JP3915767B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3915767B2
JP3915767B2 JP2003356068A JP2003356068A JP3915767B2 JP 3915767 B2 JP3915767 B2 JP 3915767B2 JP 2003356068 A JP2003356068 A JP 2003356068A JP 2003356068 A JP2003356068 A JP 2003356068A JP 3915767 B2 JP3915767 B2 JP 3915767B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
mixing means
water supply
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003356068A
Other languages
Japanese (ja)
Other versions
JP2005121284A (en
Inventor
啓次郎 國本
昌宏 尾浜
宣彦 藤原
誠一 安木
隆幸 高谷
立群 毛
一彦 丸本
竹司 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003356068A priority Critical patent/JP3915767B2/en
Publication of JP2005121284A publication Critical patent/JP2005121284A/en
Application granted granted Critical
Publication of JP3915767B2 publication Critical patent/JP3915767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ給湯装置に関するものである。   The present invention relates to a heat pump water heater.

従来、この種のヒートポンプ給湯装置は、給湯温度が設定温度になるように圧縮機の回転数を制御するようにしていた(例えば、特許文献1参照)。   Conventionally, this type of heat pump hot water supply apparatus controls the rotation speed of the compressor so that the hot water supply temperature becomes a set temperature (see, for example, Patent Document 1).

図2は、特許文献1に記載された従来のヒートポンプ給湯装置を示すものである。図2に示すように、閉回路に構成される冷媒流路1で圧縮機2、放熱器3、減圧手段4、吸熱器5が接続された冷媒循環回路7と、放熱器3の冷媒流路a8と熱交換を行う水流路9を備えた熱交換器10と、この水流路9に水道水を供給する給水管11と、前記水流路9とシャワーや蛇口等の給湯端末12とを接続する給湯回路13と、給湯回路13に設け給湯温度を検出する温度センサ14と、圧縮機2の回転数を制御するインバータ15を備え、圧縮機2を温度センサ14の検出温度と設定温度との差に応じてインバータ15の出力周波数を変換するようにしていた。すなわち従来の給湯装置では設定温度に対して給湯温度が低い場合は圧縮機2の回転数を上げ、給湯温度が高い場合は回転数を下げるように制御するようにしていた。
特開平2−223767号公報
FIG. 2 shows a conventional heat pump hot water supply apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 2, a refrigerant circulation circuit 7 in which a compressor 2, a radiator 3, a decompression unit 4, and a heat absorber 5 are connected in a refrigerant channel 1 configured in a closed circuit, and a refrigerant channel of the radiator 3. a heat exchanger 10 having a water flow path 9 for exchanging heat with a8; a water supply pipe 11 for supplying tap water to the water flow path 9; and the water flow path 9 and a hot water supply terminal 12 such as a shower or a faucet. A hot water supply circuit 13, a temperature sensor 14 provided in the hot water supply circuit 13 for detecting the hot water supply temperature, and an inverter 15 for controlling the rotational speed of the compressor 2, and the compressor 2 is the difference between the detected temperature of the temperature sensor 14 and the set temperature. In response to this, the output frequency of the inverter 15 is converted. That is, in the conventional hot water supply apparatus, the control is performed such that the rotation speed of the compressor 2 is increased when the hot water supply temperature is lower than the set temperature, and the rotation speed is decreased when the hot water supply temperature is high.
JP-A-2-223767

しかしながら、前記従来の構成では、冷媒循環回路の熱容量が大きいため、給湯開始時に給湯温度が設定温度に達するのに長い時間を要したり、給湯流量が大幅に変更された場合に給湯温度変化に制御の応答性が間に合わず、給湯温度が大きく変化してしまうなどの課題を有していた。また、給湯負荷が大きく冷媒循環回路の給湯能力が不足するような場合に所定の給湯温度が得られないなどの課題があった。   However, in the conventional configuration, since the heat capacity of the refrigerant circulation circuit is large, it takes a long time for the hot water supply temperature to reach the set temperature at the start of hot water supply, or the hot water supply temperature changes when the hot water supply flow rate is significantly changed. The control responsiveness was not in time, and the hot water supply temperature changed greatly. Further, there is a problem that a predetermined hot water supply temperature cannot be obtained when the hot water supply load is large and the hot water supply capacity of the refrigerant circuit is insufficient.

本発明は、前記従来の課題を解決するもので、給湯温度が安定なヒートポンプ給湯装置を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the heat pump hot-water supply apparatus whose hot-water supply temperature is stable.

前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、冷媒循環回路の放熱器により水を加熱する熱交換器と、貯湯槽を備え、前記熱交換器からの水と前記貯湯槽からの水を混合する混合手段を備えたヒートポンプ給湯装置であって、少なくとも給湯運転時に、前記熱交換器からの出湯温度が所定温度より低い場合に前記混合手段によって前記貯湯槽からの湯を出湯させるものである。   In order to solve the conventional problems, a heat pump hot water supply apparatus of the present invention includes a heat exchanger that heats water by a radiator of a refrigerant circulation circuit, and a hot water storage tank, and the water from the heat exchanger and the hot water storage tank A heat pump hot water supply apparatus comprising a mixing means for mixing water from the hot water from the hot water storage tank by the mixing means when the temperature of the hot water from the heat exchanger is lower than a predetermined temperature at least during hot water supply operation. It is something to be made.

これによって、給湯運転時の熱交換器からの出湯温度に応じて貯湯槽からの出湯量を調整することにより混合手段からの混合温度を設定温度に近付けるなどの制御を行う。   Thus, control is performed such that the mixing temperature from the mixing means approaches the set temperature by adjusting the amount of hot water discharged from the hot water storage tank according to the temperature of the hot water discharged from the heat exchanger during the hot water supply operation.

本発明のヒートポンプ給湯装置は、給湯温度を安定にすることができる。   The heat pump hot water supply apparatus of the present invention can stabilize the hot water supply temperature.

第1の発明は、圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、貯湯槽と、前記熱交換器からの水と前記貯湯槽からの水を混合する混合手段とを備え、少なくとも給湯運転時に、前記熱交換器からの出湯温度が所定温度より低い場合には前記混合手段によって前記貯湯槽からの湯を出湯させ、給湯運転停止時には、前記混合手段の上流側の温度に応じて前記混合手段を制御することにより、混合手段の混合温度を安定にすることができるとともに、給湯再開時の混合温度を予測した混合手段を制御することができる。 A first invention includes a refrigerant circuit including a compressor, a radiator, a decompression unit, and a heat absorber, a heat exchanger having a water flow path for exchanging heat with the radiator, a hot water storage tank, and the heat exchange. Mixing means for mixing water from the water heater and water from the hot water storage tank, and at least during hot water supply operation, when the temperature of the hot water from the heat exchanger is lower than a predetermined temperature, the mixing means causes the water from the hot water storage tank to be mixed. hot water is tapped, and at the time of the hot water supply operation is stopped, the Rukoto controls said mixing means in accordance with the temperature of the upstream side of the mixing means, with a mixing temperature of the mixing means can be stabilized, the mixing during the hot water supply resumption The mixing means predicting the temperature can be controlled.

第2の発明は、特に、第1の発明の貯湯槽の貯湯温度を、混合手段の設定温度より高くすることにより、例えば熱交換器からの出湯温度が設定温度より低い場合は、混合手段の貯湯槽からの水の割合を増加することにより、混合手段の混合温度を設定温度に近付けることができる。   In the second invention, in particular, when the hot water storage temperature of the hot water storage tank of the first invention is higher than the set temperature of the mixing means, for example, when the temperature of the hot water from the heat exchanger is lower than the set temperature, By increasing the proportion of water from the hot water tank, the mixing temperature of the mixing means can be brought close to the set temperature.

第3の発明は、特に、第1の発明の貯湯槽の貯湯温度が、混合手段の設定温度より低い場合に、前記貯湯槽からの混合手段への流量を閉止もしくは減少させることにより、貯湯槽の湯がなくなる、いわゆる湯切れが発生した場合でも、熱交換器からの出湯を主体にすることで、混合温度が低下するのを防止できる。   According to a third aspect of the present invention, in particular, when the hot water storage temperature of the hot water storage tank of the first invention is lower than the set temperature of the mixing means, the flow rate from the hot water storage tank to the mixing means is closed or reduced, whereby the hot water storage tank Even when so-called hot water runs out, the hot water from the heat exchanger is mainly used to prevent the mixing temperature from being lowered.

第4の発明は、特に、第1〜3の発明の熱交換器からの出湯温度を、混合手段の設定温度と同等もしくは低くすることにより、例えば前記出湯温度と設定温度を同等にすると混合手段は混合割合を熱交換器からだけで出湯ができるので、貯湯槽の湯切れを無くすことができる。また設定温度より低くすることで熱交換器からの出湯温度が変動しても貯湯槽からの湯の割合を調整することで安定した混合温度が得られる。   In the fourth aspect of the invention, in particular, when the temperature of the hot water from the heat exchanger of the first to third aspects of the invention is made equal to or lower than the set temperature of the mixing means, for example, the mixing means is made equal to the set temperature of the hot water. Since hot water can be discharged from the heat exchanger only at the mixing ratio, it is possible to eliminate hot water in the hot water tank. Moreover, even if the tapping temperature from the heat exchanger fluctuates by making it lower than the set temperature, a stable mixing temperature can be obtained by adjusting the ratio of hot water from the hot water storage tank.

第5の発明は、特に、第1の発明の貯湯槽の貯湯温度が、混合手段の設定温度より低い場合に、熱交換器からの出湯温度を設定温度より高くすることにより、貯湯槽が湯切れしても熱交換器からの湯の割合を調整することで略設定温度の混合温度が得られる。   In the fifth invention, in particular, when the hot water storage temperature of the hot water storage tank of the first invention is lower than the set temperature of the mixing means, the hot water temperature from the heat exchanger is made higher than the set temperature, whereby the hot water storage tank is made hot water. Even if it runs out, the mixing temperature of the substantially set temperature can be obtained by adjusting the ratio of hot water from the heat exchanger.

第6の発明は、特に、第1の発明の熱交換器からの出湯温度が、混合手段の設定温度より高い場合に、貯湯槽からの混合手段への流量を閉止もしくは減少させることにより、無駄な貯湯槽の湯の消費を抑えることができ、湯切れを防止できる。   In the sixth aspect of the invention, in particular, when the temperature of the hot water from the heat exchanger of the first aspect of the invention is higher than the set temperature of the mixing means, the flow rate from the hot water storage tank to the mixing means is closed or reduced. The consumption of hot water in the hot water storage tank can be suppressed, and hot water shortage can be prevented.

第7の発明は、特に、第1〜6の発明の混合手段の制御量が、給湯が再開した場合に前記混合手段の混合温度が略設定温度になるように設定することにより、給湯開始時から略設定温度の混合温度が得られる。 In the seventh aspect of the invention , in particular, when the controlled amount of the mixing means of the first to sixth aspects of the invention is set so that the mixing temperature of the mixing means becomes substantially the set temperature when the hot water supply is resumed, Thus, a mixing temperature of approximately the preset temperature can be obtained.

第8の発明は、特に、第1または第5の発明の制御手段を、貯湯温度が混合手段の設定温度より低い場合に、前記貯湯槽からの混合手段への流量割合を混合温度に比例的に制御することにより、貯湯温度が設定温度より低下して湯切れが発生しても、混合温度が略設定温度に安定して制御される。また貯湯槽の水を使い続けることにより、貯湯槽の残留熱量を有効に使いきることができる。 In an eighth aspect of the present invention , in particular, when the hot water storage temperature is lower than the set temperature of the mixing means, the flow rate ratio from the hot water tank to the mixing means is proportional to the mixing temperature. Thus, even if the hot water storage temperature falls below the set temperature and the hot water runs out, the mixing temperature is stably controlled to the substantially set temperature. Further, by continuing to use the water in the hot water tank, the residual heat amount in the hot water tank can be used up effectively.

第9の発明は、特に、第1〜8の発明の冷媒循環回路を、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により熱交換器の水流路の流水を加熱することにより、熱交換器の放熱器を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、熱交換器の水流路の流水により熱を奪われて温度低
下しても凝縮することがない。したがって熱交換器全域で放熱器と水流路とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
The ninth aspect of the invention is a supercritical heat pump cycle in which the refrigerant circuit of the first to eighth aspects of the invention is a supercritical heat pump cycle in which the pressure of the refrigerant becomes equal to or higher than the critical pressure. By heating the flowing water in the water flow path, the refrigerant flowing through the heat exchanger radiator is pressurized to a pressure higher than the critical pressure by the compressor. Even if it falls, it does not condense. Therefore, it becomes easy to form a temperature difference between the radiator and the water flow path over the entire heat exchanger, high-temperature hot water can be obtained, and heat exchange efficiency can be increased.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。また、従来例および各実施の形態において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. In the conventional example and each embodiment, the same reference numerals are given to portions having the same configuration and the same operation, and detailed description thereof is omitted.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat pump water heater in the first embodiment of the present invention.

図1において、冷媒循環回路7は、圧縮機2、放熱器3、減圧手段4、吸熱器5が冷媒流路1により閉回路に接続されている。この冷媒循環回路7は、例えば炭酸ガスを冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界冷媒循環回路を使用している。そして圧縮機2は、内蔵する電動モーター(図示しない)によって駆動され、吸引した冷媒を臨界圧力まで圧縮して吐出する。また、熱交換器10には放熱器3の冷媒流路a8と熱交換を行う水流路9により構成される。この水流路9に水道水を直接供給する給水管11と、水流路9から出湯される湯を混合手段a20に通水する出湯管21が接続されている。   In FIG. 1, a refrigerant circulation circuit 7 includes a compressor 2, a radiator 3, a decompression unit 4, and a heat absorber 5 connected to a closed circuit by a refrigerant flow path 1. The refrigerant circuit 7 uses a supercritical refrigerant circuit in which, for example, carbon dioxide is used as a refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant. The compressor 2 is driven by a built-in electric motor (not shown), and compresses and sucks the sucked refrigerant to a critical pressure. Further, the heat exchanger 10 includes a water flow path 9 that performs heat exchange with the refrigerant flow path a <b> 8 of the radiator 3. A water supply pipe 11 for directly supplying tap water to the water flow path 9 and a hot water discharge pipe 21 for passing hot water discharged from the water flow path 9 to the mixing means a20 are connected.

なお、熱交換器10は、冷媒流路a8の流れ方向と水流路9の流れ方向を対向流とし、各流路間を熱移動が容易になるように密着して構成している。この構成により冷媒流路a8と水流路9の伝熱が均一化し、熱交換効率がよくなる。また、高温の出湯も可能になる。   The heat exchanger 10 is configured so that the flow direction of the refrigerant flow path a8 and the flow direction of the water flow path 9 are opposite flows, and the flow paths are in close contact with each other so that heat transfer is easy. With this configuration, heat transfer between the refrigerant flow path a8 and the water flow path 9 is made uniform, and heat exchange efficiency is improved. In addition, hot water can be discharged.

貯湯槽22は、底部に給水管11から分岐した入口管23が接続され、給湯時に水道水が貯湯槽22底部に流入するように構成されている。また、貯湯槽22上部には貯湯槽22から出湯される湯を混合手段a20に通水する出口管24が接続されている。さらに、貯湯槽22底部には貯湯槽22の水を水流路9に通水するための入水管25が接続されており、この入水管25には、貯湯槽22の水を水流路9に送るためのポンプ26が備えられている。   The hot water storage tank 22 is connected to an inlet pipe 23 branched from the water supply pipe 11 at the bottom, and is configured such that tap water flows into the bottom of the hot water storage tank 22 when hot water is supplied. Further, an outlet pipe 24 through which hot water discharged from the hot water tank 22 is passed to the mixing means a20 is connected to the upper part of the hot water tank 22. Further, a water inlet pipe 25 for passing the water in the hot water tank 22 through the water flow path 9 is connected to the bottom of the hot water tank 22, and the water in the hot water tank 22 is sent to the water flow path 9 to the water inlet pipe 25. A pump 26 is provided.

なお、貯湯槽22の水を水流路9に循環して加熱する際は、混合手段a20により出湯管21と出口管23を連通させて、圧縮機2とポンプ26を駆動することにより、入水管25より水流路9に流れた水は、水流路9内で加熱されて出湯管21、混合手段a20、出口管24を経て貯湯槽22上部に戻る循環回路が構成される。   In addition, when the water in the hot water storage tank 22 is circulated and heated to the water flow path 9, the hot water pipe 21 and the outlet pipe 23 are communicated with each other by the mixing means a20, and the compressor 2 and the pump 26 are driven to thereby enter the water inlet pipe. The water that has flowed from 25 to the water flow path 9 is heated in the water flow path 9 and returns to the upper part of the hot water tank 22 through the hot water discharge pipe 21, the mixing means a 20, and the outlet pipe 24.

混合手段a20は水流路9(熱交換器10)からの水と貯湯槽22からの水を混合して混合出湯管27に出湯するもので、モーター(図示せず)駆動により混合割合を任意に設定できる。また、混合手段b28は混合出湯管27からの湯と、給水管11から分岐したバイパス管29からの水道水を混合して給湯管30に出湯するもので、モーター(図示せず)駆動により混合割合を任意に設定できる。   The mixing means a20 mixes the water from the water flow path 9 (heat exchanger 10) and the water from the hot water storage tank 22 and discharges the hot water to the mixed hot water pipe 27. The mixing ratio can be arbitrarily set by driving a motor (not shown). Can be set. The mixing means b28 mixes hot water from the mixed hot water supply pipe 27 and tap water from the bypass pipe 29 branched from the water supply pipe 11, and outputs the hot water to the hot water supply pipe 30 and is mixed by driving a motor (not shown). The ratio can be set arbitrarily.

給湯管30は、シャワー16や蛇口17等より成る給湯端末12に通水させるための給湯回路13が接続されている。給水管11には、給湯回路13の流量を検出する流量検知手段31と、熱交換器10、貯湯槽22、混合手段b28への給水される水道水温度を検出する水温検知手段32が設けられている。そして出湯管21には水流路9からの出湯温度を検出する出湯温度検知手段33が設けられている。出口管24には貯湯槽22からの出湯温度を検出する出口温度検知手段34が設けられている。混合出湯管27には混合手
段a20からの混合温度を検出する混合温度検知手段35が設けられている。給湯管30には混合手段b28からの混合温度を検出する給湯温度検知手段36が設けられている。入水管25には貯湯槽22から熱交換器10に流入する入水温度を検出する入水温度検知手段37が設けられている。貯湯槽22下部には貯湯槽22への給水を検知する給水検知手段38が設けられている。
The hot water supply pipe 30 is connected to a hot water supply circuit 13 for passing water through the hot water supply terminal 12 including the shower 16 and the faucet 17. The water supply pipe 11 is provided with a flow rate detection means 31 for detecting the flow rate of the hot water supply circuit 13 and a water temperature detection means 32 for detecting the temperature of tap water supplied to the heat exchanger 10, the hot water tank 22, and the mixing means b28. ing. The hot water discharge pipe 21 is provided with hot water temperature detecting means 33 for detecting the temperature of the hot water discharged from the water flow path 9. The outlet pipe 24 is provided with outlet temperature detection means 34 for detecting the temperature of hot water discharged from the hot water tank 22. The mixing hot water pipe 27 is provided with a mixing temperature detecting means 35 for detecting the mixing temperature from the mixing means a20. The hot water supply pipe 30 is provided with hot water supply temperature detecting means 36 for detecting the mixing temperature from the mixing means b28. The incoming water pipe 25 is provided with incoming water temperature detecting means 37 for detecting the incoming water temperature flowing into the heat exchanger 10 from the hot water tank 22. A water supply detection means 38 for detecting water supply to the hot water storage tank 22 is provided at the lower part of the hot water storage tank 22.

冷媒循環回路7の吸熱器5には、大気熱を効率良く吸熱するためのファン39が設けられている。この吸熱器5の送風の上流側には大気温度を検出する気温検知手段40が設けられている。   The heat absorber 5 of the refrigerant circulation circuit 7 is provided with a fan 39 for efficiently absorbing atmospheric heat. An air temperature detecting means 40 for detecting the atmospheric temperature is provided on the upstream side of the air blower of the heat absorber 5.

制御手段41には、使用者が任意に給湯温度を設定する温度設定手段42からの信号(以降、給湯設定温度と呼ぶ)と上記の各検知手段の信号を受けて、給湯時に給湯管30からの出湯温度が設定温度に近づくように装置全体を制御する。   The control means 41 receives a signal from the temperature setting means 42 (hereinafter referred to as a “hot water supply set temperature”) and a signal from each of the detection means described above, and the hot water supply pipe 30 from the hot water supply pipe 30 during hot water supply. The entire apparatus is controlled so that the temperature of the hot water approaches the set temperature.

以上のように構成されたヒートポンプ給湯装置について、以下にその動作、作用を制御手段の動作を用いて説明する。   About the heat pump hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated using the operation | movement of a control means below.

制御手段41は、流量検知手段31の信号により給湯中か給湯停止中かを判定し、給湯中であれば給湯モードとして運転制御する。また、給湯停止中と判定されてかつ、給水検知手段38により貯湯槽22への給水が検知された場合は貯湯沸上モードとして運転制御する。さらに、給湯モードでもなく貯湯沸上モードでもない場合を停止モードとする。給水検知手段38による給水検知は、例えば検知温度が50℃より低い場合に給水ありと判断する。なお、貯湯槽22の放熱により温度が低下しても同様に給水ありと判定して貯湯沸上モードになるので結果として保温運転にもなる。   The control means 41 determines whether the hot water supply is being stopped or the hot water supply is stopped based on the signal from the flow rate detection means 31. In addition, when it is determined that hot water supply is stopped and water supply to the hot water storage tank 22 is detected by the water supply detection means 38, operation control is performed in the hot water storage heating mode. Furthermore, the mode that is neither the hot water supply mode nor the hot water boiling mode is set as the stop mode. Water supply detection by the water supply detection means 38 determines that there is water supply, for example, when the detected temperature is lower than 50 ° C. In addition, even if the temperature is lowered due to heat dissipation from the hot water storage tank 22, it is similarly determined that there is water supply and the hot water storage heating mode is set, so that the heat insulation operation is also performed as a result.

貯湯沸上モードは、混合手段a20を出湯管21と出口管24が連通するように設定する。そして、気温検知手段40と入水温度検知手段37の検出温度に応じて所定の加熱能力が出るように圧縮機2の回転数と減圧手段4の開度とファン39の回転数を設定して冷媒循環回路7を運転する。また同時にポンプ26を起動して貯湯槽22底部の水を熱交換器10に通水して加熱された湯を出口管24から貯湯槽22上部に戻して沸上げる。   In the hot water storage boiling mode, the mixing means a20 is set so that the hot water discharge pipe 21 and the outlet pipe 24 communicate with each other. Then, the rotational speed of the compressor 2, the opening degree of the decompression means 4, and the rotational speed of the fan 39 are set so that a predetermined heating capacity is obtained according to the temperature detected by the air temperature detecting means 40 and the incoming water temperature detecting means 37. The circulation circuit 7 is operated. At the same time, the pump 26 is activated to pass water at the bottom of the hot water tank 22 through the heat exchanger 10, and heated hot water is returned from the outlet pipe 24 to the upper part of the hot water tank 22 to be boiled.

このとき目標となる貯湯温度を予め設定し、この貯湯温度と出湯温度検出手段33の検出温度との偏差が小さくなるようにポンプ26の流量制御を行う。貯湯温度は温度設定手段42で設定する給湯設定温度より高い温度とする。例えば温度設定手段42の設定範囲が35℃〜60℃とすると貯湯温度は60℃を超える温度ということで例えば80℃に設定する。なお、この貯湯温度は給湯負荷に連動させて外気温度が低い冬場の場合は高く、外気温度が高い夏場の場合は低くなるように設定してもよい。このことにより、貯湯槽22からの放熱ロスが少なできる。   At this time, the target hot water storage temperature is set in advance, and the flow rate of the pump 26 is controlled so that the deviation between the hot water storage temperature and the detected temperature of the hot water temperature detection means 33 becomes small. The hot water storage temperature is higher than the hot water supply set temperature set by the temperature setting means 42. For example, if the setting range of the temperature setting means 42 is 35 ° C. to 60 ° C., the hot water storage temperature is set to, for example, 80 ° C. because the temperature exceeds 60 ° C. The hot water storage temperature may be set so as to be high in winter when the outside air temperature is low and low in summer when the outside air temperature is high in conjunction with the hot water supply load. Thereby, the heat loss from the hot water tank 22 can be reduced.

給湯モードは、冷媒循環回路7の運転による熱交換器10での加熱制御と、混合手段a20と混合手段b28の混合制御が同時に行なわれる。   In the hot water supply mode, the heating control in the heat exchanger 10 by the operation of the refrigerant circuit 7 and the mixing control of the mixing unit a20 and the mixing unit b28 are performed simultaneously.

熱交換器10での加熱制御は、給湯負荷を算定して、この給湯負荷に基づいて圧縮機2の基準回転数と減圧手段4の基準開度を設定する。そして、出湯温度検知手段33の検出温度と給湯設定温度との偏差が小さくなるように圧縮機2の基準回転数を補正制御する。給湯負荷は、水温検知手段32と給湯設定温度との差に流量検知手段31の検出流量を乗じて求める。   The heating control in the heat exchanger 10 calculates the hot water supply load, and sets the reference rotational speed of the compressor 2 and the reference opening of the decompression means 4 based on the hot water supply load. And the reference | standard rotation speed of the compressor 2 is correction-controlled so that the deviation of the detection temperature of the tapping temperature detection means 33 and hot water supply preset temperature may become small. The hot water supply load is obtained by multiplying the difference between the water temperature detection means 32 and the hot water supply set temperature by the detected flow rate of the flow rate detection means 31.

混合手段a20の混合制御は、熱交換器10からの湯と、貯湯槽22からの湯と混合して、混合温度検知手段35の検出温度(以降、混合温度と呼ぶ)と給湯設定温度との偏差
が小さくなるように混合手段a20の混合割合をフィードバック制御する。
Mixing control of the mixing means a20 is performed by mixing hot water from the heat exchanger 10 and hot water from the hot water storage tank 22, and detecting a temperature detected by the mixing temperature detecting means 35 (hereinafter referred to as mixing temperature) and a hot water supply set temperature. The mixing ratio of the mixing means a20 is feedback controlled so that the deviation becomes small.

このフィードバック制御は、出湯温度検知手段33の検出温度が給湯設定温度より低く、出口温度検知手段34の検出温度が給湯設定温度より高い場合で、給湯設定温度より混合温度が低くければ、貯湯槽22からの流量比率が大きくなるように制御し、給湯設定温度より混合温度が高くなれば、貯湯槽22からの流量比率が小さくなるように制御する。   This feedback control is performed when the detected temperature of the hot water temperature detecting means 33 is lower than the set hot water temperature and the detected temperature of the outlet temperature detecting means 34 is higher than the set hot water temperature, and if the mixing temperature is lower than the set hot water temperature, the hot water storage tank The flow rate ratio from the hot water storage tank 22 is controlled so as to increase. If the mixing temperature becomes higher than the hot water supply set temperature, the flow rate ratio from the hot water storage tank 22 is controlled to decrease.

また、混合手段a20の混合制御は、出口温度検知手段34の検出する出湯温度(貯湯槽の貯湯温度)が、給湯設定温度より低い場合に、貯湯槽22からの流量を閉止させるように制御する。これは貯湯温度が給湯設定温度より低くなったことで、湯切れが発生したと判断して、貯湯槽22からの出湯を停止し、熱交換器10のみの給湯に切換えることにより、混合弁制御における貯湯槽22からの湯温変動の影響がなくなるので、熱交換器10での加熱制御が安定する。   Further, the mixing control of the mixing means a20 is controlled so that the flow rate from the hot water tank 22 is closed when the hot water temperature detected by the outlet temperature detecting means 34 (the hot water temperature of the hot water tank) is lower than the hot water supply set temperature. . This is because the hot water storage temperature has become lower than the hot water supply set temperature, it is determined that hot water has run out, the hot water from the hot water storage tank 22 is stopped, and the hot water supply is switched to only the heat exchanger 10 to control the mixing valve. Since the influence of the hot water temperature fluctuation from the hot water storage tank 22 is eliminated, the heating control in the heat exchanger 10 is stabilized.

さらに、混合手段a20の混合制御は、出湯温度検知手段33の検出温度が給湯設定温度より高くなった場合にも、貯湯槽22からの流量を閉止させるように制御する。これは、熱交換器10からの出湯温度が給湯設定温度に到達した段階で、貯湯槽22からの出湯を停止し、熱交換器10のみの給湯に切換えることにより、貯湯槽22の湯の消費を抑制して湯切れを防止するとともに、熱交換器10での加熱制御を安定にする。   Furthermore, the mixing control of the mixing means a20 is performed so that the flow rate from the hot water storage tank 22 is closed even when the temperature detected by the hot water temperature detecting means 33 becomes higher than the hot water supply set temperature. This is because when the temperature of the hot water from the heat exchanger 10 reaches the set hot water temperature, the hot water from the hot water storage tank 22 is stopped, and the hot water consumption of the hot water storage tank 22 is consumed by switching to the hot water supply of only the heat exchanger 10. Is suppressed to prevent hot water from running out, and the heating control in the heat exchanger 10 is stabilized.

混合手段b28の混合制御は、混合手段a20からの湯と、バイパス管29からの水道水と混合して、給湯温度検知手段36の検出温度(以降、給湯温度と呼ぶ)と給湯設定温度との偏差が小さくなるように混合手段b28の混合割合をフィードバック制御する。この混合手段b28の混合制御は、混合手段a20から供給される湯温は略給湯設定温度になっているので、混合手段b28の混合割合は、略バイパス管29側が全閉で、混合手段a20側が全開の状態となる。ただし、熱交換器10からの出湯温度が給湯設定温度を超えた場合や、貯湯沸上モード運転直後では、出湯管21や出口管24に給湯設定温度以上の湯が滞留しているので、混合手段a20から給湯設定温度以上の混合温度の湯が出湯される。このような場合にはバイパス管29側を開いて給湯温度が給湯設定温度に設定される。   Mixing control of the mixing means b28 is performed by mixing hot water from the mixing means a20 and tap water from the bypass pipe 29, and detecting a temperature detected by the hot water supply temperature detecting means 36 (hereinafter referred to as hot water supply temperature) and a hot water supply set temperature. The mixing ratio of the mixing unit b28 is feedback controlled so that the deviation becomes small. In the mixing control of the mixing unit b28, since the hot water temperature supplied from the mixing unit a20 is substantially equal to the hot water supply set temperature, the mixing ratio of the mixing unit b28 is substantially closed on the bypass pipe 29 side and on the mixing unit a20 side. Fully open. However, when the temperature of the hot water from the heat exchanger 10 exceeds the preset hot water supply temperature or immediately after the hot water storage heating mode operation, hot water at the hot water supply temperature or higher stays in the hot water discharge pipe 21 or the outlet pipe 24. Hot water having a mixed temperature equal to or higher than the hot water supply set temperature is discharged from the means a20. In such a case, the bypass pipe 29 side is opened and the hot water supply temperature is set to the hot water supply set temperature.

停止モードは、冷媒循環回路7の運転は全て停止し、ファン39、ポンプ26の運転も停止する。ただし、混合手段a20および混合手段b28は、待機制御を行ない給湯が再開した場合に混合温度及び給湯温度が略設定温度になるように混合割合を設定する。   In the stop mode, all the operations of the refrigerant circulation circuit 7 are stopped, and the operations of the fan 39 and the pump 26 are also stopped. However, the mixing means a20 and the mixing means b28 perform standby control and set the mixing ratio so that the mixing temperature and the hot water supply temperature become substantially the set temperature when the hot water supply is resumed.

この待機制御は、混合手段a20の場合は、出湯温度検知手段33の検出温度Thと出口温度検知手段34の検出温度Ttと給湯設定温度Tsから次式により貯湯層22側の混合割合Mxaを求め、この結果Mxaに合うように混合手段a20を駆動する。   In the case of the mixing means a20, this standby control calculates the mixing ratio Mxa on the hot water storage layer 22 side from the detected temperature Th of the hot water temperature detecting means 33, the detected temperature Tt of the outlet temperature detecting means 34, and the hot water supply set temperature Ts by the following equation. As a result, the mixing means a20 is driven so as to meet Mxa.

Mxa=(Ts−Th)/(Tt−Th)
ただし、Mxaは0〜1とする。
Mxa = (Ts−Th) / (Tt−Th)
However, Mxa shall be 0-1.

混合手段b28の場合は、水温検知手段32の検出温度Twと混合温度検知手段35の検出温度Tmと給湯設定温度Tsから次式により貯湯層22側の混合割合Mxbを求め、この結果Mxbに合うように混合手段a20を駆動する。   In the case of the mixing means b28, the mixing ratio Mxb on the hot water storage layer 22 side is obtained from the detection temperature Tw of the water temperature detection means 32, the detection temperature Tm of the mixing temperature detection means 35, and the hot water supply set temperature Ts by the following formula, and this result matches Mxb. Thus, the mixing means a20 is driven.

Mxb=(Ts−Tw)/(Tm−Tw)
ただし、Mxbは0〜1とする。
Mxb = (Ts−Tw) / (Tm−Tw)
However, Mxb shall be 0-1.

この待機制御を行うことにより、給湯が開始されて給湯モードに以降した直後であって
も混合手段a20および混合手段b28は最適な混合割合に設定されているので、給湯開始直後から給湯設定温度の給湯が可能となる。
By performing this standby control, the mixing means a20 and the mixing means b28 are set to the optimum mixing ratio even immediately after the hot water supply is started and the hot water supply mode is entered. Hot water can be supplied.

なお、本実施の形態では貯湯槽22の貯湯温度が、給湯設定温度より低い場合に、混合手段a20により貯湯槽22からの混合手段a20への流量を閉止するように制御しているが、これを貯湯槽22側の流量割合を減少させるように制御することにより、貯湯槽22内の残留熱を使いきることが出来る。これにより、貯湯槽22からの放熱ロスが抑えられ、かつ貯湯沸上時の熱交換器10への入水温度が低温で安定するので沸上時の効率も向上する。   In the present embodiment, when the hot water storage temperature of the hot water storage tank 22 is lower than the hot water supply set temperature, the mixing means a20 is controlled to close the flow rate from the hot water storage tank 22 to the mixing means a20. By controlling so that the flow rate ratio on the hot water tank 22 side is reduced, the residual heat in the hot water tank 22 can be used up. Thereby, the heat loss from the hot water tank 22 is suppressed, and the temperature of water entering the heat exchanger 10 at the time of boiling hot water is stabilized at a low temperature, so that the efficiency at the time of boiling is also improved.

また、本実施の形態では熱交換器10からの出湯温度の目標値は給湯設定温度とし、混合手段a20の混合温度の目標値と同一としているが、これを熱交換器10からの出湯温度の目標値を給湯設定手段より低く設定することにより、混合手段a20に常に貯湯槽22からの湯が供給されるようになるので、熱交換器10からの出湯温度が変動しても混合手段a20により給湯設定温度に安定して出湯することができるようになる。   Moreover, in this Embodiment, the target value of the tapping temperature from the heat exchanger 10 is set to the hot water supply set temperature, and is the same as the target value of the mixing temperature of the mixing means a20. By setting the target value lower than the hot water supply setting means, the hot water from the hot water storage tank 22 is always supplied to the mixing means a20. Therefore, even if the tapping temperature from the heat exchanger 10 fluctuates, the mixing means a20 It becomes possible to discharge hot water stably at the hot water supply set temperature.

さらに、本実施の形態では貯湯槽22の貯湯温度が、給湯設定温度より低い場合に、混合手段a20により貯湯槽22からの混合手段a20への流量を閉止するように制御しているが、熱交換器10からの出湯温度を給湯設定温度より高くするとともに、混合手段a20により貯湯槽22からの混合手段a20への混合割合を混合温度に比例的に制御することにより、貯湯槽22からの混合を残しながら混合制御することにより、熱交換器10からの出湯温度が変動しても混合温度を略給湯設定温度に安定して出湯することができるようになる。   Further, in the present embodiment, when the hot water storage temperature of the hot water storage tank 22 is lower than the hot water supply set temperature, the mixing means a20 is controlled to close the flow rate from the hot water storage tank 22 to the mixing means a20. Mixing from the hot water tank 22 by making the temperature of the hot water from the exchanger 10 higher than the set hot water temperature and controlling the mixing ratio from the hot water tank 22 to the mixing means a20 in proportion to the mixing temperature by the mixing means a20. By controlling the mixing while leaving the water, the mixing temperature can be stably discharged at a substantially hot water supply set temperature even if the temperature of the hot water from the heat exchanger 10 fluctuates.

また、本実施の形態ではヒートポンプサイクルを、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしたが、もちろん一般の臨界圧力以下のヒートポンプサイクルでもよい。   In this embodiment, the heat pump cycle is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure.

さらに、本実施の形態では混合手段を混合手段a20と混合手段b28の2重の混合構成としているが、混合手段a20の混合出口管27を給湯回路13に直接接続して給湯する構成でもよい。   Furthermore, in the present embodiment, the mixing means has a double mixing structure of the mixing means a20 and the mixing means b28, but the mixing outlet pipe 27 of the mixing means a20 may be directly connected to the hot water supply circuit 13 to supply hot water.

以上のように、本発明にかかるヒートポンプ給湯装置は、給湯温度の安定した出湯が可能となるので、電気、ガス、石油熱源の給湯機や電子制御のカラン等の用途にも適用できる。   As described above, the heat pump hot water supply apparatus according to the present invention can discharge hot water with a stable hot water supply temperature, and thus can be applied to uses such as water heaters for electric, gas, and petroleum heat sources, and electronically controlled curans.

本発明の実施の形態1におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

1 冷媒流路
2 圧縮機
3 放熱器
4 減圧手段
5 吸熱器
7 冷媒循環回路
9 水流路
10 熱交換器
20 混合手段a
22 貯湯槽
28 混合手段b
DESCRIPTION OF SYMBOLS 1 Refrigerant flow path 2 Compressor 3 Radiator 4 Pressure reduction means 5 Heat absorber 7 Refrigerant circulation circuit 9 Water flow path 10 Heat exchanger 20 Mixing means a
22 Hot water storage tank 28 Mixing means b

Claims (9)

圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、貯湯槽と、前記熱交換器からの水と前記貯湯槽からの水を混合する混合手段とを備え、少なくとも給湯運転時に、前記熱交換器からの出湯温度が所定温度より低い場合には前記混合手段によって前記貯湯槽からの湯を出湯させ、給湯運転停止時には、前記混合手段の上流側の温度に応じて前記混合手段を制御することを特徴とするヒートポンプ給湯装置A refrigerant circulation circuit including a compressor, a radiator, a decompression means, and a heat absorber; a heat exchanger having a water flow path for exchanging heat with the radiator; a hot water storage tank; water from the heat exchanger; Mixing means for mixing water from the hot water storage tank, and at least during the hot water supply operation, when the temperature of the hot water discharged from the heat exchanger is lower than a predetermined temperature, the hot water from the hot water storage tank is discharged by the mixing means , operation when stopping the heat pump water heater characterized that you control the mixing means in accordance with the temperature of the upstream side of said mixing means. 貯湯槽の貯湯温度は、混合手段の設定温度より高くした請求項1に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein the hot water storage temperature of the hot water tank is higher than the set temperature of the mixing means. 貯湯槽の貯湯温度が、混合手段の設定温度より低い場合に、前記貯湯槽からの混合手段への流量を閉止もしくは減少させる請求項1記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein when the hot water storage temperature of the hot water storage tank is lower than the set temperature of the mixing means, the flow rate from the hot water storage tank to the mixing means is closed or reduced. 熱交換器からの出湯温度は、混合手段の設定温度と同等もしくは低くした請求項1〜3のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to any one of claims 1 to 3, wherein a temperature of discharged hot water from the heat exchanger is equal to or lower than a set temperature of the mixing means. 貯湯槽の貯湯温度が、混合手段の設定温度より低い場合に、熱交換器からの出湯温度を設定温度より高くする請求項1に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein when the hot water storage temperature of the hot water tank is lower than the set temperature of the mixing means, the hot water temperature from the heat exchanger is made higher than the set temperature. 熱交換器からの出湯温度が、混合手段の設定温度より高い場合に、貯湯槽からの混合手段への流量を閉止もしくは減少させる請求項1に記載のヒートポンプ給湯装置。 The heat pump hot-water supply apparatus of Claim 1 which closes or reduces the flow volume to the mixing means from a hot water storage tank, when the hot-water temperature from a heat exchanger is higher than the preset temperature of a mixing means. 混合手段の制御量が、給湯が再開した場合に前記混合手段の混合温度が略設定温度になるように設定する請求項1〜6のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to any one of claims 1 to 6 , wherein a control amount of the mixing means is set so that a mixing temperature of the mixing means becomes substantially a set temperature when hot water supply is resumed. 貯湯温度が混合手段の設定温度より低い場合に、貯湯槽からの混合手段への流量割合を混合温度に比例的に制御する請求項1または5に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1 or 5, wherein when the hot water storage temperature is lower than a set temperature of the mixing means, a flow rate ratio from the hot water tank to the mixing means is controlled in proportion to the mixing temperature. 冷媒循環回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、
前記臨界圧力以上に昇圧された冷媒により熱交換器の水流路の流水を加熱する請求項1〜8のいずれか1項に記載のヒートポンプ給湯装置。
The refrigerant circulation circuit is a supercritical heat pump cycle in which the refrigerant pressure is equal to or higher than the critical pressure,
The heat pump hot-water supply apparatus of any one of Claims 1-8 which heats the flowing water of the water flow path of a heat exchanger with the refrigerant | coolant pressure | voltage-risen more than the said critical pressure.
JP2003356068A 2003-10-16 2003-10-16 Heat pump water heater Expired - Fee Related JP3915767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003356068A JP3915767B2 (en) 2003-10-16 2003-10-16 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003356068A JP3915767B2 (en) 2003-10-16 2003-10-16 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005121284A JP2005121284A (en) 2005-05-12
JP3915767B2 true JP3915767B2 (en) 2007-05-16

Family

ID=34613432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003356068A Expired - Fee Related JP3915767B2 (en) 2003-10-16 2003-10-16 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3915767B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721173A (en) * 2012-06-14 2012-10-10 华南理工大学 Adjustable instant water heater for heat pump
KR101806154B1 (en) 2011-10-28 2018-01-10 엘지전자 주식회사 Air conditioner and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4784288B2 (en) * 2005-12-02 2011-10-05 株式会社デンソー Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP4513760B2 (en) * 2006-02-15 2010-07-28 株式会社デンソー Heat pump type hot water supply apparatus and control device for heat pump type hot water supply apparatus
JP5094217B2 (en) * 2007-06-01 2012-12-12 日立アプライアンス株式会社 Heat pump water heater
JP2009008308A (en) * 2007-06-27 2009-01-15 Sanden Corp Water heater
JP5870844B2 (en) * 2012-05-23 2016-03-01 三菱電機株式会社 Hot water storage water heater
JP2016109326A (en) * 2014-12-03 2016-06-20 リンナイ株式会社 Storage type hot water supply device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806154B1 (en) 2011-10-28 2018-01-10 엘지전자 주식회사 Air conditioner and method
CN102721173A (en) * 2012-06-14 2012-10-10 华南理工大学 Adjustable instant water heater for heat pump

Also Published As

Publication number Publication date
JP2005121284A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
KR100847619B1 (en) Heat pump water heater
JP3834577B2 (en) Heat pump heating system
JP3956925B2 (en) Water heater
KR101467088B1 (en) Storage type hot water supply device
JP4975067B2 (en) Heat pump water heater
JP4124258B2 (en) Heat pump water heater
JP5401531B2 (en) Hot water storage hot water supply system
JP3915767B2 (en) Heat pump water heater
JP2006266665A (en) Heat pump type heating device
JP2010002078A (en) Hot water supply device, control device of hot water supply device, and control device of device having a plurality of electrically-driven elements
JP2006200888A (en) Heat pump hot water supply apparatus
JP3843963B2 (en) Heat pump water heater
JP5575049B2 (en) Heat pump water heater
JP4016870B2 (en) Heat pump water heater
JP3864981B2 (en) Heat pump water heater
JP2006003078A (en) Hot water supply apparatus
JP5528365B2 (en) Heat pump water heater
JP4101198B2 (en) Heat pump water heater / heater
JP3743375B2 (en) Heat pump water heater
JP2006132889A (en) Hot water storage type heat pump hot water supply apparatus
JP4246742B2 (en) Water heater
JP2009063276A (en) Hot water storage type water heater
JP4973111B2 (en) Hot water heater
JP3918819B2 (en) Heat pump water heater
JP3777653B2 (en) Hot water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees