JP2003238475A - Method for producing 1,1,1-trifluoroacetone - Google Patents

Method for producing 1,1,1-trifluoroacetone

Info

Publication number
JP2003238475A
JP2003238475A JP2002032064A JP2002032064A JP2003238475A JP 2003238475 A JP2003238475 A JP 2003238475A JP 2002032064 A JP2002032064 A JP 2002032064A JP 2002032064 A JP2002032064 A JP 2002032064A JP 2003238475 A JP2003238475 A JP 2003238475A
Authority
JP
Japan
Prior art keywords
catalyst
palladium
trifluoroacetone
carrier
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002032064A
Other languages
Japanese (ja)
Other versions
JP3995493B2 (en
Inventor
Takashi Sakatani
孝 坂谷
Masakatsu Tsukamoto
将功 塚本
Yoshihiko Goto
嘉彦 後藤
Junji Negishi
純二 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002032064A priority Critical patent/JP3995493B2/en
Publication of JP2003238475A publication Critical patent/JP2003238475A/en
Application granted granted Critical
Publication of JP3995493B2 publication Critical patent/JP3995493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To control heat generation on the surface of a catalyst and to prolong the life of the catalyst in a technique for producing 1,1,1-trifluoroacetone by hydrogenolysis of a halogenated trifluoroacetone in a vapor phase in the presence of the catalyst. <P>SOLUTION: A solid-phase catalyst obtained by bringing a carrier into contact with a solution containing palladium and an additive metal (at least one kind of a metal selected from silver, rhenium and gold) or bringing the carrier into contact with a solution containing palladium and a solution containing the additive metal and reducing the carrier with reducing gas is used as the catalyst. Preferably 1-100 g of the additive metal is contained in 100 g of palladium. Activated carbon, alumina, silica alumina or silica is preferable as the carrier. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、医薬・農薬の中間
体として、また含フッ素基導入試薬として有用な1,
1,1−トリフルオロアセトンの製造方法に関する。ま
たその際に用いる固相触媒の調製方法に関する。
TECHNICAL FIELD The present invention is useful as an intermediate for pharmaceuticals and agricultural chemicals, and as a reagent for introducing a fluorine-containing group.
The present invention relates to a method for producing 1,1-trifluoroacetone. It also relates to a method for preparing a solid phase catalyst used in that case.

【0002】[0002]

【従来の技術】有用な有機試薬である1,1,1−トリ
フルオロアセトンを工業的に製造する方法として、本出
願人は、一般式[1]で表されるハロゲン化トリフルオ
ロアセトン類
As a method for industrially producing 1,1,1-trifluoroacetone which is a useful organic reagent, the present applicant has proposed that the halogenated trifluoroacetones represented by the general formula [1]

【0003】[0003]

【化2】 [Chemical 2]

【0004】(式中、Xは塩素、臭素またはヨウ素を表
し、nは1〜3の整数を表す。)を原料とし、これを、
還元剤として金属亜鉛とプロトン性溶媒の存在下、液相
中で還元する方法を特開2000−336057号公報
にて開示した。
(Wherein, X represents chlorine, bromine or iodine, and n represents an integer of 1 to 3) as a raw material.
A method of reducing in a liquid phase in the presence of metallic zinc as a reducing agent and a protic solvent has been disclosed in JP-A-2000-336057.

【0005】本出願人はさらに、還元剤として金属亜鉛
を必要としない方法として、一般式[1]で表されるハ
ロゲン化トリフルオロアセトンを、特定の遷移金属によ
りなる固相触媒を用いて気相中で水素化分解する方法
を、特開2001−316322号公報として開示し
た。この発明において用いられた触媒とはルテニウム、
パラジウム、イリジウム、ロジウム、ニッケル、銅、鉄
などの遷移金属を、活性炭等の担体に担持させたもので
ある。この触媒の存在下、気相中においてハロゲン化ト
リフルオロアセトンを水素ガスと反応させることで、大
量の亜鉛廃棄物を生じることなく、かつ高い収率で、目
的化合物1,1,1−トリフルオロアセトンを合成する
ことができた。
Further, the applicant of the present invention, as a method which does not require metallic zinc as a reducing agent, vaporizes halogenated trifluoroacetone represented by the general formula [1] by using a solid phase catalyst composed of a specific transition metal. The method of hydrocracking in the phase is disclosed as Japanese Patent Laid-Open No. 2001-316322. The catalyst used in the present invention is ruthenium,
A transition metal such as palladium, iridium, rhodium, nickel, copper or iron is supported on a carrier such as activated carbon. By reacting the halogenated trifluoroacetone with hydrogen gas in the gas phase in the presence of this catalyst, the target compound 1,1,1-trifluoroacetone can be produced in high yield without producing a large amount of zinc waste. Acetone could be synthesized.

【0006】[0006]

【発明が解決しようとする課題】特開2001−316
322号公報の発明における主要な問題として、固相触
媒の表面に強い発熱が起こりやすいという事実があっ
た。固相触媒表面の発熱があまり大きいと反応の制御が
難しくなり、原料の供給速度を低減したり、除熱効果を
上げるため反応管を細くする必要が生じるなど、効率が
悪くなる。その上、発熱が大きい系では触媒の寿命も短
いものとなる。
Problems to be Solved by the Invention
As a main problem in the invention of Japanese Patent No. 322, there is a fact that strong heat is likely to occur on the surface of the solid-phase catalyst. If the heat generated on the surface of the solid-phase catalyst is too large, it becomes difficult to control the reaction, and the efficiency is deteriorated, for example, the feed rate of the raw material is reduced and the reaction tube needs to be thin to improve the heat removal effect. In addition, the system that generates a large amount of heat also shortens the life of the catalyst.

【0007】すなわち、ハロゲン化トリフルオロアセト
ンを水素化分解によって1,1,1−トリフルオロアセ
トンに誘導する技術において、触媒表面の発熱をより小
さく抑えることができれば、1,1,1−トリフルオロ
アセトンの工業的な製造を行いやすくなる。このような
発熱抑制の手段を見いだすことが求められていた。
That is, in the technique of deriving halogenated trifluoroacetone into 1,1,1-trifluoroacetone by hydrogenolysis, if the heat generation on the catalyst surface can be suppressed to a smaller level, 1,1,1-trifluoroacetone can be obtained. It facilitates industrial production of acetone. It has been required to find a means for suppressing such heat generation.

【0008】[0008]

【課題を解決するための具体的手段】本発明者らはかか
る課題に鑑み、ハロゲン化トリフルオロアセトンを1,
1,1−トリフルオロアセトンに、より有効に誘導する
方法について鋭意検討した。
[Means for Solving the Problems] In view of the above problems, the present inventors have decided to use halogenated trifluoroacetone with 1,
The inventors have diligently studied a method for more effectively inducing 1,1-trifluoroacetone.

【0009】その結果、ハロゲン化トリフルオロアセト
ンを気相中で水素ガスにより水素化分解し1,1,1−
トリフルオロアセトンに誘導する技術において、パラジ
ウムおよびその他に、銀、レニウム、金から選ばれる金
属(以下、添加金属という)が同一担体上に担持された
固相触媒を用いると、上記問題が解決されることを見い
だした。すなわち、担体をパラジウム化合物を含む溶
液、および添加金属化合物を含む溶液に接触させるか、
担体をパラジウム化合物と添加金属化合物を同時に含む
溶液に接触させた後、水素等の還元性気体で還元処理し
て得た固相触媒を該反応に用いることにより、触媒とし
ての活性が実質的に損なわれることなく、触媒表面での
発熱が大幅に抑制されることを知った。またこれらの触
媒を使用すると、触媒の寿命が顕著に増大するという事
実を見いだした。
As a result, the halogenated trifluoroacetone is hydrolyzed in the gas phase with hydrogen gas to give 1,1,1-
In the technique of deriving into trifluoroacetone, the use of a solid-phase catalyst in which a metal selected from silver, rhenium, and gold (hereinafter referred to as an additive metal) is supported on the same carrier to solve the above problems. I found that. That is, contact the carrier with a solution containing a palladium compound, and a solution containing an added metal compound,
By using a solid phase catalyst obtained by subjecting the carrier to a solution containing a palladium compound and an added metal compound at the same time and then subjecting the solution to a reducing gas such as hydrogen for the reaction, the activity as a catalyst is substantially increased. It was found that the heat generation on the surface of the catalyst was significantly suppressed without being damaged. We also found that the use of these catalysts significantly increases the catalyst life.

【0010】本発明者らはさらに、これらの固相触媒に
おいて、添加金属の担持量がパラジウム100gあたり
合計1〜100gであると好ましいこと、担体としては
活性炭、アルミナ、シリカアルミナ、またはシリカから
選ばれるものが好ましいことを見いだした。
The present inventors further prefer that the amount of the added metal supported in these solid-phase catalysts is 1 to 100 g in total per 100 g of palladium, and the carrier is selected from activated carbon, alumina, silica-alumina, or silica. I have found that what is provided is preferable.

【0011】本発明者らはまた、このように使用される
触媒の1つである、同一担体上にパラジウムと銀が担持
された触媒を調製する方法として、担体を硝酸パラジウ
ムを含む溶液と硝酸銀を含む溶液に接触させるか、担体
を硝酸パラジウムと硝酸銀を同時に含む溶液に接触させ
た後、還元性気体により還元処理すると特に好ましいこ
とを見いだし、本発明の完成に至ったものである。
The inventors of the present invention also prepared a catalyst, in which palladium and silver are supported on the same carrier, which is one of the catalysts used in this way, by using a carrier containing a solution containing palladium nitrate and silver nitrate. It has been found that it is particularly preferable to bring the carrier into contact with a solution containing Pd, or to bring the carrier into contact with a solution containing palladium nitrate and silver nitrate at the same time, and then carry out a reduction treatment with a reducing gas, thus completing the present invention.

【0012】本発明における、「パラジウムと添加金属
が同一担体上に担持された触媒」のことを「複合化触
媒」と呼ぶ。これに対し、パラジウムのみを担持させた
担体と、添加金属のみを担持させた担体を物理的に混ぜ
合わせたものは、本発明にいう「複合化触媒」には該当
しない。
The "catalyst in which palladium and the added metal are carried on the same carrier" in the present invention is called "composite catalyst". On the other hand, a physical mixture of a carrier supporting only palladium and a carrier supporting only an added metal does not correspond to the “composite catalyst” in the present invention.

【0013】すなわち、本発明は、一般式[1]で表さ
れるハロゲン化トリフルオロアセトンを気相中で水素ガ
スにより水素化分解し1,1,1−トリフルオロアセト
ンに誘導する方法において、触媒として、同一担体上に
パラジウムおよびその他に、銀、レニウムまたは金から
選ばれる少なくとも1種類の添加金属が担持された固相
触媒を用いることを特徴とする。また、特にその固相触
媒が、担体を、パラジウム化合物を含む溶液および、添
加金属化合物を含む溶液に接触させた後、これを還元性
気体で還元して得たものであることを特徴とする。ま
た、固相触媒が、パラジウム化合物および添加金属化合
物を同時に含む溶液に、担体を接触させた後、還元性ガ
スで還元処理して調製したものであることを特徴とす
る。また、固相触媒において、添加金属の担持量がパラ
ジウム100gあたり合計1〜100gであることを特
徴とする。また、担体として活性炭、アルミナ、シリカ
アルミナまたはシリカから選ばれる担体を使用すること
を特徴とする。さらに本発明は、担体を硝酸パラジウム
を含む溶液および、硝酸銀を含む溶液に接触させるか、
担体を硝酸パラジウムと硝酸銀を同時に含む溶液に接触
させた後、還元性気体により還元処理することを特徴と
する、同一担体上にパラジウムと銀が担持された、上記
の反応に使用する触媒を調製する手段を提供する。
That is, the present invention provides a method for hydrolyzing a halogenated trifluoroacetone represented by the general formula [1] with hydrogen gas in a gas phase to obtain 1,1,1-trifluoroacetone. The catalyst is characterized by using a solid-phase catalyst in which palladium and at least one additional metal selected from silver, rhenium, and gold are supported on the same carrier. Further, in particular, the solid-phase catalyst is characterized by being obtained by contacting a carrier with a solution containing a palladium compound and a solution containing an added metal compound, and then reducing this with a reducing gas. . Further, the solid phase catalyst is characterized by being prepared by bringing a carrier into contact with a solution containing a palladium compound and an added metal compound at the same time, and then reducing the solution with a reducing gas. In addition, in the solid-phase catalyst, the amount of the added metal supported is 1 to 100 g in total per 100 g of palladium. Further, it is characterized in that a carrier selected from activated carbon, alumina, silica alumina or silica is used as the carrier. The present invention further provides that the carrier is contacted with a solution containing palladium nitrate and a solution containing silver nitrate,
A catalyst for use in the above reaction, wherein palladium and silver are supported on the same carrier, characterized in that the carrier is brought into contact with a solution containing palladium nitrate and silver nitrate at the same time and then subjected to reduction treatment with a reducing gas. Provide the means to do.

【0014】以下、本発明につきさらに詳細に説明す
る。本発明の方法は、流通式の気相反応装置において気
相中で実施することができる。本発明の方法における原
料である、一般式[1]で表されるハロゲン化トリフル
オロアセトンの構造式を以下に列挙する。
The present invention will be described in more detail below. The method of the present invention can be carried out in a gas phase in a flow type gas phase reactor. The structural formula of the halogenated trifluoroacetone represented by the general formula [1], which is a raw material in the method of the present invention, is listed below.

【0015】[0015]

【化3】 [Chemical 3]

【0016】本発明においては、これらのハロゲン化ト
リフルオロアセトンのうち、一種類のみを用いてもよい
し、複数のハロゲン化トリフルオロアセトンの混合物を
用いてもよく、何れも目的とする1,1,1−トリフル
オロアセトンに変換される。
In the present invention, of these halogenated trifluoroacetones, only one kind may be used, or a mixture of a plurality of halogenated trifluoroacetones may be used. Converted to 1,1-trifluoroacetone.

【0017】担体としては活性炭、アルミナ、シリカア
ルミナまたはシリカ等が使用できる。担持方法として上
記金属化合物を含む溶液を担体に浸漬したり、溶液を担
体に噴霧するなどの方法が挙げられる。この際、パラジ
ウム化合物および添加金属化合物を含む溶液としては、
これら金属の塩化物、臭化物、フッ化物、酸化物、水酸
化物、硝酸塩、硫酸塩、炭酸塩、アコ錯体、ハロゲノ錯
体等を、水やアルコールに溶かしたものが使用できる。
As the carrier, activated carbon, alumina, silica alumina or silica can be used. Examples of the supporting method include a method of immersing a solution containing the above metal compound in a carrier and spraying the solution on the carrier. At this time, as the solution containing the palladium compound and the added metal compound,
A chloride, bromide, fluoride, oxide, hydroxide, nitrate, sulfate, carbonate, aco complex, halogeno complex or the like of these metals dissolved in water or alcohol can be used.

【0018】担体を金属化合物と接触させる順序として
は、担体をパラジウム化合物を含む溶液に接触させた
後、添加金属化合物を含む溶液に接触させる方法、担体
を添加金属化合物を含む溶液に接触させた後、パラジウ
ム化合物を含む溶液に接触させる方法、あるいは両方の
溶液と同時に接触させる方法の何れを用いてもよい。パ
ラジウム化合物と添加金属化合物を共に含む溶液を調製
し、この溶液を担体に一時に接触させる方法でもよく、
通常はその方が操作が簡便であるので、好ましい。
The order of bringing the carrier into contact with the metal compound is such that the carrier is brought into contact with the solution containing the palladium compound and then brought into contact with the solution containing the added metal compound, and the carrier is brought into contact with the solution containing the added metal compound. Then, either a method of contacting with a solution containing a palladium compound or a method of contacting with both solutions simultaneously may be used. It is also possible to prepare a solution containing both the palladium compound and the added metal compound, and contact this solution with the carrier at one time,
Usually, it is preferable because it is easier to operate.

【0019】これらの方法で担体にパラジウムおよび添
加金属を含浸させた後に、不活性ガスの存在下で、概ね
150〜350℃で乾燥、焼成し、次いで水素ガス等の
還元性気体を流通させて還元処理に付することにより、
複合化触媒が調製される。
After impregnating the carrier with palladium and the added metal by these methods, the carrier is dried and calcined at about 150 to 350 ° C. in the presence of an inert gas, and then a reducing gas such as hydrogen gas is circulated. By applying the reduction process,
A composite catalyst is prepared.

【0020】これらの中で、銀を添加金属として用いる
場合、銀のハロゲン化物は難溶性のため、原料として好
ましくなく、それ以外の銀化合物、例えば硝酸銀などを
使用することが好ましい。また銀を添加金属とする場合
に、パラジウムの対陰イオンがハロゲン化物イオンであ
ったり、液相中にハロゲン化物イオンが存在すると、銀
との間に難溶性のハロゲン化銀が形成され、担体への浸
漬が阻害される恐れがあるので好ましくない。すなわ
ち、パラジウムの対陰イオンとしてもハロゲン化物イオ
ン以外のものを用いるのが好ましい。
Among these, when silver is used as the additive metal, the halide of silver is hardly soluble and is not preferable as a raw material, and it is preferable to use other silver compounds such as silver nitrate. When silver is used as the additive metal, if the counter anion of palladium is a halide ion or if a halide ion is present in the liquid phase, a sparingly soluble silver halide is formed with silver, and the carrier It is not preferable because it may hinder the dipping in water. That is, it is preferable to use other than the halide ion as the counter anion of palladium.

【0021】このように、同一担体上にパラジウムと銀
が担持された固相触媒を調製するためには、担体を硝酸
パラジウムと硝酸銀を含む溶液と接触させるか、担体を
硝酸パラジウムを含む溶液および、硝酸銀を含む溶液に
接触させて金属を含浸させ、その後に還元性気体で還元
処理するのが好ましい態様である。この場合、金属化合
物を溶解させる溶媒中にもハロゲン化物イオンは存在し
ないことが好ましく、純水や硝酸水溶液が好ましく使用
できる。
As described above, in order to prepare a solid-phase catalyst in which palladium and silver are supported on the same carrier, the carrier is brought into contact with a solution containing palladium nitrate and silver nitrate, or the carrier is mixed with a solution containing palladium nitrate and In a preferred embodiment, the solution is brought into contact with a solution containing silver nitrate to impregnate the metal, and then reduction treatment with a reducing gas is performed. In this case, it is preferable that the halide ion does not exist even in the solvent in which the metal compound is dissolved, and pure water or nitric acid aqueous solution can be preferably used.

【0022】このような複合化触媒を使用すると、パラ
ジウムのみが担持された通常の触媒を用いる場合に比較
して1,1,1−トリフルオロアセトンの選択率、収率
に事実上変化はないにも関わらず、触媒表面の温度上昇
が大幅に抑制され、反応制御が格段に行いやすくなり、
かつ触媒寿命が顕著に増大する。一方、添加金属のみを
担体に担持させても触媒活性はごく低く、水素化分解は
ほとんど進行しない。また、パラジウムのみが担持され
た通常の触媒と添加金属のみを担持させた担体を物理的
に混ぜ合わせても、反応は進行するものの、触媒表面の
温度上昇は十分抑制されず、触媒寿命も増大しない。す
なわち、ハロゲン化トリフルオロアセトンを水素化分解
し、1,1,1−トリフルオロアセトンを合成する反応
を有利に進行させる効果は、パラジウムと添加金属が同
一の担体上に担持された触媒を用いる場合に、特異的に
発現するものである。
When such a composite catalyst is used, there is virtually no change in the selectivity and yield of 1,1,1-trifluoroacetone as compared with the case of using a conventional catalyst in which only palladium is supported. Nevertheless, the temperature rise on the catalyst surface is greatly suppressed, making it much easier to control the reaction,
Moreover, the catalyst life is significantly increased. On the other hand, even if only the added metal is supported on the carrier, the catalytic activity is very low and the hydrogenolysis hardly progresses. In addition, even if the normal catalyst supporting only palladium and the carrier supporting only the added metal are physically mixed, the reaction proceeds, but the temperature rise on the catalyst surface is not sufficiently suppressed and the catalyst life is also increased. do not do. That is, the effect of advancing the reaction of synthesizing 1,1,1-trifluoroacetone by hydrogenolysis of halogenated trifluoroacetone advantageously uses a catalyst in which palladium and the added metal are supported on the same carrier. In some cases, it is specifically expressed.

【0023】添加金属としては銀、レニウム、金の何れ
も同様の効果を有するが、発熱を抑制する効果の大きさ
と、触媒寿命を延長させる効果の大きさはどちらも、お
おむね、銀>レニウム、金、の順である。
Although silver, rhenium, and gold all have the same effect as the additive metal, both the effect of suppressing heat generation and the effect of extending the catalyst life are generally silver> rhenium, The order is gold.

【0024】本発明の方法において担体に担持させるパ
ラジウムの量(金属原子に換算した重量)に特に制限は
ないが、担体100gに対し0.1g〜10gが好まし
く、0.2〜5gが特に好ましい。0.1g以下では
1,1,1−トリフルオロアセトンの収率が低下し、ま
た5gを超えると経済的に好ましくない。
In the method of the present invention, the amount of palladium supported on the carrier (weight converted to metal atoms) is not particularly limited, but is preferably 0.1 g to 10 g, and particularly preferably 0.2 to 5 g per 100 g of the carrier. . If it is less than 0.1 g, the yield of 1,1,1-trifluoroacetone will decrease, and if it exceeds 5 g, it is economically unfavorable.

【0025】複合化触媒中の添加金属の担持量にも格段
の制限はないが、パラジウム100gに対して、添加金
属は合計1〜100gであることが好ましく、5〜50
gであることが特に好ましい。添加金属が1gよりも少
ないと、敢えて使用する効果が得られ難く、逆に100
gを上回るとパラジウム含量が相対的に低下し触媒とし
ての活性が低下するため、好ましくない。
The amount of the added metal supported in the composite catalyst is not particularly limited, but the total amount of the added metal is preferably 1 to 100 g with respect to 100 g of palladium, and 5 to 50 is preferable.
Particularly preferably g. If the added metal is less than 1 g, it is difficult to obtain the effect of intentionally using it.
If it exceeds g, the palladium content is relatively decreased and the activity as a catalyst is decreased, which is not preferable.

【0026】ハロゲン化トリフルオロアセトンの水素化
分解は無溶媒で行っても、溶媒を使用してもよい。溶液
を使用する場合には、水溶液、アルコール溶液(メタノ
ール溶液、エタノール溶液など)が好ましく、水溶液が
特に好ましい。アルコールを用いる場合には炭素数1〜
20のアルキル基が水酸基に結合したアルコールが好ま
しい。水溶液、アルコール溶液の場合、ハロゲン化トリ
フルオロアセトンは次の式[2]〜[4]に示す水和
物、アルコール付加物、gem−ジオール、ヘミアセタ
ール、アセタール等の構造をとり得るが、何れの構造で
あっても差し支えない。
The hydrogenolysis of halogenated trifluoroacetone may be carried out without a solvent or with a solvent. When using a solution, an aqueous solution or an alcohol solution (methanol solution, ethanol solution, etc.) is preferable, and an aqueous solution is particularly preferable. When alcohol is used, the carbon number is 1 to
An alcohol in which the alkyl group of 20 is bonded to a hydroxyl group is preferable. In the case of an aqueous solution or an alcohol solution, the halogenated trifluoroacetone may have a structure such as a hydrate represented by the following formulas [2] to [4], an alcohol adduct, gem-diol, hemiacetal, or acetal. It does not matter even if the structure is.

【0027】[0027]

【化4】 [Chemical 4]

【0028】[0028]

【化5】 [Chemical 5]

【0029】[0029]

【化6】 [Chemical 6]

【0030】(各式中、X、nは一般式[1]と同じ意味
を表す。mは整数、R1はアルキル基、R2、R3はそれぞれ
独立に水素原子またはアルキル基を表す。) 溶媒を用いる場合、その量には特別な制限はないが、ハ
ロゲン化トリフルオロアセトン100gに対して、10
0g以下とすることが好ましく、50g以下が特に好ま
しい。溶媒が上記の量より多いと過大な反応装置が必要
となるなど問題が生ずるため、経済的に好ましくない。
(In each formula, X and n have the same meanings as in formula [1]. M is an integer, R 1 is an alkyl group, and R 2 and R 3 are each independently a hydrogen atom or an alkyl group. When a solvent is used, the amount thereof is not particularly limited, but it is 10 per 100 g of halogenated trifluoroacetone.
It is preferably 0 g or less, particularly preferably 50 g or less. If the amount of the solvent is larger than the above amount, problems such as the need for an excessively large reaction device may occur, which is not economically preferable.

【0031】反応を実施する場合には、上記の原料もし
くはその溶液を気化装置でガス化したのちに、反応器に
導入し、触媒の存在下、水素ガスと反応させれば良い。
この際、反応の調節、触媒の劣化の防止を目的として、
反応器内に窒素ガスを共存させることができる。
When carrying out the reaction, the above-mentioned raw material or a solution thereof may be gasified by a vaporizer, then introduced into a reactor, and reacted with hydrogen gas in the presence of a catalyst.
At this time, for the purpose of controlling the reaction and preventing the deterioration of the catalyst,
Nitrogen gas can coexist in the reactor.

【0032】水素化分解における反応器の設定温度は5
0℃〜300℃が好ましく、80℃〜230℃が特に好
ましい。50℃未満では反応速度が十分でなく、好まし
くない。また300℃を超えると、触媒表面での発熱が
大きく、触媒寿命が短くなる上、トリフルオロメチル基
の水素化分解および/またカルボニル基への水素付加が
進行し1,1,1−トリフルオロアセトンの収率が減少
し、副生物により精製も困難になるので好ましくない。
The set temperature of the reactor in hydrocracking is 5
0 degreeC-300 degreeC is preferable, and 80 degreeC-230 degreeC is especially preferable. If it is lower than 50 ° C, the reaction rate is not sufficient, which is not preferable. On the other hand, when the temperature exceeds 300 ° C, heat generation on the catalyst surface is large, the catalyst life is shortened, and hydrogenolysis of trifluoromethyl group and / or hydrogenation to carbonyl group proceeds to promote 1,1,1-trifluoro. It is not preferable because the yield of acetone is reduced and the by-product makes purification difficult.

【0033】出発原料のハロゲン化トリフルオロアセト
ン1モルに作用させる水素のモル数は原料化合物のハロ
ゲン化メチル基(−CH2-nn)のハロゲン原子の個数
(n)により異なるが、1.5〜50の範囲であり、2
〜10が好ましく、特に好ましくは2.5〜5である。
モル数が1.5未満では原料のハロゲン化トリフルオロ
アセトンの反応率は十分高くなく、一方、モル比50を
超えても反応率の向上はほとんど認められず、未反応水
素回収の点から経済的に有利でないので何れも好ましく
ない。
The number of moles of hydrogen which acts on 1 mole of the halogenated trifluoroacetone as the starting material depends on the number (n) of the halogen atoms of the halogenated methyl group (—CH 2 —n X n ) of the starting compound, .5 to 50, and 2
-10 is preferable and 2.5-5 is especially preferable.
If the number of moles is less than 1.5, the reaction rate of the halogenated trifluoroacetone as a raw material is not sufficiently high, while if the molar ratio exceeds 50, almost no improvement in the reaction rate is observed, which is economical from the viewpoint of unreacted hydrogen recovery. All of them are not preferable because they are not advantageous.

【0034】本発明の反応を行う反応器は、四フッ化エ
チレン樹脂、クロロトリフルオロエチレン樹脂、PFA
樹脂、カーボンなどを内部にライニングした材質で製作
したものが好ましく、水の存在しない条件で反応を行う
場合には、これらの材質の他に、鉄、ステンレス鋼、ニ
ッケル、ハステロイ(TM)で製作したものも使用でき
る。本発明の方法を実施する方法は限定されるものでは
ないが、代表的な態様の具体例を述べる。反応条件に耐
えられる流通式反応器に、活性炭に担持した複合化触媒
を充填する。反応器の外部より加熱し、水素を流通さ
せ、または水素と窒素を同時に流通させる。反応管の内
部が所定の温度になったら、原料のハロゲン化トリフル
オロアセトンを含む原料混合物を気化器に導入し、気化
して水素と混合し、かかる後に反応管に導入し流通させ
る。反応管より流出した気体及び液体の混合物は水に吸
収させ、冷却して液体として回収する。なおハロゲン化
トリフルオロアセトンを水素と別々に反応器に導入して
もよい。
The reactor for carrying out the reaction of the present invention is a tetrafluoroethylene resin, chlorotrifluoroethylene resin, PFA.
It is preferable to use a material with resin, carbon, etc. lined inside. If the reaction is performed in the absence of water, in addition to these materials, use iron, stainless steel, nickel, or Hastelloy (TM). You can also use the ones. The method for carrying out the method of the present invention is not limited, but specific examples of typical embodiments will be described. A flow-through reactor that can withstand the reaction conditions is filled with the composite catalyst supported on activated carbon. It is heated from the outside of the reactor and hydrogen is circulated, or hydrogen and nitrogen are simultaneously circulated. When the inside of the reaction tube reaches a predetermined temperature, the raw material mixture containing the raw material halogenated trifluoroacetone is introduced into the vaporizer, vaporized and mixed with hydrogen, and after that, it is introduced into the reaction tube and circulated. The mixture of gas and liquid flowing out from the reaction tube is absorbed in water, cooled and recovered as a liquid. The halogenated trifluoroacetone may be introduced into the reactor separately from hydrogen.

【0035】本発明の方法で製造された1,1,1−ト
リフルオロアセトンは、フッ素化物の水素化分解反応生
成物についての公知の方法を適用して精製されるが、例
えば、反応器より塩化水素とともに液体または気体状態
で流出した1,1,1−トリフルオロアセトンを含む生
成物を、冷却し、取り出した後、塩化水素を蒸留あるい
は液相分離などの操作で除去し、次いで残留した酸性成
分を塩基性物質などで除いた後、精製蒸留に付すること
により目的とする高純度の1,1,1−トリフルオロア
セトンを得ることができる。
The 1,1,1-trifluoroacetone produced by the method of the present invention is purified by applying a known method for a hydrogenolysis reaction product of a fluorinated compound. The product containing 1,1,1-trifluoroacetone flowing out in a liquid or gas state together with hydrogen chloride was cooled and taken out, and then hydrogen chloride was removed by an operation such as distillation or liquid phase separation, and then remained. The desired highly pure 1,1,1-trifluoroacetone can be obtained by removing the acidic component with a basic substance and then subjecting it to purification distillation.

【0036】[0036]

【実施例】以下、実施例により、気相法における本発明
の態様を説明するが、本発明はこれらの実施例により限
定されない。なお実施例において、ガスクロマトグラフ
分析組成の「%」は「面積%」を表す。
EXAMPLES The embodiments of the present invention in the vapor phase method will be described below with reference to examples, but the present invention is not limited to these examples. In the examples, “%” in the gas chromatographic analysis composition represents “area%”.

【0037】[触媒調製例1]「パラジウム−銀/活性
炭」触媒(複合化触媒)の調製。
[Catalyst Preparation Example 1] Preparation of "palladium-silver / activated carbon" catalyst (composite catalyst).

【0038】金属重量換算で0.5gの硝酸パラジウム
と金属重量換算で0.1gの硝酸銀を250gの水に溶
解した後、椰子殻活性炭(粒状、直径4mm)100g
を加え18時間浸漬させた。水を減圧して除去し、ガラ
ス管(直径30mm)に充填し120℃まで加熱して窒
素を流通しながら乾燥を行った。十分に乾燥した後、水
素を100ml/分で流通し、50℃/時間の速度で2
50℃まで昇温して、更に2時間、その温度で水素の流
通を継続して「パラジウム−銀/活性炭」触媒を調製し
た。得られた触媒の活性炭あたりのパラジウム含量は
0.5重量%、銀の含量は0.1重量%である。得られ
た触媒を触媒1と呼ぶ。 [触媒調製例2]「パラジウム−レニウム/活性炭」触
媒(複合化触媒)の調製。
After dissolving 0.5 g of palladium nitrate in terms of metal weight and 0.1 g of silver nitrate in terms of metal weight in 250 g of water, 100 g of palm shell activated carbon (granular, diameter 4 mm)
Was added and the mixture was immersed for 18 hours. The water was removed under reduced pressure, the glass tube (30 mm in diameter) was filled, heated to 120 ° C., and dried while flowing nitrogen. After sufficiently drying, hydrogen was passed at 100 ml / min, and 2 at a rate of 50 ° C / hour.
The temperature was raised to 50 ° C., and hydrogen flow was continued at that temperature for another 2 hours to prepare a “palladium-silver / activated carbon” catalyst. The obtained catalyst had a palladium content of 0.5% by weight and a silver content of 0.1% by weight per activated carbon. The catalyst obtained is called catalyst 1. [Catalyst Preparation Example 2] Preparation of "palladium-rhenium / activated carbon" catalyst (composite catalyst).

【0039】金属重量換算で0.5gの塩化パラジウム
と金属重量換算で0.2gの酸化レニウム(Re27
を10%塩酸水溶液250gに溶解した後、触媒調製例
1と同様に「パラジウム−レニウム/活性炭」触媒を調
製した。得られた触媒の活性炭あたりのパラジウム含量
は0.5重量%、レニウムの含量は0.2重量%であ
る。得られた触媒を触媒2と呼ぶ。 [触媒調製例3]「パラジウム−金/活性炭」触媒(複
合化触媒)の調製。
0.5 g of palladium chloride in terms of metal weight and 0.2 g of rhenium oxide (Re 2 O 7 ) in terms of metal weight
Was dissolved in 250 g of a 10% aqueous hydrochloric acid solution, and then a "palladium-rhenium / activated carbon" catalyst was prepared in the same manner as in Catalyst Preparation Example 1. The obtained catalyst had a palladium content of 0.5% by weight and a rhenium content of 0.2% by weight per activated carbon. The catalyst obtained is called catalyst 2. [Catalyst Preparation Example 3] Preparation of "palladium-gold / activated carbon" catalyst (composite catalyst).

【0040】金属重量換算で0.5gの塩化パラジウム
と金属重量換算で0.3gのテトラクロロ金(III)
酸(HAuCl4)を10%塩酸水溶液250gに溶解
した後、触媒調製例1と同様に「パラジウム−金/活性
炭」触媒を調製した。得られた触媒の活性炭あたりのパ
ラジウム含量は0.5重量%、金の含量は0.3重量%
である。得られた触媒を触媒3と呼ぶ。
0.5 g of palladium chloride in terms of metal weight and 0.3 g of tetrachlorogold (III) in terms of metal weight
After dissolving the acid (HAuCl 4 ) in 250 g of a 10% aqueous hydrochloric acid solution, a “palladium-gold / activated carbon” catalyst was prepared in the same manner as in Catalyst Preparation Example 1. The obtained catalyst had a palladium content per activated carbon of 0.5% by weight and a gold content of 0.3% by weight.
Is. The catalyst obtained is called catalyst 3.

【0041】[触媒調製例4]「パラジウム−銀/活性
炭」触媒(複合化触媒)の調製。
[Catalyst Preparation Example 4] Preparation of "palladium-silver / activated carbon" catalyst (composite catalyst).

【0042】金属重量換算で0.5gの硝酸パラジウム
と金属重量換算で0.3gの硝酸銀を250gの水に溶
解した後、触媒調製例1と同様に「パラジウム−銀/活
性炭」触媒を調製した。得られた触媒の活性炭あたりの
パラジウム含量は0.5重量%、銀の含量は0.3重量
%である。得られた触媒を触媒4と呼ぶ。
After dissolving 0.5 g of palladium nitrate in terms of metal weight and 0.3 g of silver nitrate in terms of metal weight in 250 g of water, a "palladium-silver / activated carbon" catalyst was prepared in the same manner as in Catalyst Preparation Example 1. . The obtained catalyst had a palladium content per activated carbon of 0.5% by weight and a silver content of 0.3% by weight. The catalyst obtained is called catalyst 4.

【0043】[触媒調製例5]「パラジウム−銀−金/
活性炭」触媒(複合化触媒)の調製。
[Catalyst Preparation Example 5] "Palladium-silver-gold /
Preparation of "activated carbon" catalyst (composite catalyst).

【0044】金属重量換算で0.5gの硝酸パラジウム
と金属重量換算で0.1gの硝酸銀、ならびに金属重量
換算で0.1gのテトラクロロ金(III)酸(HAu
Cl 4)を250gの水に溶解した後、触媒調製例1と
同様に「パラジウム−銀−金/活性炭」触媒を調製し
た。得られた触媒の活性炭あたりのパラジウム含量は
0.5重量%、銀の含量は0.1重量%、金の含量は
0.1重量%である。得られた触媒を触媒5と呼ぶ。
0.5 g of palladium nitrate in terms of metal weight
And 0.1 g of metal nitrate in terms of metal weight, and metal weight
Converted to 0.1 g of tetrachloroauric (III) acid (HAu
Cl Four) Was dissolved in 250 g of water, and
Similarly, a "palladium-silver-gold / activated carbon" catalyst was prepared.
It was The palladium content per activated carbon of the obtained catalyst was
0.5% by weight, silver content 0.1% by weight, gold content
It is 0.1% by weight. The catalyst obtained is called catalyst 5.

【0045】[触媒調製例6]「パラジウム/活性炭」
触媒の調製。
[Catalyst Preparation Example 6] "Palladium / activated carbon"
Preparation of catalyst.

【0046】金属重量換算で0.5gの塩化パラジウム
を10%塩酸水溶液250gに溶解した後、触媒調製例
1と同様に「パラジウム/活性炭」触媒を調製した。得
られた触媒の活性炭あたりのパラジウム含量は0.5重
量%である。得られた触媒を触媒6と呼ぶ。
After dissolving 0.5 g of palladium chloride in terms of metal weight in 250 g of a 10% hydrochloric acid aqueous solution, a "palladium / activated carbon" catalyst was prepared in the same manner as in Catalyst Preparation Example 1. The palladium content of the obtained catalyst per activated carbon was 0.5% by weight. The catalyst obtained is called catalyst 6.

【0047】[触媒調製例7]「銀/活性炭」触媒の調
製。
[Catalyst Preparation Example 7] Preparation of "silver / activated carbon" catalyst.

【0048】金属重量換算で0.5gの硝酸銀を250
gの水に溶解した後、触媒調製例1と同様に「銀/活性
炭」触媒を調製した。得られた触媒の活性炭あたりの銀
の含量は0.5重量%である。得られた触媒を触媒7と
呼ぶ。
250 g of silver nitrate in terms of metal weight of 250
After dissolving in g water, a "silver / activated carbon" catalyst was prepared as in Catalyst Preparation Example 1. The silver content of the resulting catalyst per activated carbon is 0.5% by weight. The catalyst obtained is called catalyst 7.

【0049】[触媒調製例8]「レニウム/活性炭」触
媒の調製。
[Catalyst Preparation Example 8] Preparation of "rhenium / activated carbon" catalyst.

【0050】金属重量換算で0.5gの酸化レニウム
(Re27)を10%塩酸水溶液250gに溶解した
後、触媒調製例1と同様に「レニウム/活性炭」触媒を
調製した。得られた触媒の活性炭あたりのレニウムの含
量は0.5重量%である。得られた触媒を触媒8と呼
ぶ。
After dissolving 0.5 g of rhenium oxide (Re 2 O 7 ) in terms of metal weight in 250 g of a 10% hydrochloric acid aqueous solution, a “rhenium / activated carbon” catalyst was prepared in the same manner as in Catalyst Preparation Example 1. The content of rhenium per activated carbon of the obtained catalyst is 0.5% by weight. The catalyst obtained is called catalyst 8.

【0051】[触媒調製例9]「金/活性炭」触媒の調
製。
[Catalyst Preparation Example 9] Preparation of "gold / activated carbon" catalyst.

【0052】金属重量換算で0.5gのテトラクロロ金
(III)酸(HAuCl4)を250gの水に溶解し
た後、触媒調製例1と同様に「パラジウム−金/活性
炭」触媒を調製した。得られた触媒の活性炭あたりの金
の含量は0.5重量%である。得られた触媒を触媒9と
呼ぶ。
After dissolving 0.5 g of tetrachloroauric (III) acid (HAuCl 4 ) in terms of metal weight in 250 g of water, a "palladium-gold / activated carbon" catalyst was prepared in the same manner as in Catalyst Preparation Example 1. The gold content per activated carbon of the obtained catalyst is 0.5% by weight. The catalyst obtained is called catalyst 9.

【0053】[触媒調製例10]「パラジウム/活性
炭」触媒と「銀/活性炭」触媒を混合した触媒の調製。
[Catalyst Preparation Example 10] Preparation of a catalyst in which a "palladium / activated carbon" catalyst and a "silver / activated carbon" catalyst were mixed.

【0054】調製例6で得られた得られた触媒6と、調
製例7で得られた触媒7を、5:1の重量比で混ぜ合わ
せた。得られた固体を触媒10と呼ぶ。
The catalyst 6 obtained in Preparation Example 6 and the catalyst 7 obtained in Preparation Example 7 were mixed in a weight ratio of 5: 1. The solid obtained is called catalyst 10.

【0055】以上のように調製した触媒1〜触媒10に
ついて、表1にまとめる。
Table 1 summarizes the catalysts 1 to 10 prepared as described above.

【0056】[0056]

【表1】 [Table 1]

【0057】[実施例1〜6]複合化触媒を使用した
1,1,1−トリフルオロアセトンの合成。
[Examples 1 to 6] Synthesis of 1,1,1-trifluoroacetone using a composite catalyst.

【0058】実施例1〜5の各実験に共通して、以下の
操作を行った。ステンレス製管状反応器(直径18m
m、高さ500mmの円筒であり、その内部の中央に直
径8mm、高さ500mmの保護管(熱電対を差し込む
ための円筒)が存在している)のうち、保護管内部を除
く部分に、触媒1〜触媒5の何れかを充填した(充填量
は何れも100ml(50g))。水素ガスを0.1リ
ットル/分の流速で管上部から管下部へ流通させなが
ら、反応器外部を熱媒によって100℃に加熱した(反
応器の外部設定温度;100℃)。反応器の内部温度
(保護管に差し込んだ熱電対の示す温度)が100℃に
安定した後、ハロゲン化トリフルオロアセトンの混合物
(ガスクロマトグラフ組成:1−クロロ−3,3,3−
トリフルオロアセトン3.8%、1,1−ジクロロ−
3,3,3−トリフルオロアセトン84.0%、1,
1,1−トリクロロ−3,3,3−トリフルオロアセト
ン9.9%、その他の成分2.3%)180gを、0.
3g/分の速度で、100℃に設定された気化器に導入
した。この気化させた有機物と、水素ガス(0.1リッ
トル/分の流速)とを混合し、この混合気体を反応器に
導入し、管上部から管下部へと連続的に流通させた。
The following operations were carried out in common with each experiment of Examples 1 to 5. Stainless steel tubular reactor (diameter 18m
m, a cylinder with a height of 500 mm, and a protection tube with a diameter of 8 mm and a height of 500 mm (a cylinder for inserting a thermocouple) is present in the center of the inside of the protection tube except the inside. Any one of the catalysts 1 to 5 was filled (the filling amount was 100 ml (50 g) in each case). While flowing hydrogen gas at a flow rate of 0.1 liter / minute from the upper part of the tube to the lower part of the tube, the outside of the reactor was heated to 100 ° C. by a heat medium (external set temperature of reactor: 100 ° C.). After the internal temperature of the reactor (the temperature indicated by the thermocouple inserted in the protective tube) became stable at 100 ° C, a mixture of halogenated trifluoroacetone (gas chromatograph composition: 1-chloro-3,3,3-
Trifluoroacetone 3.8%, 1,1-dichloro-
3,3,3-trifluoroacetone 84.0%, 1,
1,1-trichloro-3,3,3-trifluoroacetone (9.9%, other ingredients 2.3%) 180 g,
It was introduced at a rate of 3 g / min into a vaporizer set at 100 ° C. This vaporized organic substance was mixed with hydrogen gas (flow rate of 0.1 liter / min), this mixed gas was introduced into the reactor, and continuously flowed from the upper part of the tube to the lower part of the tube.

【0059】試料の導入を開始したところ、反応器の内
温(保護管に差し込んだ熱電対の温度)が上昇した。試
料の入り口付近(管上部)が最も高い温度を示した。熱
電対を保護管内を動かすことによって、反応器内の温度
の最高値(以下、「最高温度」という)を測定した。こ
の最高温度は連続導入の間、ほぼ一定の値を示した。
When the introduction of the sample was started, the internal temperature of the reactor (the temperature of the thermocouple inserted in the protective tube) increased. The highest temperature was shown near the entrance of the sample (upper part of the tube). The maximum value of the temperature in the reactor (hereinafter referred to as "maximum temperature") was measured by moving the thermocouple in the protective tube. This maximum temperature showed an almost constant value during continuous introduction.

【0060】試料が全て導入されるまで、10時間、流
通を継続した。その後、水素ガスの代わりに窒素ガスを
同じ速度で1時間流通した。反応器から流出する液体及
び気体は0℃の水700g中に導入し捕集した。有機物
の回収量は、水分測定(カールフィッシャー法)から算
出した水分の重量を、全重量から差し引くことにより求
めた。有機成分の組成はガスクロマトグラフ(FID)
により求めた。
The flow was continued for 10 hours until all the samples were introduced. Then, instead of hydrogen gas, nitrogen gas was passed at the same speed for 1 hour. The liquid and gas flowing out from the reactor were introduced into 700 g of water at 0 ° C. and collected. The amount of organic matter recovered was determined by subtracting the weight of water calculated from water measurement (Karl Fischer method) from the total weight. Composition of organic components is gas chromatograph (FID)
Sought by.

【0061】実施例6では反応系中に水を共存させて同
様の反応を行った。実施例1〜5に記載のハロゲン化ト
リフルオロアセトンの混合物(ガスクロマトグラフ組
成:1−クロロ−3,3,3−トリフルオロアセトン
3.8%、1,1−ジクロロ−3,3,3−トリフルオ
ロアセトン84.0%、1,1,1−トリクロロ−3,
3,3−トリフルオロアセトン9.9%、その他の成分
2.3%)90gと水90gとを混合して、ハロゲン化
トリフルオロアセトンの水溶液180gを調製した。こ
のハロゲン化トリフルオロアセトン水溶液180gを原
料とし、気化器を経て反応器に導入し、触媒1(パラジ
ウム−銀/活性炭触媒)を使用して、実施例1〜5と同
一の設備、操作、条件で反応を行った。
In Example 6, water was allowed to coexist in the reaction system to carry out the same reaction. Mixtures of halogenated trifluoroacetones described in Examples 1-5 (gas chromatographic composition: 1-chloro-3,3,3-trifluoroacetone 3.8%, 1,1-dichloro-3,3,3- Trifluoroacetone 84.0%, 1,1,1-trichloro-3,
90 g of 3,3-trifluoroacetone (9.9%, other components 2.3%) and 90 g of water were mixed to prepare 180 g of an aqueous solution of halogenated trifluoroacetone. Using 180 g of this halogenated trifluoroacetone aqueous solution as a raw material, introduced into a reactor through a vaporizer, and using catalyst 1 (palladium-silver / activated carbon catalyst), the same equipment, operation, and conditions as in Examples 1 to 5 were used. The reaction was carried out.

【0062】実施例1〜6に関して得られた結果を次の
表2にまとめる。
The results obtained for Examples 1-6 are summarized in Table 2 below.

【0063】[0063]

【表2】 [Table 2]

【0064】表2から、10時間の反応ではいずれの複
合化触媒系でも、ハロゲン化トリフルオロアセトンは選
択性よく1,1,1−トリフルオロアセトンに変換され
ていることがわかる。これは後に示すパラジウム/活性
炭触媒の系(比較例1)と同等である。一方、最高温度
は、水を含まない系で120〜145℃(外部温度との
差;+20〜+45℃)であり(実施例1、4)、水を
含む系で114℃(外部温度との差;+14℃)であり
(実施例6)、パラジウム/活性炭触媒系(比較例1、
6)に比べると、発熱が大幅に抑制されている。[比較
例1〜6]複合化触媒を使用しない1,1,1−トリフ
ルオロアセトンの合成。
From Table 2, it can be seen that the halogenated trifluoroacetone was converted to 1,1,1-trifluoroacetone with good selectivity in any of the composite catalyst systems in the reaction for 10 hours. This is equivalent to the palladium / activated carbon catalyst system shown below (Comparative Example 1). On the other hand, the maximum temperature is 120 to 145 ° C. in the system containing no water (difference from the external temperature; +20 to + 45 ° C.) (Examples 1 and 4) and 114 ° C. in the system containing water (compared with the external temperature). Difference; + 14 ° C) (Example 6), palladium / activated carbon catalyst system (Comparative Example 1,
Compared to 6), heat generation is significantly suppressed. [Comparative Examples 1 to 6] Synthesis of 1,1,1-trifluoroacetone without using a composite catalyst.

【0065】比較例1〜5では、触媒6〜触媒10(い
ずれも通常の遷移金属触媒)を使用して、実施例1〜5
に記載のハロゲン化トリフルオロアセトンの混合物(ガ
スクロマトグラフ組成:1−クロロ−3,3,3−トリ
フルオロアセトン3.8%、1,1−ジクロロ−3,
3,3−トリフルオロアセトン84.0%、1,1,1
−トリクロロ−3,3,3−トリフルオロアセトン9.
9%、その他の成分2.3%)を原料とし、実施例1〜
5と同一の設備、操作、条件で水素化反応を行った。
In Comparative Examples 1 to 5, catalysts 6 to 10 (all of which are ordinary transition metal catalysts) were used, and Examples 1 to 5 were used.
Mixture of halogenated trifluoroacetone described in (gas chromatographic composition: 1-chloro-3,3,3-trifluoroacetone 3.8%, 1,1-dichloro-3,
3,3-trifluoroacetone 84.0%, 1,1,1
-Trichloro-3,3,3-trifluoroacetone 9.
9%, other ingredients 2.3%) as raw materials,
The hydrogenation reaction was carried out under the same equipment, operation, and conditions as in 5.

【0066】比較例6は反応系中に水を共存させて反応
を行ったものである。触媒としては、触媒6(銀/活性
炭触媒)を使用し、実施例6に記載のハロゲン化トリフ
ルオロアセトンの水溶液180gを原料として、実施例
6と同様の方法で反応を行った。
Comparative Example 6 is a reaction carried out in the presence of water in the reaction system. As the catalyst, catalyst 6 (silver / activated carbon catalyst) was used, and the reaction was carried out in the same manner as in Example 6 using 180 g of the aqueous solution of the halogenated trifluoroacetone described in Example 6 as a raw material.

【0067】比較例1〜6に関して得られた結果を表3
にまとめる。
The results obtained for Comparative Examples 1 to 6 are shown in Table 3.
Put together.

【0068】[0068]

【表3】 [Table 3]

【0069】表3から、銀/活性炭触媒を使用する場合
には、複合化触媒を用いる場合と比べて発熱が大きく、
それだけ反応の制御が難しいことを示している(比較例
1、6)。また、添加金属だけを活性炭に担持させた触
媒では、ほとんど触媒としての活性はないことも確認さ
れた(比較例2〜4)。また、パラジウム/活性炭触媒
と、銀/活性炭触媒を物理的に混ぜ合わせるだけでは発
熱が大きく、複合化触媒を用いた時のような発熱抑制効
果が現れていないことが分かる(比較例5)。
From Table 3, when the silver / activated carbon catalyst is used, heat generation is larger than that when the composite catalyst is used.
It shows that it is difficult to control the reaction (Comparative Examples 1 and 6). It was also confirmed that the catalyst in which only the added metal was supported on the activated carbon had almost no activity as a catalyst (Comparative Examples 2 to 4). Further, it can be seen that heat generation is large only by physically mixing the palladium / activated carbon catalyst and the silver / activated carbon catalyst, and the heat generation suppressing effect as when using the composite catalyst is not exhibited (Comparative Example 5).

【0070】[実施例7〜9および比較例7]長時間反
応を行った場合の触媒の活性の比較。
[Examples 7 to 9 and Comparative Example 7] Comparison of the activity of the catalysts when the reaction was carried out for a long time.

【0071】実施例1〜5に記載のハロゲン化トリフル
オロアセトン混合物(ガスクロマトグラフ組成:1−ク
ロロ−3,3,3−トリフルオロアセトン3.8%、
1,1−ジクロロ−3,3,3−トリフルオロアセトン
84.0%、1,1,1−トリクロロ−3,3,3−ト
リフルオロアセトン9.9%、その他の成分2.3%)
を原料として、上記と同一の反応装置を使用して、水素
化分解反応を行った。但しこれらの実験では、ハロゲン
化トリフルオロアセトンの供給速度を0.25g/分、
水素の供給速度を0.13g/分、反応器外部の設定温
度を120℃とし、500時間にわたって、原料の供給
(反応)を続けた。実施例7では触媒1(パラジウム−
銀/活性炭)、実施例8では触媒2(パラジウム−レニ
ウム/活性炭)、実施例9では触媒3(パラジウム−金
/活性炭)を、対する比較例7では触媒6(パラジウム
/活性炭)を使用した。
The halogenated trifluoroacetone mixture described in Examples 1 to 5 (gas chromatographic composition: 1-chloro-3,3,3-trifluoroacetone 3.8%,
1,1-dichloro-3,3,3-trifluoroacetone 84.0%, 1,1,1-trichloro-3,3,3-trifluoroacetone 9.9%, other ingredients 2.3%)
Using the above as a raw material and using the same reactor as above, a hydrocracking reaction was performed. However, in these experiments, the halogen trifluoroacetone feed rate was 0.25 g / min,
The hydrogen supply rate was 0.13 g / min, the preset temperature outside the reactor was 120 ° C., and the raw material supply (reaction) was continued for 500 hours. In Example 7, the catalyst 1 (palladium-
Silver / activated carbon), catalyst 2 (palladium-rhenium / activated carbon) in Example 8, catalyst 3 (palladium-gold / activated carbon) in Example 9, and catalyst 6 (palladium / activated carbon) in Comparative Example 7.

【0072】反応開始から60時間後、150時間後、
300時間後、そして500時間後において反応器から
流出される気体および液体の混合物を冷水に採取して、
ガスクロマトグラフで有機成分の組成を測定した。
After 60 hours and 150 hours from the start of the reaction,
After 300 hours and after 500 hours the mixture of gas and liquid leaving the reactor was taken up in cold water,
The composition of organic components was measured by gas chromatography.

【0073】これらの実験における、各時間ごとのガス
クロマトグラフ測定結果(1,1,1−トリフルオロア
セトンの純度)を表4に示す。
Table 4 shows the gas chromatographic measurement results (purity of 1,1,1-trifluoroacetone) for each time in these experiments.

【0074】[0074]

【表4】 [Table 4]

【0075】表4から、反応開始から60時間後の段階
では各触媒系でそれほど活性の違いは観測されていない
が、それ以降、パラジウム/活性炭触媒(比較例7)の
活性は大きく低下するのに対し、複合化触媒(実施例7
〜9)の活性はほとんど損なわれておらず、触媒寿命が
増大していることが認められる。
From Table 4, no significant difference in activity was observed between the catalyst systems at the stage 60 hours after the start of the reaction, but thereafter, the activity of the palladium / activated carbon catalyst (Comparative Example 7) was significantly reduced. In contrast, the composite catalyst (Example 7)
It is recognized that the activity of ~ 9) is hardly impaired and the catalyst life is increased.

【0076】[0076]

【発明の効果】本発明は、ハロゲン化トリフルオロアセ
トンを触媒の存在下、水素化分解して1,1,1−トリ
フルオロアセトンを合成する技術において、触媒表面の
発熱が抑制され、触媒寿命が延長されるという効果を奏
する。
INDUSTRIAL APPLICABILITY The present invention is a technique for synthesizing 1,1,1-trifluoroacetone by hydrogenolysis of halogenated trifluoroacetone in the presence of a catalyst to suppress heat generation on the surface of the catalyst and to reduce catalyst life. Has the effect of being extended.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 49/167 C07B 61/00 300 // C07B 61/00 300 B01J 23/64 104Z (72)発明者 後藤 嘉彦 埼玉県川越市今福中台2805番地 セントラ ル硝子株式会社化学研究所内 (72)発明者 根岸 純二 埼玉県川越市今福中台2805番地 セントラ ル硝子株式会社化学研究所内 Fターム(参考) 4G069 AA03 AA08 BA01A BA02A BA03A BA08A BA08B BB02A BB02B BB12C BC32A BC32B BC32C BC33A BC33B BC64A BC64B BC72A BC72B BC72C CB35 CB69 DA05 EA02Y EB18Y FA02 FB20 FB44 FC02 4H006 AA02 AC13 BA05 BA16 BA25 BA55 BA61 BA81 BA82 BC13 BE20 4H039 CA11 CB90 CD20 CE40 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) C07C 49/167 C07B 61/00 300 // C07B 61/00 300 B01J 23/64 104Z (72) Inventor Goto Yoshihiko, Saitama Prefecture 2805, Imafuku Nakadai, Central Institute of Chemical Research, Central Glass Co., Ltd. (72) Inventor, Junji Negishi 2805, Imafuku Nakadai, Kawagoe, Saitama Prefecture, Central Glass Co., Ltd. Chemical Research Laboratory F-term (reference) 4G069 AA03 AA08 BA01A BA02A BA03A BA08A BA08B BB02A BB02B BB12C BC32A BC32B BC32C BC33A BC33B BC64A BC64B BC72A BC72B BC72C CB35 CB69 DA05 EA02Y EB18Y FA02 BA20 BC61 BA20 BA61 BA20 BA61 BA20 BA61 BA20 BA61 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA16 BA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式[1]で表されるハロゲン化トリ
フルオロアセトン、 【化1】 (式中、Xは塩素、臭素またはヨウ素を表し、nは1〜
3の整数を表す。)を気相中で水素ガスにより水素化分
解し1,1,1−トリフルオロアセトンを合成する方法
において、同一担体上にパラジウムおよびその他に、
銀、レニウムまたは金から選ばれる少なくとも1種類の
金属が担持された固相触媒を用いることを特徴とする、
1,1,1−トリフルオロアセトンの製造方法。
1. A halogenated trifluoroacetone represented by the general formula [1]: (In the formula, X represents chlorine, bromine, or iodine, and n is 1 to 1.
Represents an integer of 3. ) Is hydrolyzed with hydrogen gas in a gas phase to synthesize 1,1,1-trifluoroacetone, palladium and other on the same carrier,
A solid-phase catalyst supporting at least one metal selected from silver, rhenium, and gold is used.
A method for producing 1,1,1-trifluoroacetone.
【請求項2】 固相触媒が、担体をパラジウム化合物を
含む溶液および、銀、レニウムまたは金から選ばれた少
なくとも1種類の金属の化合物を含む溶液に接触させた
後、還元性ガスで還元処理して調製したものであること
を特徴とする、請求項1に記載の1,1,1−トリフル
オロアセトンの製造方法。
2. A solid phase catalyst is brought into contact with a solution containing a palladium compound and a solution containing a compound of at least one metal selected from silver, rhenium or gold, and then subjected to reduction treatment with a reducing gas. The method for producing 1,1,1-trifluoroacetone according to claim 1, which is prepared by
【請求項3】 固相触媒が、パラジウム化合物およびそ
の他に、銀、レニウムまたは金から選ばれた少なくとも
1種類の金属の化合物を同時に含む溶液に、担体を接触
させた後、還元性ガスで還元処理して調製したものであ
ることを特徴とする、請求項1に記載の1,1,1−ト
リフルオロアセトンの製造方法。
3. A solid phase catalyst is brought into contact with a solution simultaneously containing a palladium compound and a compound of at least one metal selected from silver, rhenium and gold, and then reduced with a reducing gas. The method for producing 1,1,1-trifluoroacetone according to claim 1, which is prepared by processing.
【請求項4】 固相触媒に担持された銀、レニウムまた
は金から選ばれた少なくとも1種類の金属の担持量が、
パラジウム100gあたり、合計1〜100gであるこ
とを特徴とする、請求項1乃至請求項3の何れかに記載
の1,1,1−トリフルオロアセトンの製造方法。
4. The amount of at least one metal selected from silver, rhenium and gold supported on a solid phase catalyst is
The method for producing 1,1,1-trifluoroacetone according to any one of claims 1 to 3, wherein the total amount is 1 to 100 g per 100 g of palladium.
【請求項5】 担体が活性炭、アルミナ、シリカアルミ
ナ、またはシリカから選ばれるものであることを特徴と
する、請求項1乃至請求項4の何れかに記載の1,1,
1−トリフルオロアセトンの製造方法。
5. The carrier according to claim 1, wherein the carrier is selected from activated carbon, alumina, silica alumina, or silica.
Method for producing 1-trifluoroacetone.
【請求項6】 担体を硝酸パラジウムを含む溶液と、硝
酸銀を含む溶液に接触させるか、担体を硝酸パラジウム
と硝酸銀を同時に含む溶液に接触させた後、還元性ガス
により還元処理することによりなる、同一担体上に、パ
ラジウムと銀が担持された、請求項1記載の方法に用い
る固相触媒の調製方法。
6. A method comprising contacting a carrier with a solution containing palladium nitrate and a solution containing silver nitrate, or by bringing the carrier into contact with a solution containing both palladium nitrate and silver nitrate at the same time and then performing a reduction treatment with a reducing gas. The method for preparing a solid-phase catalyst used in the method according to claim 1, wherein palladium and silver are supported on the same carrier.
JP2002032064A 2002-02-08 2002-02-08 Method for producing 1,1,1-trifluoroacetone Expired - Fee Related JP3995493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032064A JP3995493B2 (en) 2002-02-08 2002-02-08 Method for producing 1,1,1-trifluoroacetone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032064A JP3995493B2 (en) 2002-02-08 2002-02-08 Method for producing 1,1,1-trifluoroacetone

Publications (2)

Publication Number Publication Date
JP2003238475A true JP2003238475A (en) 2003-08-27
JP3995493B2 JP3995493B2 (en) 2007-10-24

Family

ID=27775288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032064A Expired - Fee Related JP3995493B2 (en) 2002-02-08 2002-02-08 Method for producing 1,1,1-trifluoroacetone

Country Status (1)

Country Link
JP (1) JP3995493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111366A (en) * 2003-10-08 2005-04-28 Tokuyama Corp Catalyst for reducing polychlorinated alkane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005111366A (en) * 2003-10-08 2005-04-28 Tokuyama Corp Catalyst for reducing polychlorinated alkane
JP4519438B2 (en) * 2003-10-08 2010-08-04 株式会社トクヤマ Catalysts for the reduction of polychlorinated alkanes.

Also Published As

Publication number Publication date
JP3995493B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
EP0056993B1 (en) Process for preparing oxalic acid diesters
US4874888A (en) Process for the preparation of a diester of oxalic acid
US4507494A (en) Process for the production of a diester of oxalic acid
EP1968925B1 (en) Process for producing difluoroethanol
EP1127865B1 (en) Process for producing 1,1,1-Trifluoroacetone
JP2003238475A (en) Method for producing 1,1,1-trifluoroacetone
CA1180024A (en) Process for the preparation of oxalic acid diesters
EP0108359B1 (en) Process for the preparation of a diester of oxalic acid
JPH06279328A (en) Production of hexafluoropropane
JPS6054931B2 (en) Method for producing 1,1,1,3,3,3-hexafluoro-2-propanol
EP1205246B1 (en) Process for preparation of catalyst
JP2955866B2 (en) Method for producing dialkyl carbonate
JP3995451B2 (en) Method for producing 1,1,1-trifluoroacetone
EP0056994B1 (en) Process for preparation of oxalic acid diesters
US5602288A (en) Catalytic process for producing CF3 CH2 F
JP3489179B2 (en) Method for producing hydrofluorocarbon
US7002043B2 (en) Process for producing 1,1,1-trifluoroacetone
JP4136318B2 (en) Method for producing 1,3-difluoroacetone
JP2004018464A (en) Method for producing 4-oxaheptane-1,7-diol
JPS5829735A (en) Preparation of enzaldehydes
JP2734670B2 (en) Method for producing 1,3-dichloro-1,1,2,2,3-pentafluoropropane
JPS6311334B2 (en)
JPH0692908A (en) Production of carbonic acid ester
JP2003206259A (en) Method for producing phenyl ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees