JP2003238266A - Adhesive for microwave sintering furnace - Google Patents

Adhesive for microwave sintering furnace

Info

Publication number
JP2003238266A
JP2003238266A JP2002033695A JP2002033695A JP2003238266A JP 2003238266 A JP2003238266 A JP 2003238266A JP 2002033695 A JP2002033695 A JP 2002033695A JP 2002033695 A JP2002033695 A JP 2002033695A JP 2003238266 A JP2003238266 A JP 2003238266A
Authority
JP
Japan
Prior art keywords
adhesive
inorganic
microwave
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002033695A
Other languages
Japanese (ja)
Other versions
JP3839730B2 (en
Inventor
Masato Osawa
正人 大沢
Mikiya Fujii
幹也 藤井
Yasuo Misu
安雄 三須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP2002033695A priority Critical patent/JP3839730B2/en
Publication of JP2003238266A publication Critical patent/JP2003238266A/en
Application granted granted Critical
Publication of JP3839730B2 publication Critical patent/JP3839730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive suitable for bonding a ceramic fiber molding by the irradiation with microwave. <P>SOLUTION: The adhesive is suitable to be applied for a microwave sintering furnace for sintering a material to be sintered with self-heating by the irradiation with microwave. The adhesive comprises an inorganic fiber, an inorganic powder and an inorganic binder. The inorganic binder in a dry state is formed into a small drop-like shape and the small drops of the inorganic binder are separated from each other. The adhesive is made from the same material as a refractory heat insulating material. The inorganic powder has a similar composition to the refractory heat insulating material and can be used if it hardly generates heat by the microwave. For example, the inorganic powder is mainly made up of alumina or silica. It is preferable that the inorganic binder has heat resistance and strong adhesive property. As the example of the inorganic binder, water glass, colloidal silica or colloidal alumina is illustrated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波によっ
て陶磁器材料やファインセラミックス材料などの被焼結
物を、自己発熱によって焼結を行うための焼結炉に使用
するのに適した接着材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adhesive suitable for use in a sintering furnace for sintering a ceramic material, a fine ceramics material or the like by microwaves by self-heating. .

【0002】[0002]

【従来の技術】従来、被焼結物の焼結には、電気炉やガ
ス炉などが一般に使用されている。
2. Description of the Related Art Conventionally, an electric furnace or a gas furnace has been generally used for sintering a material to be sintered.

【0003】しかし、このような外部からの加熱による
焼結の場合には、被焼結物の表面と内部との間で温度差
が大きくならないように、炉内温度を緩やかに上昇させ
ることが必要であった。このため、焼結時間が長くなる
という問題があった。
However, in the case of such sintering by heating from the outside, the temperature inside the furnace can be gently increased so that the temperature difference between the surface and the inside of the object to be sintered does not become large. Was needed. Therefore, there is a problem that the sintering time becomes long.

【0004】そこで、このような問題を解決するため
に、マイクロ波による被焼結物の焼結法が提案されてい
る(例えば、特開平6−87663号など)。この方法
は、焼結時間の短縮や雰囲気の制御性等に優れており、
環境負荷の低減等の要求と相まって、将来の焼結法とし
て注目を集めている。
Therefore, in order to solve such a problem, a method of sintering a material to be sintered by microwave has been proposed (for example, Japanese Patent Laid-Open No. 6-87663). This method is excellent in shortening the sintering time and controlling the atmosphere,
Together with demands for reduction of environmental load, it is attracting attention as a future sintering method.

【0005】マイクロ波焼結の場合、マイクロ波が被焼
結物に吸収され、被焼結物が自己発熱するため、被焼結
物の表面と内部との間で温度差は小さくなる。従って、
焼結時間の短縮が可能であると同時に被焼結物の均一な
焼結が可能である。
In the case of microwave sintering, microwaves are absorbed by the material to be sintered and the material to be sintered self-heats, so that the temperature difference between the surface and the inside of the material to be sintered becomes small. Therefore,
The sintering time can be shortened, and at the same time, the material to be sintered can be uniformly sintered.

【0006】また、マイクロ波による被焼結物の自己発
熱による焼結において、耐火断熱材で被焼結物を囲み、
被焼結物の放射冷却による温度勾配の発生を抑制するこ
とによって、被焼結物の、より一層の均一な焼結が可能
であることがわかっている。
[0006] Further, in the sintering of the material to be sintered by microwaves by self-heating, the material to be sintered is surrounded by a refractory heat insulating material,
It has been found that by suppressing the generation of a temperature gradient due to radiative cooling of the material to be sintered, the material to be sintered can be more uniformly sintered.

【0007】[0007]

【発明が解決しようとする課題】マイクロ波焼結用の炉
は、炉殻で囲われた内部に耐火断熱材を配置して、耐火
断熱材によって被焼結物を囲む構造になっている。この
構造においては、炉殻と耐火断熱材の間は、底部を除い
て空間になっている。ここで耐火断熱材としては、セラ
ミックファイバーを主成分として一体に成形した成形品
が用いられていた。
A furnace for microwave sintering has a structure in which a refractory heat insulating material is arranged inside a furnace shell, and a material to be sintered is surrounded by the fire resistant heat insulating material. In this structure, there is a space between the furnace shell and the refractory insulation except for the bottom. Here, as the fireproof heat insulating material, a molded product integrally formed by using ceramic fibers as a main component has been used.

【0008】しかし、炉の大型化に伴って、耐火断熱材
は一体成形が困難となってきた。そのため、分割して製
作されるようになった。分割した耐火断熱材は、炉内に
施工するときに、接着する必要が生じる。また、耐火断
熱材の修理のときにも、接着材が必要である。
However, as the furnace becomes larger, it becomes difficult to integrally form the fireproof heat insulating material. Therefore, it came to be divided and manufactured. The divided refractory heat insulating material needs to be bonded when it is installed in the furnace. Also, an adhesive is required when repairing the refractory insulation.

【0009】本発明は、マイクロ波の照射を受けても発
熱が小さく、さらに、セラミックファイバー成形品を接
着するのに適した接着材を提供することを目的としてい
る。
It is an object of the present invention to provide an adhesive material which generates little heat even when irradiated with microwaves and is suitable for bonding ceramic fiber molded products.

【0010】[0010]

【課題を解決するための手段】本発明の解決手段を例示
すると、請求項1〜2に記載のとおりの接着材である。
When the solution means of the present invention is exemplified, it is an adhesive material as described in claims 1 and 2.

【0011】[0011]

【発明の実施の形態】本発明の接着材は、好ましくは、
無機繊維と無機粉末と無機結合材からなる。接着材が乾
燥した状態で、無機結合材は小滴状になっていて、それ
らが離散した状態で存在する。
BEST MODE FOR CARRYING OUT THE INVENTION The adhesive material of the present invention is preferably
It consists of inorganic fibers, inorganic powder and inorganic binder. When the adhesive is dry, the inorganic binder is in the form of droplets and they exist in a discrete state.

【0012】接着材は、耐火断熱材と同様の材料で構成
されていることが好ましい。同様の材料であれば、特性
が類似しており、反応が起こりにくく、耐火断熱材の劣
化が少ないからである。
The adhesive is preferably made of the same material as the refractory heat insulating material. This is because if the materials are similar, the characteristics are similar, reaction does not easily occur, and deterioration of the fireproof heat insulating material is small.

【0013】本発明の接着材に使用する無機粉末は、耐
火断熱材と類似の組成を有し、マイクロ波によって比較
的発熱しにくいものであれば使用できる。例えば、アル
ミナまたはシリカを主成分とすることが好ましい。この
理由は、耐火断熱材に使用されるセラミックファイバー
はアルミナシリカ系が普通に用いられているからであ
る。このような無機粉末の具体例としては、アルミナ粉
末、シリカ粉末、ムライト粉末などがある。
The inorganic powder used in the adhesive of the present invention can be used as long as it has a composition similar to that of the refractory heat insulating material and is relatively resistant to heat generation by microwaves. For example, it is preferable to use alumina or silica as the main component. The reason for this is that the ceramic fibers used for the refractory insulation are usually made of alumina-silica. Specific examples of such an inorganic powder include alumina powder, silica powder, and mullite powder.

【0014】また、接着材に耐スポーリング特性を発現
させるために、補強材として、無機繊維を含むことが望
ましい。マイクロ波焼結においては、短時間での昇温、
冷却が行われるため、熱的スポーリングに耐えることが
要求される。補強材として無機繊維を使用することは、
耐スポーリング特性を発現させるのに有効である。
Further, in order to make the adhesive material exhibit spalling resistance, it is desirable to include an inorganic fiber as a reinforcing material. In microwave sintering, heating in a short time,
Since it is cooled, it is required to withstand thermal spalling. Using inorganic fibers as a reinforcing material
It is effective in developing spalling resistance.

【0015】また、耐火断熱材が繊維質であるため、耐
火断熱材との馴染みを良くするためにも、無機繊維を含
むことが有効である。
Further, since the refractory heat insulating material is fibrous, it is effective to contain the inorganic fiber in order to improve compatibility with the fire resistant heat insulating material.

【0016】このような無機繊維としては、例えば、ア
ルミナシリカ繊維、アルミナ繊維、ムライト繊維が使用
できる。
As such an inorganic fiber, for example, alumina silica fiber, alumina fiber, or mullite fiber can be used.

【0017】本発明に使用する無機結合材は、耐熱性が
有り、強い接着力のあるものが好ましい。このような無
機結合材の例として、水ガラス、コロイダルシリカ、コ
ロイダルアルミナがある。これらの無機結合材を1種類
以上を使用すればよい。
The inorganic binder used in the present invention preferably has heat resistance and strong adhesive strength. Examples of such inorganic binders include water glass, colloidal silica and colloidal alumina. One or more kinds of these inorganic binders may be used.

【0018】無機結合材は、乾燥した状態で小滴状にな
っていて、多数のものが離散している。
The inorganic binder is in the form of droplets in a dried state, and many of them are dispersed.

【0019】本発明者は、接着材の構成成分が同じであ
っても、その構造を「小滴離散」構造にすることによっ
て発熱量が小さくなることを発見した。
The present inventor has discovered that the amount of heat generated is reduced by making the structure of the adhesive a "droplet-discrete" structure even if the constituents of the adhesive are the same.

【0020】発熱が小さい接着材の微小構造の走査型電
子顕微鏡写真を図1に示し、微小構造の模式図を図2に
示す。
FIG. 1 shows a scanning electron microscope photograph of the microstructure of the adhesive material which generates little heat, and FIG. 2 shows a schematic view of the microstructure.

【0021】発熱が小さい接着材の微小構造において
は、図1および図2に示すように、無機結合材1が、小
滴状となっており、しかも、多数の小滴状の結合材1が
接着材の全体に一様に離散して広がっている。そして、
無機結合材1による無機粉末2あるいは無機繊維3の結
合が部分的なものとなっている。
In the microstructure of the adhesive that generates little heat, the inorganic binder 1 is in the form of droplets as shown in FIGS. 1 and 2, and a large number of droplet-like binders 1 are present. The adhesive is spread evenly throughout the adhesive. And
The binding of the inorganic powder 2 or the inorganic fibers 3 by the inorganic binding material 1 is partial.

【0022】このような「小滴離散」構造を有する接着
材は、マイクロ波を照射しても、温度がほとんど昇温し
ない。
The adhesive material having such a "small droplet dispersion" structure hardly raises the temperature even when irradiated with microwaves.

【0023】接着材を構成する粒子と粒子(粉末や繊
維)の結合部分が少なく、結合材1が小滴状となって、
多数の小滴状の結合材1が離散した状態であると、接着
材の発熱が小さく、耐火断熱材の劣化を防止できる。さ
らに、マイクロ波のエネルギーが接着材に使われること
が少なく、エネルギー効率の良い焼結が達成できる。
There are few particles (particles or fibers) bonded to each other which form the adhesive, and the binder 1 becomes a droplet.
When a large number of droplet-shaped binders 1 are dispersed, the heat generated by the adhesive is small, and deterioration of the fireproof heat insulating material can be prevented. Furthermore, microwave energy is rarely used in the adhesive material, and energy-efficient sintering can be achieved.

【0024】このような接着材の「小滴離散」構造は、
例えば、電荷の異なる2種の結合材を使用する方法や、
接着時に接着材の水分濃度を調整する方法等で形成する
ことができる。
The "droplet discrete" structure of such an adhesive is
For example, a method of using two kinds of binders with different charges,
It can be formed by a method of adjusting the water content of the adhesive at the time of adhesion.

【0025】マイクロ波焼結用に使われる耐火断熱材と
しては、マイクロ波の透過が可能で、かつ高い断熱性を
有している材料が好ましく使用できる。マイクロ波が耐
火断熱材に吸収され、エネルギーが消費されてしまう
と、結果として、被焼結物の焼結に必要なエネルギー量
が著しく増大してしまう。
As the refractory heat insulating material used for microwave sintering, a material capable of transmitting microwaves and having a high heat insulating property can be preferably used. If the microwave is absorbed by the refractory heat insulating material and energy is consumed, as a result, the amount of energy required for sintering the material to be sintered is significantly increased.

【0026】また、放射冷却による温度降下を防ぐため
に、耐火断熱材は高い断熱性を有することが望ましい。
さらに、耐火断熱材は高い耐スポーリング特性を有する
ことが望ましい。
Further, in order to prevent a temperature drop due to radiative cooling, it is desirable that the refractory heat insulating material has a high heat insulating property.
Further, it is desirable for the refractory insulation to have high spalling resistance properties.

【0027】このような特性を満たすために、例えば、
アルミナシリカ繊維を主成分とするセラミックファイバ
ボードが耐火断熱材として使われている。セラミックフ
ァイバボードは、マイクロ波の透過が可能であると共
に、優れた断熱性および耐火性と、高い耐スポーリング
特性を有しており、特に好ましく使用できる。
To satisfy such characteristics, for example,
A ceramic fiber board whose main component is alumina-silica fiber is used as a fireproof heat insulating material. The ceramic fiber board is capable of transmitting microwaves, has excellent heat insulation and fire resistance, and has high spalling resistance, and thus can be particularly preferably used.

【0028】本発明の接着材は、特に、このような無機
繊維質の耐火断熱材を接着するのに適している。
The adhesive of the present invention is particularly suitable for adhering such an inorganic fiber fireproof heat insulating material.

【0029】[0029]

【実施例】次に、実施例1と比較例1を示して、本発明
を更に具体的に説明する。これは単に例示であって、本
発明を制限するものではない。
EXAMPLES Next, the present invention will be described more specifically by showing Example 1 and Comparative Example 1. This is merely an example and is not a limitation of the present invention.

【0030】実施例1 アルミナ粉末100重量部、アルミナシリカ繊維8重量
部、カルボキシルメチルセルロース0.8重量部、無機
増粘剤1.0重量部、(−)の電荷をもつコロイダルシ
リカ6重量部、(+)の電荷をもつコロイダルアルミナ
6重量部、および水50重量部を混合した。
Example 1 100 parts by weight of alumina powder, 8 parts by weight of alumina silica fiber, 0.8 parts by weight of carboxymethyl cellulose, 1.0 part by weight of inorganic thickener, 6 parts by weight of colloidal silica having a (-) charge, 6 parts by weight of colloidal alumina having a (+) charge and 50 parts by weight of water were mixed.

【0031】次に、この混合物を接着材として使用し
て、肉厚40mmのセラミックファイバボード(東芝モ
ノフラックス株式会社製FMX−17SR)の表面に1
mmの厚さで塗布し、その上に同じセラミックファイバ
ボードを重ねて、2枚のセラミックファイバボード同士
を接着した。塗布の方法は、こて塗り、刷毛塗りおよび
吹き付け等のいずれでもよい。
Next, using this mixture as an adhesive, 1 is applied to the surface of a ceramic fiber board having a thickness of 40 mm (FMX-17SR manufactured by Toshiba Monoflux Co., Ltd.).
It was applied in a thickness of mm, the same ceramic fiber board was overlaid thereon, and two ceramic fiber boards were adhered to each other. The application method may be trowel application, brush application, spraying, or the like.

【0032】その後、接着材で接着された2枚のセラミ
ックファイバボードを100℃で3時間乾燥させ、10
00℃で1時間焼成して、耐火断熱材を得た。
After that, the two ceramic fiber boards bonded with the adhesive material are dried at 100 ° C. for 3 hours, and then dried.
It was fired at 00 ° C for 1 hour to obtain a fireproof heat insulating material.

【0033】次に、この耐火断熱材を用いて閉空間を作
った。
Next, a closed space was created using this fireproof heat insulating material.

【0034】被焼結物として、コーヒーカップ形状の陶
土製容器を用意した。この陶土製容器を、耐火断熱材で
形成した閉空間内に置いて、周波数2.45GHzのマ
イクロ波を照射し、焼成した。
As a material to be sintered, a coffee cup-shaped pottery clay container was prepared. This pottery clay container was placed in a closed space formed of a fireproof heat insulating material, irradiated with microwaves having a frequency of 2.45 GHz, and fired.

【0035】焼成後、耐火断熱材を観察したが、強固に
接着されており、接着材の発熱による変質はなかった。
そして、接着材の微構造は、図1に示すように、結合材
が小滴状となって、多数の小滴状結合材が離散した状態
であった。
After firing, the refractory heat insulating material was observed, but it was firmly adhered and there was no deterioration due to heat generation of the adhesive material.
The microstructure of the adhesive material was, as shown in FIG. 1, a state in which the binding material was in the form of droplets and many droplet-shaped binding materials were dispersed.

【0036】比較例1 アルミナ粉末100重量部、アルミナシリカ繊維8重量
部、カルボキシルメチルセルロース0.8重量部、無機
増粘剤1.0重量部、水ガラス12重量部、および水5
0重量部を混合して、接着材を作った。
Comparative Example 1 100 parts by weight of alumina powder, 8 parts by weight of alumina silica fiber, 0.8 part by weight of carboxymethyl cellulose, 1.0 part by weight of inorganic thickener, 12 parts by weight of water glass, and 5 parts of water.
An adhesive was made by mixing 0 parts by weight.

【0037】この接着材を上記実施例1と同様の方法で
使用したところ、接着材に顕著な発熱が認められた。ま
た、この発熱により耐火断熱材に劣化が認められた。
When this adhesive was used in the same manner as in Example 1, remarkable heat generation was observed in the adhesive. In addition, deterioration of the refractory insulation was observed due to this heat generation.

【0038】比較例1の接着材の微構造を調べたとこ
ろ、接着材の水分濃度が低いため結合材が小滴状となっ
ていなかった。
When the microstructure of the adhesive of Comparative Example 1 was examined, the binder was not in the form of droplets due to the low water content of the adhesive.

【0039】実施例1と比較例1を比較すると、結合材
の用い方に差があり、この差が構造の顕著な差となった
ことが理解できる。
Comparing Example 1 with Comparative Example 1, it can be understood that there is a difference in the use of the binder, and this difference was a significant difference in structure.

【0040】[0040]

【発明の効果】本発明の接着材は、マイクロ波を吸収し
にくいので、接着材による発熱が小さく、耐火断熱材を
劣化させることがない。従って、安全に被焼結物を囲む
耐火断熱材の接着が可能であり、大型のマイクロ波焼結
炉を容易に製作できる。
Since the adhesive of the present invention does not easily absorb microwaves, the heat generated by the adhesive is small and the fireproof heat insulating material is not deteriorated. Therefore, it is possible to safely bond the fireproof heat insulating material surrounding the material to be sintered, and it is possible to easily manufacture a large-scale microwave sintering furnace.

【0041】また、本発明の接着材を使用すれば、耐火
断熱材の破損を容易に補修できる。さらに、本発明の接
着材は、マイクロ波の吸収が少ないので、エネルギーの
効率が良い。
Further, the use of the adhesive of the present invention makes it possible to easily repair damage to the fireproof heat insulating material. Furthermore, the adhesive of the present invention absorbs a small amount of microwaves, and thus has high energy efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】接着材の微小構造を示す走査型電子顕微鏡写真
である。
FIG. 1 is a scanning electron micrograph showing the microstructure of an adhesive material.

【図2】接着材の微小構造を示す模式図である。FIG. 2 is a schematic diagram showing a microstructure of an adhesive material.

【符号の説明】[Explanation of symbols]

1 無機結合材 2 無機粉体 3 無機繊維 1 Inorganic binder 2 Inorganic powder 3 inorganic fibers

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三須 安雄 東京都中央区日本橋久松町4番4号 糸重 ビル 東芝モノフラックス株式会社内 Fターム(参考) 4G026 BA01 BB01 BF01 BH13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuo Misu             4-4 Nihonbashi Hisamatsucho, Chuo-ku, Tokyo Itoshige             Building Toshiba Monoflux Co., Ltd. F-term (reference) 4G026 BA01 BB01 BF01 BH13

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波の照射によって被焼結物を自
己発熱で焼結するためのマイクロ波焼結炉に使用するの
に適した接着材であって、無機繊維と無機粉末と無機結
合材からなり、乾燥した状態で無機結合材が小滴状にな
っていて、しかも、小滴状の無機結合材が離散している
ことを特徴とする接着材。
1. An adhesive material suitable for use in a microwave sintering furnace for sintering a material to be sintered by microwave irradiation with self-heating, the inorganic fiber, the inorganic powder, and the inorganic binder. The adhesive material is characterized in that the inorganic binding material is in the form of droplets in a dried state, and the droplet-shaped inorganic binding material is dispersed.
【請求項2】 マイクロ波の照射によって被焼結物を自
己発熱で焼結するためのマイクロ波焼結炉に使用するの
に適した接着材であって、無機粉末と無機結合材からな
り、乾燥した状態で無機結合材が小滴状になっていて、
しかも、小滴状の無機結合材が離散していることを特徴
とする接着材。
2. An adhesive material suitable for use in a microwave sintering furnace for sintering a material to be sintered by self-heating by irradiation of microwaves, which comprises an inorganic powder and an inorganic binder. In the dry state, the inorganic binder is in the form of droplets,
Moreover, the adhesive material is characterized in that the droplet-like inorganic binder is dispersed.
JP2002033695A 2002-02-12 2002-02-12 Adhesive for microwave sintering furnace Expired - Fee Related JP3839730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002033695A JP3839730B2 (en) 2002-02-12 2002-02-12 Adhesive for microwave sintering furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002033695A JP3839730B2 (en) 2002-02-12 2002-02-12 Adhesive for microwave sintering furnace

Publications (2)

Publication Number Publication Date
JP2003238266A true JP2003238266A (en) 2003-08-27
JP3839730B2 JP3839730B2 (en) 2006-11-01

Family

ID=27776412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002033695A Expired - Fee Related JP3839730B2 (en) 2002-02-12 2002-02-12 Adhesive for microwave sintering furnace

Country Status (1)

Country Link
JP (1) JP3839730B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794725A (en) * 2021-03-17 2021-05-14 中钢南京环境工程技术研究院有限公司 Preparation method of alumina fiber lining material for industrial microwave kiln

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794725A (en) * 2021-03-17 2021-05-14 中钢南京环境工程技术研究院有限公司 Preparation method of alumina fiber lining material for industrial microwave kiln

Also Published As

Publication number Publication date
JP3839730B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US7628951B1 (en) Process for making ceramic insulation
JP4750415B2 (en) Ceramic products based on aluminum titanate
US7619187B2 (en) Porous ceramic heating element and method of manufacturing thereof
JPH0465030B2 (en)
CN102424595B (en) Preparation method of hard erosion resistant alumina fiberboard hearth material
WO2011063378A2 (en) Refractory porous ceramics
JP2012036470A (en) Porous sintered material and manufacturing method therefor
JP2003238266A (en) Adhesive for microwave sintering furnace
KR101152656B1 (en) Unshaped Refractory Composition Added with Alumina Sol Binder
CN110386807A (en) A kind of inorganic ceramic film support and preparation method thereof of big flux high intensity
JP4426384B2 (en) Coating material and fireproof insulation
JP4297204B2 (en) Inorganic fiber molded body coating material and coated inorganic fiber molded body
CN103804007A (en) In-situ synthesis mullite whisker-toughened ceramic heat accumulator and preparation method thereof
KR100566306B1 (en) A refractory insulating material for microwave sintering furnace and coating material
JP2006327842A (en) Insulating refractory material for microwave firing furnace
JPH1179871A (en) Lining structure of incinerator
JP4395864B2 (en) Heating element for microwave firing furnace
JP2005255474A (en) Heating element for microwave firing furnace
JP4290968B2 (en) Microwave firing furnace
JP2001089254A (en) Composite ceramic material and its production process
JP3644015B2 (en) Electronic component firing jig
JP3215390B2 (en) Electronic component firing setter and method of manufacturing the same
JP2508511B2 (en) Alumina composite
JP2005281400A (en) Coating liquid and heat-resistant structure
JP2004142977A (en) Heating element for microwave kiln

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees