JP2003240339A - Heat pump hot water supply system - Google Patents

Heat pump hot water supply system

Info

Publication number
JP2003240339A
JP2003240339A JP2002033648A JP2002033648A JP2003240339A JP 2003240339 A JP2003240339 A JP 2003240339A JP 2002033648 A JP2002033648 A JP 2002033648A JP 2002033648 A JP2002033648 A JP 2002033648A JP 2003240339 A JP2003240339 A JP 2003240339A
Authority
JP
Japan
Prior art keywords
heat
hot water
water
water supply
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002033648A
Other languages
Japanese (ja)
Other versions
JP3743375B2 (en
Inventor
Keijiro Kunimoto
啓次郎 國本
Takeji Watanabe
竹司 渡辺
Ryuta Kondo
龍太 近藤
Satoshi Matsumoto
松本  聡
Satoshi Imabayashi
敏 今林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002033648A priority Critical patent/JP3743375B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to KR1020057020314A priority patent/KR100567491B1/en
Priority to CNB038002752A priority patent/CN100535542C/en
Priority to US10/479,690 priority patent/US7316267B2/en
Priority to PCT/JP2003/001366 priority patent/WO2003069236A1/en
Priority to EP03703287A priority patent/EP1475576A4/en
Priority to KR1020037015137A priority patent/KR100567488B1/en
Priority to TW92102791A priority patent/TW574491B/en
Publication of JP2003240339A publication Critical patent/JP2003240339A/en
Priority to HK04108476.2A priority patent/HK1065841A1/en
Application granted granted Critical
Publication of JP3743375B2 publication Critical patent/JP3743375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an instantaneous water heater type heat pump hot water supply system having superior rising of a hot water supply temperature and controllability and capable of efficiently supplying the hot water. <P>SOLUTION: This instantaneous water heater type heat pump hot water supply system directly passes tap water to a water channel 12 of a heat exchanger 10 exchanging heat between a refrigerant channel a11 and the water channel 12 and uses hot water delivered from the channel. This device is so constituted as to have heating means 18 heating the water in previous/following routes including the water channel 12 of the heat exchanger 10, so that the rising of the hot water supply temperature in starting the hot water supply is quick and its controllability and the efficiency are favorable. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、瞬間湯沸し型のヒ
ートポンプ給湯装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an instantaneous boiling type heat pump water heater.

【0002】[0002]

【従来の技術】瞬間湯沸し型給湯装置としては、ガスや
石油の燃焼を用いた給湯機が従来より使用されてきた。
これらは温度立上りが早く、大能力が出せる特徴がある
反面、排ガスによる大気汚染や、直接燃焼させることへ
の不安感、燃焼音など避けられない課題を抱えていた。
これに対し、大型の貯湯タンクに湯を貯えて給湯するヒ
ートポンプ給湯器があり、こちらは燃焼による給湯機の
問題を解消し、しかもヒートポンプにより熱効率がよい
ものであった。しかし、貯湯タンクが大きく、重量や設
置スペースなど施工上に問題があった。この大型の貯湯
タンクの問題を解消するヒートポンプによる瞬間湯沸し
の発想は従来よりあったが、ヒートポンプの場合は燃焼
給湯機と違い、ヒートポンプサイクルの熱的立ち上がり
に時間を要するため、湯が出てくるのに時間がかかり使
用者に不満感を与えるものであった。
2. Description of the Related Art As an instantaneous boiling water heater, a water heater using combustion of gas or oil has been conventionally used.
While these have the characteristics that the temperature rises quickly and can produce large capacity, they have unavoidable problems such as air pollution due to exhaust gas, anxiety about direct combustion, and combustion noise.
On the other hand, there is a heat pump water heater that stores hot water in a large-sized hot water storage tank to solve the problem of the water heater due to combustion, and the heat pump has high thermal efficiency. However, the hot water storage tank was large, and there were problems in construction such as weight and installation space. The idea of instantaneous boiling with a heat pump that solves the problem of this large hot water storage tank has been conventional, but in the case of a heat pump, unlike a combustion water heater, it takes time for the heat pump cycle to rise thermally, so hot water comes out. It took a long time to make the user dissatisfied.

【0003】こうした問題を解決する瞬間湯沸し型のヒ
ートポンプ給湯装置として特開昭61−17849号公
報に記載されているような給湯装置が提案されていた。
このヒートポンプ給湯装置は図5に示すように、閉回路
に構成される冷媒流路1で圧縮機2、放熱器3、減圧手
段4、吸熱器5が接続されたヒートポンプサイクル7
と、放熱器3と接触熱交換する貯湯タンク6を設け、こ
の貯湯タンク6を圧縮機2を囲むように配置している。
この構成で、給湯をすると貯湯タンク6に湯が蓄えら
れ、給湯を停止しても圧縮機2が冷めないので、給湯を
再開した場合に給湯温度の立上りが早くなるとしてい
る。
As an instant boiling type heat pump water heater for solving such problems, there has been proposed a water heater as described in JP-A-61-17849.
As shown in FIG. 5, this heat pump water heater has a heat pump cycle 7 in which a compressor 2, a radiator 3, a pressure reducing means 4, and a heat absorber 5 are connected in a refrigerant flow path 1 formed in a closed circuit.
A hot water storage tank 6 that exchanges heat with the radiator 3 is provided, and the hot water storage tank 6 is arranged so as to surround the compressor 2.
With this configuration, when hot water is supplied, the hot water is stored in the hot water storage tank 6, and even if the hot water supply is stopped, the compressor 2 does not cool. Therefore, when the hot water supply is restarted, the rise of the hot water supply temperature is accelerated.

【0004】[0004]

【発明が解決しようとする課題】上記従来例では貯湯タ
ンク6が冷めてしまうと圧縮機2も冷めてしまい、ヒー
トポンプサイクル7の立上りは逆に貯湯タンク6に圧縮
機2の熱が奪われるために遅くなる。また、出湯は貯湯
タンク6から行われるため、この貯湯タンク6の温度が
冷めいると、出湯温度も冷たく、貯湯タンク6の湯温が
上がるまで出湯温度が上昇しない。そのため、貯湯タン
ク6が冷めた状態からの給湯は、逆に湯が出てくるまで
に多くの時間を要してしまう。
In the above-mentioned conventional example, when the hot water storage tank 6 is cooled, the compressor 2 is also cooled, and the heat pump cycle 7 rises, on the contrary, the heat of the compressor 2 is taken by the hot water storage tank 6. To be late. Further, since hot water is discharged from the hot water storage tank 6, when the temperature of the hot water storage tank 6 is cold, the hot water discharge temperature is also cold, and the hot water discharge temperature does not rise until the hot water temperature of the hot water storage tank 6 rises. Therefore, hot water supply from the state where the hot water storage tank 6 is cooled, on the contrary, requires a lot of time until hot water comes out.

【0005】また、給湯中に出湯温度を変更しようとし
た場合に、圧縮機2の運転状態を変えても、貯湯タンク
6の湯温は直には変化しないため、温度変更にも時間が
かかってしまう。
Further, if the temperature of the hot water discharged is changed during hot water supply, even if the operating state of the compressor 2 is changed, the temperature of the hot water in the hot water storage tank 6 does not change directly. Will end up.

【0006】さらに、貯湯タンク6に湯がある場合に給
湯を再開しても、ヒートポンプサイクル7が立上がるま
では、貯湯タンク6内は給水によって冷やされ、出湯温
度はいったん下がっるので、使用者に不快感を与えてし
まう。これを防ぐためには充分に容量の大きな貯湯タン
ク6が必要になってしまう。
Further, even if hot water is restarted when there is hot water in the hot water storage tank 6, the hot water storage tank 6 is cooled by the water supply until the heat pump cycle 7 starts up, and the hot water discharge temperature is once lowered. Makes you feel uncomfortable. To prevent this, the hot water storage tank 6 having a sufficiently large capacity is required.

【0007】また、冷媒の熱を水に伝えるのに、放熱器
3と貯湯タンク6を接触させて熱交換させているが、貯
湯タンク6は容量があるため給湯時でも内部の流速が遅
く、放熱器3と接触している貯湯タンク6内面の熱伝達
が大きくできない。そのため、効率が悪く、十分な熱量
の熱交換をするには広い伝熱面積が必要となり、これに
比例して放熱器3も大型になってしまい、放熱ロスの増
加により、さらに効率が悪くなる。また、大型化にとも
ない材料費や製作費も嵩むためコスト高になってしまっ
ていた。
In order to transfer the heat of the refrigerant to the water, the radiator 3 and the hot water storage tank 6 are brought into contact with each other for heat exchange. However, since the hot water storage tank 6 has a capacity, the internal flow velocity is slow even during hot water supply, The heat transfer on the inner surface of the hot water storage tank 6 which is in contact with the radiator 3 cannot be increased. Therefore, the efficiency is low, and a large heat transfer area is required for exchanging a sufficient amount of heat, and the radiator 3 becomes large in proportion to this, and the efficiency is further deteriorated due to an increase in heat dissipation loss. . In addition, the material cost and the manufacturing cost increase with the increase in size, resulting in high cost.

【0008】以上のように従来のヒートポンプ給湯装置
では給湯温度の立ち上がりを逆に悪くする場合があり、
しかも湯温の制御性がわるかったり、効率が悪化するな
どの問題があった。
As described above, in the conventional heat pump water heater, the rise of the hot water temperature may be adversely affected,
Moreover, there are problems such as poor controllability of the hot water temperature and deterioration of efficiency.

【0009】本発明は、上記従来の課題を解決するもの
で、給湯温度の立ち上がりと制御性が良く、効率のよい
給湯ができる瞬間湯沸し型のヒートポンプ給湯装置を提
供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object thereof is to provide a heat pump hot water supply apparatus of the instant boiling type, which has good rise of hot water supply temperature and controllability and can supply hot water efficiently.

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
するために、本発明のヒートポンプ給湯装置は、冷媒流
路aと水流路で熱交換する熱交換器の、水流路に直接水
道水を通水し、この水路から出湯される湯を使う瞬間湯
沸し型であって、熱交換器の水流路を含む前後の経路の
水を加熱する加温手段を有するものである。
In order to solve the above-mentioned problems, the present invention provides a heat pump water heater of the present invention in which a tap water is directly supplied to a water flow path of a heat exchanger for exchanging heat between a refrigerant flow path a and a water flow path. It is an instant boiling type that uses hot water that flows through water and is discharged from this water channel, and has a heating means for heating water in the front and rear paths including the water flow path of the heat exchanger.

【0011】上記発明によれば、水道水を熱交換器で加
熱するのとは別に加温手段でも加熱するもので、熱交換
器での加熱が不充分な場合でも不足を補って加温手段に
より加熱できる。
According to the above invention, the tap water is heated not only by the heat exchanger but also by the heating means, so that even if the heating in the heat exchanger is insufficient, the shortage is compensated for. Can be heated by.

【0012】[0012]

【発明の実施の形態】請求項1に記載の発明のヒートポ
ンプ給湯装置は、閉回路に構成される冷媒流路で圧縮
機、放熱器、減圧手段、吸熱器が接続されたヒートポン
プサイクルと、前記放熱器の冷媒流路aと熱交換を行う
水流路を備えた熱交換器と、前記水流路に水道水を供給
する給水管と、前記水流路からシャワーや蛇口等の給湯
端末へと通水するように接続する給湯回路と、前記給水
管と水流路と給湯回路とで構成される経路の少なくとも
一箇所の水を加熱する加温手段を有するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A heat pump water heater according to a first aspect of the present invention is a heat pump cycle in which a compressor, a radiator, a pressure reducing means, and a heat absorber are connected by a refrigerant passage configured in a closed circuit, A heat exchanger having a water flow path for exchanging heat with the refrigerant flow path a of the radiator, a water supply pipe for supplying tap water to the water flow path, and water flow from the water flow path to a hot water supply terminal such as a shower or a faucet A hot water supply circuit that is connected as described above, and a heating means that heats water in at least one portion of a path formed by the water supply pipe, the water flow path, and the hot water supply circuit.

【0013】請求項1によれば、水道水を熱交換器で加
熱するのとは別に加温手段で加熱されるので、熱交換器
での加熱が遅れても加温手段により出湯温度の立ち上が
り遅れをカバーすることができる。また、熱交換器によ
る出湯温度制御に加温手段が直接影響しないので制御性
がよい。さらに、冷媒と水の熱交換は加温手段と独立し
て熱交換器で行うため高効率な熱交換が可能である。
According to the first aspect, the tap water is heated by the heating means separately from the heating by the heat exchanger. Therefore, even if the heating in the heat exchanger is delayed, the heated water temperature rises by the heating means. You can cover the delay. In addition, since the heating means does not directly affect the hot water outlet temperature control by the heat exchanger, the controllability is good. Furthermore, since the heat exchange between the refrigerant and the water is performed by the heat exchanger independently of the heating means, highly efficient heat exchange is possible.

【0014】請求項2に記載の発明のヒートポンプ給湯
装置は、請求項1に記載の加温手段が、給水管と熱交換
器と給湯回路の何れかに直列に設けた蓄熱手段で構成し
たものである。
In the heat pump hot water supply apparatus according to a second aspect of the present invention, the heating means according to the first aspect is constituted by a heat storage means provided in series in any one of the water supply pipe, the heat exchanger and the hot water supply circuit. Is.

【0015】この構成によれば、蓄熱手段に蓄熱してお
けば、給湯開始時などに熱交換器での加熱が遅れても、
蓄熱手段により給水管と熱交換器と給湯回路の何れかの
水を直接加熱するので出湯温度の立ち上がり遅れがなく
なる。
According to this structure, by storing heat in the heat storage means, even if heating in the heat exchanger is delayed at the start of hot water supply or the like,
Since the heat storage means directly heats the water in any one of the water supply pipe, the heat exchanger and the hot water supply circuit, there is no rise delay in the hot water discharge temperature.

【0016】請求項3に記載の発明のヒートポンプ給湯
装置は、請求項1に記載の加温手段が、給水管と熱交換
器と給湯回路の何れかに並列に接続した蓄熱手段で構成
したものである。
In a heat pump water heater according to a third aspect of the present invention, the heating means according to the first aspect is constituted by a heat storage means connected in parallel to any one of a water supply pipe, a heat exchanger and a hot water supply circuit. Is.

【0017】この構成によれば、蓄熱手段の熱により給
水管と熱交換器と給湯回路の何れかの水を加熱する熱量
を、蓄熱手段側の流量を変えることにより自由に設定で
きる。
According to this structure, the amount of heat for heating water in any one of the water supply pipe, the heat exchanger and the hot water supply circuit by the heat of the heat storage means can be freely set by changing the flow rate on the heat storage means side.

【0018】請求項4に記載の発明のヒートポンプ給湯
装置は、請求項2または3に記載の蓄熱手段が、給水管
と熱交換器と給湯回路の何れかの流水と蓄熱手段により
加熱される水とを混合する混合手段を有するものであ
る。
In the heat pump hot water supply apparatus according to a fourth aspect of the present invention, the heat storage means according to the second or third aspect is one in which water is supplied from the water supply pipe, the heat exchanger or the hot water supply circuit and the water heated by the heat storage means. And a mixing means for mixing and.

【0019】この構成によれば、蓄熱手段からの湯が給
水管と熱交換器と給湯回路の何れかの水と所定の割合で
混合加熱できるので、所定の出湯温度が直ちに得られ
る。
According to this structure, the hot water from the heat storage means can be mixed and heated with water in any one of the water supply pipe, the heat exchanger and the hot water supply circuit at a predetermined ratio, so that a predetermined hot water discharge temperature can be immediately obtained.

【0020】請求項5に記載の発明のヒートポンプ給湯
装置は、請求項2または3に記載の蓄熱手段が、給水管
と熱交換器と給湯回路の何れかの流水と蓄熱手段により
加熱される水とを切換えて流す切換え手段を有するもの
である。
According to a fifth aspect of the present invention, there is provided the heat pump hot water supply apparatus, wherein the heat storage means according to the second or third aspect is the water flowing from any one of the water supply pipe, the heat exchanger and the hot water supply circuit and the water heated by the heat storage means. It has a switching means for switching and flowing.

【0021】この構成によれば、蓄熱手段からの湯と、
給水管と熱交換器と給湯回路の何れかの水とを切換えて
流すことできるので、給湯開始時や除霜時などの熱交換
器からの加熱が充分でない場合に蓄熱手段からの湯が利
用でき、使用者に不満感を与えない。
According to this structure, the hot water from the heat storage means,
Since it is possible to switch water between the water supply pipe, the heat exchanger, and any water in the hot water supply circuit, the hot water from the heat storage means is used when heating from the heat exchanger is not sufficient when starting hot water supply or when defrosting. It is possible and does not give the user a feeling of dissatisfaction.

【0022】請求項6に記載の発明のヒートポンプ給湯
装置は、請求項2〜5のいずれか1項に記載の蓄熱手段
が、蓄熱温度を所定温度に保つための保温手段Aを有す
るものである。
In a heat pump water heater according to a sixth aspect of the present invention, the heat storage means according to any one of the second to fifth aspects has a heat retention means A for keeping the heat storage temperature at a predetermined temperature. .

【0023】この構成によれば、蓄熱手段の湯が所定温
度に保たれるので、圧縮機や熱交換器が冷え切っている
状態で給湯が開始されても、蓄熱手段の湯により給水管
と熱交換器と給湯回路の何れかの水が加熱されるので、
出湯温度の立ち上がりが常に早くできる。
According to this structure, since the hot water of the heat storage means is maintained at a predetermined temperature, even if the hot water supply is started in a state where the compressor and the heat exchanger are completely cold, the hot water of the heat storage means creates a water supply pipe. Since the water in either the heat exchanger or the hot water supply circuit is heated,
The rising temperature of the hot water can always be raised quickly.

【0024】請求項7に記載の発明のヒートポンプ給湯
装置は、請求項6に記載の保温手段Aに、ヒートポンプ
サイクルの放熱器を用いたものである。
In the heat pump water heater of the invention described in claim 7, the heat retaining means A described in claim 6 uses a radiator of a heat pump cycle.

【0025】この構成によれば、蓄熱手段の保温をヒー
トポンプにより行うので、ヒータなどに比べ効率がよ
く、また保温時にヒートポンプサイクルが駆動するの
で、給湯開始時での温度立上りが早くなる。
According to this structure, the heat storage of the heat storage means is performed by the heat pump, so that it is more efficient than that of the heater and the like, and the heat pump cycle is driven during the heat retention, so that the temperature rises quickly at the start of hot water supply.

【0026】請求項8に記載の発明のヒートポンプ給湯
装置は、請求項1に記載の加温手段が、給水管と水流路
と給湯回路の少なくとも1つを含んで形成した水循環路
と、前記水循環路の循環水の温度を保つための保温手段
Bとより構成するものである。
In the heat pump water heater of the invention described in claim 8, the heating means according to claim 1 includes a water circulation path formed by including at least one of a water supply pipe, a water flow path and a hot water supply circuit, and the water circulation. It is constituted by a heat retaining means B for keeping the temperature of circulating water in the passage.

【0027】この構成によれば、給水管と水流路と給湯
回路の少なくとも1つが保温されるので、給湯開始時に
水循環路の湯が出湯されるので温度立上りが早くなる。
また、水循環路の熱が熱交換器を暖めるので、ヒートポ
ンプサイクルの立ち上がりも早い。
According to this structure, at least one of the water supply pipe, the water flow path, and the hot water supply circuit is kept warm, so that the hot water in the water circulation path is discharged at the start of hot water supply, so that the temperature rises quickly.
Further, the heat of the water circulation path warms the heat exchanger, so the heat pump cycle starts up quickly.

【0028】請求項9に記載の発明のヒートポンプ給湯
装置は、請求項8に記載の保温手段Bが、熱交換器の水
流路を用い、ヒートポンプサイクルを駆動して保温する
ものである。
In the heat pump water heater of the invention described in claim 9, the heat retaining means B according to claim 8 uses the water flow path of the heat exchanger to drive the heat pump cycle to retain heat.

【0029】この構成によれば、水循環路の保温をヒー
トポンプにより行うので、ヒータなどに比べ効率がよ
く、また保温時にヒートポンプサイクルが駆動するの
で、ヒートポンプサイクル自体の立上りも早くなる。
According to this structure, the water circulation path is kept warm by the heat pump, so that it is more efficient than a heater or the like, and the heat pump cycle is driven when keeping the heat, so that the heat pump cycle itself starts up faster.

【0030】請求項10に記載の発明のヒートポンプ給
湯装置は、請求項8または9に記載の水循環路に蓄熱手
段を備えたものである。
A heat pump water heater according to a tenth aspect of the present invention comprises the water circulation passage according to the eighth or ninth aspect in which heat storage means is provided.

【0031】この構成によれば、水循環路の保温時の湯
が蓄熱手段に貯えられるので、給湯開始時などに水循環
路に冷水が流れ込んでも、蓄熱手段の湯と混合または入
れ替わり出湯温度の低下を防ぐことができる。
According to this structure, since the hot water when the water circulation path is kept warm is stored in the heat storage means, even if cold water flows into the water circulation path at the start of hot water supply or the like, the hot water is mixed with or replaced by the hot water of the heat storage means to lower the temperature of the hot water. Can be prevented.

【0032】請求項11に記載の発明のヒートポンプ給
湯装置は、請求項2〜7および10のいずれか1項に記
載の蓄熱手段が、ヒートポンプサイクルや熱交換器の熱
応答遅れによる不足熱量相当の蓄熱量としたものであ
る。
In the heat pump water heater of the invention described in claim 11, the heat storage means described in any one of claims 2 to 7 and 10 corresponds to the insufficient heat amount due to the delay in the heat response of the heat pump cycle or the heat exchanger. It is the amount of heat storage.

【0033】この構成によれば、蓄熱手段の大きさが最
適なものとなるので、蓄熱手段が大きすぎて放熱ロスが
増加したり、設置スペースや重量が大きくなることがな
い。
According to this structure, the size of the heat storage means is optimized, so that the heat storage means is not too large and the heat radiation loss is not increased, and the installation space and weight are not increased.

【0034】請求項12に記載の発明のヒートポンプ給
湯装置は、請求項2〜7および10、11のいずれか1
項に記載の蓄熱手段の蓄熱温度を、給湯温度より高温に
したものである。
The heat pump water heater of the invention described in claim 12 is any one of claims 2 to 7 and 10 and 11.
The heat storage temperature of the heat storage means described in the item is set higher than the hot water supply temperature.

【0035】この構成によれば、蓄熱手段の湯温を給湯
温度より高くすることにより、蓄熱密度を上げることで
蓄熱サイズ小さくするもので、設置スペースや重量を少
なくすることができる。
According to this structure, the hot water temperature of the heat storage means is set higher than the hot water supply temperature to increase the heat storage density to reduce the heat storage size, and thus the installation space and weight can be reduced.

【0036】請求項13に記載の発明のヒートポンプ給
湯装置は、請求項2〜7および10〜12のいずれか1
項に記載の蓄熱手段が、給水管と水流路と給湯回路とで
構成される経路の少なくとも一箇所の水を貯留する貯留
タンクを備えたものである。
The heat pump water heater of the invention described in claim 13 is any one of claims 2 to 7 and 10 to 12.
The heat storage means described in the item 1 is provided with a storage tank that stores water at at least one location of a path formed by a water supply pipe, a water flow path, and a hot water supply circuit.

【0037】この構成は、給湯に使用する水を蓄熱手段
として用いることにより、流通時水を抜けば軽量にでき
る。また、蓄熱材として比熱が大きく、しかも安全であ
る。
With this configuration, the water used for hot water supply is used as the heat storage means, so that the weight can be reduced by removing the water during distribution. Further, it has a large specific heat as a heat storage material and is safe.

【0038】請求項14に記載の発明のヒートポンプ給
湯装置は、請求項1〜13のいずれか1項に記載のヒー
トポンプサイクルが、冷媒の圧力が臨界圧力以上となる
超臨界ヒートポンプサイクルであり、前記臨界圧力以上
に昇圧された冷媒により熱交換器の水流路の流水を加熱
する構成である。
A heat pump water heater according to a fourteenth aspect of the present invention is the heat pump cycle according to any one of the first to thirteenth aspects, wherein the heat pump cycle is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure. This is a configuration in which the running water in the water flow path of the heat exchanger is heated by the refrigerant that has been boosted to the critical pressure or higher.

【0039】そして、熱交換器の冷媒流路aを流れる冷
媒は、圧縮機で臨界圧力以上に加圧されているので、熱
交換器の水流路の流水により熱を奪われて温度低下して
も凝縮することがない。したがって熱交換器全域で冷媒
流路aと水流路とに温度差を形成しやすくなり、高温の
湯が得られ、かつ熱交換効率を高くできる。
Since the refrigerant flowing through the refrigerant flow path a of the heat exchanger is pressurized to a pressure higher than the critical pressure by the compressor, heat is taken by the flowing water in the water flow path of the heat exchanger and the temperature is lowered. Does not condense. Therefore, it becomes easy to form a temperature difference between the refrigerant flow path a and the water flow path in the entire heat exchanger, hot water can be obtained, and heat exchange efficiency can be increased.

【0040】請求項15に記載の発明のヒートポンプ給
湯装置は、請求項1〜14のいずれか1項に記載の熱交
換器の冷媒流路aと水流路の流れ方向を対向流としたも
ので、熱交換器の冷媒流路aと水流路の伝熱が均一化す
ることで、熱交換効率がよく高温の出湯が可能になる。
A heat pump hot water supply apparatus according to a fifteenth aspect of the present invention is the heat exchanger according to any one of the first to fourteenth aspects, in which the refrigerant flow channel a and the water flow channel have opposite flow directions. By uniformizing the heat transfer between the refrigerant flow path a and the water flow path of the heat exchanger, it is possible to obtain high-temperature hot water with good heat exchange efficiency.

【0041】[0041]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。なお、従来例および各実施例におい
て、同じ構成、同じ動作をする部分については同一符号
を付与し、詳細な説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. In the conventional example and each example, the same reference numerals are given to the parts having the same configurations and the same operations, and detailed description thereof will be omitted.

【0042】(実施例1)図1は本発明の実施例1にお
けるヒートポンプ式給湯装置の構成図である。図1にお
いて、7はヒートポンプサイクルで、圧縮機2、放熱器
a8、放熱器b9、減圧手段4、吸熱器5が冷媒流路1
により閉回路に接続されている。このヒートポンプサイ
クル7は、例えば炭酸ガスを冷媒として使用し、高圧側
の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポン
プサイクルを使用している。そして圧縮機2は、内蔵す
る電動モータ(図示しない)によって駆動され、吸引し
た冷媒を臨界圧力まで圧縮して吐出する。また、10は
放熱器b9の冷媒流路a11と熱交換を行う水流路12
を備えた熱交換器である。この水流路12に水道水を直
接供給する給水管13と、水流路12から出湯される湯
をシャワー16や蛇口17等より成る給湯端末14の通
水させるための給湯回路15が接続されている。そして
18は給湯回路15の水を加熱する加温手段で、給湯回
路15の上流部の給湯回路a19に並列に接続した蓄熱
手段20から成っている。蓄熱手段20は、給湯回路1
5の流水を溜める貯留タンク21と、給湯回路a19と
蓄熱手段20の流水を混合する混合手段22より構成さ
ている。貯留タンク21は、下端に入口管23と、上端
に出口管24と、下部に放熱器a8を内蔵して、断熱材
25で覆って構成している。この放熱器a8は貯湯タン
ク21内の蓄熱温度(以下貯留温度と呼ぶ)を所定温度
に保つための保温手段Aを兼ねている。給湯回路15
は、分岐部26より給湯回路a19と入口管23に分岐
し、合流部27で給湯回路a19と出口管24の水が合
流する。この合流部27に混合手段22が設けられてい
る。
(Embodiment 1) FIG. 1 is a configuration diagram of a heat pump type hot water supply apparatus according to Embodiment 1 of the present invention. In FIG. 1, 7 is a heat pump cycle, and the compressor 2, the radiator a8, the radiator b9, the pressure reducing means 4, and the heat absorber 5 are the refrigerant flow path 1.
Connected to a closed circuit. The heat pump cycle 7 uses, for example, carbon dioxide as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 2 is driven by a built-in electric motor (not shown) and compresses the sucked refrigerant to a critical pressure and discharges it. Further, 10 is a water flow path 12 for exchanging heat with the refrigerant flow path a11 of the radiator b9.
Is a heat exchanger equipped with. A water supply pipe 13 for directly supplying tap water to the water flow path 12 and a hot water supply circuit 15 for connecting hot water discharged from the water flow path 12 to a hot water supply terminal 14 including a shower 16 and a faucet 17 are connected. . 18 is a heating means for heating the water in the hot water supply circuit 15, which comprises a heat storage means 20 connected in parallel to the hot water supply circuit a19 at the upstream part of the hot water supply circuit 15. The heat storage means 20 is the hot water supply circuit 1
5 is composed of a storage tank 21 for storing the flowing water, and a mixing means 22 for mixing the flowing water of the hot water supply circuit a19 and the heat storage means 20. The storage tank 21 has an inlet pipe 23 at the lower end, an outlet pipe 24 at the upper end, and a radiator a8 built in at the lower part, and is covered with a heat insulating material 25. The radiator a8 also serves as a heat retaining unit A for keeping a heat storage temperature (hereinafter referred to as a storage temperature) in the hot water storage tank 21 at a predetermined temperature. Hot water supply circuit 15
Is branched from the branching portion 26 into the hot water supply circuit a19 and the inlet pipe 23, and the confluence portion 27 joins the water in the hot water supply circuit a19 and the outlet pipe 24. The merging unit 27 is provided with the mixing means 22.

【0043】なお、貯留タンク21の大きさはヒートポ
ンプサイクル7や熱交換器10の出湯時の熱応答遅れに
よる不足熱量相当の蓄熱量としたもので、例えば給水温
度5℃で目標温度45℃とし、10L/minで給湯するも
のとした場合で、目標温度の出湯までに3分間の遅れが
あるとすると、不足熱量は ((45℃−5℃)×10L/min×3min/860) で1.4kWhとなる。これを80℃の貯湯タンク21で
補う場合は (1.4kWh×860/(80℃−5℃)) で16Lの容量となる。
The size of the storage tank 21 is set to a heat storage amount corresponding to an insufficient heat amount due to a thermal response delay when the heat pump cycle 7 and the heat exchanger 10 discharge hot water. For example, the feed water temperature is 5 ° C. and the target temperature is 45 ° C. If hot water is supplied at 10 L / min, and there is a delay of 3 minutes before tapping at the target temperature, the heat deficit is ((45 ℃ -5 ℃) × 10L / min × 3min / 860) It will be 4kWh. If this is supplemented by the hot water storage tank 21 of 80 ° C. (1.4 kWh × 860 / (80 ° C.-5 ° C.)), the capacity is 16 L.

【0044】給水管13には、給湯回路15の流量を検
出する流量検知手段28と、熱交換器10への給水温度
を検出する水温検知手段29が設けられている。そして
給湯回路15には出湯温度を検出する湯温検知手段30
が設けられている。また貯留タンク21の上部には貯留
タンク21内の湯温を検出する貯留温度検知手段31が
設けられている。32は気温を検出する気温検知手段で
ある。33は給湯の目標温度を設定する温度設定手段
で、使用者が任意に温度を設定する。
The water supply pipe 13 is provided with a flow rate detecting means 28 for detecting the flow rate of the hot water supply circuit 15 and a water temperature detecting means 29 for detecting the temperature of the water supplied to the heat exchanger 10. The hot water supply circuit 15 has hot water temperature detecting means 30 for detecting the hot water temperature.
Is provided. Further, a storage temperature detecting means 31 for detecting the temperature of the hot water in the storage tank 21 is provided above the storage tank 21. Reference numeral 32 is an air temperature detecting means for detecting the air temperature. Reference numeral 33 is a temperature setting means for setting a target temperature for hot water supply, and the user arbitrarily sets the temperature.

【0045】34は制御手段で、流量検知手段28によ
り流量を検知すると、湯温検知手段30と温度設定手段
33とのそれぞれが出力する出湯温度と目標温度との偏
差からフィードバック制御量を算定し、水温検知手段2
9と温度設定手段33と流量検知手段28の各値から給
湯負荷を算定し、フィードバック制御量と給湯負荷を加
算し、この加算値に基づいて圧縮機2の回転数を制御す
る。
Reference numeral 34 is a control means which, when the flow rate detecting means 28 detects the flow rate, calculates the feedback control amount from the deviation between the hot water temperature output means 30 and the temperature setting means 33 and the target temperature. , Water temperature detection means 2
9, the hot water supply load is calculated from the respective values of the temperature setting means 33 and the flow rate detecting means 28, the feedback control amount and the hot water supply load are added, and the rotation speed of the compressor 2 is controlled based on the added value.

【0046】また、制御手段34は、気温検知手段32
の検出値に応じて圧縮機2の回転数を補正すると共に、
減圧手段4、送風機35をそれぞれ制御し、最も効率の
良くなるヒートポンプサイクルで運転する。
Further, the control means 34 includes the temperature detecting means 32.
The number of revolutions of the compressor 2 is corrected according to the detected value of
The depressurizing unit 4 and the blower 35 are individually controlled to operate in the heat pump cycle with the highest efficiency.

【0047】さらに、制御手段34は混合手段22を駆
動して、給湯回路a19からの流水と貯留タンク21か
らの流水との混合割合を制御し、出湯温度を目標温度に
近付ける。
Further, the control means 34 drives the mixing means 22 to control the mixing ratio of the flowing water from the hot water supply circuit a19 and the flowing water from the storage tank 21 to bring the hot water outlet temperature close to the target temperature.

【0048】また、制御手段34は給湯停止時に、貯留
温度検知手段31より貯留温度を検知し、貯留温度を所
定温度(例えば80℃)に保つように圧縮機2を低速で
回転制御して保温運転する。この保温の所定温度を給湯
の目標温度(例えば45℃)より充分に高くすることに
より、蓄熱密度を上げることができ、貯留タンク25の
大きさを小さくすることができる。
When the hot water supply is stopped, the control means 34 detects the storage temperature from the storage temperature detecting means 31, and controls the compressor 2 to rotate at a low speed so as to keep the storage temperature at a predetermined temperature (for example, 80 ° C.) and keep it warm. drive. The heat storage density can be increased and the size of the storage tank 25 can be reduced by making the predetermined temperature of this heat retention sufficiently higher than the target temperature of hot water supply (for example, 45 ° C.).

【0049】熱交換器10は、冷媒流路a11の流れ方
向と水流路12の流れ方向を対向流とし、各流路間を熱
移動が容易になるように密着して構成している。この構
成により冷媒流路a11と水流路12の伝熱が均一化
し、熱交換効率がよくなる。また、高温の出湯も可能に
なる。
The heat exchanger 10 is constructed so that the flow direction of the refrigerant flow path a11 and the flow direction of the water flow path 12 are opposed to each other, and the flow paths are closely contacted with each other to facilitate heat transfer. With this configuration, the heat transfer in the refrigerant channel a11 and the water channel 12 is made uniform, and the heat exchange efficiency is improved. Also, hot water can be discharged.

【0050】以上の構成において、その動作、作用につ
いて説明する。図1に示す実施例において、蛇口17が
開かれると給水管13から水道水が流れ込み始める。こ
れを流量検知手段28が検知し制御手段34に信号が送
られ、圧縮機2の運転が開始される。このときヒートポ
ンプサイクル7が冷え切った状態の場合、圧縮機2が運
転されてもサイクル全体の圧力および温度が定常状態に
達していないために、水流路12からは給水温度に近い
水が出てしまう。制御手段34は給湯開始後の所定時間
(例えば3分間)は混合手段22の混合割合を例えば
1:1として設定している。ここで、給水温度5℃、貯
留温度80℃として、水流路12からの出口温度がまだ
5℃とすると、混合手段22の出口温度は(80℃+5
℃)/2で、42.5℃の出湯温度となる。その後、水
流路12の出口温度は徐々に上昇するが、貯留タンク2
1内の貯留温度は入口管23から給水温度に近い冷水が
流入されるため、貯留タンク21の出口温度は逆に徐々
に低下する。したがって混合手段22の出口温度は、そ
れぞれの流水が混合されて給湯の目標温度(例えば45
℃)に近い温度を維持することができる。
The operation and action of the above structure will be described. In the embodiment shown in FIG. 1, when the faucet 17 is opened, tap water starts to flow from the water supply pipe 13. This is detected by the flow rate detecting means 28, a signal is sent to the control means 34, and the operation of the compressor 2 is started. At this time, when the heat pump cycle 7 is in a completely cold state, even if the compressor 2 is operated, the pressure and temperature of the entire cycle have not reached the steady state, so that water close to the feed water temperature is discharged from the water flow passage 12. I will end up. The control unit 34 sets the mixing ratio of the mixing unit 22 to, for example, 1: 1 for a predetermined time (for example, 3 minutes) after the hot water supply is started. Here, assuming that the supply water temperature is 5 ° C. and the storage temperature is 80 ° C., and the outlet temperature from the water channel 12 is still 5 ° C., the outlet temperature of the mixing means 22 is (80 ° C. + 5).
(° C) / 2, the tapping temperature is 42.5 ° C. After that, the outlet temperature of the water channel 12 gradually rises, but the storage tank 2
As for the storage temperature in 1, the cold water, which is close to the feed water temperature, flows in from the inlet pipe 23, and therefore the outlet temperature of the storage tank 21 is gradually decreased. Therefore, the outlet temperature of the mixing means 22 is the target temperature of hot water supply (for example, 45 when the respective running waters are mixed).
C.) can be maintained.

【0051】以上のように混合手段22の制御は、給湯
開始直後に貯湯タンク21からの湯を利用することによ
って、熱交換器10からの出湯遅れを補うように作用さ
せる。なお、給湯開始時に熱交換器10の温度が冷めて
いない場合は、湯温検知手段30から目標温度より高い
値が出力される。この場合は混合割合を給湯回路a19
側を多くして出湯温度が目標に近付くように調整する。
As described above, the control of the mixing means 22 operates so as to compensate for the delay of hot water output from the heat exchanger 10 by utilizing the hot water from the hot water storage tank 21 immediately after the start of hot water supply. When the temperature of the heat exchanger 10 is not cooled at the start of hot water supply, the hot water temperature detecting means 30 outputs a value higher than the target temperature. In this case, the mixing ratio should be the hot water supply circuit a19.
Adjust so that the hot water temperature approaches the target by increasing the number of sides.

【0052】そして、ヒートポンプサイクル7の温度が
安定すると、混合手段22の混合割合を給湯回路a19
主体に切換える。このとき、圧縮機2から吐出される高
温高圧の冷媒ガスは放熱器a8および放熱器b9へ流入
し、貯留タンク21の水を加熱しつつ、水流路12を流
れる水を加熱する。そして、加熱された水は給湯回路a
19、給湯回路15を経て給湯端末12から出湯する。
一方、放熱器a8と放熱器b9で冷却された冷媒は減圧
手段4で減圧されて吸熱器5に流入し、ここで大気熱、
太陽熱など自然エネルギーを吸熱して蒸発ガス化し、圧
縮機2に戻る。
When the temperature of the heat pump cycle 7 becomes stable, the mixing ratio of the mixing means 22 is adjusted to the hot water supply circuit a19.
Switch to the subject. At this time, the high-temperature and high-pressure refrigerant gas discharged from the compressor 2 flows into the radiator a8 and the radiator b9, heating the water in the storage tank 21 and the water flowing in the water flow passage 12. The heated water is supplied to the hot water supply circuit a.
19, hot water is discharged from the hot water supply terminal 12 through the hot water supply circuit 15.
On the other hand, the refrigerant cooled by the radiator a8 and the radiator b9 is decompressed by the decompression means 4 and flows into the heat absorber 5, where atmospheric heat,
It absorbs natural energy such as solar heat, evaporates it into gas, and returns to the compressor 2.

【0053】給湯中の制御手段34では、出湯温度と目
標温度との偏差から公知のPID制御を用いてフィード
バック制御量を算定する。ここでの制御定数である比例
ゲインや積分係数や微分係数は、制御の応答性と安定性
を両立するための最適な値を予め設定しておく必要があ
る。なおフィードバック制御は、PI制御でもP制御で
もファジーやニューロ制御でもよい。そして、一方では
目標温度と給水温度との差に、流量検知手段20の検知
する流量を乗じて給湯負荷を算定する。これは、いわゆ
るフィードフォワードの制御量である。そして、フィー
ドバック制御量と給湯負荷を加算して、この加算値を用
いて圧縮機2の回転数制御を行っている。このフィード
バック制御を加味することによって、出湯温度を目標温
度に正確に制御することができる。とくにPIDやPI
制御のように積分要素を用いることにより、出湯温度を
より目標温度にあわせることができる。また、比例制御
要素を用いることで給湯開始直後などの出湯温度が低い
場合に大能力で加熱制御するので応答性がよくなる。一
方、フィードフォワード制御は、給湯の温度安定時にお
ける所要熱量であるので、熱量の過不足が少なく制御の
安定性に優れている。また、給湯流量や給水温度が急変
した場合には直ちに応答して加熱量を変更制御できるの
で、この点はフィードバック制御より応答性がよくしか
も安定性がよい。そして、このフィードバック制御とフ
ィードフォワード制御を加算して制御するので、それぞ
れの特徴が活かされ応答性がよくしかも安定性のよい制
御が可能になる。
The control means 34 during hot water supply calculates the feedback control amount from the deviation between the hot water discharge temperature and the target temperature using known PID control. The proportional gain, the integral coefficient, and the differential coefficient, which are the control constants here, need to be set in advance to optimal values for achieving both control response and stability. The feedback control may be PI control, P control, fuzzy or neuro control. On the other hand, the hot water supply load is calculated by multiplying the difference between the target temperature and the water supply temperature by the flow rate detected by the flow rate detection means 20. This is a so-called feedforward control amount. Then, the feedback control amount and the hot water supply load are added, and the rotation speed control of the compressor 2 is performed using the added value. By adding this feedback control, the outlet heated water temperature can be accurately controlled to the target temperature. Especially PID and PI
By using the integral element as in the control, the hot water outlet temperature can be adjusted to the target temperature more. Further, by using the proportional control element, the responsiveness is improved because the heating control is performed with a large capacity when the tapping temperature is low immediately after the start of hot water supply. On the other hand, the feedforward control is a required amount of heat when the temperature of the hot water supply is stable, so that the amount of heat is not excessive and insufficient, and the control stability is excellent. Further, when the hot water supply flow rate or the water supply temperature suddenly changes, the amount of heating can be changed and controlled immediately, so that this point is more responsive and more stable than the feedback control. Since the feedback control and the feedforward control are added and controlled, it is possible to make use of their respective characteristics and control with good responsiveness and stability.

【0054】次に給湯停止中の動作について説明する。
貯留タンク21は断熱材25で覆われているが、貯留温
度は放熱により徐々に低下する。これを貯留温度検知手
段31より検知し、貯留温度が下限温度(例えば75
℃)より下がれば圧縮機2を低速で回転制御して、放熱
器a8により加熱して貯留タンク25内の温度を上昇さ
せる。このとき、放熱器b9も加熱されるが、水流路1
2に流れがないので、熱交換器10が温まれば、それ以
上熱を奪われなくなる。そして貯留温度が所定温度(例
えば80℃)を超えたら圧縮機2の運転を停止する。こ
のように貯留タンク21の温度を所定温度近くに保つよ
うに保温運転する。
Next, the operation when the hot water supply is stopped will be described.
Although the storage tank 21 is covered with the heat insulating material 25, the storage temperature gradually decreases due to heat radiation. This is detected by the storage temperature detection means 31, and the storage temperature is set to the lower limit temperature (for example, 75
(° C), the compressor 2 is rotationally controlled at a low speed and heated by the radiator a8 to raise the temperature in the storage tank 25. At this time, the radiator b9 is also heated, but the water flow path 1
Since there is no flow in 2, if the heat exchanger 10 warms up, no more heat will be taken away. Then, when the storage temperature exceeds a predetermined temperature (for example, 80 ° C.), the operation of the compressor 2 is stopped. In this way, the heat retention operation is performed so that the temperature of the storage tank 21 is maintained near the predetermined temperature.

【0055】なお実施例1では放熱器a8を貯留タンク
21内部に設けたが、貯留タンク21の外周に放熱器を
巻きつける等の外周に密着させて構成してもよい。ま
た、貯留タンク21の保温を放熱器a8ではなく、一般
のヒータによって行っても良い。
Although the radiator a8 is provided inside the storage tank 21 in the first embodiment, the radiator a8 may be closely attached to the outer periphery of the storage tank 21, for example, by winding a radiator around the outer periphery. Further, the heat retention of the storage tank 21 may be performed by a general heater instead of the radiator a8.

【0056】実施例1ではヒートポンプサイクルを、冷
媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイ
クルとしたが、もちろん一般の臨界圧力以下のヒートポ
ンプサイクルでもよい。これは以下に述べる各実施例に
おいても同様である。
In the first embodiment, the heat pump cycle is a supercritical heat pump cycle in which the pressure of the refrigerant is higher than the critical pressure, but it is of course possible to use a heat pump cycle under the general critical pressure. This also applies to each embodiment described below.

【0057】また、実施例1では混合手段22は給湯開
始時に経過時間と混合温度に応じて混合割合を変更する
ように制御したが、この混合手段22を貯留タンク21
の流水と給湯回路a19の流水を切換える切換え手段
(図示せず)としてもよい。この場合は、貯留タンク2
1の貯留温度は給湯の目標温度に設定し、水流路12か
らの出口温度が目標温度近くまで上昇したら、貯留タン
ク21から給湯回路a19に流れを切換えるように制御
する。この構成によれば混合手段22より切換え手段の
方が機構および制御が簡単になり、低コスト化に向く。
In the first embodiment, the mixing means 22 is controlled so as to change the mixing ratio according to the elapsed time and the mixing temperature at the start of hot water supply.
A switching means (not shown) may be used to switch between the flowing water and the flowing water of the hot water supply circuit a19. In this case, the storage tank 2
The storage temperature of 1 is set to the target temperature of hot water supply, and when the outlet temperature from the water flow path 12 rises to near the target temperature, control is performed to switch the flow from the storage tank 21 to the hot water supply circuit a19. According to this structure, the mechanism and control of the switching means are simpler than those of the mixing means 22, and the cost is reduced.

【0058】(実施例2)図2は本発明の実施例2にお
けるヒートポンプ給湯装置の構成図である。なお、実施
例1の給湯装置と同一構造のものは同一符号を付与し、
説明を省略する。図2において、実施例1の構成と異な
るところは、加温手段40が、給湯回路15に直列に設
けた蓄熱手段41で構成した点にある。蓄熱手段41
は、貯留タンク42の上部に入口管43を配して、混合
手段が貯湯タンク42内部に構成される点も異なる。そ
して、貯留タンク42の保温運転時の貯留温度を給湯の
目標温度(例えば45℃)と同等温度としている。ただ
し、貯留温度が低い分、貯留タンク42の容量は大きく
なる。
(Embodiment 2) FIG. 2 is a block diagram of a heat pump water heater in Embodiment 2 of the present invention. In addition, the same reference numerals are given to those having the same structure as the hot water supply device of the first embodiment,
The description is omitted. In FIG. 2, the difference from the configuration of the first embodiment is that the heating means 40 is configured by a heat storage means 41 provided in series with the hot water supply circuit 15. Heat storage means 41
Is different in that the inlet pipe 43 is arranged above the storage tank 42 and the mixing means is configured inside the hot water storage tank 42. The storage temperature of the storage tank 42 during the heat retention operation is set to be equal to the target temperature of hot water supply (for example, 45 ° C.). However, the lower the storage temperature, the larger the capacity of the storage tank 42.

【0059】以上の構成で、熱交換器10が冷え切った
状態から給湯が開始されると、入口管43から給水温度
に近い冷水が貯留タンク42に流入する。すると、貯留
タンク42内部では、内部の温水との温度差から、流入
水は貯留タンク42の底に流れ込み、中の温水だけが出
口管24から出湯される。したがって、給湯開始直後か
ら給湯の目標温度に近い出湯が可能になる。入口管43
から流入する温度が上がれば、貯留タンク42内で上部
の温水と混合されて出口管24から出湯されるようにな
る。また、貯留温度より高い温度の出湯をする場合は、
入口管43から貯留タンク42に貯留温度より高い温度
の湯が流入する。この場合、流入する湯の比重が軽いの
で貯留タンク42の上端に流れ、出口管24そのまま出
湯される。このように貯留タンク42内部で湯水の切換
え混合が行われる。
With the above construction, when hot water supply is started from the state where the heat exchanger 10 is completely cooled, cold water close to the water supply temperature flows from the inlet pipe 43 into the storage tank 42. Then, in the storage tank 42, the inflow water flows into the bottom of the storage tank 42 due to the temperature difference from the hot water inside, and only the hot water therein is discharged from the outlet pipe 24. Therefore, it is possible to discharge hot water close to the target temperature for hot water supply immediately after the start of hot water supply. Inlet pipe 43
When the temperature flowing in from the outlet rises, it is mixed with the hot water in the upper portion in the storage tank 42 and is discharged from the outlet pipe 24. When tapping hot water at a temperature higher than the storage temperature,
Hot water having a temperature higher than the storage temperature flows from the inlet pipe 43 into the storage tank 42. In this case, since the specific gravity of the inflowing water is light, it flows to the upper end of the storage tank 42 and is discharged as it is from the outlet pipe 24. In this way, hot water mixing is performed in the storage tank 42.

【0060】以上のように実施例2では、給湯回路15
に直列に蓄熱手段41を接続するだけで、給湯開始時の
出湯遅れを補い安定した温度の給湯が実現できる。ま
た、混合手段がなくとも貯留タンク42内部で自然に適
温に混合できるので、コスト低減になる。
As described above, in the second embodiment, the hot water supply circuit 15
By simply connecting the heat storage means 41 in series to the hot water supply system, it is possible to compensate for the delay of hot water supply at the start of hot water supply and realize hot water supply with stable temperature. Further, the cost can be reduced because the mixture can be naturally mixed at an appropriate temperature inside the storage tank 42 without any mixing means.

【0061】(実施例3)図3は本発明の実施例3にお
けるヒートポンプ給湯装置の構成図である。なお、実施
例1および実施例2の給湯装置と同一構造のものは同一
符号を付与し、説明を省略する。図3において、実施例
2の構成と異なるところは、加温手段50を、給水管1
3に直列に設けた蓄熱手段51で構成した点にある。蓄
熱手段51の、貯留タンク52の底部に入口管53を配
した点も異なる。そして、貯留タンク52の保温運転時
の貯留温度を給湯の目標温度(例えば45℃)と同等温
度としている。
(Embodiment 3) FIG. 3 is a block diagram of a heat pump water heater in Embodiment 3 of the present invention. The components having the same structures as those of the hot water supply devices according to the first and second embodiments are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 3, the difference from the configuration of the second embodiment is that the heating means 50 is connected to the water supply pipe 1.
It is configured by the heat storage means 51 provided in series with the No. 3. Another difference is that an inlet pipe 53 is arranged at the bottom of the storage tank 52 of the heat storage means 51. The storage temperature of the storage tank 52 during the heat retention operation is set to be equal to the target temperature of hot water supply (for example, 45 ° C.).

【0062】以上の構成で、熱交換器10が冷え切った
状態から給湯が開始されると、給水管13から冷水が貯
留タンク52底部に流入し、貯留タンク52の温水が出
口管54から出湯される。そして、熱交換器10の加熱
量が増加してきた場合は、湯温検知手段30の検出温度
によって圧縮機2の回転数が制御されて、目標温度の出
湯温度が維持できる。
With the above construction, when hot water supply is started from the state where the heat exchanger 10 is completely cooled, cold water flows into the bottom of the storage tank 52 from the water supply pipe 13, and hot water of the storage tank 52 is discharged from the outlet pipe 54. To be done. When the heating amount of the heat exchanger 10 increases, the rotation speed of the compressor 2 is controlled by the temperature detected by the hot water temperature detecting means 30, and the hot water temperature of the target temperature can be maintained.

【0063】以上のように実施例3では、熱交換器10
の上流側に蓄熱手段51が配置されているので、熱交換
器10の加熱が遅れている場合は蓄熱手段51が補い、
熱交換器10の加熱能力が立上がった場合は、出湯温度
のフィードック制御により圧縮機2が制御され、常に目
標の給湯温度が維持できる。また、目標温度を変更して
も直に出湯温度を変えることができる。
As described above, in the third embodiment, the heat exchanger 10
Since the heat storage means 51 is disposed on the upstream side of, the heat storage means 51 compensates when the heating of the heat exchanger 10 is delayed,
When the heating capacity of the heat exchanger 10 rises, the compressor 2 is controlled by the feedstock control of the outlet heated water temperature, and the target hot water supply temperature can always be maintained. Further, even if the target temperature is changed, the hot water outlet temperature can be directly changed.

【0064】さらに、給湯開始時に貯留タンク52の温
水により熱交換器10が温められるのでヒートポンプサ
イクル7の温度立上りも早くなる。
Furthermore, since the heat exchanger 10 is warmed by the hot water in the storage tank 52 at the start of hot water supply, the temperature of the heat pump cycle 7 rises quickly.

【0065】なお実施例3では、蓄熱手段51を給水管
13に直列に構成したが、給水管13に並列に配置し
て、貯留温度を給湯の目標温度より高温として、給水管
13の流水と蓄熱手段の温水を目標温度に近い温度に混
合して熱交換器10に流すようにすれば、高温蓄熱によ
り蓄熱手段の小型化が可能になる。
In the third embodiment, the heat storage means 51 is arranged in series with the water supply pipe 13, but the heat storage means 51 is arranged in parallel with the water supply pipe 13 so that the storage temperature is higher than the target temperature of the hot water supply and the flowing water of the water supply pipe 13 is used. By mixing the hot water of the heat storage means to a temperature close to the target temperature and flowing it to the heat exchanger 10, the heat storage means can be downsized by high temperature heat storage.

【0066】また、実施例1および2では蓄熱手段を熱
交換器10の下流に配置し、実施例3では上流に配置し
たが、蓄熱手段を熱交換器10をバイパスするように並
列に配置し、熱交換器の上流側で、水流路の流水と蓄熱
手段の流水を混合するように配置してもよい。さらに、
蓄熱手段に熱交換器を内蔵するように配置しても同様の
効果が得られる。
Further, although the heat storage means is arranged downstream of the heat exchanger 10 in the first and second embodiments and is arranged upstream in the third embodiment, the heat storage means are arranged in parallel so as to bypass the heat exchanger 10. The water flowing in the water flow path and the water flowing in the heat storage means may be arranged to be mixed on the upstream side of the heat exchanger. further,
The same effect can be obtained by arranging the heat storage means so as to incorporate the heat exchanger therein.

【0067】(実施例4)図4は本発明の実施例4にお
けるヒートポンプ給湯装置の構成図である。なお、実施
例1の給湯装置と同一構造のものは同一符号を付与し、
説明を省略する。図4において、実施例1の構成と異な
るところは、加温手段60を、水流路12を含んで形成
した水循環路61と、この水循環路61上に配置した蓄
熱手段62とより構成した点にある。そして、この水循
環路61および蓄熱手段62の循環水の温度保つための
保温手段B(図示せず)として、ヒートポンプサイクル
7を駆動して熱交換器10の水流路12の加熱により、
水循環路61に自然対流を発生させ加熱保温するように
している。蓄熱手段62は、上下に入口管23と出口管
24を配した貯留タンク63と、出口管24からの流水
と水流路12からの流水を混合し給湯配管15に流出さ
せる混合手段22とから成っている。水循環路61は、
水流路12と混合手段22と貯留タンク63とをループ
状に連通して構成している。
(Embodiment 4) FIG. 4 is a block diagram of a heat pump water heater in Embodiment 4 of the present invention. In addition, the same reference numerals are given to those having the same structure as the hot water supply device of the first embodiment,
The description is omitted. In FIG. 4, the difference from the configuration of the first embodiment is that the heating means 60 is configured by a water circulation passage 61 formed to include the water passage 12 and a heat storage means 62 arranged on the water circulation passage 61. is there. Then, as the heat retention means B (not shown) for maintaining the temperature of the circulating water of the water circulation path 61 and the heat storage means 62, the heat pump cycle 7 is driven to heat the water flow path 12 of the heat exchanger 10,
Natural convection is generated in the water circulation path 61 to keep it warm by heating. The heat storage means 62 is composed of a storage tank 63 in which the inlet pipe 23 and the outlet pipe 24 are arranged vertically, and a mixing means 22 for mixing the flowing water from the outlet pipe 24 and the flowing water from the water flow path 12 and causing the mixture to flow out to the hot water supply pipe 15. ing. The water circuit 61
The water flow path 12, the mixing means 22, and the storage tank 63 are configured to communicate in a loop.

【0068】以上の構成で、熱交換器10が冷え切った
状態から給湯が開始されると、給水管13から冷水が水
流路12と貯留タンク63に流入し、水流路12の出口
から冷水と、貯留タンク52からの温水が混合手段22
で混合され給湯回路15に出湯される。このとき湯温検
知手段30の検知温度によって混合手段22の開度を決
定するので、給湯回路15に出湯される温度は目標温度
に制御できる。そして、熱交換器10の加熱量が増加し
てきた場合は、湯温検知手段30の検出温度によって貯
留タンク63からの出湯割合が減少し、水流路12から
の出湯温度が目標温度に達すると貯留タンク63からの
出湯を停止する。
With the above structure, when the hot water supply is started from the state where the heat exchanger 10 is completely cooled, the cold water flows from the water supply pipe 13 into the water flow passage 12 and the storage tank 63, and the cold water is discharged from the outlet of the water flow passage 12. The hot water from the storage tank 52 is mixed with the mixing means 22.
Are mixed and discharged to the hot water supply circuit 15. At this time, since the opening degree of the mixing means 22 is determined by the temperature detected by the hot water temperature detecting means 30, the temperature of hot water discharged to the hot water supply circuit 15 can be controlled to the target temperature. Then, when the heating amount of the heat exchanger 10 increases, the rate of hot water discharged from the storage tank 63 decreases due to the temperature detected by the hot water temperature detection means 30, and the hot water discharged from the water flow path 12 reaches the target temperature and is stored. The tapping from the tank 63 is stopped.

【0069】給湯が停止した場合は、貯留タンク63内
は給湯中に流入した給水により蓄熱量は下がっている。
ここで、制御手段34は、まず混合手段22を混合状態
に戻し、貯留温度検知手段31により貯留温度の低下
(例えば75℃以下)を検知したら、ヒートポンプサイ
クル7を駆動し、圧縮機2を低速回転で運転する。これ
により高温高圧の冷媒が冷媒流路a11に流れ、水流路
12を加熱する。水流路12中の水温が上昇して貯留タ
ンク63内の水温より高くなると、両者の温度差によっ
て、水流路12内の水が上昇し、水循環路61内で対流
が発生する。そして、貯留タンク63内の温度が上昇し
て、貯留温度検知手段31の検知温度が所定温度(例え
ば80℃)を超えればヒートポンプサイクル7の運転を
停止する。この運転停止の繰り返しで蓄熱手段62と水
循環路61の循環水は保温される。
When the hot water supply is stopped, the amount of heat stored in the storage tank 63 is lowered by the water supply flowing into the hot water supply.
Here, the control unit 34 first returns the mixing unit 22 to the mixed state, and when the storage temperature detecting unit 31 detects a decrease in the storage temperature (for example, 75 ° C. or lower), drives the heat pump cycle 7 to reduce the speed of the compressor 2 to a low speed. Drive by spinning. As a result, the high-temperature and high-pressure refrigerant flows into the refrigerant channel a11 and heats the water channel 12. When the water temperature in the water flow path 12 rises and becomes higher than the water temperature in the storage tank 63, the water in the water flow path 12 rises due to the temperature difference between the two, and convection occurs in the water circulation path 61. Then, when the temperature inside the storage tank 63 rises and the detected temperature of the storage temperature detecting means 31 exceeds a predetermined temperature (for example, 80 ° C.), the operation of the heat pump cycle 7 is stopped. By repeating this operation stop, the heat storage means 62 and the circulating water in the water circulation path 61 are kept warm.

【0070】以上の実施例4の構成によれば、水流路1
2および蓄熱手段62を含んだ水循環路61が保温さ
れ、給湯開始時に水循環路61の湯が出湯されるので、
給湯端末14から出湯される湯の温度立上りが早くな
る。また、ヒートポンプサイクル7の停止時に水循環路
61の熱が熱交換器10を暖めるので、ヒートポンプサ
イクル7の立ち上がりも早くなる。
According to the configuration of the fourth embodiment described above, the water flow path 1
Since the water circulation path 61 including the heat storage means 62 and the heat storage means 62 is kept warm and the hot water in the water circulation path 61 is discharged at the start of hot water supply,
The temperature of the hot water discharged from the hot water supply terminal 14 rises faster. Further, since the heat of the water circulation path 61 warms the heat exchanger 10 when the heat pump cycle 7 is stopped, the heat pump cycle 7 starts up faster.

【0071】また、水循環路61の保温をヒートポンプ
により行うので、ヒータなどに比べ効率がよく、凍結の
心配もない。
Further, since the water circulation path 61 is kept warm by the heat pump, it is more efficient than a heater or the like and there is no fear of freezing.

【0072】さらに、蓄熱手段62に高温の湯が貯えら
れ、混合手段22で適温に混合して出湯するので、給湯
開始時などに水循環路61に冷水が流れ込んでも、出湯
温度の低下を防ぐことができる。
Further, the hot water is stored in the heat storage means 62, and the mixing means 22 mixes the hot water at an appropriate temperature to discharge hot water. Therefore, even if cold water flows into the water circulation path 61 at the time of starting hot water supply, etc., it is possible to prevent a decrease in the hot water discharge temperature. You can

【0073】なお実施例4では保温運転における水循環
路61内の水の循環を、自然対流による流れを利用した
が、水循環路61にポンプを設けて、強制的に循環して
も良い。この場合は一定の流量が得られるため貯留温度
や熱交換器での加熱熱量を制御しやすい。
In the fourth embodiment, the circulation of water in the water circulation passage 61 in the heat retention operation uses the flow of natural convection, but a water circulation passage 61 may be provided with a pump to forcibly circulate it. In this case, since a constant flow rate can be obtained, it is easy to control the storage temperature and the heating heat quantity in the heat exchanger.

【0074】また、実施例4では混合手段22により混
合割合を可変しているが、一定の割合に固定した合流部
材で構成してもよい。この場合は、貯留タンクの湯の減
少に合わせて出湯温度が目標温度になるように熱交換器
10の加熱量を圧縮機2により制御する必要がある。こ
の構成によれば混合手段22のコストダウンになる。
Further, although the mixing ratio is changed by the mixing means 22 in the fourth embodiment, it may be constituted by a merging member fixed at a fixed ratio. In this case, it is necessary to control the heating amount of the heat exchanger 10 by the compressor 2 so that the outlet heated water temperature becomes the target temperature in accordance with the decrease in the hot water in the storage tank. With this configuration, the cost of the mixing means 22 can be reduced.

【0075】さらに、実施例4では水循環路61に蓄熱
手段62を配置したが、この蓄熱手段62のない水循環
路61だけの構成でもよい。この場合は、貯留温度検知
手段31により水循環路61の循環水の温度検知するよ
うに配置して、循環水の温度を所定温度に保温するよう
に保温運転する。この構成によれば出湯温度はやや変動
するが、大幅なコストダウンになる。
Further, in the fourth embodiment, the heat storage means 62 is arranged in the water circulation path 61, but the water circulation path 61 alone may be omitted without the heat storage means 62. In this case, the storage temperature detecting means 31 is arranged so as to detect the temperature of the circulating water in the water circulation passage 61, and the heat retaining operation is performed to keep the temperature of the circulating water at a predetermined temperature. With this configuration, the tapping temperature fluctuates slightly, but the cost is greatly reduced.

【0076】実施例4では保温手段Bとして、ヒートポ
ンプサイクル7を駆動して熱交換器10の水流路12の
加熱により、水循環路61に自然対流を発生させ加熱保
温するようにしたが、水循環路61を直接ヒータで加熱
してもよいし、貯留タンクなお、通常の給湯使用状態に
おいて、冷媒流路a8と水流路9との温度差が小さくな
るほどヒートポンプサイクル7効率が良くなるので、水
温検知手段21の検知する給水温度に応じて、熱交換器
10での所要加熱量を確保して、最も冷媒流路a8と水
流路9との温度差が小さくなるように減圧手段4の冷媒
流路抵抗を制御すると、効率のよい運転が可能となる。
In the fourth embodiment, as the heat retaining means B, the heat pump cycle 7 is driven to heat the water flow passage 12 of the heat exchanger 10 so that natural convection is generated in the water circulation passage 61 to keep it warm. 61 may be directly heated by a heater, or in a storage tank, the heat pump cycle 7 becomes more efficient as the temperature difference between the refrigerant passage a8 and the water passage 9 becomes smaller in the normal hot water supply use state. In accordance with the supply water temperature detected by 21, the required amount of heat in the heat exchanger 10 is secured, and the refrigerant flow path resistance of the pressure reducing means 4 is adjusted so that the temperature difference between the refrigerant flow path a8 and the water flow path 9 is minimized. Controlling enables efficient operation.

【0077】[0077]

【発明の効果】以上のように、本発明によれば、給湯温
度の立ち上がりと制御性が良く、効率のよい給湯ができ
る瞬間湯沸し型のヒートポンプ給湯装置を提供すするこ
とができる。
As described above, according to the present invention, it is possible to provide a heat pump hot water supply apparatus of the instant boiling type, which has good control of hot water supply temperature and controllability, and can supply hot water efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1におけるヒートポンプ給湯装
置の構成図
FIG. 1 is a configuration diagram of a heat pump water heater according to a first embodiment of the present invention.

【図2】本発明の実施例2におけるヒートポンプ給湯装
置の構成図
FIG. 2 is a configuration diagram of a heat pump water heater according to a second embodiment of the present invention.

【図3】本発明の実施例3におけるヒートポンプ給湯装
置の構成図
FIG. 3 is a configuration diagram of a heat pump water heater according to a third embodiment of the present invention.

【図4】本発明の実施例4におけるヒートポンプ給湯装
置の構成図
FIG. 4 is a configuration diagram of a heat pump water heater according to a fourth embodiment of the present invention.

【図5】従来のヒートポンプ給湯装置の構成図FIG. 5 is a configuration diagram of a conventional heat pump water heater.

【符号の説明】[Explanation of symbols]

1 冷媒流路 2 圧縮機 4 減圧手段 5 吸熱器 7 ヒートポンプサイクル 8 放熱器a(保温手段A) 9 放熱器b 10 熱交換器 11 冷媒流路a 12 水流路(保温手段B) 13 給水管 14 給湯端末 15 給湯回路 16 シャワー 17 蛇口 18、40、50、60 加温手段 19 給湯回路a 20、41、51、62 蓄熱手段 21、42、52、63 貯留タンク 22 混合手段 61 水循環路 1 Refrigerant flow path 2 compressor 4 decompression means 5 heat absorber 7 heat pump cycle 8 Radiator a (heat retention means A) 9 Radiator b 10 heat exchanger 11 Refrigerant flow path a 12 Water flow path (heat retention means B) 13 Water supply pipe 14 Hot water supply terminal 15 Hot water supply circuit 16 showers 17 faucet 18, 40, 50, 60 Heating means 19 Hot water supply circuit a 20, 41, 51, 62 Heat storage means 21, 42, 52, 63 Storage tanks 22 Mixing means 61 water circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 龍太 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松本 聡 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 今林 敏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ryuta Kondo             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Satoshi Matsumoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Satoshi Imabayashi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 閉回路に構成される冷媒流路で圧縮機、
放熱器、減圧手段、吸熱器が接続されたヒートポンプサ
イクルと、前記放熱器の冷媒流路aと熱交換を行う水流
路を備えた熱交換器と、前記水流路に水道水を供給する
給水管と、前記水流路からシャワーや蛇口等の給湯端末
へと通水するように接続する給湯回路と、前記給水管と
水流路と給湯回路とで構成される経路の少なくとも一箇
所の水を加熱する加温手段を有するヒートポンプ給湯装
置。
1. A compressor with a refrigerant flow path configured in a closed circuit,
A heat pump cycle to which a radiator, a decompression means, and a heat absorber are connected, a heat exchanger having a water passage for exchanging heat with the refrigerant passage a of the radiator, and a water supply pipe for supplying tap water to the water passage. And heating water in at least one part of a path constituted by the hot water supply pipe, the water flow path and the hot water supply circuit, and a hot water supply circuit connected so as to pass water from the water flow path to a hot water supply terminal such as a shower or a faucet. A heat pump water heater having a heating means.
【請求項2】 加温手段は、給水管と熱交換器と給湯回
路の何れかに直列に設けた蓄熱手段である請求項1に記
載のヒートポンプ給湯装置。
2. The heat pump hot water supply apparatus according to claim 1, wherein the heating means is a heat storage means provided in series in any one of the water supply pipe, the heat exchanger, and the hot water supply circuit.
【請求項3】 加温手段は、給水管と熱交換器と給湯回
路の何れかに並列に接続した蓄熱手段である請求項1に
記載のヒートポンプ給湯装置。
3. The heat pump water heater according to claim 1, wherein the heating means is a heat storage means connected in parallel to any one of the water supply pipe, the heat exchanger and the hot water supply circuit.
【請求項4】 蓄熱手段は、給水管と熱交換器と給湯回
路の何れかの流水と蓄熱手段により加熱される水とを混
合する混合手段を有する請求項2または3に記載のヒー
トポンプ給湯装置。
4. The heat pump water heater according to claim 2, wherein the heat storage means has a mixing means for mixing flowing water of any one of the water supply pipe, the heat exchanger, and the hot water supply circuit and the water heated by the heat storage means. .
【請求項5】 蓄熱手段は、給水管と熱交換器と給湯回
路の何れかの流水と蓄熱手により加熱される水とを切換
えて流す切換え手段を有する請求項2または3に記載の
ヒートポンプ給湯装置。
5. The heat pump hot water supply according to claim 2 or 3, wherein the heat storage means has a switching means for switching and flowing the running water of any one of the water supply pipe, the heat exchanger and the hot water supply circuit and the water heated by the heat storage hand. apparatus.
【請求項6】 蓄熱手段は、蓄熱温度を所定温度に保つ
ための保温手段Aを有する請求項2〜5のいずれか1項
に記載のヒートポンプ給湯装置。
6. The heat pump water heater according to claim 2, wherein the heat storage means has a heat retention means A for keeping the heat storage temperature at a predetermined temperature.
【請求項7】 保温手段Aは、ヒートポンプサイクルの
放熱器を用いた請求項6項に記載のヒートポンプ給湯装
置。
7. The heat pump water heater according to claim 6, wherein the heat retaining means A uses a radiator of a heat pump cycle.
【請求項8】 加温手段は、給水管と水流路と給湯回路
の少なくとも1つを含んで形成した水循環路と、前記水
循環路の循環水の温度を保つための保温手段Bとより構
成する請求項1に記載のヒートポンプ給湯装置。
8. The heating means comprises a water circulation path formed by including at least one of a water supply pipe, a water flow path and a hot water supply circuit, and a heat retention means B for maintaining the temperature of the circulating water in the water circulation path. The heat pump water heater according to claim 1.
【請求項9】 保温手段Bは、熱交換器の水流路を用
い、ヒートポンプサイクルを駆動して保温する請求項8
に記載のヒートポンプ給湯装置。
9. The heat retaining means B uses a water flow path of a heat exchanger to drive a heat pump cycle to retain heat.
The heat pump water heater described in.
【請求項10】 水循環路に蓄熱手段を備えた請求項8
または9に記載のヒートポンプ給湯装置。
10. The water circulation path is provided with heat storage means.
Alternatively, the heat pump water heater according to 9.
【請求項11】 蓄熱手段は、ヒートポンプサイクルや
熱交換器の熱応答遅れによる不足熱量相当の蓄熱量とし
た請求項2〜7、10のいずれか1項に記載のヒートポ
ンプ給湯装置。
11. The heat pump water heater according to claim 2, wherein the heat storage means has a heat storage amount corresponding to an insufficient heat amount due to a heat response delay of a heat pump cycle or a heat exchanger.
【請求項12】 蓄熱手段は、蓄熱温度を給湯温度より
高温にした請求項2〜7、10、11のいずれか1項に
記載のヒートポンプ給湯装置。
12. The heat pump hot water supply apparatus according to claim 2, wherein the heat storage means sets the heat storage temperature higher than the hot water supply temperature.
【請求項13】 蓄熱手段は、給水管と水流路と給湯回
路とで構成される経路の少なくとも一箇所の水を貯留す
る貯留タンクを備えた請求項2〜7、10〜12のいず
れか1項に記載のヒートポンプ給湯装置。
13. The heat storage means comprises a storage tank for storing water in at least one location of a path formed by a water supply pipe, a water flow path, and a hot water supply circuit. The heat pump water heater according to the item.
【請求項14】 ヒートポンプサイクルは、冷媒の圧力
が臨界圧力以上となる超臨界ヒートポンプサイクルであ
り、前記臨界圧力以上に昇圧された冷媒により熱交換器
の水流路の流水を加熱する請求項1〜13のいずれか1
項に記載のヒートポンプ給湯装置。
14. The heat pump cycle is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, and the flowing water in the water flow path of the heat exchanger is heated by the refrigerant whose pressure is increased to the critical pressure or higher. Any one of 13
The heat pump water heater according to the item.
【請求項15】 熱交換器の冷媒流路aと水流路の流れ
方向を対向流とした請求項1〜14のいずれか1項に記
載のヒートポンプ給湯装置。
15. The heat pump water heater according to claim 1, wherein the refrigerant flow path a and the water flow path of the heat exchanger have opposite flow directions.
JP2002033648A 2002-02-12 2002-02-12 Heat pump water heater Expired - Fee Related JP3743375B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002033648A JP3743375B2 (en) 2002-02-12 2002-02-12 Heat pump water heater
CNB038002752A CN100535542C (en) 2002-02-12 2003-02-10 Heat-pump water heater
US10/479,690 US7316267B2 (en) 2002-02-12 2003-02-10 Heat pump water device
PCT/JP2003/001366 WO2003069236A1 (en) 2002-02-12 2003-02-10 Heat pump water heater
KR1020057020314A KR100567491B1 (en) 2002-02-12 2003-02-10 Heat pump water heater
EP03703287A EP1475576A4 (en) 2002-02-12 2003-02-10 Heat pump water heater
KR1020037015137A KR100567488B1 (en) 2002-02-12 2003-02-10 Heat pump water heater
TW92102791A TW574491B (en) 2002-02-12 2003-02-11 Heat pump hot water supply device
HK04108476.2A HK1065841A1 (en) 2002-02-12 2004-10-28 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002033648A JP3743375B2 (en) 2002-02-12 2002-02-12 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2003240339A true JP2003240339A (en) 2003-08-27
JP3743375B2 JP3743375B2 (en) 2006-02-08

Family

ID=27776379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002033648A Expired - Fee Related JP3743375B2 (en) 2002-02-12 2002-02-12 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3743375B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002776A (en) * 2006-06-26 2008-01-10 Hitachi Appliances Inc Heat pump hot water supply system
JP2008082664A (en) * 2006-09-28 2008-04-10 Daikin Ind Ltd Hot water circulating heating system
JP2008196846A (en) * 2008-05-12 2008-08-28 Hitachi Appliances Inc Heat pump hot water supply machine
CN100443822C (en) * 2005-03-24 2008-12-17 日立空调·家用电器株式会社 Heat-pump hot water supply apparatus
JP2010060280A (en) * 2009-12-14 2010-03-18 Hitachi Appliances Inc Heat pump water heater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876762B2 (en) * 2006-06-20 2012-02-15 株式会社デンソー Heat pump type water heater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100443822C (en) * 2005-03-24 2008-12-17 日立空调·家用电器株式会社 Heat-pump hot water supply apparatus
JP2008002776A (en) * 2006-06-26 2008-01-10 Hitachi Appliances Inc Heat pump hot water supply system
JP2008082664A (en) * 2006-09-28 2008-04-10 Daikin Ind Ltd Hot water circulating heating system
JP2008196846A (en) * 2008-05-12 2008-08-28 Hitachi Appliances Inc Heat pump hot water supply machine
JP2010060280A (en) * 2009-12-14 2010-03-18 Hitachi Appliances Inc Heat pump water heater

Also Published As

Publication number Publication date
JP3743375B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
KR100567491B1 (en) Heat pump water heater
JP2009287896A (en) Water heater
JP2009299942A (en) Hot water supply system
KR101367474B1 (en) Storage type hot water supply system
JP4327170B2 (en) Hot water storage hot water supply system
JP2003240339A (en) Heat pump hot water supply system
JP2899247B2 (en) Gas turbine inlet heating and cooling system
JP2004340535A (en) Heat pump water heater
JP5378310B2 (en) Heating system
JP4016870B2 (en) Heat pump water heater
JP3966031B2 (en) Multi-function water heater
JP3915767B2 (en) Heat pump water heater
JP2005315480A (en) Heat pump type water heater
JP3945361B2 (en) Heat pump water heater
JP2003240344A (en) Heat pump hot water supply system
JP4101198B2 (en) Heat pump water heater / heater
JP3975874B2 (en) Heat pump water heater
JPH08296895A (en) Heat pump hot-water supply apparatus
JP4515883B2 (en) Hot water storage water heater
JP2004205140A (en) Reheating device for bath
JP2019173976A (en) Hot water storage and supply device
JP2005009859A (en) Multifunctional water heater
JP2004069195A (en) Heat pump type water heater
JP2004232912A (en) Heat pump water heater
JP2019039596A (en) Heat pump heat source machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees