し,前記外筒内に配設された前記金属多孔質部材と前記内筒の外壁とが接合され且つ前記内筒の内壁と前記金属多孔質部材とが溶融金属により接合されていることから成るタービン発電システムに関する。
【0017】
前記第1熱交換器における前記外筒と前記内筒に配設された前記金属多孔質部材と前記外筒と前記内筒とを遮蔽する隔壁とは,金属粉末とろう材とを練り合わせた板状ペーストを前記金属多孔質部材に埋め込んだ接合層で溶着することによって前記金属多孔質部材と前記隔壁とは互いに溶着接合されている。
【0018】
前記外筒の外周側には断熱材が配設され,前記外筒に配設された前記金属多孔質部材の多孔質材の粗度が前記内筒に配設された前記金属多孔質部材の多孔質材の粗度より大きく形成されている。また,前記内筒は,前記水蒸気の出口側の流速をアップするため,入口側の通路断面積より出口側の通路断面積が小さく形成されている。
【0019】
前記蒸気タービンと前記コンデンサとを連通する導管には,前記蒸気タービンから排出された前記水蒸気を冷却するため金属多孔質部材又はフィンが配設されている。また,前記コンデンサは,隔壁で区画され且つ金属多孔質部材が配設された内側の水タンクと外側の放熱空気又は水通路,及び前記蒸気タービンから吐出された前記水蒸気が送り込まれ且つ前記水タンクに挿入された蒸気管から構成されている。
【0020】
前記コンデンサの前記水タンクに配設された前記金属多孔質部材は,前記蒸気管が嵌入し,放熱空気又は水との隔壁に接合された多段の多孔質平板部材から成り,前記蒸気管からの前記水蒸気は,前記水タンクの水中に吹き出されて前記多孔質平板部材を通過しながら熱交換される。
【0021】
前記コンデンサは,前記蒸気タービンから吐き出される水蒸気を冷却するため,前記隔壁に接合された金属多孔質部材を前記放熱空気又は水通路に設けており,ブロワからの空気を通過させる空冷機構又は冷却水を通過させる水冷機構に構成されている。
【0022】
前記コンデンサの前記水タンクに配設さた前記金属多孔質部材は,銀,銅,アルミニウム等の耐腐食性金属がメッキされたニッケル製多孔質材から成り,前記コンデンサの前記放熱空気又は水通路に配設された前記金属多孔質部材は,多孔質金属にアルミニウム等の金属がメッキされたニッケルを主成分とした多孔質金属材から構成されている。
【0023】
このタービン発電システムは,上記のように構成したので,即ち,金属多孔質部材を有する熱交換器と蒸気タービンとをランキンサイクルに組み込み,熱交換器として排気ガス等の流体通路を区画する隔壁に金属多孔質部材を接合層を通じて一体構造に接合し,また,排気管下流の熱交換器によって蒸気タービンへ流入する蒸気速度と蒸気温度を上げ,特に,蒸気タービンの出口側の蒸気温度を熱交換器即ちコンデンサで下げて蒸気を水滴化して圧力を低減させたので,蒸気タービンを高効率に駆動することができ,例えば,発電機を駆動して電気エネルギとして回収でき,排気ガスが有する熱エネルギを動力,電力に高効率に変換し,熱効率を向上させることができる。
【0024】
【発明の実施の形態】
以下,図面を参照して,この発明による金属多孔質部材を有する熱交換器を組み込んだタービン発電システムの実施例を説明する。図1及び図2を参照して,この発明によるタービン発電システムを説明する。
【0025】
このタービン発電システムは,図1に示すように,エンジンや燃焼器の熱源20から排出される排気ガスの熱エネルギを電力や動力に変換するため,高効率の蒸気タービンを提供するものであり,特に,タービンの入口圧力を余り上昇させないでエンジン20の排気行程に負荷がかかり過ぎて動力損失を受けないように構成するため,排気タービン21に余り大きな入口圧力を与えず,排気ガスの熱エネルギを第1熱交換器24を用いて蒸気力に変換し,更に,蒸気圧力を上昇させるが,蒸気タービン22を高効率に駆動するため,蒸気タービン22の出口側に熱交換器即ちコンデンサ(復水器)25を設け,コンデンサ25の機能によって蒸気温度を下げて水滴化させ,例えば,0.05kg/cm2 以下の圧力に低減させ,蒸気タービン22の効率を向上させたものである。
【0026】
このタービン発電システムは,図1に示すように,熱源20から排気管45を通じて排出される排気ガスEGによって駆動される排気タービン21,排気タービン21から排出される排気ガスEGの熱エネルギによって高温水蒸気を発生させる金属多孔質部材1を設けた第1熱交換器24,第1熱交換器24で発生した高温水蒸気SGを蒸気通路46を通じて送り込んで駆動される蒸気タービン22,及び排気タービン21と蒸気タービン22とを両端に設けた軸に設置され且つ排気タービン21と蒸気タービン22とによって駆動される発電機23を有する。このタービン発電システムは,更に,蒸気タービン22から蒸気通路の導管36を通じて吐き出される水蒸気SGを冷却して水滴化するため蒸気管26に金属多孔質部材34を設けたコンデンサ25,コンデンサ25で発生した水Wを第1熱交換器24へ送り込むための水ポンプ27,及び水ポンプ27と第1熱交換器24との間に組み込まれ且つ熱源20を循環して加熱された熱源循環用オイルOによって水ポンプ27で送り込まれた水Wを加熱して水蒸気に変換する第2熱交換器28を有している。ここでは,ランキンサイクルは,主として,第1熱交換器24,蒸気タービン22,水ポンプ27,及び第2熱交換器28で構成されている。
【0027】
第1熱交換器24は,図2に示すように,排気ガスEGが通過する金属多孔質部材31が配設された外筒29,外筒29内に配置され且つ水蒸気SGが通過する金属多孔質部材32が配設された内筒30,及び外筒29と内筒30とを遮蔽し且つ金属多孔質部材31,32の多数の足部が接合された隔壁33を有するものである。ここで,隔壁33は,内筒30の筒体によって構成されている。第1熱交換器24における外筒29と内筒30に配設された金属多孔質部材31,32と隔壁33とは,金属粉末とろう材とを練り合わせた板状ペーストを金属多孔質部材31,32に埋め込んだ接合層を焼結することによって,金属多孔質部材31,32と隔壁33とは一体構造に互いに接合されている。
【0028】
また,第1熱交換器24における外筒29の外周側には,断熱材41が配設され,断熱材41は,排気ガスEGが持つ熱エネルギが外部に放熱するのを防止している。また,外筒29に配設された金属多孔質部材31の多孔質材の粗度は,内筒30に配設された金属多孔質部材32の多孔質材の粗度より大きく形成され,排気ガスEGのスムーズな流れを確保し,エンジン20に排圧損失が負荷されないように構成されている。また,内筒30は,水蒸気SGの出口側の流速をアップさせ,レイノルズ数を大きくし,熱伝達率を大きくするため,入口15側の通路断面積より出口16側の通路断面積が小さく形成されるようにテーパ通路壁35が中央に挿通されている。この場合に,水蒸気SGは,内筒30を通過することによって蒸気速度がアップするが,内筒30の出口16から蒸気通路46へ流れ出た時に,蒸気が膨張して蒸気速度が低下しないように,蒸気通路46の通路断面積を出口16側の通路断面積に等しくなるように設計することが好ましい。図2では,水蒸気SGがテーパ通路壁35の外側に沿って流れる形状に形成されているが,テーパの形状を上下逆にして水蒸気SGがテーパ通路壁(図示せず)の内部を流れ,蒸気通路46に連通するように構成することもできる。また,水蒸気SGは,湿り蒸気であるので,図2に示すように,第1熱交換器24の入口側の蒸気通路48にノズル52を設け,ノズル52の噴口53から水滴部を噴出させて該水滴部を微細化させ,第1熱交換器24での熱交換効率を向上させることができる。
【0029】
また,このタービン発電システムでは,蒸気タービン22とコンデンサ25とを連通する導管36には,蒸気タービン22から排出された水蒸気SGを冷却するため金属多孔質部材37が配設されている。
【0030】
コンデンサ25は,隔壁38で区画され且つ金属多孔質部材34,17が配設された内側の水タンク39と外側の放熱空気又は水通路40,及び蒸気タービン22から吐出された水蒸気SGが送り込まれ且つ水タンク39に挿入された蒸気管26から構成されている。更に,コンデンサ25の水タンク39に配設された金属多孔質部材34は,蒸気管26が嵌入する多段の多孔質平板部材42から構成されており,隔壁38と接合されている。蒸気管26からの水蒸気SGは,水タンク39の水中に吹き出されて多孔質平板部材42を通過しながら熱交換され,水滴化されるように構成されている。隔壁38の外側には,金属多孔質部材17を取り付け,放熱空気又は水通路40の放熱面積を増加させた構造に構成されている。
【0031】
また,コンデンサ25は,蒸気タービン22から吐き出される水蒸気SGを冷却するため,放熱空気又は水通路40に対してブロワ43からの空気を通過させる空冷機構,又は冷却水を通過させる水冷機構(図示せず)に構成されている。コンデンサ25の水タンク39に配設さた金属多孔質部材34は,銀,銅,アルミニウム等の耐腐食性金属がメッキされたニッケル製多孔質材から構成されている。また,コンデンサ25の放熱空気又は水通路40に配設された金属多孔質部材17は,多孔質金属にアルミニウム等の金属がメッキされたニッケルを主成分とした多孔質金属材から構成されている。
【0032】
このタービン発電システムでは,蒸気タービン22と排気タービン21は回転軸(図示せず)の両端に設けられ,回転軸の中間には発電機23の永久磁石部材から成る回転子(図示せず)が取り付けられている。また,発電機23で発電された電力の一部は,熱源20へ空気を供給するため,導線50を通じてコンプレッサ用モータ44に供給され,モータ44及びエンジン駆動軸即ちクランク軸に設けたモータ(図示せず)を駆動するのに消費されるように構成されている。即ち,排気ガスEGで駆動される排気タービン21と,第1熱交換器24で排気ガスEGとの熱交換によって発生した水蒸気SGによって駆動される蒸気タービン22とは,回転軸のシャフトの両端に設けられ,シャフトは排気ガスエネルギと蒸気エネルギで回転駆動され,その回転力は発電機23によって電力として回収される。
【0033】
また,このタービン発電システムにおいて,第2熱交換器28は,エンジン20を循環して加熱されたオイルを冷却する機能を有すると共に,ランキンサイクルにおける水Wを水蒸気SGに変換する機能を兼ね備えている。即ち,エンジン循環用のエンジンオイルや潤滑油のオイルOは,エンジン20から第2熱交換器28にオイル通路49を通って送り込まれ,冷却されたオイルOがオイル通路49を通って再びエンジン20に送り込まれる。また,水ポンプ27からの水Wは,第2熱交換器28に冷却水として水通路47を通って供給され,冷却水は加熱されて低温の水蒸気となって蒸気通路48を通って第1熱交換器24へ送りこまれ,高温の排気ガスEGによって高温の水蒸気SGとなって蒸気通路46を通って蒸気タービン22へ送り込まれる。
【0034】
次に,図5〜図8を参照して,このタービン発電システムに組み込んだ熱交換器の基本的な構成について説明する。熱交換器は,図5に示すように,温度の互いに異なる流体,即ち,高温の流体GAが受熱領域7を流れ,低温の流体GBが放熱領域8を流れ,受熱領域7から放熱領域8へ熱移動させるものであり,例えば,第1熱交換器24では,流体GAは燃焼器やエンジンの熱源20から放出された高温の排気ガスEGであり,また,流体GBは水蒸気SGである低温の流体である。また,コンデンサ25では,流体GAは蒸気タービン22から放出された水蒸気SGであり,また,流体GAは空気である。更に,第2熱交換器28では,流体GAは熱源20を循環したオイルであり,また,流体GBは水Wを水蒸気SGに変換する流体である。
【0035】
熱交換器は,図5に示されるように,受熱領域7と放熱領域8とが金属製隔壁2によって互いに遮蔽され,受熱領域7と放熱領域8とがに金属多孔質部材11,12(総称は符号1)が配設されている。金属多孔質部材1は,金属多孔質部材1の多数の足部5を通じて接合層9,10を介して熱伝導率の良好な金属製の隔壁2に接合されている。足部5には,図7に示すように,多数の枝部6が一体構造に分岐している。また,足部5の断面積は,それぞれ異なっており,受熱領域7側と放熱領域8側とで変更させることもできる。
【0036】
熱交換器は,特に,金属多孔質部材1の表層には,金属粉末とろう材とを練り合わせた板状ペーストを埋め込んで形成された接合層9,10が形成され,金属多孔質部材1に設けられた接合層9,10が隔壁2上に密接して配設され,金属多孔質部材1と隔壁2とが接合層9,10が焼結されることによって互いに接合されていることを特徴としている。ここで,板状ペーストを構成する金属粉末は,銀,ニッケル,銅,亜鉛等の高熱伝導率を有し,耐腐食性,耐熱性に富んだ金属材料である。
【0037】
金属多孔質部材1は,ニッケル,銅,アルミニウム等の金属から成る。また,隔壁2は,ニッケル,銅等の高熱伝導率の金属から成る。更に,接合層9,10に含有された金属粉末は,銀,ニッケル,銅,亜鉛等の耐熱性で高熱伝導率の金属から成る。また,接合層9,10は,隔壁2を挟んで一方の金属多孔質部材11に埋め込まれた高温耐熱性の第1接合層9と,他方の金属多孔質部材12に埋め込まれ且つ第1接合層9より100℃程低い温度の耐熱性の第2接合層10とから構成され,そのため,第1接合層9は,第2接合層10より焼結温度が高くなるように材料が選択されている。隔壁2への金属多孔質部材11,12との接合は,まず,金属多孔質部材11に押し込んだ第1接合層9を隔壁2に密接して配置し,第1接合層9を高い温度で焼結することによって金属多孔質部材11と隔壁2とを焼結された第1接合層9で接合し,次いで,金属多孔質部材12に押し込んだ第2接合層10を隔壁2に密接して配置し,第2接合層10を低い温度で焼結することによって,焼結された第1接合層9を破壊することなく,金属多孔質部材12と隔壁2とを焼結された第2接合層10で接合することができる。場合によっては,隔壁2の両側に金属多孔質部材1を密接して配置し,同一の焼結温度によって同時に接合することもできる。その際には,第1接合層9と第2接合層10とは,同程度の温度の耐熱性の材料,或いは同一材料で作製することも可能である。
【0038】
金属多孔質部材11の表面には,熱伝導率の大きい銅,銀等の金属がメッキ又はデッピング,蒸着等のコーティングによって施されている。また,金属多孔質部材12の表面には,例えば,天然ガスを熱分解するため,アルミナ,ジルコニア等のセラミックスがコーティングされ,また,セラミックスの表面にはプラチナ,パナジウム,ニッケル,ロジウム,ルテニウム,酸化アルミニウム等の触媒が付着されて触媒層13が設けられている。また,金属多孔質部材11,12の表面にアルミニウムコーティングを行って,アルミニウム層を形成した場合には,アルミニウム層を熱処理し,結晶相としてのコランダムであるαアルミナを析出させる。それによって,金属多孔質部材11,12は,強度をアップし,耐酸化性を向上させると共に,表面に多数の凹凸や気孔を形成して表面積を増大させ,熱交換効率をアップする。
【0039】
更に,金属多孔質部材11,12の表層には,図7に示すように,熱伝導率の大きい銅,銀,アルミニウム等のメッキ層51が施され,メッキ層51の厚さが接合層9,10において徐々に変化している。更に,金属多孔質部材11,12へのメッキ層51の厚さは,金属多孔質部材11,12をメッキ槽に浸漬する所要時間を変えて徐々に変化させることで変化させることができる。
【0040】
図7には,放熱領域8における金属多孔質部材12の1単位,即ち,隔壁2に接合された1本の足部5と足部5から分岐する多数の枝部6が示されている。金属多孔質部材12の接合層10では,金属多孔質部材12の足部5は,その断面直径D以上の長さLに埋設した状態で隔壁2に接合されている。また,受熱領域7においても,図7に示すものと同様に,金属多孔質部材11の接合層9では,金属多孔質部材11の足部5は,その断面直径D以上の長さLにわたって埋設した状態で接合されている。金属多孔質部材11,12は,隔壁2に多数の足部5が接合層9,10によって接合され,図8に示すように,多数の枝部6が絡み合って接合された構造に形成されており,多数の枝部6間の隙間がオープンポア14に形成され,オープンポア14を流体GA,GBがスムーズに流れる多孔体に構成されている。金属多孔質部材11,12では,上記の構造を持つことによって,受熱領域7では,受熱面積を大幅に拡大し,また,放熱領域8では,放熱面積を大幅に拡大した状態になっている。
【0041】
【発明の効果】
この発明によるタービン発電システムは,上記のように構成されているので,蒸気タービンから排出される水蒸気がコンデンサで水滴化され,蒸気タービンの出口側の圧力が大幅に低下するので,熱交換器で変換された高温水蒸気が蒸気タービンにスムーズに入り込み,蒸気タービンを高効率に駆動することができる。また,熱交換器では,流体流れを区画する隔壁に金属多孔質部材が接合層によって一体構造として互いに接合されているので,隔壁と金属多孔質部材との接合面で熱遮断面が発生することがなく,両者間の熱伝導率が向上し,流体間の熱交換効率が大幅にアップさせることができ,金属多孔質部材が受熱領域と放熱領域とにそれぞれ配設されているので,流体が金属多孔質部材に接触する面積が大幅に増大し,熱交換効率を大幅にアップさせることができる。
【図面の簡単な説明】
【図1】 この発明によるタービン発電システムの基本的原理を説明するためのブロック図である。
【図2】 図1のタービン発電システムに組み込まれた第1熱交換器の概略を説明するための断面図である。
【図3】 この発明によるタービン発電システムに組み込んだ熱交換器の構造の基本的原理を説明するための概念図である。
【図4】 円形の管についての熱通過率を説明するための概念図である。
【図5】 図1のタービン発電システムに組み込んだ熱交換器を説明するための熱移動モデルを示す概略説明図である。
【図6】 図1のタービン発電システムに組み込んだ熱交換器を説明するための熱移動モデルのメッキ層の厚さの変化状態を示す概略説明図である。
【図7】 タービン発電システムに組み込んだ熱交換器を説明するための放熱側モデルを示す概略説明図である。
【図8】 熱交換器を説明するための受熱側熱流モデルを示す概略説明図である。
【符号の説明】
1,11,12,17,31,32,34,37 金属多孔質部材
2,33,38 隔壁
3 フィン
4 管
5 足部
6 枝部
9 第1接合層
10 第2接合層
15 入口(第1熱交換器の蒸気)
16 出口(第1熱交換器の蒸気)
20 熱源(エンジン,燃焼器)
21 排気タービン
22 蒸気タービン
23 発電機
24 第1熱交換器
25 コンデンサ
26 蒸気管
27 水ポンプ
28 第2熱交換器
29 外筒
30 内筒
36 導管
39 水タンク
40 放熱空気又は水通路
41 断熱材
42 多孔質平板部材
43 ブロワ
44 コンプレッサ用モータ
45 排気管
46,48 蒸気通路
47 水通路
49 オイル通路
51 メッキ層
52 ノズル
EG 排気ガス
GA,GB 流体
W 水
SG 水蒸気[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a turbine power generation system incorporating a heat exchanger in which a metal porous member is disposed in a fluid passage in order to convert heat energy of exhaust gas discharged from a heat source such as an engine or a combustor into power.
[0002]
[Prior art]
  Conventionally, a method of recovering heat using an exhaust turbine is generally used to convert heat energy or the like of exhaust gas discharged from a heat source such as an engine or a combustor into power. In particular, a method using a steam turbine is generally used in a turbo compound system that is connected to an exhaust pipe of an engine. When the exhaust turbine is connected to the engine, if the inlet pressure of the exhaust turbine is excessively increased, an excessive load is applied to the exhaust stroke of the engine, which causes power loss. Therefore, it is effective to use steam power in order to convert power without applying too much inlet pressure to the exhaust turbine.
[0003]
  Further, the heat exchange device in which the ceramic porous member is disposed in the gas passage includes a first stage heat exchanger and a second stage heat exchanger provided in the exhaust passage for heating the steam with the exhaust gas from the engine. The first stage heat exchanger is composed of a steam passage through which steam flows disposed in the first casing and an exhaust gas passage through which exhaust gas disposed in the steam passage flows. The second stage heat exchanger includes a water / steam passage capable of storing water disposed in a second casing provided below the first casing, and an exhaust gas through which exhaust gas disposed around the water / steam passage flows. It consists of a gas passage. A porous ceramic member is disposed in each passage (see, for example, Patent Document 1).
[0004]
  Further, as a Rankine cycle, a steam generator for converting water into steam, a steam turbine driven by steam generated by the steam generator, a condenser for condensing steam discharged from the steam turbine into water, and the condenser What consists of a pump which returns the water discharged | emitted from a steam to a steam generator is known. The condenser in the Rankine cycle includes an inner cylinder that forms a fluid passage into which water vapor discharged from a steam turbine flows and is provided with a rotor made of a permanent magnet, and a first porous member disposed in the fluid passage in the inner cylinder A second porous member comprising a spirally extending fin portion attached to the outside of the inner cylinder, and an air passage formed by the fin portion of the second porous member and a region adjacent to the fin portion. The outer cylinder is rotatably supported and includes an outer cylinder provided with a stator corresponding to the rotor (see, for example, Patent Document 2).
[0005]
  Also known is an energy recovery device having a heat exchanger in the downstream of a turbocharger provided in an exhaust passage for exhausting exhaust gas from the engine. The energy recovery device is applied to drive a steam turbine with high-temperature steam generated by a heat exchange device and generate electric power with a generator provided in the steam turbine. A gas engine equipped with an energy recovery device uses a gas body such as natural gas as a fuel and can be applied to, for example, a cogeneration system, and includes a heat exchange device incorporating a heat exchanger.FourA fuel tank containing a natural gas fuel containing as a main component, a fuel pressurizing pump for supplying the gas fuel to the sub chamber of the combustion chamber, a first heat exchanger provided in the exhaust passage downstream of the turbocharger, A steam turbine driven by steam generated in the heat exchanger and a fluid (low temperature steam and water) provided downstream of the first heat exchanger and discharged from the steam turbine are converted into steam, and the steam is converted into steam. A generator having a second heat exchanger for supplying heat to one heat exchanger and driven by a steam turbine collects the rotational force of the turbine as electric power and recovers exhaust gas energy as electric energy (for example, (See Patent Document 3).
[0006]
[Patent Document 1]
            Japanese Patent Laid-Open No. 11-6601 (first page, FIG. 1)
[Patent Document 2]
            Japanese Patent Laid-Open No. 11-51582 (pages 1, 2 and 1)
[Patent Document 3]
            Japanese Patent Application Laid-Open No. 11-6602 (5th and 6th pages, FIG. 4)
[0007]
[Problems to be solved by the invention]
  However, as described above, when a ceramic porous member is used in the heat exchanger, the ceramic is weak against impact load and has a drawback that it is easily damaged when manufactured as a porous member. In addition, the capacitor provided in the Rankine cycle as described above has a disadvantage that the heat exchange area of the fin portion to dissipate heat is large and cannot be easily attached to the engine. Further, in the energy recovery apparatus as described above, the exhaust turbine and the steam turbine are installed as separate and separate devices. Therefore, the structure is complicated, the manufacturing cost is high, and the practicality is poor. By the way, when using a steam turbine to convert the heat energy etc. of the exhaust gas discharged from a heat source such as an engine or a combustor into power, the steam power increases the steam pressure rather than significantly increasing the steam pressure. A heat exchanger is connected to the outlet side of the steam, the steam temperature is lowered by the heat exchanger, water droplets are formed, and the pressure is 0.05 kg / cm.2Reduction to the following will contribute to the improvement of steam turbine efficiency. Therefore, an efficient heat exchanger, that is, a condenser, is connected to the outlet side of the steam turbine, and a system for converting steam into water is necessary. In addition, as described above, when a ceramic porous member is used for the heat exchanger, the ceramic is weak against impact load and has a drawback that it is easily damaged when manufactured as a porous member.
[0008]
  In addition, it is effective to use a high-efficiency heat exchanger for a system that recovers thermal energy of exhaust gas discharged from the engine. In other words, when the fuel is made of natural gas and the combustion chamber is made of a heat shield structure as a heat shield type turbo compound engine, in order to use the engine by converting the fuel energy to motive power to the maximum, Thermal energy must be utilized to the maximum and converted to power. As a heat exchanger, in heat exchange between gases, the heat exchange efficiency is important. The higher the heat exchange efficiency, the better the heat utilization rate and the better the overall heat efficiency. The heat exchanger performance is affected by the heat transfer coefficient and heat conductivity of the working fluid, and in order to move heat smoothly, it is better that the resistance is small.
[0009]
  In recent years, research on forming a porous metal member by using a heat-resistant metal as a foam has progressed, and many studies have been conducted on the assumption that a filter or the like is good as its application. Since the metal porous member intersects with metal in three dimensions, the outer surface area per volume is about six times larger than that of the fin. Therefore, if the metal porous member is joined to the metal plate of the partition that separates the two working fluids, the partition is divided into a heat receiving region and a heat radiating region by the partition, and one working fluid such as gas passes through the heat receiving region, The working fluid passes through the gap in the porous material while colliding with the surface, and transfers the heat of the fluid to the solid metal porous member. The heat transferred to the solid is conducted to the metal plate of the partition wall and moves the heat to the other working fluid.
[0010]
  Therefore, in the heat exchanger, a metal porous member is disposed in the fluid passage, and the metal porous member is provided on the heat exchange surface, whereby a highly efficient heat exchanger is configured. An efficient heat exchanger is required to convert the exhaust gas heat energy into steam or to return the used steam to water in order to reuse the heat energy of the engine exhaust gas. . Theoretically considering the heat transfer of the heat exchanger, the larger the heat transfer coefficient of the gas body, the more heat is transferred from the hot gas to the solid. The heat transfer coefficient of a gas body is determined by the Reynolds number as a function of flow velocity and kinematic viscosity, the Prandtl number indicating the gas property value characteristic, the thermal conductivity, and the Nusselt number as a function of Reynolds number.
  This can be expressed by the following formula.
  αg1 = Nu · λ / X
  Nu = K ・ Rem・ Prn
  Re = U · X / ν
  Where αg 1: heat transfer coefficient, Nu: Nusselt number, λ: thermal conductivity, K: constant, Re: Reynolds number, Pr: Prandtl number, U: representative speed, ν: kinematic viscosity, X: representative length.
  Here, when the heat transfer coefficient is considered by a mathematical expression, the element having the greatest influence is the Reynolds number, and it can be said that the Reynolds number is a function of speed. In the fluid flowing on the solid surface, the flow on the surface of the solid is zero, and the flow velocity of the fluid increases as the distance from the surface of the solid increases, so the Reynolds number is determined as a function of the flow characteristics near the solid surface.
[0011]
  The following conditions can be considered to increase the heat transfer from gas to solid.
  1. To increase the contact area of a solid to a gas between the gas and the solid.
  2. Solids are widely dispersed in the gas flow and distributed in a network.
  3. The heat conducting part that is transferred from the heat collecting part is made of a material with high thermal conductivity, and a lot of heat is transferred to the partition between the fluids in the heat exchanger.
  4). The heat collector and the bulkhead must be securely joined as a solid to transfer heat effectively.
  5. The transferred heat is effectively dissipated through a solid heat dissipator.
  When a structure satisfying the above conditions 1 to 5 is shown in a conceptual diagram, a principle diagram as shown in FIG. 1 is obtained.
[0012]
  In heat transfer and conductors, the heat transfer is increased by increasing the solid transfer area without increasing the gas velocity, rather than increasing the gas velocity, increasing the Reynolds number, and increasing the amount of heat transfer. Can be moved.
  With reference to FIG. 3 and FIG. 4, the heat reception and heat release in the heat exchanger are obtained by transfer calculation as follows.
  As shown in FIG. 4, the heat transfer amount Q in a heat exchanger having a passage formed by a circular tube 4 having fins 3 is expressed by the following equation: heat transfer rate K (unit: W / m2・ It is related to K).
  Q = K · Ar · ΔT
  Where Q: heat transfer amount, K: heat transfer rate, Ar: reference area, ΔT: temperature difference.
[0013]
  Further, as shown in FIG. 4, the heat transfer rate K in a heat exchanger in which a passage between the heat receiving side and the heat radiating side formed inside and outside the tube 4 provided with the fins 3 is expressed by the following general formula 1 Indicated by
Figure 0004202093
  Where hi: inner diameter side heat transfer coefficient (W / m2・ K), ho: Outer diameter side heat transfer coefficient (W / m2K), λ: thermal conductivity of tube (W / m · K), di: inner diameter of tube (m), do: outer diameter of tube (m), Af: fin area inside tube (m2), Φf: fin efficiency, Ab: outer peripheral area between fins (m2), Ar: reference area (peripheral area between 1 pitch of fins, m2), L n:
natural logarithm.
  In the above equation 1, the term ln (do / di) is corrected by [di / 2] ln (do / di) when do and di of the pipe 4 are greatly different. Further, in the finned tube 4, it is corrected by di / do (Af φf + Ab) / Ar. The reason is that the heat transfer area changes significantly with respect to the standard.
  Further, when do and di of the tube 4 do not change much, the heat transfer rate K is expressed by the following general formula 2.
Figure 0004202093
[0014]
  From the above, the basic principle of the heat exchange efficiency will be described as follows with reference to FIG. In FIG. 3, the heat receiving area 7 and the heat radiating area 8 constituting the heat exchanger are partitioned by the partition wall 2, and the high temperature gas GA flows in the heat receiving area 7 and the low temperature gas GB flows in the heat radiating area 8. ing. In the heat receiving area 7 and the heat radiating area 8, a plurality of branch parts 6 are integrally formed on one foot part 5 joined to the partition wall 2 by a joining layer 9. The metal porous member 1 is configured by a large number of complicated branch portions 6. Usually, the heat transfer rate K is determined by the coefficient of the heat transfer rate on the heat transfer side and the heat receiving side, but fins 3 (FIG. 4), a metal porous member 1 and the like are attached to the outer surface of the partition wall 2 separating the working fluid. For heat exchangers, the calculation results in consideration of the area effect agree with the experimental values. Therefore, in the heat exchanger, if the structure of the basic principle shown in FIG. 3 is used so as to increase the area on the heat receiving side and the heat radiating side, the branch portion diffused in all directions with respect to one foot portion 5 is used. 6 becomes a heat receiving area, and the heat passage rate can be increased 3 to 5 times. Therefore, in the heat exchanger, in order to increase the heat transfer rate, there is a problem of how to increase the area in contact with the fluid, and in particular, how to construct an integral structure for joining with the partition wall partitioning the fluid. Another problem is whether the Rankine cycle with a steam turbine can be configured with high efficiency, depending on how such a heat exchanger is incorporated into the turbine power generation system.
[0015]
[Means for Solving the Problems]
  An object of the present invention is to use a Rankine cycle in which a heat exchanger is incorporated in the exhaust pipe in order to solve the above-described problems and efficiently use the heat energy of the exhaust gas as electric power and power. The porous metal member disposed in the exhaust gas flow path as the heat exchanger is connected to the partition wall partitioning the fluid flow in an integral structure, and the metal porous member and the partition wall are physically and continuously joined. , Having a porous metal member characterized in that heat energy received from the exhaust gas in the heat receiving region is transmitted to the heat radiating region to dissipate, and heat exchange efficiency is increased by 3 to 5 times to increase heat exchange efficiency It is to provide a turbine power generation system incorporating a heat exchanger.
[0016]
  According to the present invention, there is provided an exhaust turbine driven by exhaust gas discharged from a heat source such as an engine or a combustor, and a metal porous member that generates high-temperature steam by the thermal energy of the exhaust gas discharged from the exhaust turbine. 1 heat exchanger, steam turbine driven by high-temperature steam generated in the first heat exchanger, generator installed on shafts provided at both ends of the exhaust turbine and the steam turbine, discharged from the steam turbine A condenser provided with a metal porous member in a steam pipe for cooling water vapor into water droplets, a water pump for feeding water generated in the condenser to the first heat exchanger, and the water pump and the first heat Integrated with the exchanger andBy heat source circulating oil heated by circulating the heat sourceThe water fed by the water pumpAddSecond heat exchanger that converts to steam by heatingHave
  The first heat exchanger includes an outer cylinder in which the metal porous member through which the exhaust gas passes is disposed, and the metal porous member that is disposed in the outer cylinder and through which the water vapor passes. A metal porous member disposed in the outer cylinder and the outer wall of the inner cylinder are joined, and the inner wall of the inner cylinder and the metal porous member are joined by a molten metal. ingIt is related with the turbine power generation system which consists of this.
[0017]
  The outer cylinder and the inner cylinder in the first heat exchangerWhenThe metal porous member disposed on,SaidShield the outer cylinder from the inner cylinderThe partition wall is welded and bonded to the metal porous member and the partition wall by welding a plate-like paste obtained by kneading metal powder and brazing material in a bonding layer embedded in the metal porous member.
[0018]
  A heat insulating material is disposed on the outer peripheral side of the outer cylinder, and the roughness of the porous material of the metal porous member disposed on the outer cylinder is determined by the metal porous member disposed on the inner cylinder. It is formed larger than the roughness of the porous material. Further, the inner cylinder is formed so that a passage sectional area on the outlet side is smaller than a passage sectional area on the inlet side in order to increase the flow velocity on the outlet side of the water vapor.
[0019]
  A metal porous member or fin is disposed in a conduit communicating the steam turbine and the condenser to cool the water vapor discharged from the steam turbine. In addition, the condenser includes an inner water tank partitioned by a partition and provided with a metal porous member, an outer radiating air or water passage, and the water vapor discharged from the steam turbine, and the water tank. It is comprised from the steam pipe inserted in.
[0020]
  The metal porous member disposed in the water tank of the capacitor is composed of a multistage porous flat plate member into which the steam pipe is inserted and joined to a partition wall with radiating air or water. The water vapor is blown into the water in the water tank and exchanges heat while passing through the porous flat plate member.
[0021]
  In order to cool the steam discharged from the steam turbine, the condenser is provided with a metal porous member joined to the partition wall in the radiating air or water passage, and an air cooling mechanism or cooling water that allows air from the blower to pass therethrough. It is comprised by the water-cooling mechanism which lets pass.
[0022]
  The porous metal member disposed in the water tank of the capacitor is made of a nickel porous material plated with a corrosion-resistant metal such as silver, copper, or aluminum, and the radiating air or water passage of the capacitor. The metal porous member disposed in (1) is made of a porous metal material mainly composed of nickel obtained by plating a porous metal with a metal such as aluminum.
[0023]
  Since this turbine power generation system is configured as described above, that is, a heat exchanger having a porous metal member and a steam turbine are incorporated in a Rankine cycle, and a partition wall that defines a fluid passage such as exhaust gas is used as a heat exchanger. The metal porous member is joined to the monolithic structure through the joining layer, and the steam speed and steam temperature flowing into the steam turbine are increased by the heat exchanger downstream of the exhaust pipe, and in particular, the steam temperature at the outlet side of the steam turbine is heat exchanged. Since the pressure is reduced by reducing the pressure by reducing the pressure with a condenser or condenser, the steam turbine can be driven with high efficiency. For example, the generator can be driven and recovered as electric energy, and the heat energy of the exhaust gas can be recovered. Can be converted into power and electric power with high efficiency, and thermal efficiency can be improved.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, an embodiment of a turbine power generation system incorporating a heat exchanger having a metal porous member according to the present invention will be described with reference to the drawings. A turbine power generation system according to the present invention will be described with reference to FIGS. 1 and 2.
[0025]
  As shown in FIG. 1, this turbine power generation system provides a highly efficient steam turbine for converting the heat energy of exhaust gas discharged from the heat source 20 of the engine or combustor into electric power or power. In particular, since the exhaust pressure of the engine 20 is not excessively increased without excessively increasing the inlet pressure of the turbine so as not to receive power loss, an excessively large inlet pressure is not applied to the exhaust turbine 21, and the heat energy of the exhaust gas is not increased. Is converted into steam power using the first heat exchanger 24, and the steam pressure is further increased. However, in order to drive the steam turbine 22 with high efficiency, a heat exchanger or condenser (recovery) is connected to the outlet side of the steam turbine 22. Water tank) 25 is provided, and the steam temperature is lowered by the function of the condenser 25 to form water droplets. For example, 0.05 kg / cm2The pressure is reduced to the following pressure to improve the efficiency of the steam turbine 22.
[0026]
  As shown in FIG. 1, this turbine power generation system includes an exhaust turbine 21 driven by exhaust gas EG discharged from a heat source 20 through an exhaust pipe 45, and high-temperature steam by heat energy of the exhaust gas EG discharged from the exhaust turbine 21. The first heat exchanger 24 provided with the metal porous member 1 for generating the steam, the steam turbine 22 driven by feeding the high-temperature steam SG generated in the first heat exchanger 24 through the steam passage 46, and the exhaust turbine 21 and steam The turbine 22 is installed on a shaft provided at both ends, and has a generator 23 driven by an exhaust turbine 21 and a steam turbine 22. This turbine power generation system is further generated by a condenser 25 and a condenser 25 provided with a metal porous member 34 in a steam pipe 26 for cooling and steaming the steam SG discharged from the steam turbine 22 through a conduit 36 in the steam passage. A water pump 27 for feeding the water W to the first heat exchanger 24, and is incorporated between the water pump 27 and the first heat exchanger 24;By the heat source circulation oil O which is circulated through the heat source 20 and heatedWater W sent by water pump 27AddIt has the 2nd heat exchanger 28 which heats and converts into water vapor | steam. Here, the Rankine cycle mainly includes a first heat exchanger 24, a steam turbine 22, a water pump 27, and a second heat exchanger 28.
[0027]
  As shown in FIG. 2, the first heat exchanger 24 includes an outer cylinder 29 provided with a metal porous member 31 through which exhaust gas EG passes, a metal porous body that is disposed in the outer cylinder 29 and through which water vapor SG passes. The inner cylinder 30 in which the material member 32 is disposed, and the partition wall 33 that shields the outer cylinder 29 and the inner cylinder 30 and to which a number of legs of the metal porous members 31 and 32 are joined. Here, the partition wall 33 is constituted by a cylindrical body of the inner cylinder 30. In the first heat exchanger 24, the metal porous members 31, 32 and the partition wall 33 disposed on the outer cylinder 29 and the inner cylinder 30 are made of a metal paste and a brazing paste made of a metal paste and a metal paste. The metal porous members 31 and 32 and the partition wall 33 are bonded to each other in an integrated structure by sintering the bonding layer embedded in.
[0028]
  Further, a heat insulating material 41 is disposed on the outer peripheral side of the outer cylinder 29 in the first heat exchanger 24, and the heat insulating material 41 prevents the heat energy of the exhaust gas EG from radiating to the outside. Further, the roughness of the porous material of the metal porous member 31 disposed in the outer cylinder 29 is formed larger than the roughness of the porous material of the metal porous member 32 disposed in the inner cylinder 30, and the exhaust gas is exhausted. A smooth flow of the gas EG is ensured, and the exhaust pressure loss is not loaded on the engine 20. Further, the inner cylinder 30 is formed so that the passage sectional area on the outlet 16 side is smaller than the passage sectional area on the inlet 15 side in order to increase the flow velocity on the outlet side of the steam SG, increase the Reynolds number, and increase the heat transfer coefficient. Thus, the tapered passage wall 35 is inserted through the center. In this case, the steam speed of the steam SG is increased by passing through the inner cylinder 30, but when the steam SG flows out from the outlet 16 of the inner cylinder 30 to the steam passage 46, the steam does not expand and the steam speed does not decrease. The passage cross-sectional area of the steam passage 46 is preferably designed to be equal to the cross-sectional area of the outlet 16 side. In FIG. 2, the water vapor SG is formed in a shape that flows along the outside of the taper passage wall 35. However, the water vapor SG flows inside the taper passage wall (not shown) by turning the taper upside down, It can also be configured to communicate with the passage 46. Further, since the steam SG is wet steam, as shown in FIG. 2, a nozzle 52 is provided in the steam passage 48 on the inlet side of the first heat exchanger 24, and a water droplet portion is ejected from the nozzle 53 of the nozzle 52. The water droplet portion can be miniaturized and the heat exchange efficiency in the first heat exchanger 24 can be improved.
[0029]
  In this turbine power generation system, a metal porous member 37 is disposed in a conduit 36 that communicates the steam turbine 22 and the condenser 25 to cool the steam SG discharged from the steam turbine 22.
[0030]
  The condenser 25 is partitioned by a partition wall 38 and is fed with an inner water tank 39 in which the metal porous members 34 and 17 are disposed, an outer radiating air or water passage 40, and steam SG discharged from the steam turbine 22. The steam pipe 26 is inserted into the water tank 39. Further, the metal porous member 34 disposed in the water tank 39 of the condenser 25 is composed of a multi-stage porous flat plate member 42 into which the steam pipe 26 is fitted, and is joined to the partition wall 38. The steam SG from the steam pipe 26 is blown into the water in the water tank 39 and is heat-exchanged while passing through the porous flat plate member 42 to form water droplets. The metal porous member 17 is attached to the outside of the partition wall 38, and the heat radiation area of the heat radiation air or the water passage 40 is increased.
[0031]
  In addition, the condenser 25 cools the steam SG discharged from the steam turbine 22, so that air from the blower 43 passes through the radiated air or the water passage 40 or a water cooling mechanism (not shown) that passes the cooling water. 2). The metal porous member 34 disposed in the water tank 39 of the capacitor 25 is made of a nickel porous material plated with a corrosion-resistant metal such as silver, copper, or aluminum. Further, the metal porous member 17 disposed in the radiating air or the water passage 40 of the capacitor 25 is made of a porous metal material mainly composed of nickel in which a metal such as aluminum is plated on the porous metal. .
[0032]
  In this turbine power generation system, the steam turbine 22 and the exhaust turbine 21 are provided at both ends of a rotating shaft (not shown), and a rotor (not shown) made of a permanent magnet member of the generator 23 is provided between the rotating shafts. It is attached. Further, in order to supply air to the heat source 20, a part of the electric power generated by the generator 23 is supplied to the compressor motor 44 through the conductive wire 50, and the motor 44 (see FIG. It is configured to be consumed to drive (not shown). That is, the exhaust turbine 21 driven by the exhaust gas EG and the steam turbine 22 driven by the steam SG generated by heat exchange with the exhaust gas EG in the first heat exchanger 24 are at both ends of the shaft of the rotating shaft. The shaft is rotationally driven by exhaust gas energy and steam energy, and the rotational force is recovered as electric power by the generator 23.
[0033]
  Further, in this turbine power generation system, the second heat exchanger 28 has a function of cooling the heated oil by circulating through the engine 20 and also has a function of converting the water W in the Rankine cycle into the steam SG. . In other words, engine oil for engine circulation or oil O for lubricating oil is sent from the engine 20 to the second heat exchanger 28 through the oil passage 49, and the cooled oil O passes through the oil passage 49 and again the engine 20. Is sent to. Further, water W from the water pump 27 is supplied to the second heat exchanger 28 through the water passage 47 as cooling water, and the cooling water is heated to become low-temperature steam and passes through the steam passage 48 for the first. It is sent to the heat exchanger 24 and becomes hot steam SG by the hot exhaust gas EG, and is sent to the steam turbine 22 through the steam passage 46.
[0034]
  Next, the basic configuration of the heat exchanger incorporated in this turbine power generation system will be described with reference to FIGS. In the heat exchanger, as shown in FIG. 5, fluids having different temperatures, that is, a high-temperature fluid GA flows through the heat receiving region 7, and a low-temperature fluid GB flows through the heat radiating region 8, from the heat receiving region 7 to the heat radiating region 8. For example, in the first heat exchanger 24, the fluid GA is a high-temperature exhaust gas EG released from the heat source 20 of the combustor or the engine, and the fluid GB is a low-temperature gas SG. It is a fluid. In the condenser 25, the fluid GA is the steam SG discharged from the steam turbine 22, and the fluid GA is air. Further, in the second heat exchanger 28, the fluid GA is oil that circulates through the heat source 20, and the fluid GB is a fluid that converts water W into water vapor SG.
[0035]
  As shown in FIG. 5, in the heat exchanger, the heat receiving area 7 and the heat radiating area 8 are shielded from each other by the metal partition wall 2, and the heat receiving area 7 and the heat radiating area 8 are made of metal porous members 11, 12 (generic name). Is provided with 1). The metal porous member 1 is bonded to the metal partition wall 2 having good thermal conductivity through the bonding layers 9 and 10 through the numerous legs 5 of the metal porous member 1. As shown in FIG. 7, a large number of branch portions 6 branch to the foot portion 5 in an integral structure. Further, the cross-sectional areas of the foot portions 5 are different from each other, and can be changed between the heat receiving region 7 side and the heat radiating region 8 side.
[0036]
  In the heat exchanger, in particular, bonding layers 9 and 10 formed by embedding a plate-like paste in which metal powder and brazing material are kneaded are formed on the surface layer of the metal porous member 1. The provided bonding layers 9 and 10 are arranged in close contact with the partition wall 2, and the metal porous member 1 and the partition wall 2 are bonded to each other by sintering the bonding layers 9 and 10. It is said. Here, the metal powder composing the plate-like paste is a metal material having a high thermal conductivity such as silver, nickel, copper, zinc and the like, which is rich in corrosion resistance and heat resistance.
[0037]
  The metal porous member 1 is made of a metal such as nickel, copper, or aluminum. The partition wall 2 is made of a metal having a high thermal conductivity such as nickel or copper. Furthermore, the metal powder contained in the bonding layers 9 and 10 is made of a heat-resistant and high thermal conductivity metal such as silver, nickel, copper, or zinc. Further, the bonding layers 9 and 10 are embedded in the high-temperature heat-resistant first bonding layer 9 embedded in one metal porous member 11 and the other metal porous member 12 with the partition wall 2 interposed therebetween, and the first bonding is performed. The material is selected so that the sintering temperature is higher than that of the second bonding layer 10 because of the heat-resistant second bonding layer 10 having a temperature lower by about 100 ° C. than the layer 9. Yes. For joining the metal porous members 11, 12 to the partition wall 2, first, the first bonding layer 9 pushed into the metal porous member 11 is placed in close contact with the partition wall 2, and the first bonding layer 9 is placed at a high temperature. By sintering, the metal porous member 11 and the partition wall 2 are joined by the sintered first joining layer 9, and then the second joining layer 10 pushed into the metal porous member 12 is brought into close contact with the partition wall 2. By arranging and sintering the second bonding layer 10 at a low temperature, the metal porous member 12 and the partition wall 2 are sintered in the second bonding without destroying the sintered first bonding layer 9. The layers 10 can be joined. Depending on the case, the metal porous member 1 can be closely arranged on both sides of the partition wall 2 and can be simultaneously bonded at the same sintering temperature. In this case, the first bonding layer 9 and the second bonding layer 10 can be made of a heat-resistant material having the same temperature or the same material.
[0038]
  The surface of the metal porous member 11 is coated with a metal having a high thermal conductivity such as copper or silver by coating such as plating, dipping or vapor deposition. Further, the surface of the metal porous member 12 is coated with ceramics such as alumina and zirconia in order to thermally decompose natural gas, and the surface of the ceramic is platinum, panadium, nickel, rhodium, ruthenium, oxidation, etc. A catalyst layer 13 is provided by attaching a catalyst such as aluminum. Moreover, when aluminum coating is performed on the surfaces of the metal porous members 11 and 12 to form an aluminum layer, the aluminum layer is heat-treated to precipitate α-alumina that is corundum as a crystal phase. Accordingly, the metal porous members 11 and 12 increase the strength and improve the oxidation resistance, and increase the surface area by forming a large number of irregularities and pores on the surface, thereby increasing the heat exchange efficiency.
[0039]
  Further, as shown in FIG. 7, a plating layer 51 of copper, silver, aluminum or the like having a high thermal conductivity is applied to the surface layer of the metal porous members 11, 12, and the thickness of the plating layer 51 is the bonding layer 9. , 10 gradually change. Further, the thickness of the plating layer 51 on the metal porous members 11 and 12 can be changed by gradually changing the time required for immersing the metal porous members 11 and 12 in the plating tank.
[0040]
  FIG. 7 shows one unit of the metal porous member 12 in the heat radiation area 8, that is, one leg 5 joined to the partition wall 2 and a large number of branches 6 branched from the legs 5. In the bonding layer 10 of the metal porous member 12, the foot 5 of the metal porous member 12 is bonded to the partition wall 2 in a state of being embedded in a length L that is equal to or greater than the cross-sectional diameter D. Further, in the heat receiving region 7 as well, as shown in FIG. 7, in the bonding layer 9 of the metal porous member 11, the foot portion 5 of the metal porous member 11 is embedded over a length L equal to or greater than the cross-sectional diameter D. Are joined together. The metal porous members 11 and 12 are formed in a structure in which a large number of feet 5 are bonded to the partition wall 2 by bonding layers 9 and 10 and a large number of branches 6 are entangled and bonded as shown in FIG. In addition, gaps between a large number of branch portions 6 are formed in the open pores 14, and the open pores 14 are configured as a porous body through which fluids GA and GB flow smoothly. Since the metal porous members 11 and 12 have the above-described structure, the heat receiving area 7 is greatly expanded in the heat receiving area 7, and the heat radiating area 8 is greatly expanded in the heat radiating area 8.
[0041]
【The invention's effect】
  Since the turbine power generation system according to the present invention is configured as described above, the steam discharged from the steam turbine is converted into water droplets by the condenser, and the pressure at the outlet side of the steam turbine is greatly reduced. The converted high-temperature steam smoothly enters the steam turbine, and the steam turbine can be driven with high efficiency. Also, in the heat exchanger, the metal porous members are joined to each other as a unitary structure by the joining layer on the partition walls that divide the fluid flow, so that a heat blocking surface is generated at the joint surface between the partition walls and the metal porous member. The heat conductivity between the two is improved, the efficiency of heat exchange between the fluids can be greatly increased, and the metal porous members are arranged in the heat receiving area and the heat radiating area, respectively. The area in contact with the metal porous member is greatly increased, and the heat exchange efficiency can be greatly increased.
[Brief description of the drawings]
FIG. 1 is a block diagram for explaining the basic principle of a turbine power generation system according to the present invention.
FIG. 2 is a cross-sectional view for explaining the outline of a first heat exchanger incorporated in the turbine power generation system of FIG.
FIG. 3 is a conceptual diagram for explaining the basic principle of the structure of a heat exchanger incorporated in a turbine power generation system according to the present invention.
FIG. 4 is a conceptual diagram for explaining a heat passage rate of a circular tube.
FIG. 5 is a schematic explanatory diagram showing a heat transfer model for explaining a heat exchanger incorporated in the turbine power generation system of FIG. 1;
6 is a schematic explanatory view showing a change state of a thickness of a plating layer of a heat transfer model for explaining a heat exchanger incorporated in the turbine power generation system of FIG. 1. FIG.
FIG. 7 is a schematic explanatory diagram showing a heat radiation side model for explaining a heat exchanger incorporated in a turbine power generation system.
FIG. 8 is a schematic explanatory view showing a heat receiving side heat flow model for explaining a heat exchanger.
[Explanation of symbols]
  1, 11, 12, 17, 31, 32, 34, 37 Metal porous member
  2,33,38 Bulkhead
  3 Fin
  4 tubes
  5 feet
  6 branches
  9 First bonding layer
  10 Second bonding layer
  15 inlet (steam of the first heat exchanger)
  16 Outlet (steam of the first heat exchanger)
  20 Heat source (engine, combustor)
  21 Exhaust turbine
  22 Steam turbine
  23 Generator
  24 1st heat exchanger
  25 capacitors
  26 Steam pipe
  27 Water pump
  28 Second heat exchanger
  29 outer cylinder
  30 inner cylinder
  36 conduit
  39 Water tank
  40 Facility air or water passage
  41 Insulation
  42 Porous flat plate member
  43 Blower
  44 Compressor motor
  45 Exhaust pipe
  46,48 Steam passage
  47 Water passage
  49 Oil passage
  51 plating layer
  52 nozzles
  EG exhaust gas
  GA, GB fluid
  W Water
  SG water vapor

Claims (9)

エンジン,燃焼器等の熱源から排出される排気ガスによって駆動される排気タービン,前記排気タービンから排出される排気ガスの熱エネルギによって高温水蒸気を発生させる金属多孔質部材を設けた第1熱交換器,前記第1熱交換器で発生した高温水蒸気で駆動される蒸気タービン,前記排気タービンと前記蒸気タービンとを両端に設けた軸に設置された発電機,前記蒸気タービンから吐き出される水蒸気を冷却して水滴化するため蒸気管に金属多孔質部材を設けたコンデンサ,前記コンデンサで発生した水を前記第1熱交換器へ送り込むための水ポンプ,及び前記水ポンプと前記第1熱交換器との間に組み込まれ且つ前記熱源を循環して加熱された熱源循環用オイルによって前記水ポンプで送り込まれた前記水を加熱して水蒸気に変換する第2熱交換器を有し,
前記第1熱交換器は,前記排気ガスが通過する前記金属多孔質部材が配設された外筒,及び前記外筒内に配置され且つ前記水蒸気が通過する前記金属多孔質部材が配設された内筒を有し,前記外筒内に配設された前記金属多孔質部材と前記内筒の外壁とが接合され且つ前記内筒の内壁と前記金属多孔質部材とが溶融金属により接合されていることから成るタービン発電システム。
An exhaust turbine driven by exhaust gas discharged from a heat source such as an engine or a combustor, and a first heat exchanger provided with a metal porous member that generates high-temperature steam by the thermal energy of the exhaust gas discharged from the exhaust turbine A steam turbine driven by high-temperature steam generated in the first heat exchanger, a generator installed on a shaft provided with both ends of the exhaust turbine and the steam turbine, and cooling steam discharged from the steam turbine. A condenser provided with a metal porous member in a steam pipe for water droplet formation, a water pump for feeding water generated in the condenser to the first heat exchanger, and a water pump and the first heat exchanger. It is converted to steam by heating pressurizing the water fed by the water pump by incorporated and circulating heated heat source circulating oil the heat source during A second heat exchanger,
The first heat exchanger includes an outer cylinder in which the metal porous member through which the exhaust gas passes is disposed, and the metal porous member that is disposed in the outer cylinder and through which the water vapor passes. A metal porous member disposed in the outer cylinder and the outer wall of the inner cylinder are joined, and the inner wall of the inner cylinder and the metal porous member are joined by a molten metal. turbine power generation system which consists have.
前記第1熱交換器における前記外筒と前記内筒に配設された前記金属多孔質部材と前記外筒と前記内筒とを遮蔽する隔壁とは,金属粉末とろう材とを練り合わせた板状ペーストを前記金属多孔質部材に埋め込んだ接合層で溶着することによって前記金属多孔質部材と前記隔壁とは互いに溶着接合されていることから成る請求項に記載のタービン発電システム。Wherein said metallic porous member disposed in said inner cylinder and said outer cylinder in the first heat exchanger, a partition wall for shielding said inner cylinder and said outer cylinder, kneaded the metal powder and the brazing material 2. The turbine power generation system according to claim 1 , wherein the metal porous member and the partition wall are welded and bonded to each other by welding a plate-like paste with a bonding layer embedded in the metal porous member. 前記外筒の外周側には断熱材が配設され,前記外筒に配設された前記金属多孔質部材の多孔質材の粗度が前記内筒に配設された前記金属多孔質部材の多孔質材の粗度より大きく形成されていることから成る請求項又はに記載のタービン発電システム。A heat insulating material is disposed on the outer peripheral side of the outer cylinder, and the roughness of the porous material of the metal porous member disposed on the outer cylinder is determined by the metal porous member disposed on the inner cylinder. The turbine power generation system according to claim 1 or 2 , wherein the turbine power generation system is formed to be larger than the roughness of the porous material. 前記内筒は,前記水蒸気の出口側の流速をアップするため,入口側の通路断面積より出口側の通路断面積が小さく形成されていることから成る請求項のいずれか1項に記載のタービン発電システム。The inner cylinder, in order to increase the outlet side of the flow velocity of the steam, to any one of claims 1 to 3 consists of cross-sectional area of the outlet side is formed smaller than the passage cross-sectional area of the inlet-side The turbine power generation system described. 前記蒸気タービンと前記コンデンサとを連通する導管には,前記蒸気タービンから排出された前記水蒸気を冷却するため金属多孔質部材又はフィンが配設されていることから成る請求項のいずれか1項に記載のタービン発電システム。A conduit communicating with said condenser and said steam turbine, any one of claims 1 to 4 comprising a metal porous member or fin is provided for cooling the steam discharged from the steam turbine The turbine power generation system according to item 1. 前記コンデンサは,隔壁で区画され且つ金属多孔質部材が配設された内側の水タンクと外側の放熱空気又は水通路,及び前記蒸気タービンから吐出された前記水蒸気が送り込まれ且つ前記水タンクに挿入された蒸気管から構成されていることから成る請求項1〜のいずれか1項に記載のタービン発電システム。The condenser is divided into partition walls, and an inner water tank provided with a metal porous member, an outer radiating air or water passage, and the water vapor discharged from the steam turbine is fed into the water tank. The turbine power generation system according to any one of claims 1 to 5 , wherein the turbine power generation system is configured by a steam pipe formed. 前記コンデンサの前記水タンクに配設された前記金属多孔質部材は,前記蒸気管が嵌入し,放熱空気又は水との隔壁に接合された多段の多孔質平板部材から成り,前記蒸気管からの前記水蒸気は,前記水タンクの水中に吹き出されて前記多孔質平板部材を通過しながら熱交換されることから成る請求項に記載のタービン発電システム。The metal porous member disposed in the water tank of the capacitor is composed of a multistage porous flat plate member into which the steam pipe is inserted and joined to a partition wall with radiating air or water. The turbine power generation system according to claim 6 , wherein the steam is blown into the water in the water tank and heat-exchanged while passing through the porous flat plate member. 前記コンデンサは,前記蒸気タービンから吐き出される水蒸気を冷却するため,前記隔壁に接合された金属多孔質部材を前記放熱空気又は水通路に設けており,ブロワからの空気を通過させる空冷機構又は冷却水を通過させる水冷機構に構成されていることから成る請求項に記載のタービン発電システム。In order to cool the steam discharged from the steam turbine, the condenser is provided with a metal porous member joined to the partition wall in the radiating air or water passage, and an air cooling mechanism or cooling water that allows air from the blower to pass therethrough. The turbine power generation system according to claim 7 , wherein the turbine power generation system is configured as a water-cooling mechanism that allows passage of water. 前記コンデンサの前記水タンクに配設さた前記金属多孔質部材は,銀,銅,アルミニウム等の耐腐食性金属がメッキされたニッケル製多孔質材から成り,前記コンデンサの前記放熱空気又は水通路に配設された前記金属多孔質部材は,多孔質金属にアルミニウム等の金属がメッキされたニッケルを主成分とした多孔質金属材から構成されていることから成る請求項のいずれか1項に記載のタービン発電システム。The porous metal member disposed in the water tank of the capacitor is made of a nickel porous material plated with a corrosion-resistant metal such as silver, copper, or aluminum, and the radiating air or water passage of the capacitor. has been the metal porous member is arranged in any of claims 6-8 consisting of a metal such as aluminum porous metal is made of a porous metal material mainly composed of plated nickel The turbine power generation system according to item 1.
JP2002325052A 2002-02-13 2002-11-08 Turbine power generation system incorporating a heat exchanger having a porous metal member Expired - Fee Related JP4202093B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002325052A JP4202093B2 (en) 2002-11-08 2002-11-08 Turbine power generation system incorporating a heat exchanger having a porous metal member
AT03257048T ATE442566T1 (en) 2002-11-08 2003-11-07 HEAT EXCHANGER FOR FUEL REFORMING AND TURBO GENERATOR SYSTEMS
DE60329154T DE60329154D1 (en) 2002-11-08 2003-11-07 Heat exchangers for fuel reforming and turbogenerator systems
EP03257048A EP1418397B1 (en) 2002-11-08 2003-11-07 Heat exchanger applicable to fuel-reforming system and turbo-generator system
US10/703,520 US7059130B2 (en) 2002-02-13 2003-11-10 Heat exchanger applicable to fuel-reforming system and turbo-generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325052A JP4202093B2 (en) 2002-11-08 2002-11-08 Turbine power generation system incorporating a heat exchanger having a porous metal member

Publications (2)

Publication Number Publication Date
JP2004156565A JP2004156565A (en) 2004-06-03
JP4202093B2 true JP4202093B2 (en) 2008-12-24

Family

ID=32804404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325052A Expired - Fee Related JP4202093B2 (en) 2002-02-13 2002-11-08 Turbine power generation system incorporating a heat exchanger having a porous metal member

Country Status (1)

Country Link
JP (1) JP4202093B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006090156A (en) * 2004-09-21 2006-04-06 Shin Caterpillar Mitsubishi Ltd Method for regenerating waste heat energy and waste heat energy regenerating device
DE102011007386B4 (en) * 2011-04-14 2016-08-18 Man Diesel & Turbo Se Exhaust gas utilization turbine, waste heat recovery system and method for operating a waste heat recovery system
EP2565419A1 (en) * 2011-08-30 2013-03-06 Siemens Aktiengesellschaft Flow machine cooling

Also Published As

Publication number Publication date
JP2004156565A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
RU2353047C2 (en) Thermo electrical systems of electric power generation industry
JP6746335B2 (en) Heat pipe temperature management system for turbomachinery
JP5336618B2 (en) Gas turbine engine assembly
US10842044B2 (en) Cooling system in hybrid electric propulsion gas turbine engine
JP4324797B2 (en) Improved thermoelectric power generation system
US8528628B2 (en) Carbon-based apparatus for cooling of electronic devices
JP7101677B2 (en) Heat recovery device and heat recovery system
US9306143B2 (en) High efficiency thermoelectric generation
JP5066139B2 (en) Thermoelectric generator with improved energy conversion efficiency using convective heat flow
US9027334B2 (en) Trough filter with integrated thermoelectric generator, vehicle including trough filter, and method of treating exhaust gas
JP2005529573A5 (en)
CN106050330A (en) Heat pipe temperature management system for turbomachine
JP2011094626A (en) Device and method for cooling turbine engine
ITMI990347A1 (en) SOLID STATE THERMOELECTRIC DEVICE
JP2013537594A (en) Exhaust gas treatment system including thermoelectric generator
JPWO2009051001A1 (en) Unidirectional fluid transfer device
JP6144937B2 (en) Heat exchange member
JP4202093B2 (en) Turbine power generation system incorporating a heat exchanger having a porous metal member
US10876456B2 (en) Thermoelectric heat energy recovery module generator for application in a Stirling-electric hybrid automobile
EP3244039A1 (en) Heat exchange system for a power gearbox, a power and a turbo engine with a power gearbox
JP2004140202A (en) Thermoelectric conversion system
JP5029547B2 (en) Intake air cooling system
JP2017193969A (en) Heating device
WO2007085045A1 (en) Heat energy transfer system and turbopump
WO2010036421A1 (en) Improved heat exchanger tube and air-to-air intercooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees