JP2003236558A - Water cleaning system - Google Patents

Water cleaning system

Info

Publication number
JP2003236558A
JP2003236558A JP2002042706A JP2002042706A JP2003236558A JP 2003236558 A JP2003236558 A JP 2003236558A JP 2002042706 A JP2002042706 A JP 2002042706A JP 2002042706 A JP2002042706 A JP 2002042706A JP 2003236558 A JP2003236558 A JP 2003236558A
Authority
JP
Japan
Prior art keywords
water
sludge
membrane
membrane separation
basin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002042706A
Other languages
Japanese (ja)
Inventor
Shinichi Yoshikawa
慎一 吉川
Daisuke Hirano
大助 平野
Takuya Tsunesumi
卓也 常住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2002042706A priority Critical patent/JP2003236558A/en
Publication of JP2003236558A publication Critical patent/JP2003236558A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the recovery rate (water cleaning efficiency) of cleaning effluent of a sand filter basin by efficiently treating the cleaning effluent. <P>SOLUTION: The cleaning effluent 22 is admitted from a sand filtration basin 16 into the coagulation and sedimentation basin 20 of a cleaning effluent treatment facility 10 and is separated at a high speed to thick sludge 32 and supernatant 26. The thick sludge 32 is stored together with the withdrawn sludge 15 in a sludge basin 18 and is then admitted into a sludge membrane separator 40 and membrane separated water 44 is formed in a rotary flat membrane separator 50. The membrane separated water 44 is refluxed to a reception well 12. On the other hand, the supernatant 26 of the coagulation and sedimentation basin 20 is subjected to membrane filtration in a supernatant membrane separator 28 and is refluxed as treated water 30 to the reception well 12. The membrane separated water 44 subjected to the membrane filtration and the treated water 30 are refluxed to the reception well 12, by which the increase of the treatment load in the sand filtration basin 16 is prevented. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、浄水システムに係
り、特に砂濾過池を有する浄水システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purification system, and more particularly to a water purification system having a sand filter.

【0002】[0002]

【従来の技術】一般に浄水製造設備は、河川等から着水
井に取込んだ原水に凝集剤(ポリ塩化アルミニウム:P
ACなど)などを注入し、沈殿池で比較的粒子の大きい
懸濁物質(以下:SS)を沈殿除去させた後、さらに、
砂濾過池で原水中の微粒子のSSを除去し、消毒剤を注
入して清浄な水としている。
2. Description of the Related Art Generally, water purification facilities use a flocculant (polyaluminum chloride: P) for raw water taken into a landing well from a river or the like.
(AC, etc.) and the like are injected, and after a suspended substance (hereinafter, SS) having relatively large particles is precipitated and removed in a sedimentation tank, further,
Fine sand SS is removed from the raw water in a sand filter, and a disinfectant is injected to make clean water.

【0003】この場合、砂濾過池の濾過砂層が微粒子に
より閉塞するため、安定運転を行うためには定期的に逆
洗などの物理的な洗浄が必要である。この物理洗浄によ
って、浄水製造設備における処理水量の10%以上の水
を含んだ大量の洗浄排水が発生し、これにより水の回収
率が大幅に低下する。これを解決するために、洗浄排水
を着水井または沈殿池に還流させ、水の回収率の低下防
止が図られている。
In this case, the filter sand layer of the sand filter basin is clogged with fine particles, and therefore physical cleaning such as backwashing is regularly required for stable operation. By this physical cleaning, a large amount of cleaning waste water containing 10% or more of the amount of treated water in the purified water manufacturing facility is generated, and thereby the recovery rate of water is significantly reduced. In order to solve this problem, washing wastewater is returned to the landing well or sedimentation basin to prevent the water recovery rate from decreasing.

【0004】[0004]

【発明が解決しようとする課題】しかし、洗浄排水を再
び原水として使用するため、砂濾過池の原水中のSSが
著しく増加し、砂濾過池における処理負荷が増大する欠
点があった。これにより、クリプトスポリジウムなど殺
菌の困難な原虫類は砂濾過池に長期間滞留することとな
り、疫学的なリスクも高くなるという問題が発生する。
However, since the cleaning waste water is reused as raw water, SS in the raw water of the sand filter basin remarkably increases, and the treatment load in the sand filter basin increases. As a result, protozoa such as Cryptosporidium that are difficult to sterilize stay in the sand filter for a long period of time, which raises a problem that epidemiological risk increases.

【0005】これを解決するために、還流前に洗浄排水
を濃縮槽で濃縮し、重力分離された上澄水を着水井また
は沈殿池に還流することが試みられている。しかし、砂
濾過前の沈殿池で沈殿除去できなかったSSに対して、
濃縮槽による沈殿除去を行っても、その沈降性は悪い。
また、濃縮槽で長期間滞留することにより汚泥が嫌気化
し、汚泥からのマンガンの溶出、有機物の腐敗などによ
って還流水の水質の悪化を招き、沈殿池や砂濾過池にお
ける処理負荷がさらに増大してしまう欠点があった。
In order to solve this, it has been attempted to concentrate the washing wastewater in a concentrating tank before the reflux, and to recycle the gravity-separated supernatant water to a landing well or a sedimentation basin. However, for SS that could not be removed in the sedimentation tank before sand filtration,
Even if the precipitate is removed by the concentration tank, its settling property is poor.
In addition, sludge becomes anaerobic by staying in the thickening tank for a long period of time, the elution of manganese from the sludge, the deterioration of water quality of the reflux water due to the decomposition of organic matter, and the treatment load in the sedimentation basin and sand filtration basin further increases. There was a drawback that

【0006】本発明はこのような事情に鑑みてなされた
もので、砂濾過池の洗浄排水を効率よく処理することが
でき、その処理水の疫学的なリスクや水質悪化を招くこ
とがないので、処理水を浄水製造設備に還流させても、
砂濾過池における処理負荷が増大することがなく、洗浄
排水の回収率(浄水効率)を高めることができる浄水シ
ステムを提供することを目的とする。
The present invention has been made in view of the above circumstances and can efficiently treat the cleaning and drainage water of the sand filter basin, without causing the epidemiological risk of the treated water and the deterioration of the water quality. , Even if the treated water is returned to the purified water manufacturing facility,
An object of the present invention is to provide a water purification system capable of increasing the recovery rate (water purification efficiency) of cleaning wastewater without increasing the processing load in the sand filter.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1は前記
目的を達成するために、砂濾過池を有する浄水製造設備
と前記砂濾過池の洗浄排水を処理する洗浄排水処理設備
とを備えた浄水システムにおいて、前記洗浄排水処理設
備は、前記洗浄排水を上澄水と濃縮汚泥に分離させる凝
集沈殿池と前記濃縮汚泥を膜分離処理する汚泥膜分離装
置と、を備え、前記上澄水と前記膜分離装置で膜分離さ
れた膜分離水とを前記浄水製造設備の入口側に還流させ
ることを特徴とする。
In order to achieve the above-mentioned object, claim 1 of the present invention comprises a water purification facility having a sand filter and a cleaning wastewater treatment facility for treating the cleaning wastewater of the sand filter. In the purified water system, the washing wastewater treatment facility comprises a coagulating sedimentation tank for separating the washing wastewater into supernatant water and concentrated sludge, and a sludge membrane separation device for subjecting the concentrated sludge to membrane separation treatment, and the supernatant water and the It is characterized in that the membrane-separated water that has been membrane-separated by the membrane separation device is refluxed to the inlet side of the purified water production facility.

【0008】請求項1に記載の発明によれば、砂濾過池
の洗浄排水を凝集沈殿池を使用して上澄水と濃縮汚泥に
分離することにより、短い滞留時間で効率的に分離でき
るようにするとともに、洗浄排水を上澄水と濃縮汚泥に
分離して汚泥の減容化を図ることにより、濃縮汚泥を汚
泥膜分離装置で効率的に膜分離できるようにした。これ
により、凝集沈殿池からの上澄水と汚泥膜分離装置から
の膜分離水の水質が良くなるので、浄水清浄設備に還流
しても、沈殿池や砂濾過池における処理負荷を増大させ
ることなく、洗浄排水の回収率を高めることができる。
According to the first aspect of the present invention, the washing wastewater of the sand filter basin is separated into the supernatant water and the concentrated sludge by using the coagulating sedimentation basin so that they can be efficiently separated in a short residence time. At the same time, the washing wastewater is separated into the supernatant water and the concentrated sludge to reduce the volume of the sludge, so that the concentrated sludge can be efficiently membrane-separated by the sludge membrane separator. As a result, the quality of the supernatant water from the coagulation sedimentation tank and the quality of the membrane separation water from the sludge membrane separation device are improved, so even if the water is recycled to the water purification facility, the treatment load in the sedimentation tank and sand filtration tank will not increase. It is possible to increase the recovery rate of cleaning wastewater.

【0009】本発明の請求項2によれば、請求項1にお
いて、凝集沈殿池によって得られた上澄水を上澄水膜分
離装置で膜分離し、膜分離された膜分離水を浄水製造設
備の入口側に還流させるようにしたので、凝集沈殿池で
分離された上澄水の水質を更に良化させて浄水製造設備
に還流できる。
According to a second aspect of the present invention, in the first aspect, the supernatant water obtained by the coagulating sedimentation tank is subjected to membrane separation by a supernatant water membrane separator, and the membrane-separated water thus separated is used in a water purification facility. Since the water is refluxed to the inlet side, the quality of the supernatant water separated in the coagulation sedimentation tank can be further improved and the water can be recycled to the purified water production facility.

【0010】本発明の請求項3によれば、請求項2にお
いて、汚泥膜分離装置として回転平膜分離装置を使用
し、上澄水膜分離装置として浸漬平膜型膜分離装置又は
中空糸型膜分離装置を使用するようにしたので、濃縮汚
泥のように濃い汚泥を少量濾過するのに適している回転
平膜分離装置の特性と、上澄水のように汚泥濃度の薄い
液を大量処理するのに適している浸漬平膜型膜分離装置
又は中空糸型膜分離装置の特性とを有効活用できる。
According to a third aspect of the present invention, in the second aspect, a rotary flat membrane separator is used as the sludge membrane separator, and an immersion flat membrane type membrane separator or a hollow fiber type membrane is used as the supernatant water membrane separator. Since the separation device is used, the characteristics of the rotary flat membrane separation device that is suitable for filtering a small amount of thick sludge such as concentrated sludge and the large-scale treatment of liquid with a thin sludge concentration such as supernatant water It is possible to effectively utilize the characteristics of the immersion flat membrane type membrane separator or the hollow fiber type membrane separator suitable for the above.

【0011】[0011]

【発明の実施の形態】以下、添付図面に従って本発明に
係る浄水システムの好ましい実施の形態について詳説す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a water purification system according to the present invention will be described below in detail with reference to the accompanying drawings.

【0012】図1は本発明に係る浄水システムの構成図
であり、浄水システムは、浄水製造設備5と洗浄排水処
理設備10とで構成される。
FIG. 1 is a block diagram of a water purification system according to the present invention. The water purification system comprises a water purification facility 5 and a cleaning wastewater treatment facility 10.

【0013】浄水製造設備5は、主として着水井12、
沈澱池14、砂濾過池16から構成される。
The purified water production facility 5 mainly comprises the landing well 12,
It consists of a sedimentation basin 14 and a sand filtration basin 16.

【0014】着水井12では、沈砂池(図示せず)から
供給される原水を一時貯水させ、水位変動の安定化およ
び流量調節を行った後、原水中のSSを凝集沈殿させる
PAC等の凝集剤が原水中に添加される。
In the landing well 12, the raw water supplied from a sand basin (not shown) is temporarily stored, and after stabilizing the fluctuation of the water level and adjusting the flow rate, the SS in the raw water is agglomerated and agglomerated. The agent is added to the raw water.

【0015】沈澱池14では、比較的粒子の大きいSS
の沈澱を行わせる。沈澱池14にて沈澱されたSSは沈
澱池14から引き抜かれ、引き抜き汚泥15として後述
する排泥池18に排出される一方、沈澱池14から流出
する処理水は砂濾過池16に流入する。
In the sedimentation basin 14, SS having relatively large particles is used.
Cause precipitation. The SS precipitated in the settling basin 14 is drawn out from the settling basin 14 and discharged as a drawn-out sludge 15 to a sludge basin 18 described later, while the treated water flowing out of the settling basin 14 flows into a sand filter basin 16.

【0016】砂濾過池16では、沈澱池14からの処理
水を砂濾過することにより、砂濾過水17を得る。この
場合、着水井12にて凝集処理された処理水を砂濾過さ
せることで、早い速度(5〜10m/h程度)で処理水
を濾過させることができる。しかし、砂濾過池16は長
期間の運転により濾過砂層が微粒子により閉塞するた
め、安定運転を行うためには定期的に逆洗などの物理的
な洗浄が必要であり、この濾過砂層の物理洗浄によって
洗浄排水22が発生する。この洗浄排水22は回収さ
れ、排水池24に流入される。なお、砂濾過水17は図
示しない活性炭吸着池などを経て清浄水として系外に排
出される。
In the sand filtration basin 16, the treated water from the sedimentation basin 14 is subjected to sand filtration to obtain sand filtration water 17. In this case, it is possible to filter the treated water at a high speed (about 5 to 10 m / h) by sand-filtering the treated water coagulated in the landing well 12. However, since the sand filter basin 16 is clogged with fine particles in the sand filter layer due to long-term operation, physical cleaning such as backwashing is regularly required for stable operation. As a result, the cleaning drainage 22 is generated. This cleaning drainage 22 is collected and introduced into the drainage basin 24. The sand filtered water 17 is discharged out of the system as clean water through an activated carbon adsorption basin (not shown).

【0017】図1の破線部分によって示される洗浄排水
処理設備10は、沈殿池14および砂濾過池16にて排
出された引き抜き汚泥および洗浄排水を膜濾過処理した
後、前述した浄水製造設備5に還流させる設備である。
The washing wastewater treatment facility 10 shown by the broken line portion in FIG. 1 is subjected to membrane filtration treatment of the drawn sludge and the washing wastewater discharged from the settling basin 14 and the sand filtration basin 16 and then to the above-mentioned purified water producing facility 5. It is a facility for reflux.

【0018】この洗浄排水処理設備10は、主として凝
集沈殿池20、汚泥膜分離装置40、上澄水膜分離装置
28などから構成され、排水池24にて貯水された洗浄
排水22が凝集沈殿池20に流入される。
The cleaning wastewater treatment facility 10 is mainly composed of a coagulation sedimentation tank 20, a sludge membrane separation device 40, a supernatant water membrane separation device 28, and the like, and the cleaning wastewater 22 stored in the drainage tank 24 is the coagulation sedimentation tank 20. Is flowed into.

【0019】凝集沈殿池20は水面積負荷が1000m
3 /m2 ・日以上の高速型であることが好ましく、例え
ばスラリ循環型や、マイクロサンド型などを用いること
ができる。
The coagulation sedimentation tank 20 has a water area load of 1000 m.
A high speed type of 3 / m 2 · day or more is preferable, and for example, a slurry circulation type or a micro sand type can be used.

【0020】図2にスラリ循環型の凝集沈殿池20Aを
示す。
FIG. 2 shows a slurry circulation type coagulating sedimentation tank 20A.

【0021】同図に示すように、凝集沈殿池20Aは主
として攪拌槽(凝集反応槽)62、フロック形成池6
4、沈殿槽66などから構成される。攪拌槽62および
フロック形成池64には攪拌翼が設けられており、排水
池24(図1参照)から攪拌槽62に流入する洗浄排水
22は、攪拌槽62にてPACが添加されつつ攪拌翼に
て急速攪拌される。これにより、洗浄排水22内のSS
が凝集されてフロック群が形成される。フロック形成池
64では攪拌槽62よりも緩やかな攪拌が行われ、安定
したフロック群が形成される。これらフロック群はフロ
ック形成池64における攪拌力によってフロック形成池
64から沈殿槽66に流入される。沈殿槽66に流入さ
れたフロック群は重力分離されて沈殿槽66底部に沈殿
される。これにより沈殿槽66にて得られた上澄水26
は回収され、後述する上澄水膜分離装置28に流入され
る。なお、傾斜板70は沈殿槽66の面積効率を向上さ
せるために設けられ、これによりフロック群は効率よく
沈殿される。ここで一部のフロック群はフロック形成池
64に返送され(符号65)、底部に沈殿されたその他
のフロック群は濃縮汚泥32として排泥池18(図1参
照)に排出される。
As shown in the figure, the flocculation sedimentation tank 20A mainly comprises a stirring tank (coagulation reaction tank) 62 and a floc formation tank 6.
4 and a settling tank 66. The stirring tank 62 and the floc formation pond 64 are provided with stirring blades, and the cleaning wastewater 22 flowing into the stirring tank 62 from the drainage tank 24 (see FIG. 1) is stirred by the stirring tank 62 while PAC is added. Is stirred rapidly. As a result, the SS in the cleaning drainage 22
Are aggregated to form floc groups. In the floc formation pond 64, gentle stirring is performed as compared with the stirring tank 62, and a stable floc group is formed. These floc groups flow from the floc formation pond 64 into the settling tank 66 by the stirring force in the floc formation pond 64. The flocs flowing into the settling tank 66 are gravity-separated and settled at the bottom of the settling tank 66. With this, the supernatant water 26 obtained in the settling tank 66
Are collected and flowed into the supernatant water membrane separation device 28 described later. The inclined plate 70 is provided to improve the area efficiency of the settling tank 66, whereby the floc group is efficiently settled. Here, a part of the floc group is returned to the floc formation pond 64 (reference numeral 65), and the other floc group settled at the bottom is discharged to the drainage pond 18 (see FIG. 1) as the concentrated sludge 32.

【0022】図3にマイクロサンド型の凝集沈殿池20
Bを示す。
FIG. 3 shows a microsand type coagulating sedimentation tank 20.
B is shown.

【0023】凝集沈殿池20Bは攪拌槽(急速攪拌槽)
74、注入攪拌槽76、フロック形成池78、沈殿槽8
0、マイクロサンド回収装置82などから構成される。
排水池24から攪拌槽74に洗浄排水22が流入され、
攪拌槽74にてPACが添加されつつ急速攪拌される。
さらに注入攪拌槽76にてマイクロサンドと高分子凝集
剤が添加される。この際、マイクロサンドの添加によっ
て凝集に要する界面積が増加し、凝集速度および凝集効
果が増大する。フロック形成池78および沈殿槽80に
おける効果は前述したスラリ循環型と同様であるためそ
の説明は省略するが、沈殿槽80にて回収された濃縮汚
泥32は、一部をマイクロサンド回収装置82に圧入さ
れる(符号83)。マイクロサンド回収装置82は液体
サイクロンからなり、マイクロサンド回収装置82に圧
入された濃縮汚泥32は液体サイクロンによって旋回運
動が与えられ、これによる遠心力にてマイクロサンドと
汚泥に分離され、マイクロサンドが回収される。回収さ
れたマイクロサンドは再利用に供される。
The coagulating sedimentation tank 20B is a stirring tank (quick stirring tank).
74, injection stirring tank 76, floc formation pond 78, precipitation tank 8
0, a micro sand recovery device 82, and the like.
The cleaning wastewater 22 flows from the drainage pond 24 into the stirring tank 74,
In the stirring tank 74, PAC is added and rapidly stirred.
Further, the micro sand and the polymer coagulant are added in the injection stirring tank 76. At this time, the addition of microsands increases the interfacial area required for aggregation, and the aggregation speed and the aggregation effect are increased. The effect in the floc formation basin 78 and the settling tank 80 is the same as that of the slurry circulation type described above, so the description thereof will be omitted. It is press-fitted (reference numeral 83). The microsand recovery device 82 is composed of a liquid cyclone, and the concentrated sludge 32 press-fitted into the microsand recovery device 82 is given a swirling motion by the liquid cyclone, and is separated into microsand and sludge by centrifugal force by this, and the microsand is separated. Be recovered. The collected microsands are reused.

【0024】そして、図1に示すように、高速型の凝集
沈殿池20からの濃縮汚泥32と、沈殿池14からの引
き抜き汚泥15の双方を、原汚泥42として排泥池18
に貯留する。なお、排泥池18には原汚泥42の嫌気化
を防ぐ散気装置34などを付加してもよい。排泥池18
に貯留された原汚泥42は、汚泥膜分離装置40に設け
られた汚泥槽43にて一旦貯留され、回転平膜分離装置
50に流入される。
Then, as shown in FIG. 1, both the concentrated sludge 32 from the high-speed type coagulating sedimentation tank 20 and the drawn-out sludge 15 from the sedimentation tank 14 are used as the original sludge 42 in the drainage pond 18
Store in. The drainage pond 18 may be provided with an air diffuser 34 or the like that prevents the raw sludge 42 from being anaerobicized. Sludge pond 18
The raw sludge 42 stored in is temporarily stored in the sludge tank 43 provided in the sludge membrane separation device 40, and then flows into the rotary flat membrane separation device 50.

【0025】回転平膜分離装置50は、平行な複数の中
空回転軸52,52が回転自在に並設され、夫々の中空
回転軸52には、その軸方向に所定間隔をもって形成さ
れた連通孔(図示せず)位置に回転平膜54,54…が
取り付けられている。この回転平膜54は、円板状に形
成された膜支持体状の不織布や網等の通水性を有するス
ペーサに、精密ろ過膜あるいは限外ろ過膜等の膜を被覆
して形成されている。この膜の素材としては、ポリオレ
フィン系、ポリエチレン系、ポリオレフィン系の有機高
分子膜、金属膜、セラミック膜等を使用することができ
る。中空回転軸52は図示しないモータによって同方向
に回転される。また、中空回転軸52の中空部を吸引ポ
ンプ(図示せず)で吸引することによって、回転平膜5
4を介して原汚泥42から膜分離水44を吸引させる。
なお、回転平膜分離装置50で排出された濃縮汚泥58
は、汚泥膜分離装置40から排出され、機械脱水・天日
乾燥などの汚泥処理がなされた後、破棄される。
In the rotary flat membrane separation device 50, a plurality of parallel hollow rotary shafts 52, 52 are rotatably arranged side by side, and each hollow rotary shaft 52 has a communication hole formed at a predetermined interval in the axial direction thereof. The rotating flat membranes 54, 54 ... Are attached at positions (not shown). The rotary flat membrane 54 is formed by coating a water-permeable spacer such as a disc-shaped non-woven fabric or a net in a disk shape with a membrane such as a microfiltration membrane or an ultrafiltration membrane. . As the material of this film, a polyolefin-based, polyethylene-based, polyolefin-based organic polymer film, metal film, ceramic film or the like can be used. The hollow rotary shaft 52 is rotated in the same direction by a motor (not shown). In addition, by sucking the hollow portion of the hollow rotary shaft 52 with a suction pump (not shown), the rotary flat membrane 5
The membrane-separated water 44 is sucked from the raw sludge 42 through 4.
It should be noted that the concentrated sludge 58 discharged by the rotary flat membrane separation device 50
Is discharged from the sludge membrane separation device 40, subjected to sludge treatment such as mechanical dehydration and sun drying, and then discarded.

【0026】汚泥膜分離装置40によって処理された膜
分離水44は返送用水槽56に貯水され、浄水製造設備
5の着水井12に還流される。
The membrane separation water 44 treated by the sludge membrane separation device 40 is stored in the return water tank 56 and is returned to the landing well 12 of the purified water production facility 5.

【0027】このように、凝集沈殿池20と汚泥膜分離
装置40との2段処理によって、洗浄排水から効率よく
上澄水26と膜分離水44を回収し、還流水として有効
活用できる。
As described above, by the two-stage treatment of the coagulation sedimentation tank 20 and the sludge membrane separation device 40, the supernatant water 26 and the membrane separation water 44 can be efficiently recovered from the washing waste water, and can be effectively used as reflux water.

【0028】一方、凝集沈殿池20によって分離された
上澄水26は、上澄水膜分離装置28にて膜濾過処理さ
せる。上澄水膜分離装置28には、濾過膜として、精密
濾過膜や限外濾過膜を使用することができるが、上澄水
膜分離装置28は低圧力で大量の水が処理できることが
望ましいことから精密濾過膜がより好ましい。また、上
澄水膜分離装置28の濾過装置の種類としては、容積効
率が良く、薄い汚泥(低濃度の汚泥)を大量に処理でき
る中空糸膜や浸漬平膜などを用いることが好ましい。上
澄水膜分離装置28によって上澄水26を膜濾過させた
処理水30は着水井12に還流される。ここで、処理水
30を着水井12に還流させているが、着水井12で
は、主に水位変動の安定化やPACの添加などが行われ
るに過ぎないため、処理水30の還流量やPACの添加
量によっては沈殿池14に還流させてもよい。
On the other hand, the supernatant water 26 separated by the coagulating sedimentation tank 20 is subjected to a membrane filtration treatment by a supernatant water membrane separator 28. Although a microfiltration membrane or an ultrafiltration membrane can be used as the filtration membrane in the supernatant water membrane separation device 28, it is desirable that the supernatant water membrane separation device 28 can process a large amount of water at low pressure. A filtration membrane is more preferred. Further, as the type of the filtration device of the supernatant water membrane separation device 28, it is preferable to use a hollow fiber membrane or a submerged flat membrane, which has good volume efficiency and can process a large amount of thin sludge (low-concentration sludge). The treated water 30 obtained by subjecting the supernatant water 26 to membrane filtration by the supernatant water membrane separator 28 is returned to the landing well 12. Here, the treated water 30 is returned to the landing well 12, but in the landing well 12, mainly the stabilization of the water level fluctuation and the addition of PAC are only performed, and therefore the amount of the treated water 30 refluxed and the PAC. It may be refluxed to the settling basin 14 depending on the addition amount of.

【0029】以上のごとく構成された浄水システムの作
用について説明する。
The operation of the water purification system configured as above will be described.

【0030】図1において、着水井12にて凝集処理さ
れた原水は、着水井12から沈澱池14に流入され、沈
澱池14にてSSの沈殿が行われる。沈殿されたSSは
沈澱池14から引き抜き汚泥15として排泥池18に排
出される。沈澱池14から流出する処理水は砂濾過池1
6へと流入され、砂濾過池16にて砂濾過水17が得ら
れる。砂濾過池16からの洗浄排水22は、排水池24
にて貯水され、凝集沈殿池20に流入される。
In FIG. 1, the raw water coagulated in the landing well 12 flows into the sedimentation basin 14 from the landing well 12, and SS is precipitated in the sedimentation basin 14. The precipitated SS is withdrawn from the settling basin 14 and discharged as sludge 15 to a drainage basin 18. The treated water flowing out from the settling basin 14 is a sand filter basin 1.
6, and sand filtration water 17 is obtained in the sand filtration pond 16. The cleaning drainage 22 from the sand filtration basin 16 is a drainage basin 24.
The water is stored in and is flowed into the coagulation sedimentation tank 20.

【0031】凝集沈殿池20では上澄水26と濃縮汚泥
32が高速分離され、このうち濃縮汚泥32が沈殿池1
4からの引き抜き汚泥15とともに、排泥池18にて原
汚泥42として貯留される。この原汚泥42は、汚泥膜
分離装置40の汚泥槽43を介して回転平膜分離装置5
0に流入されて膜分離される。膜分離することでSSや
クリプトスポリジウムなどの原虫類、大腸菌類等は膜分
離水44から除去される。膜分離水44は、返送用水槽
56にて貯水された後、着水井12または沈殿池14に
還流される。
In the coagulation sedimentation tank 20, the supernatant water 26 and the concentrated sludge 32 are separated at high speed, and the concentrated sludge 32 is the sedimentation tank 1
Along with the sludge 15 drawn out from No. 4, it is stored as the original sludge 42 in the drainage pond 18. This raw sludge 42 is passed through the sludge tank 43 of the sludge membrane separation device 40 to the rotary flat membrane separation device 5
It is flowed into 0 and separated into membranes. By membrane separation, protozoa such as SS and Cryptosporidium, Escherichia coli, etc. are removed from the membrane separation water 44. The membrane separation water 44 is stored in the return water tank 56 and then returned to the landing well 12 or the settling basin 14.

【0032】一方、凝集沈殿池20で分離された上澄水
26は、上澄水膜分離装置28にて膜濾過処理され着水
井12または沈殿池14に処理水30として還流され
る。
On the other hand, the supernatant water 26 separated in the coagulation sedimentation tank 20 is subjected to membrane filtration treatment in the supernatant water membrane separation device 28 and is returned to the landing well 12 or the sedimentation tank 14 as treated water 30.

【0033】このように、砂濾過池16の洗浄排水22
を高速型の凝集沈殿池20にて上澄水26と濃縮汚泥3
2に高速分離させ、この濃縮汚泥32を汚泥膜分離装置
40で膜分離するようにしたので、汚泥膜分離装置40
で膜分離する前の汚泥を減容化することができる。これ
により、汚泥膜分離装置40における膜分離効率を高め
ることができるので、洗浄排水中に含有される汚泥から
水質の良好な膜分離水44を効率的に回収して浄水製造
設備5に還流させることができる。また、洗浄排水22
を上澄水26と濃縮汚泥32に分離させる装置として高
速型の凝集沈殿池20を使用したので、沈降性の悪いS
Sも高速沈降でき、しかも凝集沈殿池20での滞留期間
も短くなるので、処理効率を高めることができる。逆説
的に言えば、凝集沈殿池20の後段に汚泥膜分離装置4
0が控えているので、凝集沈殿池20では厳密な処理を
必要とせず、高速処理を第一として処理効率を高めるこ
とができる。このため、凝集沈殿池20での処理中に汚
泥が嫌気化し、汚泥からのマンガンの溶出、有機物の腐
敗などによって上澄水の水質が悪化することもない。
In this way, the cleaning drainage 22 of the sand filtration pond 16
In a high-speed type coagulation sedimentation tank 20 with supernatant water 26 and concentrated sludge 3
Since the concentrated sludge 32 is subjected to membrane separation by the sludge membrane separation device 40, the sludge membrane separation device 40
The volume of sludge before membrane separation can be reduced. As a result, the membrane separation efficiency in the sludge membrane separation device 40 can be increased, so that the membrane separated water 44 with good water quality can be efficiently recovered from the sludge contained in the cleaning wastewater and returned to the purified water production facility 5. be able to. In addition, the cleaning drainage 22
Since the high-speed type coagulating sedimentation tank 20 was used as a device for separating the supernatant water 26 and the concentrated sludge 32, the S
S can also be settled at high speed, and the residence time in the flocculation settling tank 20 is shortened, so that the treatment efficiency can be improved. Paradoxically, the sludge membrane separation device 4 is provided after the coagulation sedimentation tank 20.
Since 0 is reserved, the coagulation sedimentation basin 20 does not require strict treatment, and high-speed treatment can be the first to improve treatment efficiency. Therefore, the sludge does not become anaerobic during the treatment in the coagulation sedimentation tank 20, and the quality of the supernatant water does not deteriorate due to the elution of manganese from the sludge and the decomposition of organic matter.

【0034】したがって、沈殿池14や砂濾過池16に
おける処理負荷を増大させることなく洗浄排水22の回
収率(浄水効率)を高めることができる。また、砂濾過
池16における処理負荷が増大しないので、クリプトス
ポリジウムなど殺菌の困難な原虫類は砂濾過池16に長
期間滞留することがなく、したがって疫学的なリスクも
なくなる。また、汚泥膜分離装置40で膜分離する前の
汚泥を減容化することにより、汚泥膜分離装置40をコ
ンパクト化できる。
Therefore, the recovery rate (cleaning efficiency) of the cleaning wastewater 22 can be increased without increasing the processing load on the settling basin 14 and the sand filtration basin 16. In addition, since the processing load on the sand filter 16 does not increase, protozoa such as Cryptosporidium that are difficult to sterilize do not stay in the sand filter 16 for a long period of time, thus eliminating the epidemiological risk. Further, by reducing the volume of the sludge before the membrane separation by the sludge membrane separation device 40, the sludge membrane separation device 40 can be made compact.

【0035】さらに、凝集沈殿池20によって得られた
上澄水26を上澄水膜分離装置28で膜分離し、膜分離
された処理水30を浄水製造設備5の入口側に還流させ
るようにしたので、凝集沈殿池20で分離された上澄水
26の水質を更に良化させて浄水製造設備に還流させる
ことができる。
Further, the supernatant water 26 obtained by the coagulating sedimentation tank 20 is subjected to membrane separation by a supernatant water membrane separator 28, and the treated water 30 subjected to membrane separation is refluxed to the inlet side of the purified water production facility 5. It is possible to further improve the quality of the supernatant water 26 separated in the coagulation sedimentation tank 20 and to recirculate it to the purified water manufacturing facility.

【0036】また、汚泥膜分離装置40として回転平膜
分離装置50を使用し、上澄水膜分離装置28として浸
漬平膜型膜分離装置又は中空糸型膜分離装置を使用する
ようにしたので、濃縮汚泥のように濃い汚泥を少量濾過
するのに適している回転平膜分離装置50の特性と、上
澄水のように汚泥濃度の薄い液を大量処理するのに適し
ている浸漬平膜型膜分離装置又は中空糸型膜分離装置の
特性とを有効活用することができる。
Further, since the rotary flat membrane separation device 50 is used as the sludge membrane separation device 40, and the immersion flat membrane type membrane separation device or the hollow fiber type membrane separation device is used as the supernatant water membrane separation device 28, Characteristics of the rotary flat membrane separation device 50 suitable for filtering a small amount of thick sludge such as concentrated sludge, and an immersion flat membrane type membrane suitable for treating a large amount of a liquid having a low sludge concentration such as supernatant water. The characteristics of the separation device or the hollow fiber membrane separation device can be effectively utilized.

【0037】なお、本発明に係る浄水システムに用いら
れる洗浄排水処理設備10は、上述した実施の形態に限
定されるものではない。例えば、上澄水膜分離装置28
によっても濃縮汚泥が生じるので、図1符合29で示す
ように、これを凝集沈殿池20からの濃縮汚泥32に合
流させてもよい。
The cleaning wastewater treatment facility 10 used in the water purification system according to the present invention is not limited to the above embodiment. For example, the supernatant water membrane separation device 28
Since the thickened sludge is also generated by the above, it may be combined with the thickened sludge 32 from the coagulating sedimentation basin 20, as shown by reference numeral 29 in FIG.

【0038】[0038]

【実施例】洗浄排水処理設備10に凝集沈殿池20を設
けた場合と、設けない場合とを比較して、以下に説明す
る。
[Examples] The following description will be made by comparing the case where the coagulation sedimentation tank 20 is provided in the cleaning wastewater treatment facility 10 and the case where it is not provided.

【0039】浄水製造設備5における浄水規模6000
0m3 /日、原水濁度10度、PAC注入率30mg/
Lの浄水設備の設計を行うと仮定すると、沈殿池14に
おける引き抜き汚泥15の濃度を0.7%とした場合、
引き抜き汚泥15の量は126m3 /日となる。一方、
砂濾過池16において逆洗流速0.9m/分、表洗流速
0.2m/分、夫々の洗浄に要する時間を6分間と仮定
すると、洗浄排水22の水量は3700m3 /dとなり
非常に多く、これを直接、汚泥膜分離装置40にて膜濾
過させるためには、汚泥膜分離装置40は大規模な設備
を要する。しかし、本発明に示されるように、汚泥膜分
離装置40にて膜濾過させる以前に、洗浄排水22を凝
集沈殿池20で処理させる場合、汚泥回収率90%で運
転し、洗浄排水22の排出濃度を0.4%と仮定する
と、168m3 /日となり、汚泥膜分離装置40の規模
が約1/13程度まで大幅に低減できる。
Water purification scale of water purification facility 5 6000
0 m 3 / day, raw water turbidity 10 degrees, PAC injection rate 30 mg /
Assuming that L water purification equipment is designed, if the concentration of the drawn sludge 15 in the settling basin 14 is 0.7%,
The amount of drawn sludge 15 is 126 m 3 / day. on the other hand,
Assuming that the backwash flow rate is 0.9 m / min, the surface wash flow rate is 0.2 m / min, and the time required for each wash is 6 minutes in the sand filtration basin 16, the amount of water in the wash drainage water 22 is 3700 m 3 / d, which is very large. In order to directly filter this with the sludge membrane separation device 40, the sludge membrane separation device 40 requires a large-scale facility. However, as shown in the present invention, when the cleaning wastewater 22 is treated in the coagulation sedimentation tank 20 before being subjected to membrane filtration in the sludge membrane separation device 40, the sludge recovery rate is 90%, and the cleaning wastewater 22 is discharged. Assuming that the concentration is 0.4%, it will be 168 m 3 / day, and the scale of the sludge membrane separation device 40 can be greatly reduced to about 1/13.

【0040】[0040]

【発明の効果】以上説明したように、本発明によれば、
砂濾過池の洗浄排水を効率よく処理することができ、そ
の処理水の疫学的なリスクや水質悪化を招くことがない
ので、処理水を浄水製造設備に還流させても、沈殿池や
砂濾過池における処理負荷が増大することがなく、洗浄
排水の回収率(浄水効率)を高めることができる。
As described above, according to the present invention,
The wastewater from the sand filtration pond can be efficiently treated, and there is no risk of epidemiologic risk or deterioration of the quality of the treated water. The treatment load on the pond does not increase, and the recovery rate of cleaning wastewater (water purification efficiency) can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る浄水システムの全体構成図FIG. 1 is an overall configuration diagram of a water purification system according to the present invention

【図2】本発明に係る浄水システムに用いられるスラリ
循環型の凝集沈殿池を示す概要図
FIG. 2 is a schematic diagram showing a slurry circulation type coagulating sedimentation tank used in the water purification system according to the present invention.

【図3】本発明に係る浄水システムに用いられるマイク
ロサンド型の凝集沈殿池を示す概要図
FIG. 3 is a schematic diagram showing a microsand type coagulation sedimentation basin used in the water purification system according to the present invention.

【符号の説明】[Explanation of symbols]

5…浄水製造設備、10…洗浄排水処理設備、16…砂
濾過池、20…凝集沈殿池、20A…凝集沈殿池(スラ
リ循環型)、20B…凝集沈殿池(マイクロサンド
型)、26…上澄水、28…上澄水膜分離装置、32…
濃縮汚泥、40…汚泥膜分離装置、50…回転平膜分離
装置
5 ... Purified water production facility, 10 ... Washing wastewater treatment facility, 16 ... Sand filtration basin, 20 ... Coagulation sedimentation basin, 20A ... Coagulation sedimentation basin (slurry circulation type), 20B ... Coagulation sedimentation basin (micro sand type), 26 ... Top Clear water, 28 ... Supernatant water membrane separator, 32 ...
Concentrated sludge, 40 ... Sludge membrane separator, 50 ... Rotating flat membrane separator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/44 C02F 1/44 K 11/12 11/12 E Fターム(参考) 4D006 GA06 GA07 HA01 HA41 HA84 HA93 JA01 JA55Z JA56Z JA67Z KA01 KA52 KA54 KA57 KB13 KB15 MA01 MA03 MC02 MC03 MC22 PA01 PA02 PB08 PB15 PB24 4D015 BA19 BA23 BB05 DA04 EA32 FA01 FA02 FA03 FA16 FA17 4D059 AA03 BE06 BE42 BE51 CA28─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/44 C02F 1/44 K 11/12 11/12 EF term (reference) 4D006 GA06 GA07 HA01 HA41 HA84 HA93 JA01 JA55Z JA56Z JA67Z KA01 KA52 KA54 KA57 KB13 KB15 MA01 MA03 MC02 MC03 MC22 PA01 PA02 PB08 PB15 PB24 4D015 BA19 BA23 BB05 DA04 EA32 FA01 FA02 FA03 FA16 FA17 4D059 AA03 BE06 BE42 BE51 CA28

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】砂濾過池を有する浄水製造設備と前記砂濾
過池の洗浄排水を処理する洗浄排水処理設備とを備えた
浄水システムにおいて、 前記洗浄排水処理設備は、 前記洗浄排水を上澄水と濃縮汚泥に分離させる凝集沈殿
池と、 前記濃縮汚泥を膜分離処理する汚泥膜分離装置と、 を備え、前記上澄水と前記汚泥膜分離装置で膜分離され
た膜分離水とを前記浄水製造設備の入口側に還流させる
ことを特徴とする浄水システム。
1. A water purification system comprising a purified water production facility having a sand filter and a cleaning wastewater treatment facility for treating the cleaning wastewater of the sand filter, wherein the cleaning wastewater treatment facility uses the cleaning wastewater as supernatant water. A coagulation sedimentation tank for separating concentrated sludge into a sludge, and a sludge membrane separation device for performing a membrane separation treatment on the concentrated sludge, and the supernatant water and the membrane separation water membrane-separated by the sludge membrane separation device A water purification system that recirculates to the entrance side of.
【請求項2】前記洗浄排水処理設備は、前記凝集沈殿池
によって得られた前記上澄水を上澄水膜分離装置で膜分
離してから前記浄水製造設備の入口側に還流させること
を特徴とする請求項1に記載の浄水システム。
2. The cleaning wastewater treatment facility is characterized in that the supernatant water obtained by the coagulation sedimentation tank is subjected to membrane separation by a supernatant water membrane separator, and then returned to the inlet side of the purified water production facility. The water purification system according to claim 1.
【請求項3】前記汚泥膜分離装置は回転平膜分離装置で
あると共に、前記上澄水膜分離装置は浸漬平膜型膜分離
装置又は中空糸型膜分離装置であることを特徴とする請
求項2に記載の浄水システム。
3. The sludge membrane separation device is a rotary flat membrane separation device, and the supernatant water membrane separation device is an immersion flat membrane type membrane separation device or a hollow fiber type membrane separation device. The water purification system described in 2.
JP2002042706A 2002-02-20 2002-02-20 Water cleaning system Pending JP2003236558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002042706A JP2003236558A (en) 2002-02-20 2002-02-20 Water cleaning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002042706A JP2003236558A (en) 2002-02-20 2002-02-20 Water cleaning system

Publications (1)

Publication Number Publication Date
JP2003236558A true JP2003236558A (en) 2003-08-26

Family

ID=27782721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002042706A Pending JP2003236558A (en) 2002-02-20 2002-02-20 Water cleaning system

Country Status (1)

Country Link
JP (1) JP2003236558A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279408A (en) * 2004-03-29 2005-10-13 Hanshin Water Supply Authority Media and membrane filtration combined filter equipment
JP2006167611A (en) * 2004-12-16 2006-06-29 Hitachi Plant Technologies Ltd Water cleaning system
JP2006224010A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Operation control method of water purification process
JP2009183901A (en) * 2008-02-07 2009-08-20 Metawater Co Ltd Membrane filtration concentration method of coagulation treated water and coagulated waste muddy water
WO2014202349A1 (en) * 2013-06-17 2014-12-24 Robert Bosch Gmbh System and method for treating contaminated wastewater
CN112499880A (en) * 2020-07-01 2021-03-16 杭州旦源环保科技有限公司 Biochemical pond sludge collection system of sewage treatment
CN113526696A (en) * 2021-06-09 2021-10-22 浙江华东工程建设管理有限公司 Intelligent grading recycling treatment system for mine mixed wastewater
CN114100205A (en) * 2021-11-25 2022-03-01 北控水务(中国)投资有限公司 Sedimentation tank and sewage purification process
CN115445320A (en) * 2022-08-31 2022-12-09 晋能控股装备制造集团有限公司寺河煤矿 Mine water underground treatment process
CN115504607A (en) * 2022-10-26 2022-12-23 江苏威乐环保科技有限公司 Micro-sand-based auxiliary coagulating sedimentation water treatment mechanism and treatment process
WO2024003696A1 (en) * 2022-06-27 2024-01-04 TEC Austria GmbH Apparatus and method for treating water

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279408A (en) * 2004-03-29 2005-10-13 Hanshin Water Supply Authority Media and membrane filtration combined filter equipment
JP4672993B2 (en) * 2004-03-29 2011-04-20 阪神水道企業団 Media and membrane filtration combined filtration equipment
JP2006167611A (en) * 2004-12-16 2006-06-29 Hitachi Plant Technologies Ltd Water cleaning system
JP4539321B2 (en) * 2004-12-16 2010-09-08 株式会社日立プラントテクノロジー Water purification system
JP2006224010A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Operation control method of water purification process
JP2009183901A (en) * 2008-02-07 2009-08-20 Metawater Co Ltd Membrane filtration concentration method of coagulation treated water and coagulated waste muddy water
JP2016521637A (en) * 2013-06-17 2016-07-25 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Facilities and methods for treating contaminated wastewater
CN105283421A (en) * 2013-06-17 2016-01-27 罗伯特·博世有限公司 System and method for treating contaminated wastewater
WO2014202349A1 (en) * 2013-06-17 2014-12-24 Robert Bosch Gmbh System and method for treating contaminated wastewater
US10112849B2 (en) 2013-06-17 2018-10-30 Robert Bosch Gmbh System and method for treating contaminated wastewater
CN112499880A (en) * 2020-07-01 2021-03-16 杭州旦源环保科技有限公司 Biochemical pond sludge collection system of sewage treatment
CN113526696A (en) * 2021-06-09 2021-10-22 浙江华东工程建设管理有限公司 Intelligent grading recycling treatment system for mine mixed wastewater
CN114100205A (en) * 2021-11-25 2022-03-01 北控水务(中国)投资有限公司 Sedimentation tank and sewage purification process
WO2024003696A1 (en) * 2022-06-27 2024-01-04 TEC Austria GmbH Apparatus and method for treating water
CN115445320A (en) * 2022-08-31 2022-12-09 晋能控股装备制造集团有限公司寺河煤矿 Mine water underground treatment process
CN115504607A (en) * 2022-10-26 2022-12-23 江苏威乐环保科技有限公司 Micro-sand-based auxiliary coagulating sedimentation water treatment mechanism and treatment process

Similar Documents

Publication Publication Date Title
CN102659291A (en) Nano-filtration and reverse osmosis concentrated solution reduction treatment system and method
CN108793642A (en) A kind of dyeing waste water advanced treatment system and processing method
CN106745981A (en) A kind of system and method for high-salt wastewater treatment for reuse
CN107522340A (en) A kind of system and method for recycling high villaumite sewage
JP2003236558A (en) Water cleaning system
JP2001191086A (en) Water treating apparatus
JP2007289847A (en) Raw tap water purification method and its apparatus
CN111233195A (en) Method for treating and recycling sludge water by ozone and ceramic membrane combined process
KR20110128641A (en) Equipment for treating waste water using integrated membrane-clarification system
CN105836954A (en) System and method for efficient and energy-saving treatment of salt-containing wastewater
CN206437968U (en) A kind of system of high-salt wastewater treatment for reuse
JP2002346581A (en) Treatment apparatus and treatment method for organic wastewater
CN208762364U (en) Dyeing waste water advanced treatment system
KR101276499B1 (en) Apparatus and method for water treatment using two stage membrane filtration
CN215559636U (en) Wastewater treatment system
JP2010046562A (en) Resource recovery type water treatment method and system
JP3891739B2 (en) Operation method of membrane filtration device
JP2002346347A (en) Method and apparatus for filtration
CN209468220U (en) A kind of sewage disposal system
CN110078262B (en) Integrated reactor for removing trace antibiotics in composite polluted surface water and removing method thereof
JP3185398B2 (en) Water purification equipment
JP3697529B2 (en) Membrane-based wastewater treatment method and water purification apparatus
CN205635230U (en) Energy -efficient salt effluent disposal system that contains
CN205367919U (en) Electroplate online recovery system of washings
JPS61185400A (en) Apparatus for treating excretion sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327