JP2003238136A - Method of and device for producing carbon material having high specific surface area - Google Patents
Method of and device for producing carbon material having high specific surface areaInfo
- Publication number
- JP2003238136A JP2003238136A JP2002031661A JP2002031661A JP2003238136A JP 2003238136 A JP2003238136 A JP 2003238136A JP 2002031661 A JP2002031661 A JP 2002031661A JP 2002031661 A JP2002031661 A JP 2002031661A JP 2003238136 A JP2003238136 A JP 2003238136A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- carbon material
- container
- steam
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高比表面積炭素材料の
製造方法ならびに装置に関する。具体的には、木質材料
を原料として高比表面積炭素材料を製造する新規の方法
および装置を提供するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a high specific surface area carbon material. Specifically, the present invention provides a novel method and apparatus for producing a high specific surface area carbon material using a wood material as a raw material.
【0002】[0002]
【従来の技術】高い比表面積を持つ炭素材料は、工業薬
品やガス類の精製用、触媒や触媒担体、電極や電気二重
層コンデンサ材料、脂添加剤等の他、室内空気の浄化や
湿度調節、上水の浄化、工業廃水や河川の浄化など広範
囲に利用されて有用である。ここでいう高比表面積炭素
材料は、一般に活性炭と称されているものの範疇にある
が、これらの中で高比表面積を持つものをいい、吸着能
力が高いこと、表面の化学的活性が高いことなどの特徴
を有する。Carbon materials having a high specific surface area are used for purification of industrial chemicals and gases, catalysts and catalyst carriers, electrodes and electric double layer capacitor materials, oil additives, etc., as well as indoor air purification and humidity control. It is useful for a wide range of purposes such as purification of clean water, purification of industrial wastewater and rivers. The high specific surface area carbon material referred to here is in the category of what is generally called activated carbon, but it refers to those having a high specific surface area among them, that it has a high adsorption capacity and that the surface has high chemical activity. It has features such as.
【0003】活性炭の製造方法については、例えば炭素
材料学会編「活性炭−基礎と応用」(講談社発行)に詳
しく記載されているが、要約すると次の方法が一般的で
ある。The method for producing activated carbon is described in detail in, for example, "Activated Carbon-Basics and Applications" (published by Kodansha) edited by Japan Society for Carbon Materials, but the following method is generally summarized.
【0004】木質原料を用いて活性炭を製造する方法と
しては、原料を一旦加熱炭化してからスチーム、炭酸ガ
スなどを900〜1200℃の高温で流通させて活性炭
に転換するガス賦活法と、木質原料に塩化亜鉛、燐酸な
どの薬品を添加混合してから400〜900℃の高温で
加熱処理して炭化処理を行い、次いで添加薬品及びその
分解生成物などを水などで洗浄して除去して製造する薬
品賦活法の両方法が一般的である。As a method of producing activated carbon using a wood raw material, a gas activation method in which the raw material is once heated and carbonized, and then steam, carbon dioxide gas, etc. are circulated at a high temperature of 900 to 1200 ° C. to convert into activated carbon, and wood Chemicals such as zinc chloride and phosphoric acid are added to the raw materials and mixed, and then heat treated at a high temperature of 400 to 900 ° C for carbonization treatment, and then the added chemicals and their decomposition products are removed by washing with water or the like. Both of the chemical activation methods for producing are common.
【0005】活性炭の製造方法について、近年特許公告
されているものとしては、例えば特開平7−15560
8では、原料を予め酸素を4重量%含有するように処理
した後、酸化性ガス雰囲気で加熱することで高比表面積
炭素材料を製造する方法、特開平6−25992では、
賦活剤として水酸化アルカリを原料に添加混合して加熱
処理する方法、特開平7−155587では、第8族金
属化合物を賦活剤として使用する方法などが開示されて
いる。As a method of producing activated carbon, which has been recently published as a patent, for example, Japanese Patent Application Laid-Open No. 7-15560.
In No. 8, a method of producing a high specific surface area carbon material by treating a raw material so as to contain oxygen in advance at 4% by weight and then heating it in an oxidizing gas atmosphere, in JP-A-6-25992,
As a method for adding and mixing an alkali hydroxide as an activator to a raw material and performing heat treatment, JP-A-7-155587 discloses a method for using a Group 8 metal compound as an activator.
【0006】その他の例としては、特公平6−7200
3では、木材などをマイクロ波照射することで加熱して
高比表面積炭素材料を製造する方法が開示されている。Another example is Japanese Patent Publication No. 6-7200.
3 discloses a method for producing a high specific surface area carbon material by heating wood or the like by microwave irradiation.
【0007】[0007]
【発明が解決しようとする課題】木質原料を用いて高比
表面積炭素材料を製造する既知の方法は、ガス賦活法に
ついては、例えば木材、やし殻、石炭などの有機質材料
を高温の熱処理で一旦炭化するのであるが、これに一般
には数時間から数日を要すること、次工程で水蒸気、炭
酸ガスなどの所謂賦活ガスを流通しながら900〜12
00℃という高温で数時間から数日の長時間の処理を要
するなど、非能率である。また、高温の処理のため装置
材質は耐熱性の高いものが必要で、多量の熱エネルギー
を消費するなど工程費は高価となる。A known method for producing a carbon material having a high specific surface area using a wood raw material is a gas activation method, for example, by heat-treating an organic material such as wood, coconut shell or coal at a high temperature. It is carbonized once, but it generally takes several hours to several days, and 900 to 12 while flowing a so-called activating gas such as steam or carbon dioxide in the next step.
This is inefficient because it requires a long time of several hours to several days at a high temperature of 00 ° C. In addition, since the equipment is required to have high heat resistance due to the high temperature treatment, the process cost becomes high because a large amount of heat energy is consumed.
【0008】一方の薬品賦活法では、例えば鋸屑、有機
質繊維などを原料として、ほぼ同等重量の塩化亜鉛や燐
酸などの化学薬品を水溶液として添加混合した後600
〜700℃で加熱処理し、冷却してから水洗或いはアル
カリ水溶液で洗浄などの精製処理をして製造するもので
あるが、用いる薬品のコストが掛かること、熱処理の際
に薬品が揮発して散逸するので回収工程を要する場合が
あること、添加した薬品、熱分解生成物などを炭素材料
から除去するのに洗浄を繰り返す必要があり、完全に除
去することが困難なこと、多量の水を使い廃水処理を要
することなど課題が多い。On the other hand, in the chemical activation method, for example, sawdust, organic fibers, and the like are used as raw materials, and chemical agents such as zinc chloride and phosphoric acid of approximately equal weight are added and mixed as an aqueous solution.
It is manufactured by heating at ~ 700 ° C, cooling and then washing with water or washing with an alkaline aqueous solution, but the cost of the chemicals used is high and the chemicals volatilize and dissipate during heat treatment. Therefore, it may be necessary to repeat the washing process to remove the added chemicals, thermal decomposition products, etc. from the carbon material, which makes it difficult to completely remove them, and a large amount of water is used. There are many problems such as the need for wastewater treatment.
【0009】本発明者らは、これらの課題を解決するた
めに木質原料の熱分解過程について基礎的な研究をした
結果、意外にも木質原料に水蒸気を流通しながら特定温
度域で加熱分解すると、高い比表面積の炭素材が生成す
ることを発見した。更に水蒸気を窒素ガスなどの不活性
気体で希釈して分圧を制御して流通すれば、より安定し
て高い比表面積の炭素材が生成することを見いだした。As a result of basic research on the thermal decomposition process of the wood raw material in order to solve these problems, the present inventors have surprisingly found that the wood raw material is thermally decomposed in a specific temperature range while flowing steam. , Found that a carbon material with a high specific surface area is produced. Further, they have found that when water vapor is diluted with an inert gas such as nitrogen gas and is circulated while controlling the partial pressure, a carbon material having a higher specific surface area is generated more stably.
【0010】本発明は、これらの発見に基づき、工業的
に経済的に高比表面積の炭素材料を製造する方法及び装
置の開発につき研究した結果完成したもので、一段の熱
処理操作で、特殊な耐熱材料を必要としない無理のない
温度条件で、しかも短時間の処理で、高比表面積の炭素
材料を連続的に製造することのできる新規な方法及び装
置を提供するものである。The present invention has been completed as a result of research on the development of a method and an apparatus for producing a carbon material having a high specific surface area industrially and economically based on these discoveries. (EN) A novel method and apparatus capable of continuously producing a carbon material having a high specific surface area under a reasonable temperature condition that does not require a heat-resistant material and by a short-time treatment.
【0011】[0011]
【課題を解決するための手段】請求項1の発明は、木質
原料を加熱して炭素材料を製造する方法において、円筒
形の容器をもちい円筒の一方から木質原料を供給し、他
方から水蒸気を送入して木質原料およびその熱変換物と
水蒸気が向流で接触するように流し、円筒形容器の外周
から熱を供給して木質原料を600〜900℃に加熱し
て炭素材料を製造することに特徴を有する高比表面積炭
素材料の製造方法である。According to a first aspect of the present invention, in a method for producing a carbon material by heating a wood raw material, a cylindrical container is used, the wood raw material is supplied from one side of the cylinder, and steam is supplied from the other side. The wood raw material and its heat conversion product are allowed to flow in countercurrent with steam, and heat is supplied from the outer periphery of the cylindrical container to heat the wood raw material to 600 to 900 ° C. to produce a carbon material. It is a method for producing a high specific surface area carbon material, which is characterized in particular.
【0012】請求項2の発明は、木質原料を加熱された
円筒形容器に連続的に供給し、その容積速度が600℃
から900℃に加熱された部分の容器内容積に対して1
時間当たり0.2〜10倍容量であり、送入される水蒸
気の量が標準状態に換算した容積で、木質原料の供給容
積に対して5〜3000倍であることを特徴とする請求
項1記載の製造方法である。According to the second aspect of the present invention, the wood raw material is continuously supplied to the heated cylindrical container, and the volume velocity thereof is 600 ° C.
1 to the internal volume of the container heated to 900 ° C
2. The volume is 0.2 to 10 times per hour, and the amount of steam fed in is a volume converted to a standard state and is 5 to 3000 times the volume of the wood raw material supplied. It is the manufacturing method described.
【0013】請求項3の発明は、送入する水蒸気が窒素
ガス、炭酸ガスなどの非酸化性ガスで希釈されており、
その混合ガス中の水蒸気濃度が5〜80モル%であり、
混合ガスの供給速度が木質原料の供給容積に対して5〜
3000倍であることを特徴とする請求項1または2記
載の方法である。According to the invention of claim 3, the steam to be fed is diluted with a non-oxidizing gas such as nitrogen gas or carbon dioxide gas,
The water vapor concentration in the mixed gas is 5 to 80 mol%,
The supply rate of the mixed gas is 5 to the supply volume of the wood raw material.
It is 3000 times, It is the method of Claim 1 or 2 characterized by the above-mentioned.
【0014】請求項4の発明は、請求項1または2また
は3の方法を実施する装置として、直径に対して軸方向
長さが4〜20倍の比率の円筒形で、その外周から加熱
されて600℃から900℃に昇温される容器であっ
て、内部に木質原料およびその熱変換物を出口側に移動
するための回転式の推進機を装着しており、円筒形容器
の中心軸が水平に対して1〜30度傾斜して設置されて
おり、その低い側の方に木質原料の供給口および水蒸気
と熱分解によって生成するガス及び液体などの排出口が
あって、加熱部を挟んだ他の高い側に炭素材料の製出口
および水蒸気の送入口が配置されていることに特徴のあ
る装置でる。According to a fourth aspect of the present invention, as an apparatus for carrying out the method of the first, second or third aspect, a cylindrical shape whose axial length is 4 to 20 times the diameter is heated from the outer periphery. A container that can be heated from 600 ° C to 900 ° C by a rotary propulsion device for moving the wood raw material and its heat conversion product to the outlet side. Is installed at an angle of 1 to 30 degrees with respect to the horizontal, and on the lower side there is a supply port for wood raw materials and an exhaust port for gas and liquid produced by steam and pyrolysis The device is characterized in that a carbon material manufacturing outlet and a steam inlet are disposed on the other high side sandwiched.
【0015】請求項5の発明は請求項4の装置の一形態
であって、木質原料が供給される口が円筒形容器のその
低い側に上方に開いて原料貯槽に通じており、下方に水
蒸気と熱分解によって生成するガスや液体などの排出口
が開いていて凝縮液を回収する容器に接続されており、
他方の高い側に炭素材料の製出口が下向きに開いていて
水を張って外気と遮断する構造の炭素材料の取出口を有
する回収容器が連結されており、円筒形容器の加熱され
る部分から炭素材料の出口側及び回収容器までが実質的
に気密構造となっているいることに特徴を有する装置で
ある。The invention of claim 5 is an embodiment of the device of claim 4, in which the mouth to which the wood raw material is supplied is opened upward to the lower side of the cylindrical container and communicates with the raw material storage tank. It is connected to a container that collects the condensate by opening the outlets for gases and liquids generated by steam and thermal decomposition.
On the other high side, a carbon material manufacturing outlet is opened downward, and a recovery container having a carbon material outlet having a structure that is filled with water to shut off the outside air is connected, and from the heated portion of the cylindrical container. The apparatus is characterized in that the carbon material outlet side and the recovery container have a substantially airtight structure.
【0016】[0016]
【発明の実施の形態】本発明で用いられる木質原料とし
てはさまざまな樹種、例えば杉、松、檜、唐松、椴松、
栗、くぬぎなど一般の樹木や雑木は全て用いることがで
きる。原料の形態としては、チップ状、粒状で約5cm
角以下、それより長いものは短径が約3cm以下の大き
さが好ましい。原料としてはこれらの混合物でも使用で
き、必要なら粉粒状のものや前記大きさのその成型物も
使用可能である。BEST MODE FOR CARRYING OUT THE INVENTION Various wood species such as cedar, pine, cypress, Karamatsu, head pine, are used as the wood raw material used in the present invention.
You can use all common trees and trees such as chestnuts and kunugi. The form of the raw material is about 5 cm in the form of chips or granules
If the length is less than the corner and longer than that, the minor axis is preferably about 3 cm or less. A mixture of these materials can be used as a raw material, and if necessary, a granular material or a molded product of the above size can also be used.
【0017】例えば、伐採直後の丸太や製材時の端材
は、そのまま或いは乾燥後にチップ状に粗砕して原料に
用いることが出来る。木材などの破砕物、鋸屑などはそ
のままで、或いは圧縮成型して上記の大きさとして原料
に用いることができる。建築廃材なども同様にして原料
に用いることができる。原料の大きさが上記の範囲を超
える場合は、加熱して昇温するのに時間がかかったり、
水蒸気や非酸化性ガスとの混合気の流通効果が十分に出
なかったりするので、好ましくない。For example, a log immediately after felling or a scrap material at the time of sawing can be used as a raw material as it is or after being dried and crushed into chips. Crushed materials such as wood, sawdust, etc. can be used as they are or after being compression-molded into the above-mentioned size as a raw material. Construction waste materials can be similarly used as raw materials. If the size of the raw material exceeds the above range, it takes time to heat and raise the temperature,
This is not preferable because the distribution effect of the air-fuel mixture with water vapor or non-oxidizing gas may not be sufficiently obtained.
【0018】上記形状の木質原料は、熱の供給される装
備の円筒形容器の一方端から供給されて加熱され他端か
ら排出される。木質原料は加熱された円筒形容器を進む
につれて昇温し、含有する水分やその他の揮発分が蒸発
した後、高温部に進むにつれ木質が熱分解されて炭素質
に変換される。水分などの揮発に伴って相当する熱が必
要であるから、円筒形容器の入り口側には十分な昇温加
熱帯をもうける必要がある。The above-mentioned wood raw material is supplied from one end of a cylindrical container equipped with heat, heated, and discharged from the other end. The temperature of the wood raw material rises as it progresses through the heated cylindrical container, and after the water content and other volatile components contained therein evaporate, the wood raw material is thermally decomposed and converted into carbon as it advances to the high temperature part. Since a considerable amount of heat is required as water vaporizes, it is necessary to provide a sufficient heating zone on the inlet side of the cylindrical container.
【0019】円筒形容器の温度は、被加熱物の温度が6
00〜900℃の範囲になるようにすればよく、熱の供
給は容器外周の壁面からの伝熱を主とするが、推進機を
介しての供給でも、流通する雰囲気ガスの熱容量を利用
しての供給でもよい。The temperature of the cylindrical container is 6
The temperature may be in the range of 00 to 900 ° C., and the heat is supplied mainly from the wall surface of the outer circumference of the container, but the heat capacity of the circulating atmospheric gas is utilized even when the heat is supplied through the propulsion device. All supplies are acceptable.
【0020】木質原料の供給は、その容積速度が600
℃から900℃に加熱された帯域の容器内容積に対して
1時間当たり0.2〜10倍容量とする。即ち、この温
度帯の滞留時間は6分から5時間の範囲で実施すればよ
いが、この範囲より大きい速度では十分な熱処理効果が
得られず比表面積が小さくなり、一方速度が小さいと経
済的でない。The volumetric velocity of the wood raw material is 600.
The volume is 0.2 to 10 times per hour with respect to the internal volume of the container in the zone heated from 0 ° C to 900 ° C. That is, the residence time in this temperature range may be 6 to 5 hours, but if the rate is higher than this range, a sufficient heat treatment effect cannot be obtained and the specific surface area becomes small, while if the rate is low, it is not economical. .
【0021】木質原料を容器内で出口側へ移送するの
は、回転羽根式の推進機が一般的であるが、その他の任
意の推進機が使用できる。また、推進機の作動は連続的
でも間歇的でもよく、原料が前記の供給速度の範囲で移
送されればよい。A rotary blade type propulsion device is generally used to transfer the wood raw material to the outlet side in the container, but any other propulsion device can be used. Further, the operation of the propulsion device may be continuous or intermittent, and the raw material may be transferred within the range of the supply speed.
【0022】木質原料と対向する向きに出口側から水蒸
気を送入するが、これらが向流することが重要であり押
し出し流れで流通することが好ましい。この水蒸気の流
れによって、木質原料が熱分解されて発生する各種有機
物やタールを形成する高分子物質などが原料の入り口側
へ送られ、原料の熱変換物は常にクリーンな状態で水蒸
気雰囲気で、或いは特定された非酸化性ガスとの混合ガ
スの雰囲気で熱処理されることによって高比表面積炭素
材料が形成される。Water vapor is fed from the outlet side in the direction opposite to the wood raw material, but it is important that they flow countercurrently, and it is preferable that they flow in an extrusion flow. By the flow of this steam, various organic substances generated by thermal decomposition of the wood raw material and polymer substances that form tar are sent to the inlet side of the raw material, and the heat conversion product of the raw material is always in a steam atmosphere in a clean state, Alternatively, the high specific surface area carbon material is formed by heat treatment in an atmosphere of a mixed gas with the specified non-oxidizing gas.
【0023】水蒸気を非酸化性ガスと混合して送入する
場合、非酸化性ガスとしては例えば窒素、アルゴン、二
酸化炭素、一酸化炭素、メタン、ヘリウム、水素などを
用いることができる。非酸化性ガスと混合するとき、水
蒸気濃度としては5〜80mol%の範囲で選択するこ
とができる。このような混合ガスを用いた場合、得られ
る炭素材料の比表面積はより高い値が安定して得られ
る。When steam is mixed with the non-oxidizing gas and fed in, the non-oxidizing gas may be nitrogen, argon, carbon dioxide, carbon monoxide, methane, helium, hydrogen or the like. When mixed with a non-oxidizing gas, the water vapor concentration can be selected within the range of 5 to 80 mol%. When such a mixed gas is used, a higher specific surface area of the obtained carbon material can be stably obtained.
【0024】水蒸気、或いは水蒸気と非酸化性ガスの混
合ガスを送入する場合、木質原料を大気と遮断された状
態で容器内を移送しながら、木質原料の移送の向きと逆
向きに流通させる。このとき、水蒸気或いは非酸化性ガ
スとの混合ガスの流速は標準状態に換算した容積で、木
質原料の供給容積に対して5〜3000倍の流速で流せ
ばよい。この流速は重要であり、この範囲を外れる流速
では得られる炭素材料の比表面積は小さくなる傾向にあ
る。When steam or a mixed gas of steam and a non-oxidizing gas is fed, the wood raw material is transferred in the container in a state in which the wood raw material is shielded from the atmosphere, while flowing in the direction opposite to the transfer direction of the wood raw material. . At this time, the flow rate of the steam or the mixed gas with the non-oxidizing gas is the volume converted to the standard state, and the flow rate may be 5 to 3000 times the flow rate of the wood raw material. This flow rate is important, and the specific surface area of the carbon material obtained tends to be small at flow rates outside this range.
【0025】以上に記述の如く、従来にない900℃以
下の低温で短時間の熱処理によって、しかも一段の熱処
理操作によって高い比表面積の炭素材料が得られること
は工業的、経済的に価値が大である。水蒸気或いは非酸
化性のガスを特定の条件で流通する本発明が、何故この
ような高い比表面積の炭素材料を生成するかについては
必ずしも明確ではなく、今後の研究に解明が待たれる。As described above, it is industrially and economically valuable that a carbon material having a high specific surface area can be obtained by a heat treatment at a low temperature of 900 ° C. or lower, which has never been used before, for a short time, and by a single heat treatment operation. Is. It is not always clear why the present invention in which steam or a non-oxidizing gas is passed under a specific condition produces such a carbon material having a high specific surface area, and further study is awaited.
【0026】請求項1或いは2或いは3の発明を実施す
るのに、請求項4の発明装置は極めて有効である。直径
に対して軸方向長さが4〜20倍の比率の円筒形の容器
は、その外周から加熱して内部を600℃から900℃
に昇温するのに十分の伝熱面積を確保出来る。熱は重
油、灯油などの燃料油、都市ガス、天然ガスなどの燃焼
熱、或いは電力炉による加熱など利用できる。場合によ
っては廃油、廃タイヤ、廃木材などの燃焼熱も利用可能
であり、木質原料を加熱した時に発生する排ガスをリサ
イクルして燃焼させその熱を利用してもよい。The invention device of claim 4 is extremely effective for carrying out the invention of claim 1, 2 or 3. A cylindrical container whose axial length is 4 to 20 times the diameter is heated from the outer periphery and the inside is heated from 600 ° C to 900 ° C.
A sufficient heat transfer area can be secured to raise the temperature. The heat may be fuel oil such as heavy oil or kerosene, combustion heat of city gas or natural gas, or heating by an electric furnace. Depending on the case, the combustion heat of waste oil, waste tires, waste wood, etc. can also be used, and the exhaust gas generated when a wood raw material is heated can be recycled and burned to use the heat.
【0027】内部に木質原料およびその熱変換物を出口
側に移動するための回転式の推進機を装着するにも上記
形状の容器は好適である。推進器は回転羽根式が一般的
であるが、容器の内壁に近接する径の羽根を用い円筒形
容器の中心軸と推進器の軸を合致させて設置するのが好
ましい。羽根が一回転して移動する距離即ちピッチは、
木質原料の形状と移送速度を勘案して設計し装備すれば
よい。この場合、木質原料と雰囲気ガスは回転羽根と回
転軸及び容器内周壁で形成される空間を螺旋状に且つ向
流で流れることになり、両者の接触効率は高くなり好ま
しい。The container having the above-mentioned shape is also suitable for mounting a rotary propulsion device for moving the wood raw material and its heat conversion product to the outlet side. The propeller is generally a rotary vane type, but it is preferable to use a vane having a diameter close to the inner wall of the container so that the central axis of the cylindrical container and the axis of the propeller are aligned with each other. The distance or pitch that the blade moves in one rotation is
It may be designed and equipped in consideration of the shape of the wood raw material and the transfer speed. In this case, the wood raw material and the atmospheric gas spirally flow countercurrently in the space formed by the rotary blades, the rotary shaft, and the inner peripheral wall of the container, and the contact efficiency between them is high, which is preferable.
【0028】円筒形容器の中心軸が水平に対して1〜3
0度傾斜して設置されること及びその原料の供給される
低い側の端にガスや液体などの排出口があることが重要
である。木質原料が加熱され分解される際に高分子物質
が少量副生し温度が下がるとタール状液体となるが、こ
れが円筒形容器の内面に凝縮しても炭素材料の製出側に
流れないようようにする必要がある。タール状高分子物
質が熱分解過程の炭素材へ或いはその中間変換物へ付着
した場合、高比表面積の炭素材料は得られ難い。上記の
傾斜角度をつけることで凝縮液は原料の入口側へ流下す
るので確実にその付着が防止できる。上記より大きい傾
斜角では原料及び熱変換物の移送の面、或いは装置の設
置スペースの面から好ましくない。The central axis of the cylindrical container is 1 to 3 with respect to the horizontal.
It is important that they are installed at an angle of 0 ° and that there is an outlet for gas, liquid, etc. at the lower end to which the raw material is supplied. When a wood raw material is heated and decomposed, a small amount of a high molecular substance is by-produced and becomes a tar-like liquid when the temperature drops, but it does not flow to the carbon material production side even if it condenses on the inner surface of the cylindrical container. Need to do so. When the tar-like polymer substance adheres to the carbon material in the thermal decomposition process or its intermediate conversion product, it is difficult to obtain a carbon material having a high specific surface area. By providing the above inclination angle, the condensate flows down to the inlet side of the raw material, so that the adhesion can be reliably prevented. If the inclination angle is larger than the above, it is not preferable from the viewpoint of transporting the raw material and the heat conversion material or the space for installing the apparatus.
【0029】請求項5の発明は、円筒形容器が、木質原
料が供給される口がその低い側に上方に開いて原料貯槽
に通じており、下方に水蒸気と熱分解によって生成する
ガスや液体などの排出口が開いていて凝縮液を回収する
容器に接続されている配置によって、原料の貯留と供給
及び生出するガスや液体の流れが無理なく確保される。
凝縮液を回収する容器は非凝縮生のガスなどを排出する
ために排風機に接続され、無害化処理などした後大気へ
放出される。According to a fifth aspect of the present invention, the cylindrical container has a mouth to which a wood raw material is supplied, which opens upward to a lower side thereof and communicates with a raw material storage tank, and below which vapor and gas or liquid produced by thermal decomposition are generated. Due to the arrangement in which the discharge port is opened and connected to the container for collecting the condensed liquid, the storage and supply of the raw material and the flow of the generated gas or liquid are naturally secured.
The container for collecting the condensate is connected to an air blower for discharging non-condensed raw gas, and is discharged to the atmosphere after being detoxified.
【0030】円筒形容器の高い側に炭素材料の製出口が
下向きに開いていて下方に水を張って外気と遮断する構
造の炭素材料の取出口を有する回収容器が連結されてい
ることで、高温で製出する炭素材料が水中に回収され同
時に冷却される。これにより円筒形容器の加熱帯から炭
素材料の出口側及び回収容器までが実質的に気密構造と
することが可能となり、水蒸気または非酸化性ガスで希
釈された水蒸気を、特定された流量で木質原料と向流し
て流通することが可能となる。Since a carbon material outlet is opened downward on the high side of the cylindrical container and a recovery container having a carbon material outlet having a structure for blocking water from outside by connecting water downward is connected, The carbon material produced at high temperature is recovered in water and cooled at the same time. As a result, it is possible to form a substantially airtight structure from the heating zone of the cylindrical container to the outlet side of the carbon material and the recovery container, and steam or steam diluted with a non-oxidizing gas can be used at a specified flow rate. It becomes possible to flow countercurrently with the raw material.
【0031】炭素材料は回収容器中の水と触れて水蒸気
を発生するから、これをそのまま或いは前記の非酸化性
ガスをキャリヤーとして、加熱円筒形容器へ送入するこ
とも出来る。水中に回収された炭素材料は水封状態を保
ったまま任意の方法で取出口から取り出される。例え
ば、取出口から回収容器底部へスクリュウコンベアなど
の排出機を設置する、或いは水流を利用して、炭素材料
を取り出すことが出来る。炭素材料は水を分離すること
によって、必要なら次いで乾燥することによって製品と
なる。Since the carbon material comes into contact with water in the recovery container to generate water vapor, this can be fed into the heating cylindrical container as it is or using the non-oxidizing gas as a carrier. The carbon material collected in water is taken out from the take-out port by an arbitrary method while keeping the water-sealed state. For example, a carbon material can be taken out by installing a discharge machine such as a screw conveyor from the take-out port to the bottom of the collection container or by utilizing a water flow. The carbon material is made into a product by separating the water and then drying if necessary.
【0032】本発明による装置の具体的構成の例を図1
に示すが、本発明はこの例に限定されるものではない。
図1に於いて、1は木質原料を熱処理する円筒形容器
で、内部に推進器2が装着されて駆動ギヤ11で回転駆
動される。原料貯槽9から供給口14へ入った木質原料
はこの推進機で円筒形容器内部へ移送する。円筒形容器
は加熱炉3で加熱されて昇温される。熱処理されて製出
する炭素材料は製出口12から水を張った炭素材料回収
容器7に回収される。FIG. 1 shows an example of a specific configuration of the device according to the present invention.
However, the present invention is not limited to this example.
In FIG. 1, reference numeral 1 denotes a cylindrical container for heat-treating a wood raw material, in which a propelling device 2 is mounted and is rotationally driven by a drive gear 11. The wood raw material that has entered the feed port 14 from the raw material storage tank 9 is transferred to the inside of the cylindrical container by this propulsion device. The cylindrical container is heated in the heating furnace 3 to be heated. The heat-treated carbon material produced is recovered from the production outlet 12 in the water-filled carbon material recovery container 7.
【0033】円筒形容器へ送入する水蒸気は、定量ポン
プなどで計量された水を水供給パイプ6から水蒸発器4
へ供給し加熱気化されて、水蒸気送入口15から送入さ
れる。水蒸気を窒素ガスなどの非酸化性ガスで希釈して
送入するときは、窒素ガス供給パイプ5から送入するこ
とが出来る。また、水蒸気は炭素材料回収容器7で発生
するものを利用することも出来る。この場合は炭素材料
回収容器7に窒素ガスなどの非酸化性ガスをキャリヤー
として供給して水蒸気を同伴し送入すればよい。The water vapor fed into the cylindrical container is the water metered by a metering pump or the like from the water supply pipe 6 to the water evaporator 4.
Is heated and vaporized, and is fed from the steam inlet 15. When water vapor is diluted with a non-oxidizing gas such as nitrogen gas and then fed, it can be fed through the nitrogen gas supply pipe 5. Further, the steam generated in the carbon material recovery container 7 can be used. In this case, a non-oxidizing gas such as nitrogen gas may be supplied to the carbon material recovery container 7 as a carrier, and steam may be sent along with it.
【0034】木質原料が熱分解して発生したガスや液体
及び供給された水蒸気などは、排出口13から凝縮液回
収容器8へ流出し凝縮物が8へ溜まる。非凝縮性のガス
などは排風機10で排出されるが、煤煙やミストなどは
無害化処理を行って大気へ放出されることが好ましい。The gas and liquid generated by the thermal decomposition of the wood raw material and the supplied steam and the like flow out from the discharge port 13 to the condensate recovery container 8 and the condensate is accumulated in the condensate 8. The non-condensable gas or the like is discharged by the exhaust fan 10, but it is preferable that the soot and mist are detoxified and discharged to the atmosphere.
【0035】次に、図1の構成の装置で炭素材料を製造
した具体例を以下に示す。Next, a specific example in which a carbon material is manufactured by the apparatus having the configuration shown in FIG. 1 will be shown below.
【0036】[0036]
【実施例1】円筒形容器1は耐熱ステンレス鋼で内径1
40mm、原料供給口14から炭素材料製出口12まで
の長さ1400mmのものを作製し、加熱炉3は全長1
000mmで3基の電気炉で独立に温度設定出来るもの
を用いた。推進器2は耐熱ステンレス鋼製の回転羽根式
で羽根径130mm、ピッチ120mm、シャフト径4
8mmのものを用い、回転速度を制御して駆動ギヤ11
で駆動した。円筒形容器は水平に対して3度傾斜して製
品出口側が高くなるように設置した。[Example 1] The cylindrical container 1 is made of heat-resistant stainless steel and has an inner diameter of 1
40 mm, the length from the raw material supply port 14 to the carbon material outlet 12 is 1400 mm, and the heating furnace 3 has a total length of 1
An electric furnace having three electric furnaces each having a temperature of 000 mm was used. The propeller 2 is a rotary blade type made of heat-resistant stainless steel, and has a blade diameter of 130 mm, a pitch of 120 mm, and a shaft diameter of 4.
8mm drive gear 11 with controlled rotation speed
Driven by. The cylindrical container was installed so that the product outlet side was inclined at an angle of 3 degrees with respect to the horizontal.
【0037】原料は粉砕した杉材を5mmの開き目の篩
いで篩ってその通過分を用いた。原料は原料貯槽9に貯
留し、円筒形容器の供給口14へ連続供給した。所定量
の水を定量ポンプで200℃に加熱された水蒸発器4に
供給し気化させて円筒形容器の製品出口側送入口15か
ら送入した。窒素ガスはマスフローバルブで流量を制御
して、パイプ5から水蒸発器へ供給し水蒸気と混合して
送入した。製品の炭素材料は円筒形容器の製出口12か
ら水を張った回収容器7へ落下して冷却され、その下部
が連通する取出口16から間歇的に取り出された。As the raw material, crushed cedar wood was sieved with a sieve having 5 mm openings and the passed portion was used. The raw material was stored in the raw material storage tank 9 and continuously supplied to the supply port 14 of the cylindrical container. A predetermined amount of water was supplied by a metering pump to the water evaporator 4 heated to 200 ° C., vaporized, and fed from the product outlet side inlet 15 of the cylindrical container. The flow rate of nitrogen gas was controlled by a mass flow valve, supplied from a pipe 5 to a water evaporator, mixed with water vapor, and then fed. The carbon material of the product dropped from the outlet 12 of the cylindrical container to the water-filled recovery container 7 to be cooled, and was intermittently taken out from the outlet 16 communicating with the lower part thereof.
【0038】供給された水蒸気や熱分解生成物などは円
筒形容器の低い側の端下方にある排出口13に接続され
た凝縮液回収容器8で凝縮液が回収され、排ガスは排風
機10によって大気に排出された。その他、装置の構成
は図1と同様にした。The supplied water vapor and thermal decomposition products are collected in a condensate recovery container 8 connected to a discharge port 13 below the lower end of the cylindrical container, and exhaust gas is exhausted by an exhaust fan 10. Emitted into the atmosphere. Other than that, the structure of the apparatus is the same as that of FIG.
【0039】原料入り口側より、第1炉を400℃、第
2炉を700℃、第3炉を850℃に設定し、推進器は
原料供給口から炭素材料製出口までの1400mmを2
時間で移送する速度に設定した。水を135g/時で蒸
発器に供給して気化し、窒素ガスを90リットル/時で
供給して混合して送入した。水蒸気と窒素ガスの混合ガ
ス容積は標準状態で、木質原料の供給容積に対して24
倍であり混合ガス中の水蒸気濃度は65%である。From the raw material inlet side, the first furnace is set to 400 ° C., the second furnace is set to 700 ° C., and the third furnace is set to 850 ° C., and the propulsion device is set to 2400 mm from the raw material supply port to the carbon material outlet.
The transfer speed was set in time. Water was supplied to the evaporator at 135 g / hr for vaporization, and nitrogen gas was supplied at 90 l / hr for mixing and feeding. The mixed gas volume of water vapor and nitrogen gas is 24% of the supply volume of the wood raw material in the standard state.
The water vapor concentration in the mixed gas is 65%.
【0040】円筒形容器内の温度分布から、600℃〜
850℃の温度帯にある滞留時間は53分であった。運
転開始4時間後に製出した炭素材料を回収容器から取り
出して水を分離した後、90℃で2時間乾燥したサンプ
ルについて比表面積を測定した。比表面積は窒素ガス吸
着のBET法により、装置は島津製作所製アサップ201
0を用い3点法で測定した。このサンプルの比表面積は
689m2/gであった。From the temperature distribution in the cylindrical container, 600 ° C.
The residence time in the temperature range of 850 ° C. was 53 minutes. The carbon material produced 4 hours after the start of operation was taken out of the recovery container to separate water, and then the specific surface area of the sample dried at 90 ° C. for 2 hours was measured. The specific surface area is based on the BET method of nitrogen gas adsorption, and the equipment is Shimadzu Asap 201.
It was measured by the three-point method using 0. The specific surface area of this sample was 689 m2 / g.
【0041】[0041]
【実施例2】第1炉を500℃に設定した他は実施例1
と同様にして炭素材料を製造した。運転開始4時間後に
製出したサンプルについて同様にして比表面積を測定し
たところ750m2/gであった。[Example 2] Example 1 except that the first furnace was set at 500 ° C
A carbon material was manufactured in the same manner as in. When the specific surface area of the sample produced 4 hours after the start of operation was measured in the same manner, it was 750 m2 / g.
【0042】[0042]
【実施例3】推進器の速度を、原料供給口から炭素材料
製出口までの1400mmを1時間で移送する速度に
し、窒素ガス流速を180リットル/時とした他は実施
例2と同様にして炭素材料を製造した。水蒸気と窒素ガ
スの混合ガス容積は標準状態で、木質原料の供給容積に
対して32倍であり混合ガス中の水蒸気濃度は48%で
ある。温度分布から、600℃〜850℃の温度帯にあ
る滞留時間は25分であった。運転開始2時間後に製出
したサンプルの比表面積を測定したところ621m2/
gであった。[Third Embodiment] The same as in the second embodiment, except that the speed of the propulsion device was set to transfer 1400 mm from the raw material supply port to the carbon material outlet in one hour, and the nitrogen gas flow rate was 180 liters / hour. A carbon material was manufactured. The mixed gas volume of water vapor and nitrogen gas is 32 times the supply volume of the wood raw material in the standard state, and the water vapor concentration in the mixed gas is 48%. From the temperature distribution, the residence time in the temperature range of 600 ° C to 850 ° C was 25 minutes. When the specific surface area of the sample produced 2 hours after the start of operation was measured, it was 621 m2 /
It was g.
【0043】[0043]
【実施例4】推進器の速度を、原料供給口から炭素材料
排出口までの1400mmを1時間で移送する速度に
し、窒素ガスを流さず水蒸気のみ送入して実施例2と同
様にして炭素材料を製造した。水蒸気の送入速度は標準
状態で木質原料の供給容積に対して15倍であり、温度
分布から、600℃〜850℃の温度帯にある滞留時間
は27分であった。運転開始2時間後に製出したサンプ
ルの比表面積を測定したところ521m2/gであっ
た。[Example 4] The speed of the propulsion device was set to a rate of transferring 1400 mm from the raw material supply port to the carbon material discharge port in 1 hour, and nitrogen gas was not flowed and only steam was fed in the same manner as in Example 2. The material was manufactured. In the standard state, the feed rate of water vapor was 15 times the supply volume of the wood raw material, and from the temperature distribution, the residence time in the temperature range of 600 ° C to 850 ° C was 27 minutes. The specific surface area of the sample produced 2 hours after the start of operation was measured and found to be 521 m2 / g.
【0044】[0044]
【実施例5】推進器の速度を、原料供給口から炭素材料
製出口までの1400mmを4時間で移送する速度に
し、その他は実施例2と同様にして炭素材量を製造し
た。温度分布から、600℃〜850℃の温度帯にある
滞留時間は110分であった。運転開始6時間後に製出
したサンプルの比表面積を測定したところ750m2/
gであった。[Example 5] A carbon material amount was produced in the same manner as in Example 2 except that the speed of the propulsion device was set to a rate of transferring 1400 mm from the raw material supply port to the carbon material-made outlet in 4 hours. From the temperature distribution, the residence time in the temperature range of 600 ° C to 850 ° C was 110 minutes. When the specific surface area of the sample produced 6 hours after the start of operation was measured, it was 750 m2 /
It was g.
【0045】[0045]
【比較例】水蒸気及び窒素ガスを供給しないで、その他
は実施例3と同様にして炭素材料を製造した。温度分布
から、600℃〜850℃の温度帯にある滞留時間は2
5分であった。運転開始2時間後に製出したサンプルの
比表面積を測定したところ97m2/gであった。Comparative Example A carbon material was produced in the same manner as in Example 3 except that steam and nitrogen gas were not supplied. From the temperature distribution, the residence time in the temperature range of 600 ° C to 850 ° C is 2
It was 5 minutes. The specific surface area of the sample produced 2 hours after the start of operation was measured and found to be 97 m2 / g.
【0046】[0046]
【発明の効果】本発明によって、木質原料から一段の熱
処理操作でしかも900℃以下の温度での短時間処理
で、高比表面積の炭素材料を連続的に製造することの出
来る新規な方法及び装置が提供される。得られる炭素材
料は、工業薬品やガス類の精製用、触媒や触媒担体、電
極や電気二重層コンデンサー材料、樹脂添加剤等の他、
室内空気の浄化や湿度調節、上水の浄化、工業廃水や河
川水の浄化など広範囲に利用されるものである。INDUSTRIAL APPLICABILITY According to the present invention, a novel method and apparatus capable of continuously producing a carbon material having a high specific surface area from a wood raw material by a one-step heat treatment operation and a short-time treatment at a temperature of 900 ° C. or less. Will be provided. The obtained carbon material is used for purification of industrial chemicals and gases, catalysts and catalyst carriers, electrodes and electric double layer capacitor materials, resin additives, etc.
It is widely used for indoor air purification, humidity control, clean water purification, industrial wastewater and river water purification.
【図1】本発明による装置構成の一実施形態の装置の側
面図である。内部構造を示すため部分透視図で描いてあ
る。FIG. 1 is a side view of a device according to an embodiment of a device configuration of the present invention. It is drawn in a partial perspective view to show the internal structure.
【図2】図1の左方より見た従側面図で、部分透視図と
なっている。FIG. 2 is a sub-side view seen from the left side of FIG. 1 and is a partial perspective view.
1 円筒形容器 2 推進機 3 加熱炉 4 水蒸発器 5 窒素ガス供給パイプ 6 水供給パイプ 7 炭素材料回収容器 8 凝縮液回収容器 9 原料貯槽 10 排風機 11 駆動ギア 12 炭素材料製出口 13 生成ガス等排出口 14 原料供給口 15 水蒸気送入口 16 炭素材料取出口 1 cylindrical container 2 propulsion machine 3 heating furnace 4 water evaporator 5 Nitrogen gas supply pipe 6 water supply pipe 7 Carbon material collection container 8 Condensate recovery container 9 Raw material storage tank 10 blower 11 Drive gear 12 Carbon material outlet 13 Generated gas outlet 14 Raw material supply port 15 Steam inlet 16 Carbon material outlet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 志戸崇紀 鳥取県米子市米原7丁目11−29コーポナガ ミ205号室 Fターム(参考) 4G046 HA02 HB05 HC09 HC10 HC12 HC18 HC24 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takanori Shido 7-11-29 Yonehara, Yonago City, Tottori Prefecture Room 205 F-term (reference) 4G046 HA02 HB05 HC09 HC10 HC12 HC18 HC24
Claims (5)
法において、円筒形の容器をもちい円筒の一方から木質
原料を供給し、他方から水蒸気を送入して木質原料およ
びその熱変換物と水蒸気が向流で接触するように流し、
熱を円筒形容器の外周から供給して木質原料を600〜
900℃に加熱して炭素材料を製造する方法。1. A method for producing a carbon material by heating a wood raw material, wherein a wood raw material and a heat conversion product thereof are supplied by supplying a wood raw material from one side of a cylinder using a cylindrical container and feeding steam from the other side. And steam so that they contact each other in countercurrent,
Heat is supplied from the outer circumference of the cylindrical container to produce 600 ~
A method of producing a carbon material by heating to 900 ° C.
に供給し、その容積速度が600℃から900℃に加熱
された部分の容器内容積に対して時間当たり0.2〜1
0倍容量であり、送入される水蒸気の量が標準状態に換
算した容積で、木質原料の供給容積に対して5〜300
0倍である請求項1記載の方法。2. A wood-based material is continuously supplied to a heated cylindrical container, and its volumetric rate is 0.2 to 1 per hour with respect to the internal volume of the container of a portion heated from 600 ° C. to 900 ° C.
The volume is 0 times the volume, and the amount of steam to be fed is the volume converted to the standard state.
The method according to claim 1, which is 0 times.
性ガスで希釈されており、その混合ガス中の水蒸気濃度
が5〜80モル%であり、混合ガスの供給速度が木質原
料の供給容積に対して5〜3000倍であることを特徴
とする請求項1または2記載の方法。3. Water vapor is diluted with a non-oxidizing gas such as nitrogen gas and carbon dioxide gas, the water vapor concentration in the gas mixture is 5 to 80 mol%, and the gas mixture is supplied at a feed rate of wood raw material. The method according to claim 1 or 2, wherein the volume is 5 to 3000 times the volume.
率の円筒形で、その外周から加熱されて600℃から9
00℃に昇温される容器であって、内部に木質原料およ
びその熱変換物を出口側に移動するための回転式の推進
機を装着しており、円筒形容器の中心軸が水平に対して
1〜30度傾斜して設置されており、その低い側の方に
木質原料の供給口および水蒸気と熱分解によって生成す
るガスや液体などの排出口があって、加熱部を挟んだ他
の高い側に炭素材料の製出口および水蒸気の送入口が配
置されている装置。4. A cylindrical shape whose axial length is 4 to 20 times the diameter, and which is heated from the outer periphery to 600 ° C. to 9 ° C.
A container heated to 00 ° C, equipped with a rotary propulsion device for moving the wood raw material and its heat conversion product to the outlet side, and the central axis of the cylindrical container is horizontal. It is installed at an angle of 1 to 30 degrees, and on the lower side there is a supply port for wood raw materials and an exhaust port for gas and liquid produced by steam and thermal decomposition A device with a carbon material outlet and steam inlet on the high side.
その低い側に上方に開いて原料貯槽に通じており、下方
に水蒸気と熱分解によって生成するガスや液体などの排
出口が開いていて凝縮液を回収する容器に接続されてお
り、他方の高い側に炭素材料の製出口が下向きに開いて
いて下方に水を張って外気と遮断する構造の炭素材料の
取出口を有する回収容器が連結されており、円筒形容器
の加熱される部分から炭素材料の出口側及び回収容器ま
でが実質的に気密構造となっている請求項4記載の装
置。5. A cylindrical container has a mouth to which a wood raw material is supplied, which opens upward to a lower side thereof and communicates with a raw material storage tank, and a discharge port for vapor and a gas or liquid produced by thermal decomposition is provided below. It is open and connected to a container that collects the condensate, and the carbon material outlet is open downward on the other high side and has a carbon material outlet that is structured to block water from the outside by filling water downward. The device according to claim 4, wherein the recovery container is connected, and the portion from the heated portion of the cylindrical container to the carbon material outlet side and the recovery container are substantially airtight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002031661A JP2003238136A (en) | 2002-02-08 | 2002-02-08 | Method of and device for producing carbon material having high specific surface area |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002031661A JP2003238136A (en) | 2002-02-08 | 2002-02-08 | Method of and device for producing carbon material having high specific surface area |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003238136A true JP2003238136A (en) | 2003-08-27 |
Family
ID=27774997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002031661A Pending JP2003238136A (en) | 2002-02-08 | 2002-02-08 | Method of and device for producing carbon material having high specific surface area |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003238136A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015523946A (en) * | 2012-05-07 | 2015-08-20 | バイオジェニック レゲント ベンチャーズ エルエルシー | Biogenic activated carbon and methods of making and using it |
US10167437B2 (en) | 2011-04-15 | 2019-01-01 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
CN111137888A (en) * | 2019-10-30 | 2020-05-12 | 靖州县华荣活性炭有限责任公司 | Method for producing activated carbon by phosphoric acid method |
US11213801B2 (en) | 2013-10-24 | 2022-01-04 | Carbon Technology Holdings, LLC | Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates |
US11358119B2 (en) | 2014-01-16 | 2022-06-14 | Carbon Technology Holdings, LLC | Carbon micro-plant |
US11413601B2 (en) | 2014-10-24 | 2022-08-16 | Carbon Technology Holdings, LLC | Halogenated activated carbon compositions and methods of making and using same |
US11458452B2 (en) | 2014-02-24 | 2022-10-04 | Carbon Technology Holdings, LLC | Highly mesoporous activated carbon |
US11753698B2 (en) | 2020-09-25 | 2023-09-12 | Carbon Technology Holdings, LLC | Bio-reduction of metal ores integrated with biomass pyrolysis |
US11851723B2 (en) | 2021-02-18 | 2023-12-26 | Carbon Technology Holdings, LLC | Carbon-negative metallurgical products |
US11932814B2 (en) | 2021-04-27 | 2024-03-19 | Carbon Technology Holdings, LLC | Biocarbon blends with optimized fixed carbon content, and methods for making and using the same |
US11987763B2 (en) | 2021-07-09 | 2024-05-21 | Carbon Technology Holdings, LLC | Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom |
US12103892B2 (en) | 2021-11-12 | 2024-10-01 | Carbon Technology Holdings, LLC | Biocarbon compositions with optimized compositional parameters, and processes for producing the same |
-
2002
- 2002-02-08 JP JP2002031661A patent/JP2003238136A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11879107B2 (en) | 2011-04-15 | 2024-01-23 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
US10174267B2 (en) | 2011-04-15 | 2019-01-08 | Carbon Technology Holdings, LLC | Process for producing high-carbon biogenic reagents |
US12084623B2 (en) | 2011-04-15 | 2024-09-10 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
US11965139B2 (en) | 2011-04-15 | 2024-04-23 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
US11959038B2 (en) | 2011-04-15 | 2024-04-16 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
US10889775B2 (en) | 2011-04-15 | 2021-01-12 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
US10982161B2 (en) | 2011-04-15 | 2021-04-20 | Carbon Technology Holdings, LLC | Process for producing high-carbon biogenic reagents |
US11091716B2 (en) | 2011-04-15 | 2021-08-17 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
US11891582B2 (en) | 2011-04-15 | 2024-02-06 | Carbon Technology Holdings, LLC | High-carbon biogenic reagents and uses thereof |
US11674101B2 (en) | 2011-04-15 | 2023-06-13 | Carbon Technology Holdings, LLC | Process for producing high-carbon biogenic reagents |
US11286440B2 (en) | 2011-04-15 | 2022-03-29 | Carbon Technology Holdings, LLC | Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis |
US11359154B2 (en) | 2011-04-15 | 2022-06-14 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
US10611977B2 (en) | 2011-04-15 | 2020-04-07 | Carbon Technology Holdings, LLC | Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis |
US10167437B2 (en) | 2011-04-15 | 2019-01-01 | Carbon Technology Holdings, LLC | Systems and apparatus for production of high-carbon biogenic reagents |
US11285454B2 (en) | 2012-05-07 | 2022-03-29 | Carbon Technology Holdings, LLC | Biogenic activated carbon and methods of making and using same |
JP2015523946A (en) * | 2012-05-07 | 2015-08-20 | バイオジェニック レゲント ベンチャーズ エルエルシー | Biogenic activated carbon and methods of making and using it |
US11213801B2 (en) | 2013-10-24 | 2022-01-04 | Carbon Technology Holdings, LLC | Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates |
US11358119B2 (en) | 2014-01-16 | 2022-06-14 | Carbon Technology Holdings, LLC | Carbon micro-plant |
US11458452B2 (en) | 2014-02-24 | 2022-10-04 | Carbon Technology Holdings, LLC | Highly mesoporous activated carbon |
US11413601B2 (en) | 2014-10-24 | 2022-08-16 | Carbon Technology Holdings, LLC | Halogenated activated carbon compositions and methods of making and using same |
CN111137888A (en) * | 2019-10-30 | 2020-05-12 | 靖州县华荣活性炭有限责任公司 | Method for producing activated carbon by phosphoric acid method |
US11753698B2 (en) | 2020-09-25 | 2023-09-12 | Carbon Technology Holdings, LLC | Bio-reduction of metal ores integrated with biomass pyrolysis |
US11851723B2 (en) | 2021-02-18 | 2023-12-26 | Carbon Technology Holdings, LLC | Carbon-negative metallurgical products |
US11932814B2 (en) | 2021-04-27 | 2024-03-19 | Carbon Technology Holdings, LLC | Biocarbon blends with optimized fixed carbon content, and methods for making and using the same |
US11987763B2 (en) | 2021-07-09 | 2024-05-21 | Carbon Technology Holdings, LLC | Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom |
US12103892B2 (en) | 2021-11-12 | 2024-10-01 | Carbon Technology Holdings, LLC | Biocarbon compositions with optimized compositional parameters, and processes for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003238136A (en) | Method of and device for producing carbon material having high specific surface area | |
HU211406B (en) | Method and apparatus for the treatment of organic materials and cooling unit for the cooling of coal produced in a carbonizing reactor | |
JP2003286021A (en) | Apparatus for manufacturing carbon material of high specific surface area | |
CN1219192A (en) | Energy efficient liquefaction of biomaterials by thermolysis | |
CN112717679A (en) | Organic waste gas multistage purification equipment and process integrating regenerative oxidation function | |
JP2006187694A (en) | Apparatus and method for vacuum continuous thermal decomposition treatment | |
CN102557383A (en) | Inclined disk blade dryer for drying sludge and treatment method thereof | |
BR102013005295A2 (en) | Pyrolysis process of an organic matrix material | |
CN101185820A (en) | Method and device for fathering fish powder waste gases | |
JP2016093811A (en) | Method for producing oil and gas adsorbent, and oil and gas adsorbent | |
CN212532883U (en) | Biomass gasification furnace integrating gas collection and tar removal | |
CN202519200U (en) | Organic waste cracking and carbonizing system with smoke recirculation | |
CN214781653U (en) | Continuous biomass pyrolysis equipment | |
KR100729371B1 (en) | Apparatus for manufacturing charcoal and pyroligneous liquor from rice hulls | |
CN206486389U (en) | Wastewater photocatalytic degradation device | |
CN103214139A (en) | Gas production wastewater comprehensive treatment technology | |
CN1090670C (en) | Gas purifying method and apparatus | |
JPH05500529A (en) | Methods and apparatus for purifying or treating substances | |
CN201625658U (en) | Organic waste cracking and carbonizing system with novel tail gas treating device | |
CN205603520U (en) | Domestic waste dry distillation conversion processing system | |
CN104150736A (en) | Latent heat transpiration stink treatment device and sludge cake drying and stink treatment method | |
CN205628880U (en) | System for handle organic rubbish | |
CN107082552A (en) | A kind of low temperature dewatered sludge processing unit | |
CN105597484B (en) | Active carbon by chemical method produces purification and the recovery system of tail gas | |
KR200401569Y1 (en) | Apparatus for manufacturing charcoal and pyroligneous liquor from rice hulls |