JP2005111366A - Catalyst for reducing polychlorinated alkane - Google Patents

Catalyst for reducing polychlorinated alkane Download PDF

Info

Publication number
JP2005111366A
JP2005111366A JP2003348976A JP2003348976A JP2005111366A JP 2005111366 A JP2005111366 A JP 2005111366A JP 2003348976 A JP2003348976 A JP 2003348976A JP 2003348976 A JP2003348976 A JP 2003348976A JP 2005111366 A JP2005111366 A JP 2005111366A
Authority
JP
Japan
Prior art keywords
catalyst
porous carrier
reducing
metal
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003348976A
Other languages
Japanese (ja)
Other versions
JP4519438B2 (en
Inventor
Manabu Kamamoto
学 鎌本
Atsushi Yamane
淳 山根
Kojiro Miyazaki
幸二郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2003348976A priority Critical patent/JP4519438B2/en
Priority to CNB2004100951910A priority patent/CN100423833C/en
Publication of JP2005111366A publication Critical patent/JP2005111366A/en
Application granted granted Critical
Publication of JP4519438B2 publication Critical patent/JP4519438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for reducing a polychlorinated alkane decreased in the use amount of a catalytic metal while an activity as a reducing catalyst is maintained. <P>SOLUTION: The catalyst for reducing the polychlorinated alkane is a catalyst comprising at least one catalytic metal selected from group VIII, IX, and X elements and deposited on a porous carrier particle and the catalyst is obtained by forming a deposition layer of the catalytic metal on the surface layer part of the porous carrier particle. Particularly, it is preferable to use titania as the carrier and platinum as the catalytic metal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は多塩素化アルカンの塩素原子を水素原子で置換し、低次塩素化アルカンを製造するための触媒に関する。   The present invention relates to a catalyst for producing a low-order chlorinated alkane by replacing the chlorine atom of a polychlorinated alkane with a hydrogen atom.

地球環境保護の立場から、塩素原子を多く含む多塩素化アルカンを還元して塩素量の少ない低次塩素化アルカンを製造することが望まれている。   From the standpoint of protecting the global environment, it is desired to produce a low-order chlorinated alkane having a low chlorine content by reducing a polychlorinated alkane containing a large amount of chlorine atoms.

例えば、オゾン層破壊物質として製造が規制されている四塩化炭素はジクロロメタン、クロロホルムの製造に際して生成が不可避であるため、四塩化炭素を有用な物質に変換する技術がこれまで種々検討されている。   For example, since carbon tetrachloride, whose production is regulated as an ozone depleting substance, is unavoidable in the production of dichloromethane and chloroform, various techniques for converting carbon tetrachloride into useful substances have been studied so far.

これらの方法としては白金、パラジウムなどの触媒金属を活性炭のような多孔質担体粒子に担持させた還元用触媒を用いて四塩化炭素を水素化還元しクロロホルムなどに変換する方法が知られている(例えば、特許文献1)。   As these methods, a method is known in which carbon tetrachloride is hydrogenated and reduced to chloroform using a reduction catalyst in which a catalytic metal such as platinum or palladium is supported on porous support particles such as activated carbon. (For example, patent document 1).

特許第2812800号公報Japanese Patent No. 2812800

上記方法によれば、四塩化炭素を水素化還元してクロロホルムに変換することが可能であるが、触媒活性を高めるためには触媒に用いる白金などの貴金属元素を大量に用いなければならないという問題を有する。すなわち、前記還元用触媒は、一般に、多孔質担体粒子に触媒金属の塩溶液を含浸させて製造する方法が一般的であり、かかる含浸は、上記塩溶液中に多孔質担体粒子を浸漬させた後、乾燥し、還元処理する方法によって製造されるため、全層に触媒金属が存在するものであった。そのため、触媒担体5トンに対し2重量%の濃度で触媒金属を担持する場合、100kgの貴金属が必要となり、貴金属にかかるコストが非常に大きくなるという問題を有する。   According to the above method, it is possible to hydrogenate and reduce carbon tetrachloride to convert it into chloroform. However, in order to increase the catalytic activity, it is necessary to use a large amount of noble metal elements such as platinum used for the catalyst. Have That is, the reduction catalyst is generally produced by impregnating a porous carrier particle with a catalyst metal salt solution, and the impregnation is performed by immersing the porous carrier particle in the salt solution. After that, since it was manufactured by a method of drying and reduction treatment, the catalyst metal was present in all layers. Therefore, when the catalyst metal is supported at a concentration of 2% by weight with respect to 5 tons of the catalyst carrier, 100 kg of noble metal is required, and there is a problem that the cost for the noble metal becomes very large.

上記触媒金属である、白金、パラジウムなどの白金族元素は地球上にわずか66000トンしか存在していないため、地球上の限りある資源を保護するという立場からも、触媒に用いる金属量を削減することは重要である。   Since only 66,000 tons of platinum group elements such as platinum and palladium, which are the catalyst metals, exist on the earth, the amount of metal used for the catalyst is reduced from the standpoint of protecting limited resources on the earth. That is important.

従って、本発明の目的は、還元用触媒としての活性を維持したまま、その触媒金属の使用量を低減させた多塩素化アルカンの還元用触媒を提供することにある。   Accordingly, an object of the present invention is to provide a polychlorinated alkane reduction catalyst in which the amount of catalyst metal used is reduced while maintaining the activity as a reduction catalyst.

本発明者らは、上記目的を達成すべく鋭意検討を行った結果、触媒金属を多孔質担体粒子の表層部に主として担持せしめることにより、前記問題を解決することができることを見出した。また、触媒金属を多孔性担体粒子の表層部に主として存在せしめることによって、還元反応における副反応の発生をきわめて効果的に低減せしめることもできるという驚くべき効果を発揮することを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the above problem can be solved by mainly supporting the catalyst metal on the surface layer portion of the porous carrier particles. Further, it has been found that the presence of the catalytic metal mainly in the surface layer portion of the porous carrier particles exhibits the surprising effect that the occurrence of side reactions in the reduction reaction can be extremely effectively reduced. It came to be completed.

即ち、本発明によれば、周期律表第8族元素、9族元素及び10族元素から選ばれた少なくとも1種の触媒金属を多孔質担体粒子に担持せしめた触媒であって、上記多孔質担体粒子の表層部に前記触媒金属の担持層を形成したことを特徴とする多塩素化アルカンの還元用触媒が提供される。   That is, according to the present invention, there is provided a catalyst in which at least one catalyst metal selected from Group 8 element, Group 9 element and Group 10 element of the periodic table is supported on porous carrier particles, Provided is a catalyst for reducing polychlorinated alkanes, wherein the catalyst metal support layer is formed on the surface layer of the support particles.

また、本発明は、上記還元用触媒を使用して多塩素化アルカンを還元し低次塩素化アルカンを製造する方法も提供する。   The present invention also provides a method for producing a low-order chlorinated alkane by reducing a polychlorinated alkane using the reducing catalyst.

即ち、本発明によれば、前記触媒金属を多孔性質担体粒子の表層部に主として存在せしめた還元用触媒の存在下に、多塩素化アルカンと水素とを液相中で反応させることを特徴とする低次塩素化アルカンの製造方法が提供される。   That is, according to the present invention, the polychlorinated alkane and hydrogen are reacted in a liquid phase in the presence of a reducing catalyst in which the catalytic metal is mainly present in the surface layer portion of the porous carrier particles. A method for producing a low-order chlorinated alkane is provided.

更に、本発明によれば、前記触媒金属を多孔性質担体粒子の表層部に主として存在せしめた還元用触媒を工業的に有利な方法によって製造することができる還元用触媒の製造方法をも提供する。   Furthermore, according to the present invention, there is also provided a method for producing a reduction catalyst that can produce a reduction catalyst in which the catalyst metal is mainly present in the surface layer portion of the porous carrier particles, by an industrially advantageous method. .

即ち、本発明によれば、周期律表8族元素、9族元素及び10族元素から選ばれた少なくとも1種の金属の可溶性塩水溶液を多孔質担体粒子表面に噴霧した後、乾燥し、次いで還元処理することを特徴とする多塩素化アルカン還元用触媒の製造方法が提供される。   That is, according to the present invention, a soluble salt aqueous solution of at least one metal selected from Group 8 element, Group 9 element and Group 10 element of the periodic table is sprayed on the surface of the porous carrier particles, and then dried, There is provided a method for producing a catalyst for reducing polychlorinated alkanes, characterized by performing a reduction treatment.

本発明の還元用触媒によれば、金属触媒が多孔質担体粒子の表層部に主として存在することによって、四塩化炭素などの多塩素化アルカン類を低次塩素化アルカン類に水素化還元する際に、白金などの貴金属よりなる金属触媒を多量に用いることなく、高い活性を発揮することが可能であると共に、還元反応における副反応を効果的に防止し、多塩素化アルカン類を非常に高い選択率でクロロホルムなどの有用な物質に変換できるという効果を示す。   According to the reduction catalyst of the present invention, when the metal catalyst is mainly present in the surface layer portion of the porous carrier particles, the polychlorinated alkane such as carbon tetrachloride is hydroreduced to the lower chlorinated alkane. In addition, it is possible to exhibit high activity without using a large amount of a metal catalyst made of a noble metal such as platinum, effectively preventing side reactions in the reduction reaction, and extremely high polychlorinated alkanes. It shows the effect that it can be converted into useful substances such as chloroform with selectivity.

従って、本発明の還元用触媒によれば、工業的規模で経済的に有利な条件で、四塩化炭素などの環境有害物質からクロロホルムなどの有用な物質を製造する上で優れた効果を示す。   Therefore, the reduction catalyst of the present invention exhibits an excellent effect in producing a useful substance such as chloroform from an environmentally hazardous substance such as carbon tetrachloride under an economically advantageous condition on an industrial scale.

また、本発明の還元用触媒の製造方法によれば、極めて簡易な方法によって前記還元用触媒を製造することができ、工業的な実施に適している。   Moreover, according to the method for producing a reducing catalyst of the present invention, the reducing catalyst can be produced by an extremely simple method, which is suitable for industrial implementation.

本発明において、還元用触媒を構成する多孔質担体粒子は、公知のものが特に制限なく使用されるが、本発明の対象とする反応では細孔内拡散および細孔内での表面拡散が反応の選択性に大きく寄与するため、平均細孔径が50〜500μm程度の多孔質担体粒子が好適である。具体的には、アルミナ、シリカ、チタニア、ジルコニアなどの多孔質無機酸化物よりなる粒子が好適に使用される。特に、担体細孔内部表面で水素と相互作用するチタニアを用いることが、副反応を抑制し反応の選択性を向上させるために好ましい。   In the present invention, well-known porous carrier particles constituting the reduction catalyst are used without particular limitation. In the reaction targeted by the present invention, diffusion in the pores and surface diffusion in the pores react. Therefore, porous carrier particles having an average pore diameter of about 50 to 500 μm are preferable. Specifically, particles made of a porous inorganic oxide such as alumina, silica, titania and zirconia are preferably used. In particular, it is preferable to use titania that interacts with hydrogen on the inner surface of the support pores in order to suppress side reactions and improve the selectivity of the reaction.

また、本発明において、上記多孔質担体粒子は、平均直径が1.5mm以上、特に、1.5mm〜20mmのものを使用することが好ましい。即ち、一般に、多塩素化アルカンの還元用触媒は、固定床で使用される場合が多く、かかる平均直径より小さい粒径を使用した場合は、液抵抗の上昇が著しく、工業的に使用することが困難となる。   In the present invention, the porous carrier particles preferably have an average diameter of 1.5 mm or more, particularly 1.5 mm to 20 mm. That is, in general, the catalyst for reducing polychlorinated alkanes is often used in a fixed bed. When a particle size smaller than the average diameter is used, the liquid resistance is remarkably increased, and it must be used industrially. It becomes difficult.

更に、多孔質担体粒子の形状は、触媒金属を担体表層部に一様に担持させ効率よく還元反応を進行させるために球状のものが好適であるが、これに限定されるものではなく、ペレット状のもの、不定形のものを用いることができる。   Further, the shape of the porous carrier particles is preferably a spherical shape in order to allow the catalytic metal to be uniformly supported on the surface layer of the carrier so that the reduction reaction proceeds efficiently. A shape or an irregular shape can be used.

本発明において、触媒金属としては、白金、パラジウム、ルテニウム、ロジウム等の周期律表第8族元素、9族元素および10族元素から選ばれた少なくとも1種の金属を用いることができるが、特に、触媒活性と触媒劣化速度の点で白金を用いた場合が好適である。   In the present invention, as the catalyst metal, at least one metal selected from Group 8 elements, Group 9 elements and Group 10 elements of the periodic table such as platinum, palladium, ruthenium, rhodium, etc. can be used. It is preferable to use platinum in terms of catalyst activity and catalyst deterioration rate.

本発明の特徴は、多孔質担体粒子の表層部に上記触媒金属の担持層を形成したことにある。即ち、触媒金属は、多孔質担体粒子の表層部に主として存在し、多孔質担体粒子の内部には存在しないか、存在しても極微量であることを特徴とする。   A feature of the present invention resides in that the catalyst metal support layer is formed on the surface layer of the porous carrier particles. That is, the catalyst metal is mainly present in the surface layer portion of the porous carrier particles, and is not present inside the porous carrier particles or is extremely small even if present.

かかる構成とすることによって、還元用触媒の活性を高く維持しながら、触媒金属量を減少することができ、経済的に触媒を調製することが可能となると共に、多塩素化アルカンの還元反応における副反応を極めて効果的に防止し、目的とする低次塩素化アルカンの選択率を著しく高めることができる。   By adopting such a configuration, the amount of catalyst metal can be reduced while maintaining the activity of the reduction catalyst high, and it becomes possible to prepare the catalyst economically, and in the reduction reaction of polychlorinated alkanes. Side reactions can be extremely effectively prevented, and the selectivity of the desired low-order chlorinated alkane can be significantly increased.

本発明における前記構成によりこのような優れた効果が発揮される機構は明らかではないが、本発明者らは、次のように推定している。   Although the mechanism by which such an excellent effect is exhibited by the above-described configuration of the present invention is not clear, the present inventors presume as follows.

即ち、触媒深層部に存在する触媒金属は、水素の拡散が阻害されることにより、ヘキサクロロエタンのような高沸点化合物の生成反応等の副反応の進行を促進するなどの弊害を生じるが、本発明の還元用触媒においては、触媒が表層部のみに存在するので、かかる触媒深層部が存在しないことによって副反応が抑制され、高い選択性を示す。更に、全体に担持した場合と比較して触媒金属の担持されていない部分を内層部に付与することにより反応速度、選択性をコントロールすることが容易となる。   That is, the catalytic metal present in the deep catalyst layer has a negative effect such as promoting the progress of side reactions such as the formation reaction of high-boiling compounds such as hexachloroethane by inhibiting the diffusion of hydrogen. In the reduction catalyst of the invention, since the catalyst is present only in the surface layer portion, the absence of such catalyst deep layer portion suppresses side reactions and exhibits high selectivity. Furthermore, the reaction rate and selectivity can be easily controlled by providing the inner layer portion with a portion where the catalyst metal is not supported as compared with the case where it is supported on the whole.

本発明において、多孔質担体粒子の表層部に形成される前記触媒金属の担持層の厚みを具体的に示せば、前記した平均直径が、1.5mm以上の多孔質担体粒子を使用する場合、0.5mm以下となるように形成することが、上記副反応を効果的に防止するために好ましい。   In the present invention, when the thickness of the catalyst metal support layer formed on the surface layer portion of the porous carrier particles is specifically shown, when using the porous carrier particles having an average diameter of 1.5 mm or more, In order to prevent the said side reaction effectively, forming so that it may become 0.5 mm or less is preferable.

また、担持層の厚み(t)の下限は、前記多孔質担体粒子の平均直径(d)に対して、0.1d以上であることが触媒の活性を十分発揮するために好ましい。   Further, the lower limit of the thickness (t) of the support layer is preferably 0.1 d or more with respect to the average diameter (d) of the porous carrier particles in order to sufficiently exhibit the activity of the catalyst.

また、上記触媒金属の担持量は多孔質担体粒子100重量部に対し0.01〜2.0重量部の範囲で使用することができ、効率よく触媒作用を発揮するためには0.1〜0.5重量部であることが好ましい。   Further, the supported amount of the catalyst metal can be used in the range of 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the porous carrier particles. The amount is preferably 0.5 parts by weight.

この場合、担持層より内部に存在する非担持部分における金属濃度は、担持された全金属量の0.05重量%以下であることが好ましい。   In this case, the metal concentration in the non-supported portion present inside the support layer is preferably 0.05% by weight or less of the total amount of metal supported.

本発明において、上述した還元用触媒の製造方法は、特に制限されるものではないが、好適な製造方法として、前記触媒金属の可溶性塩水溶液を多孔質担体粒子表面に噴霧した後、乾燥し、次いで還元処理する方法が挙げられる。   In the present invention, the method for producing the reduction catalyst described above is not particularly limited, but as a preferred production method, the catalyst metal soluble salt aqueous solution is sprayed on the surface of the porous carrier particles and then dried. Next, a reduction treatment method is exemplified.

即ち、上記製造方法においては、多孔質担体粒子を触媒金属の可溶性塩水溶液に浸漬して細孔の深くまで含浸させるのではなく、噴霧という操作により、その表面のみに付着せしめることによって、その後の還元によって多孔質担体粒子の表層部のみに触媒金属の担持層を形成することができる。   That is, in the production method described above, the porous carrier particles are not immersed in the soluble salt aqueous solution of the catalyst metal and impregnated deeply into the pores, but are adhered only to the surface by an operation of spraying. A catalytic metal supporting layer can be formed only on the surface layer portion of the porous carrier particles by reduction.

上記噴霧する可溶性塩水溶液の濃度は特に制限されず、噴霧する液量についても特に制限されないが、的確に表層部に担持するためには多孔質担体粒子100重量部に対して50〜100重量部とするのが好適である。   The concentration of the soluble salt aqueous solution to be sprayed is not particularly limited, and the amount of liquid to be sprayed is not particularly limited, but is 50 to 100 parts by weight with respect to 100 parts by weight of the porous carrier particles in order to be supported on the surface layer part accurately. Is preferable.

また、噴霧は、公知の噴霧装置を使用して、前記可溶性塩水溶液を50〜500μm程度の大きさのミストとして噴霧し、多孔質担体粒子を攪拌或いは流動化させながら、かかるミストと接触せしめることが好ましい。また、その際、多孔質担体粒子表面が噴霧した可溶性塩水溶液によって濡れて凝集しないように、噴霧量を調整しながら行なうことが好ましい。   In addition, spraying is performed by spraying the soluble salt aqueous solution as a mist having a size of about 50 to 500 μm using a known spraying device, and contacting the mist while stirring or fluidizing the porous carrier particles. Is preferred. Further, at that time, it is preferable to adjust the spray amount so that the surface of the porous carrier particles is not wetted and aggregated by the sprayed soluble salt aqueous solution.

上記方法において、可溶性塩水溶液を所定量噴霧した多孔質担体粒子は、乾燥される。乾燥方法については特に限定されないが、乾燥炉、マイクロウェーブ等の通常の方法が問題なく採用される。   In the above method, the porous carrier particles sprayed with a predetermined amount of the soluble salt aqueous solution are dried. The drying method is not particularly limited, but a normal method such as a drying furnace or microwave can be adopted without any problem.

かかる乾燥時間は、加熱手段によって異なるが、可溶性塩水溶液の水分を殆ど除去できるような時間が適宜決定される。一般に、上記乾燥時間は、5〜180分である。   The drying time varies depending on the heating means, but is appropriately determined so that the water in the soluble salt aqueous solution can be almost removed. Generally, the drying time is 5 to 180 minutes.

また、上記還元用触媒の製造方法においては、上記乾燥後、或いは、乾燥と同時に、還元処理を行うことが、安定した特性を得、劣化速度の抑制を行うために好ましい。上記還元は、公知の還元剤と可溶性塩水溶液を付着した多孔質担体粒子を還元剤と接触させることによって行なうことができる。例えば、還元剤としては、水素、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウムなどが挙げられる。また、接触は、還元剤の形態によって適宜選択される。例えば、液相で還元する方法、水素により気相で還元する方法などが適用できる。   In the method for producing the reduction catalyst, it is preferable to perform a reduction treatment after the drying or simultaneously with the drying in order to obtain stable characteristics and suppress the deterioration rate. The reduction can be performed by bringing porous carrier particles, to which a known reducing agent and a soluble salt aqueous solution are attached, into contact with the reducing agent. Examples of the reducing agent include hydrogen, hydrazine, formaldehyde, sodium borohydride and the like. The contact is appropriately selected depending on the form of the reducing agent. For example, a method of reducing in a liquid phase, a method of reducing in a gas phase with hydrogen, and the like can be applied.

還元処理は、可溶性塩水溶液中の塩の大部分が金属化するように実施することが好ましい。   The reduction treatment is preferably carried out so that most of the salt in the soluble salt aqueous solution is metallized.

上述の還元用触媒の製造方法において、得られる還元用触媒における触媒金属の担持層の厚みは、前記可溶性塩水溶液の噴霧量、濃度等を調整することによって制御することができる。即ち、噴霧量を増加すれば、担持層の厚みは厚くなる傾向があり、また、濃度を濃くすれば、その粘度増によって浸透が防止でき、担持層の厚みを薄くすることができる。   In the above-described method for producing a reduction catalyst, the thickness of the catalyst metal support layer in the obtained reduction catalyst can be controlled by adjusting the spray amount, concentration, etc. of the soluble salt aqueous solution. That is, if the spray amount is increased, the thickness of the support layer tends to increase, and if the concentration is increased, penetration can be prevented by increasing the viscosity, and the thickness of the support layer can be reduced.

また、全触媒金属の担持量は、上記担持層の厚みの調整において、それぞれの可変要素を適宜調整することによって制御することができる。   Further, the amount of all catalyst metals supported can be controlled by appropriately adjusting each variable element in adjusting the thickness of the support layer.

本発明は、上記還元用触媒を使用した低次塩素化アルカンの製造方法をも提供する。   The present invention also provides a method for producing a low-order chlorinated alkane using the above-described reduction catalyst.

即ち、本発明は、多塩素化アルカンを液相中で、前記還元用触媒の存在下に水素と反応させる方法を提供する。   That is, the present invention provides a method of reacting polychlorinated alkane with hydrogen in the presence of the reducing catalyst in a liquid phase.

上記反応は、液相で実施することによって、生成物選択率の制御、反応速度の制御を安定して行うことができる。   By carrying out the above reaction in the liquid phase, it is possible to stably control the product selectivity and the reaction rate.

また、多塩素化アルカン類はそのまま使用して液相を構成してもよいし、適当な溶媒を用いて希釈して液相を構成してもよい。例えば、四塩化炭素をクロロホルムへ水素化還元する場合は四塩化炭素をジクロロメタン、クロロホルム等で希釈して用いることができる。また、希釈する濃度については特に制限されないが、該反応は発熱反応であるため、発熱量を制御する目的で希釈することが望ましく、反応液量に対して還元する多塩素化アルカンが10〜50重量%となるように希釈することが好ましい。   Further, polychlorinated alkanes may be used as they are to constitute a liquid phase, or may be diluted with an appropriate solvent to constitute a liquid phase. For example, when hydrogenating and reducing carbon tetrachloride to chloroform, carbon tetrachloride can be diluted with dichloromethane, chloroform, or the like. Further, the concentration to be diluted is not particularly limited. However, since the reaction is an exothermic reaction, it is desirable to dilute it for the purpose of controlling the calorific value. It is preferable to dilute to a weight percent.

また、反応液および希釈溶媒中の水分は触媒担体細孔内に吸着され触媒性能を低下させるため20重量ppm以下であることが好ましい。   Further, the water in the reaction solution and the diluting solvent is preferably 20 ppm by weight or less in order to be adsorbed in the catalyst carrier pores and reduce the catalyst performance.

更に、触媒金属を担持させた担体は液相反応において固定床として使用することが好ましく、反応液の供給量を変化させることで生成物選択率の制御、反応速度の制御等が可能となる。   Furthermore, the support on which the catalyst metal is supported is preferably used as a fixed bed in the liquid phase reaction, and the product selectivity, the reaction rate, and the like can be controlled by changing the supply amount of the reaction liquid.

一方、還元反応の温度については常温から200℃の範囲で適宜決定すればよいが、高温領域では副反応の進行が促進される。従って、効率的に水素化還元を進行させるためには反応温度80℃〜95℃が好適である。   On the other hand, the temperature of the reduction reaction may be appropriately determined in the range from room temperature to 200 ° C., but the side reaction is promoted in a high temperature region. Accordingly, a reaction temperature of 80 ° C. to 95 ° C. is suitable for efficiently proceeding the hydrogenation reduction.

また、反応圧力については常圧以上で特に限定されないが、高圧になるほど液相への水素溶解度が上がり反応速度が増加するため加圧系が好ましい。具体的には、0.5〜2.0MPa程度の圧力が好ましい。   Further, the reaction pressure is not particularly limited at normal pressure or higher, but a pressurized system is preferable because the higher the pressure, the higher the hydrogen solubility in the liquid phase and the reaction rate increases. Specifically, a pressure of about 0.5 to 2.0 MPa is preferable.

実施例1
担体としてガンマアルミナ(平均直径d=2.0mm)の100gに白金含有量が担体の0.25重量%である塩化白金酸水溶液60mlを一様に噴霧した。110℃で60分乾燥した後、300℃に加熱し水素を用い気相で3時間還元処理を行った。
Example 1
100 ml of gamma alumina (average diameter d = 2.0 mm) as a carrier was uniformly sprayed with 60 ml of a chloroplatinic acid aqueous solution having a platinum content of 0.25% by weight of the carrier. After drying at 110 ° C. for 60 minutes, the mixture was heated to 300 ° C. and subjected to reduction treatment using hydrogen in the gas phase for 3 hours.

得られた触媒粒子の断面を電子線プローブマイクロアナライザー(EPMA)で観察し白金の分布を調べた。tおよびt/dを表1に示す。   The cross section of the obtained catalyst particles was observed with an electron beam probe microanalyzer (EPMA), and the distribution of platinum was examined. Table 1 shows t and t / d.

内径7.26mmのSUS316製の管に、上記方法により調製した還元用触媒を35g入れ固定床反応器とした。定量ポンプを用い一定流量で四塩化炭素を反応器上部から連続的に供給し、次いで水素を気相で供給し、固定床で還元用触媒中を通過させ反応せしめた。反応に用いた四塩化炭素中の水分は15ppm以下まで除去したものを用いた。また、水素は四塩化炭素1molに対し10molの比で連続的に供給した。   35 g of the reducing catalyst prepared by the above method was put into a SUS316 tube having an inner diameter of 7.26 mm to prepare a fixed bed reactor. Carbon tetrachloride was continuously supplied from the upper part of the reactor at a constant flow rate using a metering pump, then hydrogen was supplied in a gas phase, and the reaction was allowed to pass through a reduction catalyst in a fixed bed. The water content in carbon tetrachloride used for the reaction was removed to 15 ppm or less. Hydrogen was continuously supplied at a ratio of 10 mol per 1 mol of carbon tetrachloride.

反応器内部の温度は90℃に保持し、反応器内部の圧力は0.5MPa・Gに保持した。生成物については固定床反応器出口から得られた生成物を気液分離し、それぞれガスクロマトグラフィーを用いて分析を行った。   The temperature inside the reactor was kept at 90 ° C., and the pressure inside the reactor was kept at 0.5 MPa · G. As for the products, the products obtained from the outlet of the fixed bed reactor were subjected to gas-liquid separation and analyzed using gas chromatography.

生成物はクロロホルム、ヘキサクロロエタン、メタンが確認された。反応開始後1時間〜2時間の間でのワンパスでの四塩化炭素の転化率、クロロホルム選択率、ヘキサクロロエタン選択率、メタン選択率を表2に示す。   The product was confirmed to be chloroform, hexachloroethane, and methane. Table 2 shows the carbon tetrachloride conversion rate, chloroform selectivity, hexachloroethane selectivity, and methane selectivity in one pass between 1 hour and 2 hours after the start of the reaction.

比較例1
担体としてガンマアルミナ(平均直径d=2.0mm)の100gに白金量含有が担体の0.25重量%である塩化白金酸水溶液60mlに投入し穏やかに攪拌し白金を担持せしめた。110℃で60分乾燥した後、300℃に加熱し水素を用い気相で3時間還元処理を行った。
Comparative Example 1
100 g of gamma alumina (average diameter d = 2.0 mm) as a carrier was added to 60 ml of a chloroplatinic acid aqueous solution containing 0.25% by weight of platinum in the amount of platinum and gently stirred to carry platinum. After drying at 110 ° C. for 60 minutes, the mixture was heated to 300 ° C. and subjected to reduction treatment using hydrogen in the gas phase for 3 hours.

得られた触媒粒子の断面を電子線プローブマイクロアナライザー(EPMA)で観察し白金の分布を調べた。tおよびt/dを表1に示す。   The cross section of the obtained catalyst particles was observed with an electron beam probe microanalyzer (EPMA), and the distribution of platinum was examined. Table 1 shows t and t / d.

還元用触媒に、上記方法により調製した触媒を用いた以外は実施例1と同様に反応を行い、分析を行った。生成物はクロロホルム、ヘキサクロロエタン、メタンが確認された。反応開始後1時間〜2時間の間でのワンパスでの四塩化炭素の転化率、クロロホルム選択率、ヘキサクロロエタン選択率、メタン選択率を表2に示す。   The reaction was performed and analyzed in the same manner as in Example 1 except that the catalyst prepared by the above method was used as the reducing catalyst. The product was confirmed to be chloroform, hexachloroethane, and methane. Table 2 shows the carbon tetrachloride conversion rate, chloroform selectivity, hexachloroethane selectivity, and methane selectivity in one pass between 1 hour and 2 hours after the start of the reaction.

実施例2
担体としてガンマアルミナ(平均直径d=2.0mm)の100gに白金含有量が担体の0.25重量%である塩化白金酸水溶液100mlを一様に噴霧した。110℃で60分乾燥した後、300℃に加熱し水素を用い気相で3時間還元処理を行った。
得られた触媒粒子の断面を電子線プローブマイクロアナライザー(EPMA)で観察し白金の分布を調べた。tおよびt/dを表1に示す。
Example 2
100 g of gamma alumina (average diameter d = 2.0 mm) as a carrier was uniformly sprayed with 100 ml of a chloroplatinic acid aqueous solution having a platinum content of 0.25% by weight of the carrier. After drying at 110 ° C. for 60 minutes, the mixture was heated to 300 ° C. and subjected to reduction treatment using hydrogen in the gas phase for 3 hours.
The cross section of the obtained catalyst particles was observed with an electron beam probe microanalyzer (EPMA), and the distribution of platinum was examined. Table 1 shows t and t / d.

還元用触媒に、上記方法により調製した触媒を用いた以外は実施例1と同様に反応を行い、分析を行った。生成物はクロロホルム、ヘキサクロロエタン、メタンが確認された。反応開始後1時間〜2時間の間でのワンパスでの四塩化炭素の転化率、クロロホルム選択率、ヘキサクロロエタン選択率、メタン選択率を表2に示す。   The reaction was performed and analyzed in the same manner as in Example 1 except that the catalyst prepared by the above method was used as the reducing catalyst. The product was confirmed to be chloroform, hexachloroethane, and methane. Table 2 shows the carbon tetrachloride conversion rate, chloroform selectivity, hexachloroethane selectivity, and methane selectivity in one pass between 1 hour and 2 hours after the start of the reaction.

実施例3
担体としてガンマアルミナ(平均直径d=2.0mm)の100gに白金含有量が担体の2.0重量%である塩化白金酸水溶液60mlを一様に噴霧した。110℃で60分乾燥した後、300℃に加熱し水素を用い気相で3時間還元処理を行った。
得られた触媒粒子の断面を電子線プローブマイクロアナライザー(EPMA)で観察し白金の分布を調べた。tおよびt/dを表1に示す。
Example 3
100 g of gamma alumina (average diameter d = 2.0 mm) as a carrier was uniformly sprayed with 60 ml of a chloroplatinic acid aqueous solution having a platinum content of 2.0% by weight of the carrier. After drying at 110 ° C. for 60 minutes, the mixture was heated to 300 ° C. and subjected to reduction treatment using hydrogen in the gas phase for 3 hours.
The cross section of the obtained catalyst particles was observed with an electron beam probe microanalyzer (EPMA), and the distribution of platinum was examined. Table 1 shows t and t / d.

還元用触媒に、上記方法により調製した触媒を用いた以外は実施例1と同様に反応を行い、分析を行った。生成物はクロロホルム、ヘキサクロロエタン、メタンが確認された。反応開始後1時間〜2時間の間でのワンパスでの四塩化炭素の転化率、クロロホルム選択率、ヘキサクロロエタン選択率、メタン選択率を表2に示す。   The reaction was performed and analyzed in the same manner as in Example 1 except that the catalyst prepared by the above method was used as the reducing catalyst. The product was confirmed to be chloroform, hexachloroethane, and methane. Table 2 shows the carbon tetrachloride conversion rate, chloroform selectivity, hexachloroethane selectivity, and methane selectivity in one pass between 1 hour and 2 hours after the start of the reaction.

実施例4
担体としてチタニア(平均直径d=2.0mm)の100gに白金含有量が担体の0.25重量%である塩化白金酸水溶液60mlを一様に噴霧した。110℃で60分乾燥した後、300℃に加熱し水素を用い気相で3時間還元処理を行った。
得られた触媒粒子の断面を電子線プローブマイクロアナライザー(EPMA)で観察し白金の分布を調べた。tおよびt/dを表1に示す。
Example 4
100 ml of titania (average diameter d = 2.0 mm) as a carrier was uniformly sprayed with 60 ml of an aqueous chloroplatinic acid solution having a platinum content of 0.25% by weight of the carrier. After drying at 110 ° C. for 60 minutes, the mixture was heated to 300 ° C. and subjected to reduction treatment using hydrogen in the gas phase for 3 hours.
The cross section of the obtained catalyst particles was observed with an electron beam probe microanalyzer (EPMA), and the distribution of platinum was examined. Table 1 shows t and t / d.

還元用触媒に、上記方法により調製した触媒を用いた以外は実施例1と同様に反応を行い、分析を行った。生成物はクロロホルム、ヘキサクロロエタン、メタンが確認された。反応開始後1時間〜2時間の間でのワンパスでの四塩化炭素の転化率、クロロホルム選択率、ヘキサクロロエタン選択率、メタン選択率を表1に示す。   The reaction was performed and analyzed in the same manner as in Example 1 except that the catalyst prepared by the above method was used as the reducing catalyst. The product was confirmed to be chloroform, hexachloroethane, and methane. Table 1 shows the carbon tetrachloride conversion rate, chloroform selectivity, hexachloroethane selectivity, and methane selectivity in one pass between 1 hour and 2 hours after the start of the reaction.

比較例2
担体としてチタニア(平均直径d=2.0mm)の100gに白金量含有が担体の0.25重量%である塩化白金酸水溶液60mlに投入し穏やかに攪拌し白金を担持せしめた。110℃で60分乾燥した後、300℃に加熱し水素を用い気相で3時間還元処理を行った。
Comparative Example 2
100 g of titania (average diameter d = 2.0 mm) as a carrier was added to 60 ml of a chloroplatinic acid aqueous solution containing 0.25% by weight of the platinum, and the platinum was supported by gently stirring. After drying at 110 ° C. for 60 minutes, the mixture was heated to 300 ° C. and subjected to reduction treatment using hydrogen in the gas phase for 3 hours.

得られた触媒粒子の断面を電子線プローブマイクロアナライザー(EPMA)で観察し白金の分布を調べた。tおよびt/dを表1に示す。   The cross section of the obtained catalyst particles was observed with an electron beam probe microanalyzer (EPMA), and the distribution of platinum was examined. Table 1 shows t and t / d.

還元用触媒に、上記方法により調製した触媒を用いた以外は実施例1と同様に反応を行い、分析を行った。生成物はクロロホルム、ヘキサクロロエタン、メタンが確認された。反応開始後1時間〜2時間の間でのワンパスでの四塩化炭素の転化率、クロロホルム選択率、ヘキサクロロエタン選択率、メタン選択率を表2に示す。   The reaction was performed and analyzed in the same manner as in Example 1 except that the catalyst prepared by the above method was used as the reducing catalyst. The product was confirmed to be chloroform, hexachloroethane, and methane. Table 2 shows the carbon tetrachloride conversion rate, chloroform selectivity, hexachloroethane selectivity, and methane selectivity in one pass between 1 hour and 2 hours after the start of the reaction.

実施例5
担体としてチタニア(平均直径d=2.0mm)の100gに白金量含有が担体の0.25重量%である塩化白金酸水溶液100mlを一様に噴霧した。110℃で60分乾燥した後、300℃に加熱し水素を用い気相で3時間還元処理を行った。
得られた触媒粒子の断面を電子線プローブマイクロアナライザー(EPMA)で観察し白金の分布を調べた。tおよびt/dを表1に示す。
Example 5
100 ml of titania (average diameter d = 2.0 mm) as a carrier was uniformly sprayed with 100 ml of a chloroplatinic acid aqueous solution containing 0.25% by weight of the platinum. After drying at 110 ° C. for 60 minutes, the mixture was heated to 300 ° C. and subjected to reduction treatment using hydrogen in the gas phase for 3 hours.
The cross section of the obtained catalyst particles was observed with an electron beam probe microanalyzer (EPMA), and the distribution of platinum was examined. Table 1 shows t and t / d.

還元用触媒に、上記方法により調製した触媒を用いた以外は実施例1と同様に反応を行い、分析を行った。生成物はクロロホルム、ヘキサクロロエタン、メタンが確認された。反応開始後1時間〜2時間の間でのワンパスでの四塩化炭素の転化率、クロロホルム選択率、ヘキサクロロエタン選択率、メタン選択率を表2に示す。   The reaction was performed and analyzed in the same manner as in Example 1 except that the catalyst prepared by the above method was used as the reducing catalyst. The product was confirmed to be chloroform, hexachloroethane, and methane. Table 2 shows the carbon tetrachloride conversion rate, chloroform selectivity, hexachloroethane selectivity, and methane selectivity in one pass between 1 hour and 2 hours after the start of the reaction.

実施例6
担体としてジルコニア(平均直径d=2.0mm)の100gに白金量含有が担体の0.25重量%である塩化白金酸水溶液60mlを一様に噴霧した。110℃で60分乾燥した後、300℃に加熱し水素を用い気相で3時間還元処理を行った。
得られた触媒粒子の断面を電子線プローブマイクロアナライザー(EPMA)で観察し白金の分布を調べた。tおよびt/dを表1に示す。
Example 6
100 ml of zirconia (average diameter d = 2.0 mm) as a carrier was uniformly sprayed with 60 ml of a chloroplatinic acid aqueous solution containing 0.25% by weight of the platinum. After drying at 110 ° C. for 60 minutes, the mixture was heated to 300 ° C. and subjected to reduction treatment using hydrogen in the gas phase for 3 hours.
The cross section of the obtained catalyst particles was observed with an electron beam probe microanalyzer (EPMA) to examine the distribution of platinum. Table 1 shows t and t / d.

還元用触媒に、上記方法により調製した触媒を用いた以外は実施例1と同様に反応を行い、分析を行った。生成物はクロロホルム、ヘキサクロロエタン、メタンが確認された。反応開始後1時間〜2時間の間でのワンパスでの四塩化炭素の転化率、クロロホルム選択率、ヘキサクロロエタン選択率、メタン選択率を表2に示す。   The reaction was performed and analyzed in the same manner as in Example 1 except that the catalyst prepared by the above method was used as the reducing catalyst. The product was confirmed to be chloroform, hexachloroethane, and methane. Table 2 shows the carbon tetrachloride conversion rate, chloroform selectivity, hexachloroethane selectivity, and methane selectivity in one pass between 1 hour and 2 hours after the start of the reaction.

実施例7
担体としてシリカ(平均直径d=2.0mm)の100gに白金量含有が担体の0.25重量%である塩化白金酸水溶液60mlを一様に噴霧した。110℃で60分乾燥した後、300℃に加熱し水素を用い気相で3時間還元処理を行った。
Example 7
To 100 g of silica (average diameter d = 2.0 mm) as a carrier, 60 ml of a chloroplatinic acid aqueous solution containing 0.25% by weight of the platinum was uniformly sprayed. After drying at 110 ° C. for 60 minutes, the mixture was heated to 300 ° C. and subjected to reduction treatment using hydrogen in the gas phase for 3 hours.

得られた触媒粒子の断面を電子線プローブマイクロアナライザー(EPMA)で観察し白金の分布を調べた。tおよびt/dを表1に示す。   The cross section of the obtained catalyst particles was observed with an electron beam probe microanalyzer (EPMA), and the distribution of platinum was examined. Table 1 shows t and t / d.

還元用触媒に、上記方法により調製した触媒を用いた以外は実施例1と同様に反応を行い、分析を行った。生成物はクロロホルム、ヘキサクロロエタン、メタンが確認された。反応開始後1時間〜2時間の間でのワンパスでの四塩化炭素の転化率、クロロホルム選択率、ヘキサクロロエタン選択率、メタン選択率を表2に示す。   The reaction was performed and analyzed in the same manner as in Example 1 except that the catalyst prepared by the above method was used as the reducing catalyst. The product was confirmed to be chloroform, hexachloroethane, and methane. Table 2 shows the carbon tetrachloride conversion rate, chloroform selectivity, hexachloroethane selectivity, and methane selectivity in one pass between 1 hour and 2 hours after the start of the reaction.

Figure 2005111366
Figure 2005111366

Figure 2005111366
Figure 2005111366

Claims (8)

周期律表第8族元素、9族元素及び10族元素から選ばれた少なくとも1種の触媒金属を多孔質担体粒子に担持せしめた触媒であって、上記多孔質担体粒子の表層部に前記触媒金属の担持層を形成したことを特徴とする多塩素化アルカンの還元用触媒。   A catalyst in which at least one catalyst metal selected from Group 8 element, Group 9 element and Group 10 element of the periodic table is supported on porous support particles, and the catalyst is formed on the surface layer of the porous support particles. A catalyst for reducing polychlorinated alkanes, wherein a metal support layer is formed. 多孔質担体粒子の平均直径が1.5mm以上であり、該多孔質担体粒子の表層部に形成される担持層の厚みが0.5mm以下の範囲にあることを特徴とする請求項1に記載の還元用触媒。   The average diameter of the porous carrier particles is 1.5 mm or more, and the thickness of the support layer formed on the surface layer portion of the porous carrier particles is in the range of 0.5 mm or less. Catalyst for reduction. 多孔質担体粒子における表層部の担持層より内部に存在する触媒金属の割合が担持された全触媒金属量の0.1重量%以下である請求項1又は2に記載の還元用触媒。   The reduction catalyst according to claim 1 or 2, wherein the ratio of the catalyst metal present inside the support layer in the surface layer portion of the porous carrier particles is 0.1% by weight or less of the total amount of the catalyst metal supported. 多孔質担体粒子がチタニアであることを特徴とする請求項1〜3の何れか一項に記載の還元用触媒。   The catalyst for reduction according to any one of claims 1 to 3, wherein the porous carrier particles are titania. 触媒金属の担持量が多孔質担体100重量部に対し0.01〜2.0重量部であることを特徴とする請求項1〜4の何れか一項に記載の還元用触媒。   The catalyst for reduction according to any one of claims 1 to 4, wherein the amount of the catalyst metal supported is 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the porous carrier. 周期律表8族、9族および10族元素から選ばれた少なくとも1種の金属の可溶性塩水溶液を多孔質担体粒子表面に噴霧した後、乾燥し、次いで還元処理することを特徴とする多塩素化アルカン還元用触媒の製造方法。   Polychlorine characterized by spraying a soluble salt aqueous solution of at least one metal selected from Group 8, Group 9 and Group 10 elements on the surface of the porous carrier, drying, and then reducing treatment Of producing a catalyst for reducing alkane fluoride. 多孔質担体粒子に対する上記金属の可溶性塩水溶液の液量が担体100重量部に対して50〜100重量部である請求項7に記載の方法。   The method according to claim 7, wherein the amount of the metal soluble salt aqueous solution with respect to the porous carrier particles is 50 to 100 parts by weight with respect to 100 parts by weight of the carrier. 請求項1〜8のいずれかの一項に記載の還元用触媒の存在下に、多塩素化アルカンと水素とを液相中で反応させることを特徴とする低次塩素化アルカンの製造方法。
A method for producing a low-order chlorinated alkane, comprising reacting a polychlorinated alkane and hydrogen in the liquid phase in the presence of the reducing catalyst according to any one of claims 1 to 8.
JP2003348976A 2003-10-08 2003-10-08 Catalysts for the reduction of polychlorinated alkanes. Expired - Fee Related JP4519438B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003348976A JP4519438B2 (en) 2003-10-08 2003-10-08 Catalysts for the reduction of polychlorinated alkanes.
CNB2004100951910A CN100423833C (en) 2003-10-08 2004-10-08 Catalyst for reduction of polychloralkane, producing process thereof and process for producing low-grade chloralkane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348976A JP4519438B2 (en) 2003-10-08 2003-10-08 Catalysts for the reduction of polychlorinated alkanes.

Publications (2)

Publication Number Publication Date
JP2005111366A true JP2005111366A (en) 2005-04-28
JP4519438B2 JP4519438B2 (en) 2010-08-04

Family

ID=34540968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348976A Expired - Fee Related JP4519438B2 (en) 2003-10-08 2003-10-08 Catalysts for the reduction of polychlorinated alkanes.

Country Status (2)

Country Link
JP (1) JP4519438B2 (en)
CN (1) CN100423833C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323513B (en) * 2013-06-07 2015-11-25 惠州市富济电子材料有限公司 Platinum slurry for electrode and its preparation method and application in a kind of lambda sensor
CN107876046A (en) * 2017-10-27 2018-04-06 江苏理文化工有限公司 A kind of effective catalyst of preparing chloroform by carbon tetrachloride gaseous phase hydrogenation and dechlorination
CN108147943A (en) * 2018-01-19 2018-06-12 江苏理文化工有限公司 A kind of carbon tetrachloride turns chloroform production technology
CN112871153A (en) * 2021-01-14 2021-06-01 广东醇氢新能源研究院有限公司 Catalyst for normal-temperature combustion of methanol and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853980A (en) * 1971-11-09 1973-07-28
JPS4953587A (en) * 1972-08-17 1974-05-24
JPS5211185A (en) * 1975-07-16 1977-01-27 Degussa Method of making catalysttactive coating on catalyst carriers
JPH05140008A (en) * 1991-11-21 1993-06-08 Daikin Ind Ltd Production of 1,3-dichloro-1,2,2,3,3-pentafluoropropane
JPH07149669A (en) * 1993-08-26 1995-06-13 Dow Chem Co:The Conversion of chlorinated by-product and waste into useful substance
JPH08283182A (en) * 1995-04-11 1996-10-29 Tokuyama Corp Production of hydrochloromethanes
JP2812800B2 (en) * 1989-12-22 1998-10-22 エルクロス・エス・エー Method for producing chloroform
JP2001316322A (en) * 2000-02-22 2001-11-13 Central Glass Co Ltd Method for producing 1,1,1-trifluoroacetone
JP2003238475A (en) * 2002-02-08 2003-08-27 Central Glass Co Ltd Method for producing 1,1,1-trifluoroacetone
JP2005518277A (en) * 2002-02-26 2005-06-23 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing shell-type catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661671B1 (en) * 1990-05-03 1992-07-17 Atochem PROCESS FOR DECHLORINATION OF SUPERIOR CHLOROMETHANES.
ITMI971161A1 (en) * 1997-05-19 1998-11-19 Montecatini Tecnologie Srl HYDROGENATION CATALYSTS

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853980A (en) * 1971-11-09 1973-07-28
JPS4953587A (en) * 1972-08-17 1974-05-24
JPS5211185A (en) * 1975-07-16 1977-01-27 Degussa Method of making catalysttactive coating on catalyst carriers
JP2812800B2 (en) * 1989-12-22 1998-10-22 エルクロス・エス・エー Method for producing chloroform
JPH05140008A (en) * 1991-11-21 1993-06-08 Daikin Ind Ltd Production of 1,3-dichloro-1,2,2,3,3-pentafluoropropane
JPH07149669A (en) * 1993-08-26 1995-06-13 Dow Chem Co:The Conversion of chlorinated by-product and waste into useful substance
JPH08283182A (en) * 1995-04-11 1996-10-29 Tokuyama Corp Production of hydrochloromethanes
JP2001316322A (en) * 2000-02-22 2001-11-13 Central Glass Co Ltd Method for producing 1,1,1-trifluoroacetone
JP2003238475A (en) * 2002-02-08 2003-08-27 Central Glass Co Ltd Method for producing 1,1,1-trifluoroacetone
JP2005518277A (en) * 2002-02-26 2005-06-23 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing shell-type catalyst

Also Published As

Publication number Publication date
CN100423833C (en) 2008-10-08
JP4519438B2 (en) 2010-08-04
CN1636631A (en) 2005-07-13

Similar Documents

Publication Publication Date Title
Ning et al. A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol
Calvo et al. Denitrification of water with activated carbon-supported metallic catalysts
JP5939485B2 (en) Hydrogenation method
KR20020034893A (en) Catalysts for hydrodechlorination of carbon tetrachloride to chloroform
Van Den Reijen et al. From qualitative to quantitative understanding of support effects on the selectivity in silver catalyzed ethylene epoxidation
Rahman et al. A review on reduction of acetone to isopropanol with Ni nano superactive, heterogeneous catalysts as an environmentally benevolent approach
Martin-Martinez et al. Dechlorination of dichloromethane by hydrotreatment with bimetallic Pd-Pt/C catalyst
JP4519438B2 (en) Catalysts for the reduction of polychlorinated alkanes.
Reymond Structured supports for noble catalytic metals: stainless steel fabrics and foils, and carbon fabrics
CN1103394A (en) Process for converting 1,2-dichloropropane to propylene
EP2797901B1 (en) Formation of higher molecular weight cyclic polyamine compounds from cyclic polyamine compounds
ZA200406746B (en) Method for producing shell catalysts.
Fernandez-Ruiz et al. Enhanced selectivity to olefins in the hydrodechlorination of trichloromethane using Ag-Pd on activated carbon catalysts
JP4552031B2 (en) Method for producing citral hydride
US5637548A (en) Preparation of bimetallic catalysts for hydrodechlorination of chlorinated hydrocarbons
Rode Catalytic hydrogenation of 2-butyne-1, 4-diol: Activity, selectivity and kinetics studies
CN106824231A (en) A kind of noble metal catalyst for acetylene hydrochlorination synthesis vinyl chloride thereof and preparation method thereof
Peng et al. Liquid-phase catalytic hydrodechlorination of chlorinated organic compounds in a continuous flow micro-packed bed reactor over a Pd/AC catalyst
EP3181543B1 (en) Process of preparing 4-methyl-3-decen-5-one
Rode et al. Gas phase hydrogenation of acetonitrile over alumina-and silica-supported platinum catalysts
KR102537116B1 (en) Hydrodechlorination catalyst for conversion of chloroform to dichloromethane, manufacturing method thereof and method for converting chloroform to dichloromethane by using the catalyst
JP5530074B2 (en) Composite and production method thereof
Cabiac et al. The influence of textural and structural properties of Pd/carbon on the hydrogenation of cis, trans, trans-1, 5, 9-cyclododecatriene
JP3897081B2 (en) Process for producing 1-chloroheptafluorocyclopentene
CN103071494B (en) Hydrogenation catalyst with shell distribution and comprising silica auxiliary agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees