JP2003236540A - Method of improving water quality in desalination apparatus - Google Patents

Method of improving water quality in desalination apparatus

Info

Publication number
JP2003236540A
JP2003236540A JP2002035490A JP2002035490A JP2003236540A JP 2003236540 A JP2003236540 A JP 2003236540A JP 2002035490 A JP2002035490 A JP 2002035490A JP 2002035490 A JP2002035490 A JP 2002035490A JP 2003236540 A JP2003236540 A JP 2003236540A
Authority
JP
Japan
Prior art keywords
resin particles
crushed
water
resin
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002035490A
Other languages
Japanese (ja)
Other versions
JP3976128B2 (en
Inventor
Masahiro Hagiwara
正弘 萩原
Takeshi Izumi
丈志 出水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002035490A priority Critical patent/JP3976128B2/en
Publication of JP2003236540A publication Critical patent/JP2003236540A/en
Application granted granted Critical
Publication of JP3976128B2 publication Critical patent/JP3976128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Disintegrating Or Milling (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of improving water quality in a desalination apparatus in which only physically sound resin particles in a granular ion exchange resin used for the desalination apparatus are used and the leakage of the fine resin or crushed resin to the treated water is prevented to improve the water quality of treated water. <P>SOLUTION: Before being filled in the desalination apparatus, only the sound resin particles are secured by applying a 1st process of housing in a vessel filled with water and crushing the resin particles having internal strain or fine crack by a crushing means and a 2nd process for removing the crushed resin particles from the crush treated material in the 1st process by a separating means and the resin particles free from the fine resin particles or crushed resin particles are offered to the desalination apparatus to improve the quality of the treated water. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、脱塩装置に使用す
るイオン交換樹脂について、樹脂粒子中に存在する潜在
的欠陥を持った樹脂粒子を効率よく除去し、樹脂粒子を
物理的に健全に維持し、処理水中への微細樹脂粒子や破
砕樹脂粒子(粒子片も含む)の漏洩を無くし、処理水の
水質向上を図るための脱塩装置の通水方法に関する。
TECHNICAL FIELD The present invention relates to an ion-exchange resin used in a desalting apparatus, which efficiently removes resin particles having latent defects existing in the resin particles, thereby physically sounding the resin particles. The present invention relates to a water passing method of a desalination device for maintaining and preventing leakage of fine resin particles and crushed resin particles (including particle fragments) into treated water to improve the quality of treated water.

【0002】[0002]

【従来の技術】脱塩装置にイオン交換樹脂粒子を充填し
て通水運転を行う場合、まず、充填する陽イオン交換樹
脂粒子及び/又は陰イオン交換樹脂粒子を、脱塩塔又は
再生塔に水と一緒に充填する。その後、塔内に収容した
イオン交換樹脂粒子のレベルを上回るレベルまで水を張
り、塔下部より空気を注入し、イオン交換樹脂粒子を撹
拌し、樹脂粒子混合物中に存在する微細樹脂粒子及び破
砕樹脂粒子を水中に遊離させる。次に、塔下部より逆洗
水を注入し樹脂層を十分に展開させ、樹脂層上部に出て
きた微細樹脂粒子や破砕樹脂粒子をオーバーフローさせ
て系外に排出させる。この操作を複数回繰り返し行い、
樹脂層中の微細樹脂粒子及び破砕樹脂粒子を除去する。
樹脂粒子を混合し脱塩塔に移送した後、脱塩塔の通水運
転を開始する。なお、脱塩塔に樹脂粒子を直接充填する
場合は、上述の操作を全て脱塩塔で実施し通水運転を開
始する。
2. Description of the Related Art When ion-exchange resin particles are packed in a desalting apparatus to perform water-flow operation, first, the cation-exchange resin particles and / or anion-exchange resin particles to be packed are loaded into a desalting tower or a regenerating tower. Fill with water. Then, water is filled up to a level exceeding the level of the ion exchange resin particles contained in the tower, air is injected from the lower part of the tower, the ion exchange resin particles are stirred, and the fine resin particles and the crushed resin present in the resin particle mixture are stirred. The particles are released in water. Next, backwash water is injected from the lower part of the tower to fully develop the resin layer, and the fine resin particles and the crushed resin particles that have come out to the upper part of the resin layer are overflowed and discharged to the outside of the system. Repeat this operation multiple times,
The fine resin particles and the crushed resin particles in the resin layer are removed.
After the resin particles are mixed and transferred to the desalting tower, the water passage operation of the desalting tower is started. In the case of directly filling the desalting tower with the resin particles, all the above-mentioned operations are carried out in the desalting tower to start the water passage operation.

【0003】[0003]

【発明が解決しようとする課題】前述の脱塩装置にイオ
ン交換樹脂を充填し通水運転に供する方法では、健全な
イオン交換樹脂粒子中に混在する、内部歪みや微細亀裂
などの潜在的欠陥を持つイオン交換樹脂粒子を、完全に
除去することが出来ない。そのため、逆洗再生、通薬再
生、これに付随する樹脂移送、採水運転等を継続的に続
けて行くと、その過程の中で潜在的欠陥を持つイオン交
換樹脂粒子が破砕する可能性が高い。これらの破砕樹脂
粒子は、通常の逆洗再生では十分に取り除くことが難し
く、通水運転中に樹脂層に加わる差圧や、脱塩塔投入時
の過渡的な衝撃により下流側に漏洩して、処理水の悪化
を招く恐れがある。
In the method of filling the desalting apparatus with the ion exchange resin and supplying it to the water-flowing operation, there are latent defects such as internal strain and fine cracks mixed in the sound ion-exchange resin particles. It is impossible to completely remove the ion-exchange resin particles having. Therefore, if backwash regeneration, replenishment regeneration, accompanying resin transfer, water sampling operation, etc. are continuously continued, there is a possibility that ion-exchange resin particles with potential defects will be crushed during the process. high. These crushed resin particles are difficult to remove sufficiently by normal backwash regeneration, and they leak to the downstream side due to the differential pressure applied to the resin layer during water flow operation and the transient impact at the time of introducing the desalting tower. , There is a risk of worsening the treated water.

【0004】本発明は、このような実情に鑑みてなされ
たものであり、脱塩装置に使用するイオン交換樹脂粒子
について、樹脂粒子中に存在する潜在的欠陥を持った樹
脂粒子を効率的に除去し、樹脂粒子を物理的に健全に維
持し、処理水中への微細樹脂粒子や破砕樹脂粒子の漏洩
を無くし、処理水の水質向上を図るための脱塩装置の水
質向上方法を提供するものである。
The present invention has been made in view of the above circumstances, and regarding ion exchange resin particles used in a desalting apparatus, resin particles having latent defects existing in the resin particles can be efficiently used. A method for improving the water quality of a desalination device for removing water, maintaining physically sound resin particles, preventing leakage of fine resin particles and crushed resin particles into treated water, and improving the quality of treated water. Is.

【0005】[0005]

【課題を解決するための手段】本発明者等は、前記目的
を達成するため種々検討を行った結果、脱塩装置に使用
する陽イオン交換樹脂粒子及び/又は陰イオン交換樹脂
粒子を、採水運転に供する前に、予め、該樹脂粒子に物
理的及び/又は化学的な破砕作用を与えて、内部歪みや
微細亀裂らの潜在的欠陥を持っている樹脂粒子のみを破
砕させる第1プロセスと、第1プロセスで破砕された樹
脂粒子を健全樹脂粒子から除去する第2プロセスにより
潜在的欠陥を持っている樹脂粒子を含まないものとし
た、健全樹脂粒子を脱塩装置に充填し、採水運転を行う
ことにより、経時的使用における微細樹脂粒子や破砕樹
脂粒子の発生を無くし、水質向上を図る方法を発明する
に至った。
Means for Solving the Problems As a result of various studies to achieve the above object, the present inventors have selected cation exchange resin particles and / or anion exchange resin particles to be used in a desalting apparatus. Before being subjected to water operation, a first process in which a physical and / or chemical crushing action is applied to the resin particles in advance to crush only the resin particles having potential defects such as internal strain and fine cracks. Then, by removing the resin particles crushed in the first process from the sound resin particles by the second process, the resin particles having potential defects are not included, and the sound resin particles are filled in the desalination apparatus and collected. By carrying out water operation, the inventors have invented a method for improving the water quality by eliminating the generation of fine resin particles and crushed resin particles over time.

【0006】前述の第1プロセスは、脱塩装置に使用す
る陽イオン交換樹脂粒子及び/又は陰イオン交換樹脂粒
子を、採水運転に供する前に、予め、水を張った容器に
収容し、ポンプによる循環運転、撹拌機等による撹拌、
又は超音波の発信を断続的又は連続的に30分以上実施
する物理的破砕手段、乾燥機などによりイオン交換樹脂
を官能基が分解しない程度に加熱した後、注水する熱応
力による破砕手段、或いは、樹脂を再生剤である塩酸、
硫酸、硝酸、苛性ソーダ、食塩等の比較的濃度の高い薬
品に浸漬した後、純水により十分に洗浄する浸透圧によ
る破砕手段のいずれか、又はその組み合わせにより、内
部歪みや微細亀裂等の潜在的欠陥を持っている樹脂粒子
を破砕するものである。
In the above-mentioned first process, the cation exchange resin particles and / or the anion exchange resin particles used in the desalting apparatus are stored in a container filled with water before the water sampling operation, Circulation operation with a pump, agitation with an agitator, etc.
Alternatively, a physical crushing means for transmitting ultrasonic waves intermittently or continuously for 30 minutes or more, a crushing means by a thermal stress of pouring water after heating the ion exchange resin to such an extent that functional groups are not decomposed by a dryer, or , The resin is a regenerant, hydrochloric acid,
After immersing in a relatively high-concentration chemical such as sulfuric acid, nitric acid, caustic soda, or salt, wash it thoroughly with pure water. It crushes resin particles that have defects.

【0007】また、前述の第2プロセスは、第1プロセ
スにより破砕処理をした樹脂粒子を空気又は窒素ガスに
よるスクラビングの後に展開率100%以上、望ましく
は、200%で30分以上逆洗し、オーバーフローによ
り除去する手段、又は、乾燥状態、或いは、水と一緒に
樹脂粒子を振動ふるい等に連続的又はバッチにて導入
し、破砕した樹脂粒子をふるい落とす手段により、健全
樹脂粒子より破砕樹脂粒子を効率的に除去するものであ
る。
Further, in the above-mentioned second process, the resin particles crushed by the first process are back-washed at a development rate of 100% or more, preferably 200% for 30 minutes or more after scrubbing with air or nitrogen gas, By means of removing by overflow, or in a dry state, or by introducing resin particles together with water into a vibrating sieve or the like continuously or in a batch, and by means of sieving out crushed resin particles, crushed resin particles from healthy resin particles Is efficiently removed.

【0008】本発明は、また、イオン交換樹脂粒子の状
態を、予め、サンプリングした樹脂粒子の顕微鏡観察等
により確認しておき、最適な破砕樹脂粒子除去手段を前
述の第1プロセス及び第2プロセスから選択し、適宜、
組み合わせることを特徴とする脱塩装置の経時的使用に
おける微細樹脂粒子や破砕樹脂粒子の発生を無くし、効
果的かつ経済的に水質向上を図る方法を提供するもので
ある。
In the present invention, the state of the ion exchange resin particles is confirmed in advance by observing the sampled resin particles with a microscope or the like, and the optimum crushed resin particle removing means is determined by the above-mentioned first process and second process. Select from the
It is intended to provide a method for effectively and economically improving water quality by eliminating the generation of fine resin particles and crushed resin particles when a desalting apparatus is used over time, which is characterized by being combined.

【0009】本発明は、さらに、第1プロセスの各手段
と、第2プロセスの各手段を、脱塩装置の運転操作の樹
脂充填工程に、予め組み込むことにより脱塩装置の運転
と連係可能とし、これらを自動運転するためにシーケン
サー、又はプログラムタイマー等を使用することにより
運転制御することを特徴とする脱塩装置の経時的使用に
おける微細樹脂粒子や破砕樹脂粒子の発生を無くし、水
質向上を図る方法を提供するものである。本発明を具体
的に実施する装置は、陽イオン交換樹脂粒子及び/又は
陰イオン交換樹脂粒子に物理的及び/又は化学的な破砕
作用を与えて、内部歪みや微細亀裂らの潜在的欠陥を持
っている樹脂粒子のみを破砕させる第1プロセスと、第
1プロセスで破砕された樹脂粒子を健全樹脂粒子から除
去する第2プロセスにより、潜在的欠陥を持っている樹
脂粒子を含まない健全樹脂粒子を充填したことを特徴と
する脱塩装置である。
Further, according to the present invention, the respective means of the first process and the respective means of the second process are incorporated in advance in the resin filling step of the operation of operating the desalination apparatus so that they can be linked to the operation of the desalination apparatus. , It is possible to improve the water quality by eliminating the generation of fine resin particles and crushed resin particles during the time-dependent use of the desalting device, which is characterized by controlling the operation by using a sequencer or a program timer to automatically operate these. It provides a way to try. An apparatus specifically embodying the present invention imparts physical and / or chemical crushing action to cation-exchange resin particles and / or anion-exchange resin particles to prevent latent defects such as internal strain and fine cracks. Healthy resin particles that do not contain resin particles having latent defects by the first process of crushing only the resin particles that they have and the second process that removes the resin particles crushed in the first process from the sound resin particles The desalination apparatus is characterized by being filled with.

【0010】本発明は、その上、新品イオン交換樹脂粒
子のみならず、脱塩装置において経年使用した樹脂粒子
をサンプリングし、押漬し強度試験を実施した結果、物
理的強度の低下が確認された(シャチロン計などによる
再生済み樹脂粒子60粒の平均荷重強度350g/粒以
下、200g/粒以下の割合5%以上)イオン交換樹脂
粒子に適用し、潜在的欠陥のない健全樹脂粒子のみを確
保し、脱塩装置に充填し採水運転を行うことにより、延
命化使用における微細樹脂粒子や破砕樹脂粒子の発生を
無くし、水質向上を図る方法を提供するものである。本
発明で処理するイオン交換樹脂は、粒状のものであり、
樹脂粒子として取り扱われるものであり、その樹脂粒子
の粒径としては、通常0.35〜1.2mmの範囲のも
のである。
Further, according to the present invention, not only new ion-exchange resin particles but also resin particles used for a long time in a desalting device are sampled and subjected to a strength test, and as a result, a decrease in physical strength is confirmed. Applies to ion exchange resin particles (average load strength of 60 regenerated resin particles measured by Chatillon meter: 350 g / particle or less, ratio of 200 g / particle or less 5% or more) to ensure only healthy resin particles without potential defects Then, by filling the desalting apparatus and performing a water sampling operation, the generation of fine resin particles and crushed resin particles during extended life is eliminated, and a method for improving water quality is provided. The ion exchange resin treated in the present invention is a granular one,
The resin particles are treated as resin particles, and the particle diameter of the resin particles is usually 0.35 to 1.2 mm.

【0011】[0011]

【実施例】以下、実施例により本発明を更に詳細に説明
するが、本発明は下記実施例に限定されるものではな
い。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.

【0012】実施例1 1.サンプルの準備 市販されている複数の強酸性ゲル型陽イオン交換樹脂粒
子を純水中に浸漬し、それを十分に混合し、その中より
1〜2mlをサンプリングして、光学顕微鏡により約2
000粒〜4000粒を観察し真球率を測定する。真球
率は、観察したイオン交換樹脂粒子の総数に対する健全
球(無亀裂及び無破砕球)の割合として表示する。ま
た、亀裂球の認識は粒子に対する下方からの透過光、上
方からの反射光、及び粒子に対する傾斜光を組み合わせ
て行い、通常では認識されないような微小亀裂について
も検出し亀裂球としてカウントした。その結果、以下の
第1表に示す通り、真球率が求められた。
Embodiment 1 1. Preparation of sample A plurality of commercially available strongly acidic gel type cation exchange resin particles are immersed in pure water, mixed well, and 1 to 2 ml is sampled from the mixture, and about 2
The sphericity is measured by observing 000 to 4000 grains. The sphericity is expressed as the ratio of healthy spheres (uncracked and uncrushed spheres) to the total number of observed ion-exchange resin particles. Further, the recognition of the crack sphere was performed by combining the transmitted light from below the particle, the reflected light from above, and the tilted light to the particle, and minute cracks that were not normally recognized were also detected and counted as crack spheres. As a result, the sphericity was calculated as shown in Table 1 below.

【0013】[0013]

【表1】 [Table 1]

【0014】2.第1プロセス(亀裂粒子の破砕プロセ
ス) 上記の第1表の通り準備したサンプルA、B、Cについ
て、次の通り亀裂球の破砕試験を実施した。
2. First Process (Fracture Process of Crack Particles) With respect to Samples A, B, and C prepared as shown in Table 1 above, the fracture test of crack balls was performed as follows.

【0015】a.ポンプ循環法 ・試験方法 マグネチックポンプ1の出口、入口に長さ約30cm、
内径9mmのシリコーンゴム製チューブ2を嵌め、その
両端を500mlのプラスチックビーカ3に入れ、下記
の如く樹脂スラリーが循環し易い様に固定した。このビ
ーカ3内に樹脂粒子を水と共に移し、スラリーの循環運
転を行い、樹脂粒子同士及びポンプインペラによる磨耗
により亀裂球(粒子)を破砕した。循環運転中に樹脂を
適宜サンプリングし、亀裂球、破砕樹脂粒子の割合を測
定した。試験条件を第2表に示す。
A. Pump circulation method / test method Approximately 30 cm in length at the outlet and inlet of the magnetic pump 1,
A silicone rubber tube 2 having an inner diameter of 9 mm was fitted and both ends thereof were put in a 500 ml plastic beaker 3 and fixed so that the resin slurry could easily circulate as described below. The resin particles were transferred into the beaker 3 together with water, the slurry was circulated, and the cracked spheres (particles) were crushed by abrasion between the resin particles and by the pump impeller. The resin was appropriately sampled during the circulation operation, and the ratio of crack spheres and crushed resin particles was measured. The test conditions are shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】・試験結果 サンプルA、B、Cに対してポンプ循環運転を30分実
施し、10分毎に樹脂をサンプリングし、亀裂球、破砕
球及び健全球の割合を測定した結果を以下の第3表〜第
5表に示す。
Test results Pump A circulation operation was performed for samples A, B and C for 30 minutes, resin was sampled every 10 minutes, and the results of measuring the ratio of cracked spheres, crushed spheres and healthy spheres are shown below. It shows in Tables 3-5.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【表4】 [Table 4]

【0020】[0020]

【表5】 [Table 5]

【0021】いずれのケースも、亀裂球は0.2%以下
に大幅に低減され、その代わりとして、破砕球が増加し
ている。増加した破砕球は、次の第2プロセスの逆洗オ
ーバーフロー又は振動ふるいにより除去し、健全球のみ
を確保することが出来た。また、亀裂球の破砕法は上述
のポンプ循環法のほかに、樹脂を再生剤{硫酸、塩酸、
苛性ソーダなど}に浸漬する浸透圧ショック法、樹脂を
加温後、注水する熱応力ショック法、並びに、これら方
法の組み合わせが考えられる。更なる実施例として、浸
透圧ショック法+ポンプ循環法について記載する。
In all cases, the crack spheres are significantly reduced to below 0.2% and, instead, the crushed spheres are increased. The increased crushed spheres could be removed by backwash overflow or vibrating sieving in the following second process, and only healthy spheres could be secured. In addition to the above-mentioned pump circulation method, the method of crushing cracked spheres uses resin regeneration agents (sulfuric acid, hydrochloric acid,
The osmotic shock method of immersing in caustic soda, etc., the thermal stress shock method of heating the resin and then pouring water, and a combination of these methods are considered. As a further example, the osmotic shock method + pump circulation method will be described.

【0022】b.浸透圧ショック法+ポンプ循環法 ・試験方法 前述のサンプルの準備と同様の方法で、市販されている
強酸性ゲル型陽イオン交換樹脂粒子を純水中に浸漬し、
真球率を測定した。これをサンプルDとする。測定結果
を第6表に示す。
B. Osmotic shock method + pump circulation method / test method In the same manner as in the preparation of the sample described above, commercially available strong acid gel type cation exchange resin particles are immersed in pure water,
The sphericity was measured. This is sample D. The measurement results are shown in Table 6.

【0023】[0023]

【表6】 [Table 6]

【0024】準備したサンプルDは、亀裂球の割合が比
較的多く(従来の検査では検出できないような潜在的亀
裂についても確認した)、ポンプ循環法だけでは亀裂球
の破砕が十分でないことが予想されるため、浸透圧ショ
ック法との組み合わせ法を適用した。
The prepared sample D had a relatively large proportion of crack spheres (also confirmed a latent crack that could not be detected by conventional inspection), and it is expected that the crushing of crack spheres will not be sufficient only by the pump circulation method. Therefore, the combination method with the osmotic shock method was applied.

【0025】先ず、上記サンプルDの40mlを十分水
切りした後、約30wt%程度の硫酸の入ったビーカに
入れ、30分間撹拌する。次に5分程度、沈静させた
後、硫酸を排出する。更に樹脂の25倍量の純水をビー
カに一挙に注ぎ、そのまま30分間撹拌した後、樹脂粒
子を液から分離し水洗し、樹脂粒子の真球率を測定し
た。次に、この樹脂粒子を上述のポンプ循環法により、
スラリーの循環運転を行い、樹脂同士及びポンプインペ
ラによる磨耗により亀裂球を破砕した。循環運転中に樹
脂を適宜サンプリングし、亀裂球、破砕樹脂の割合を測
定した。試験条件を第7表に示す。
First, 40 ml of the above sample D was thoroughly drained, put in a beaker containing about 30 wt% sulfuric acid, and stirred for 30 minutes. Then, after calming for about 5 minutes, sulfuric acid is discharged. Further, 25 times the amount of pure water of the resin was poured all at once into a beaker and stirred for 30 minutes as it was, then the resin particles were separated from the liquid and washed with water, and the sphericity of the resin particles was measured. Next, the resin particles are subjected to the above-mentioned pump circulation method,
The slurry was circulated and the cracked spheres were crushed due to abrasion between the resins and the pump impeller. The resin was appropriately sampled during the circulation operation, and the ratio of crack spheres and crushed resin was measured. The test conditions are shown in Table 7.

【0026】[0026]

【表7】 [Table 7]

【0027】ポンプ循環法の試験条件は、前述したa項
のポンプ循環法の通りである。 ・試験結果 サンプルDに対して浸透圧ショック法+ポンプ循環法を
実施し、各工程毎に樹脂粒子をサンプリングし、亀裂
球、破砕球及び健全球の割合を測定した結果を以下の第
8表及び第9表に示す。
The test conditions of the pump circulation method are the same as those described in the item a). -Test results Sample D was subjected to the osmotic shock method + pump circulation method, the resin particles were sampled in each step, and the results of measuring the ratio of crack spheres, crushed spheres and healthy spheres are shown in Table 8 below. And Table 9 shows.

【0028】[0028]

【表8】 [Table 8]

【0029】[0029]

【表9】 [Table 9]

【0030】サンプルDの亀裂球は、7.0%から0.
1%に大幅に低減され、その代わりとして、前述と同様
に破砕球が増加していた。増加した破砕球は、次の第2
プロセスの逆洗オーバーフロー又は振動ふるいにより除
去し、健全球のみを確保することが出来た。
The crack spheres of sample D had a value of 7.0% to 0.
It was greatly reduced to 1%, and instead, the number of crushed spheres increased as described above. The number of crushed balls increased is the second
Only healthy spheres could be secured by removing by backwash overflow or vibrating sieve in the process.

【0031】3.第2プロセス 亀裂球の破砕試験を実施した前述のサンプルA、B、
C、Dについて、破砕球の分離試験を実施した。
3. The above-mentioned samples A, B, which were subjected to the crushing test of the second process crack sphere,
For C and D, a crushed ball separation test was performed.

【0032】c.逆洗分離法 ・試験方法 破砕球を含むサンプルA〜Cの樹脂粒子5を各々40m
lを、図2に示すように逆洗用の分離カラム6に充填
し、カラム6下部より純水槽8からの純水7を逆洗水ポ
ンプ9により注入し樹脂粒子5を上部に十分に展開さ
せ、沈静させた後、サイフォン11によりカラム6上方
に集まった破砕樹脂粒子を除去した。破砕樹脂粒子の除
去は、複数回、逆洗展開を行い、その都度、少量ずつ実
施した。破砕樹脂粒子の抜き出し総量は、予め、測定し
た真球率のデータに基づき決定した。図2中、10は流
量計、12は廃樹脂粒子受けである。試験条件を第10
表に示す。
C. Backwash separation method / test method 40m each of resin particles 5 of samples A to C including crushed balls
2, the separation column 6 for backwashing was packed, and pure water 7 from the pure water tank 8 was injected from the bottom of the column 6 by the backwashing water pump 9 to sufficiently spread the resin particles 5 on the upper side. Then, after quiescence, the crushed resin particles collected above the column 6 were removed by the siphon 11. Removal of the crushed resin particles was carried out by backwashing a plurality of times, and a small amount was removed each time. The total amount of the crushed resin particles extracted was previously determined based on the measured sphericity data. In FIG. 2, 10 is a flow meter and 12 is a waste resin particle receiver. Test condition No. 10
Shown in the table.

【0033】[0033]

【表10】 [Table 10]

【0034】・試験結果 上記試験条件により逆洗分離を実施した結果を以下の第
11表にまとめる。
Test Results The results of backwash separation under the above test conditions are summarized in Table 11 below.

【0035】[0035]

【表11】 [Table 11]

【0036】上記の第11表に示す結果の通り、真球率
は何れも99%以上と極めて良好であった。なお、樹脂
の回収量を現状より若干低減することにより更なる真球
率のアップも可能となるが、従来の真球率の測定法で
は、いずれも100%であることより、現状の到達レベ
ルは、汎用樹脂のレベルをはるかに越える高レベルであ
ると言っても差し支えない。更なる破砕球の分離法とし
て、長方形目開きスクリーンによる水ふるい法について
記載する。
As shown in the above Table 11, the sphericity was 99% or more, which was extremely good. Although it is possible to further increase the sphericity by reducing the amount of resin recovered from the current level, the conventional sphericity measurement methods are all 100%. Can be said to be a high level far exceeding the level of general-purpose resins. As a further method of separating crushed balls, a water sieving method using a rectangular opening screen will be described.

【0037】d.長方形目開きスクリーンによる水ふる
い法 ・試験方法 破砕球を含むサンプルDの樹脂40mlを、長方形の目
開きスクリーンに純水と一緒に入れて、上方より純水を
加えつつ、スクリーンを上下左右に揺すりながら、破砕
樹脂粒子をスクリーン下方の破砕樹脂粒子受けに排出す
る。スクリーン上部の樹脂粒子を回収し真球率を測定し
た。試験条件を第12表に示す。
D. Water sieving method and test method using a rectangular opening screen 40 ml of resin of sample D containing crushed balls is put into a rectangular opening screen together with pure water, and pure water is added from above, and the screen is shaken vertically and horizontally. Meanwhile, the crushed resin particles are discharged to the crushed resin particle receiver below the screen. The resin particles on the upper part of the screen were collected and the sphericity was measured. The test conditions are shown in Table 12.

【0038】[0038]

【表12】 [Table 12]

【0039】・試験結果 上記試験条件によりふるいを実施した結果を以下の第1
3表にまとめる。
Test results The results of sieving under the above test conditions are shown in the following first
It is summarized in 3 tables.

【0040】[0040]

【表13】 [Table 13]

【0041】上記第13表に示す結果の通り、真球率は
99%以上と極めて良好である。また、樹脂粒子の回収
率は逆洗分離法に比べて良好である。従来の真球率の測
定法では、いずれも100%であることより、現状の到
達レベルは、汎用樹脂粒子のレベルをはるかに越える高
レベルであると言っても差し支えない。
As shown in the above Table 13, the sphericity is 99% or more, which is extremely good. Moreover, the recovery rate of the resin particles is better than that of the backwash separation method. In the conventional measuring method of the sphericity, since all are 100%, it can be said that the current achieved level is a high level far exceeding the level of general-purpose resin particles.

【0042】4.樹脂健全性の確認 第1プロセス及び第2プロセスにより製造した健全樹脂
のサンプルA及びDを使用し、樹脂の健全性を以下の通
り評価した。
4. Confirmation of Resin Soundness Using sound resin samples A and D manufactured by the first process and the second process, the soundness of the resin was evaluated as follows.

【0043】・評価試験方法 第1プロセスで破砕試験に使用したポンプ循環法により
確保した健全樹脂粒子のサンプルA及びDの、図1に示
す樹脂スラリー循環装置での循環運転を行い、その後、
真球率を測定した。容量500mlのビーカ1内に樹脂
粒子2を水と共に移し、マグネティクポンプ3とシリコ
ーンゴム製チューブ4とにより形成される循環回路を通
してスラリーの循環運転を行い、循環運転終了後に樹脂
粒子をサンプリングし、亀裂球、破砕樹脂の割合を測定
する。試験条件を第14表に示す。
Evaluation Test Method Samples A and D of sound resin particles secured by the pump circulation method used for the crushing test in the first process were circulated in the resin slurry circulation device shown in FIG.
The sphericity was measured. The resin particles 2 were transferred together with water into a beaker 1 having a capacity of 500 ml, the slurry was circulated through a circulation circuit formed by the magnetic pump 3 and the silicone rubber tube 4, and the resin particles were sampled after the circulation operation was completed. Measure the ratio of crack spheres and crushed resin. The test conditions are shown in Table 14.

【0044】[0044]

【表14】 [Table 14]

【0045】・試験結果 サンプルA、Dに対してポンプ循環運転を60分実施
し、運転終了後に樹脂粒子をサンプリングし、亀裂球、
破砕球及び健全球の割合を測定した結果を以下の第15
表に示す。
Test results: A pump circulation operation was carried out for 60 minutes on samples A and D, and after the operation was completed, resin particles were sampled and cracked balls,
The results of measuring the ratio of crushed balls and healthy spheres are given in Section 15 below.
Shown in the table.

【0046】[0046]

【表15】 [Table 15]

【0047】試験の結果、真球率は99%以上と極めて
良好であり、前述の第1及び第2プロセスにおいて精製
された健全球は、ポンプ循環による耐磨耗性試験におい
ても、新たに破砕されないことが確認された。なお、破
砕球の割合が微増しているが、これらは元から存在して
いる破砕球及び亀裂球の一部が再度破砕したことによる
と推測される。
As a result of the test, the sphericity was extremely good at 99% or more, and the sound spheres purified in the first and second processes described above were newly crushed even in the abrasion resistance test by pump circulation. It was confirmed that it will not be done. Although the proportion of crushed spheres slightly increased, it is presumed that these were due to the fact that the crushed spheres and crack spheres that originally existed were partially crushed again.

【0048】[0048]

【発明の効果】以上、詳細に説明したように本発明によ
れば、下記のような優れた効果が期待される。 (1)従来、BWR復水脱塩装置で使用されているイオ
ン交換樹脂粒子は、本発明のような亀裂球及び破砕球の
破砕処理及び除去処理を実施しておらず、樹脂粒子をプ
ラントに充填する際に樹脂粒子に加わる荷重により、一
部の亀裂樹脂粒子の破砕が発生すること、並びに製造時
に発生した破砕粒子が残留していることにより、これら
破砕樹脂粒子及びその破砕部分が運転中に復水脱塩装置
よりスクリーンを通過し下流に流出し、原子炉に入り分
解し水質の悪化を招く可能性がある。本発明により処理
して亀裂樹脂粒子及び破砕樹脂粒子を除去したイオン交
換樹脂粒子をBWRプラントに使用したところ、原子炉
水の導電率は、イオン交換樹脂交換前の値、0.1μS
/cmに対して、0.07μS/cm以下に低下し、良
好に推移している。また、炉水の硫酸イオン濃度も、イ
オン交換樹脂交換前の値、4ppbに対して1ppb以
下に低下し良好に推移している。このように本発明を適
用することにより、脱塩装置の処理水質の飛躍的な向上
が達成できる。
As described in detail above, according to the present invention, the following excellent effects are expected. (1) Conventionally, the ion exchange resin particles used in the BWR condensate desalination apparatus have not been subjected to the crushing and removing treatments of the cracked spheres and the crushed spheres as in the present invention, and the resin particles are put into the plant. Due to the load applied to the resin particles at the time of filling, some of the cracked resin particles are crushed, and the crushed particles generated at the time of manufacturing remain, so that these crushed resin particles and their crushed parts are in operation. In addition, it may pass through the screen from the condensate demineralizer, flow out to the downstream, enter the reactor and be decomposed, resulting in deterioration of water quality. When ion-exchange resin particles treated by the present invention to remove cracked resin particles and crushed resin particles were used in a BWR plant, the conductivity of the reactor water was 0.1 μS before the ion-exchange resin exchange.
/ Cm, the value decreased to 0.07 μS / cm or less, which is favorable. Further, the sulfate ion concentration in the reactor water also decreased to 1 ppb or less compared to the value before the ion exchange resin exchange, 4 ppb, and is in good condition. By applying the present invention in this way, it is possible to achieve a dramatic improvement in the quality of treated water in the desalination apparatus.

【0049】(2)本発明を定期的に脱塩装置用のイオ
ン交換樹脂粒子に適用することにより、効率的に亀裂球
及び破砕球の除去が可能となり、運転時における処理水
の高純度維持が可能となる。 (3)長期間に渡り、脱塩装置に使用したイオン交換樹
脂に対して、本発明を適用することにより、効率的に樹
脂粒子中に存在する亀裂球及び破砕球を除去することが
出来、健全球のみを確保することができる。この樹脂粒
子を脱塩装置に充填することにより、良好な水質を維持
することが可能となる。
(2) By periodically applying the present invention to ion-exchange resin particles for a desalting apparatus, cracked spheres and crushed spheres can be efficiently removed, and high purity of treated water can be maintained during operation. Is possible. (3) By applying the present invention to an ion exchange resin used in a desalting apparatus for a long period of time, crack spheres and crushed spheres present in resin particles can be efficiently removed, Only healthy spheres can be secured. By filling the desalting device with the resin particles, it becomes possible to maintain good water quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1プロセスのポンプ循環法を行う樹脂スラリ
ー循環装置の概略説明図である。
FIG. 1 is a schematic explanatory diagram of a resin slurry circulation device that performs a pump circulation method of a first process.

【図2】逆洗分離法による破砕樹脂粒子の分離装置の概
略説明図である。
FIG. 2 is a schematic explanatory view of a device for separating crushed resin particles by a backwash separation method.

【符号の説明】[Explanation of symbols]

1 500mlビーカー 2 樹脂粒子 3 マグネチックポンプ 4 シリコーンゴム製チューブ 5 イオン交換樹脂 6 逆洗分離カラム 7 純水 8 純水タンク 9 逆洗水ポンプ 10 流量計 11 サイフォン 12 廃樹脂粒子受け 1 500ml beaker 2 resin particles 3 Magnetic pump 4 Silicone rubber tube 5 ion exchange resin 6 Backwash separation column 7 Pure water 8 Pure water tank 9 Backwash water pump 10 Flowmeter 11 siphon 12 Waste resin particle receiver

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B02C 19/18 B02C 19/18 E Z 23/08 23/08 Z B03B 5/00 B03B 5/00 Z B07B 1/28 B07B 1/28 Z Fターム(参考) 4D021 CA07 EA10 4D025 AA03 AB19 BA08 BA14 BB02 4D067 CE02 CG09 EE11 EE18 GA16 4D071 AA05 DA20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B02C 19/18 B02C 19/18 E Z 23/08 23/08 Z B03B 5/00 B03B 5/00 Z B07B 1/28 B07B 1/28 ZF term (reference) 4D021 CA07 EA10 4D025 AA03 AB19 BA08 BA14 BB02 4D067 CE02 CG09 EE11 EE18 GA16 4D071 AA05 DA20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 脱塩装置に使用する陽イオン交換樹脂粒
子及び/又は陰イオン交換樹脂粒子を、採水運転に供す
る前に、予め、該樹脂粒子に物理的及び/又は化学的な
破砕作用を与えて、内部歪みや微細亀裂らの潜在的欠陥
を持っている樹脂粒子のみを破砕させる第1プロセス
と、第1プロセスで破砕された樹脂粒子を健全樹脂粒子
から除去する第2プロセスにより潜在的欠陥を持ってい
る樹脂粒子を含まないものとした、健全樹脂粒子を脱塩
装置に充填し、採水運転を行うことを特徴とする脱塩装
置の水質向上方法。
1. The cation-exchange resin particles and / or anion-exchange resin particles used in a desalting apparatus are subjected to a physical and / or chemical crushing action on the resin particles before being subjected to a water sampling operation. To crush only the resin particles having latent defects such as internal strain and fine cracks, and the second process to remove the resin particles crushed in the first process from the sound resin particles. A method for improving water quality in a desalination apparatus, which comprises filling a desalination apparatus with sound resin particles not containing resin particles having a physical defect and performing a water sampling operation.
【請求項2】 前記第1プロセスは、使用する前記イオ
ン交換樹脂粒子を水を張った容器に収容し、ポンプによ
る循環運転、撹拌機等による撹拌、又は超音波の発信を
断続的又は連続的に実施する手段、乾燥器等によりイオ
ン交換樹脂を官能基が分解しない程度に加熱した後に注
水する手段、或いは樹脂を再生剤である塩酸、硫酸、硝
酸、苛性ソーダ、食塩等の比較的濃度の高い薬品に浸漬
した後,純水により十分に洗浄する手段のいずれか、あ
るいはその組み合わせであり、第2プロセスは、破砕し
た樹脂を空気又は窒素ガスによるスクラビングの後に展
開率100%以上で30分以上逆洗し、オーバーフロー
除去する手段、又は、乾燥状態或いは水と一緒に破砕し
た樹脂を振動ふるい等でふるう手段、のいずれかである
ことを特徴とする請求項1記載の脱塩装置の水質向上方
法。
2. In the first process, the ion-exchange resin particles to be used are contained in a container filled with water, and circulation operation by a pump, agitation by a stirrer, or ultrasonic wave transmission is intermittent or continuous. The means for carrying out the above, a means for injecting water after heating the ion exchange resin to such an extent that functional groups are not decomposed by a dryer, or a resin having a relatively high concentration of regenerants such as hydrochloric acid, sulfuric acid, nitric acid, caustic soda, and salt Either means or a combination of means for sufficiently washing with pure water after soaking in chemicals, and the second process is scrubbing the crushed resin with air or nitrogen gas and then developing rate is 100% or more for 30 minutes or more. A backwashing and overflow removing means, or a means for sieving a resin in a dry state or crushed with water with a vibrating screen or the like, A method for improving water quality of a desalination apparatus according to claim 1.
【請求項3】 前記第1プロセスの各手段は、脱塩装置
の運転操作に予め組み込むことにより脱塩装置の運転と
連繋可能とし、シーケンサー、又はプログラムタイマー
等を使用することにより自動運転をすることを特徴とす
る請求項1記載の脱塩装置の水質向上方法。
3. The respective means of the first process can be linked to the operation of the desalination device by being incorporated in the operation operation of the desalination device in advance, and can be automatically operated by using a sequencer, a program timer or the like. The method for improving water quality of a desalination device according to claim 1, wherein
【請求項4】 新品イオン交換樹脂粒子のみならず、脱
塩装置において経年使用し、物理的強度の低下したイオ
ン交換樹脂粒子に適用し、潜在的欠陥のない健全樹脂粒
子のみを確保し、脱塩装置に充填し採水運転を行うこと
により、延命化使用における微細樹脂や破砕樹脂の発生
を無くし、水質向上を図ることを特徴とする請求項1記
載の脱塩装置の水質向上方法。
4. Not only new ion-exchange resin particles, but also used in a desalting device for a long time and applied to ion-exchange resin particles with reduced physical strength to ensure only healthy resin particles without potential defects and to remove them. The method for improving water quality of a desalination device according to claim 1, wherein the water quality is improved by filling the salt device and performing a water sampling operation so as to eliminate generation of fine resin and crushed resin during extended life.
【請求項5】 陽イオン交換樹脂粒子及び/又は陰イオ
ン交換樹脂粒子に物理的及び/又は化学的な破砕作用を
与えて、内部歪みや微細亀裂らの潜在的欠陥を持ってい
る樹脂粒子のみを破砕させる第1プロセスと、第1プロ
セスで破砕された樹脂粒子を健全樹脂粒子から除去する
第2プロセスにより、潜在的欠陥を持っている樹脂粒子
を含まない健全樹脂粒子を充填したことを特徴とする脱
塩装置。
5. Only resin particles having latent defects such as internal strain and fine cracks by physically and / or chemically crushing the cation exchange resin particles and / or the anion exchange resin particles. Is characterized by filling healthy resin particles not containing resin particles having a latent defect by a first process of crushing resin particles and a second process of removing resin particles crushed in the first process from healthy resin particles. Desalination equipment.
JP2002035490A 2002-02-13 2002-02-13 Method for improving water quality of desalination equipment Expired - Fee Related JP3976128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002035490A JP3976128B2 (en) 2002-02-13 2002-02-13 Method for improving water quality of desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002035490A JP3976128B2 (en) 2002-02-13 2002-02-13 Method for improving water quality of desalination equipment

Publications (2)

Publication Number Publication Date
JP2003236540A true JP2003236540A (en) 2003-08-26
JP3976128B2 JP3976128B2 (en) 2007-09-12

Family

ID=27777666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002035490A Expired - Fee Related JP3976128B2 (en) 2002-02-13 2002-02-13 Method for improving water quality of desalination equipment

Country Status (1)

Country Link
JP (1) JP3976128B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040266A1 (en) * 2005-10-06 2007-04-12 Ebara Corporation Process and equipment for demineralizing condensate
JP2007283199A (en) * 2006-04-14 2007-11-01 Chugoku Electric Power Co Inc:The Method and apparatus for withdrawing ion exchange resin from demineralizer
WO2013141352A1 (en) * 2012-03-23 2013-09-26 栗田工業株式会社 Method and apparatus for blending ion-exchange resins

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040266A1 (en) * 2005-10-06 2007-04-12 Ebara Corporation Process and equipment for demineralizing condensate
JP2007098328A (en) * 2005-10-06 2007-04-19 Ebara Corp Condensate demineralization method and apparatus
US8007672B2 (en) 2005-10-06 2011-08-30 Ebara Corporation Method for demineralizing condensate
JP2007283199A (en) * 2006-04-14 2007-11-01 Chugoku Electric Power Co Inc:The Method and apparatus for withdrawing ion exchange resin from demineralizer
WO2013141352A1 (en) * 2012-03-23 2013-09-26 栗田工業株式会社 Method and apparatus for blending ion-exchange resins
JP2013198838A (en) * 2012-03-23 2013-10-03 Kurita Water Ind Ltd Method and apparatus for blending ion-exchange resins

Also Published As

Publication number Publication date
JP3976128B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
CZ282373B6 (en) Purification process of solutions
JPS61209087A (en) Percolation type water desalting system and method
US4387026A (en) Ion exchange regeneration plant
US2267841A (en) Method of and apparatus for treating water
EP0157683B1 (en) Process for the bituminization of radioactive wastes constituted by cation-exchange resins and/or anion-exchange resins
JP2002501372A (en) Method for reducing patulin concentration in fruit juice
US4191644A (en) Regeneration of mixed resin bed used for condensate polishing
JP2003236540A (en) Method of improving water quality in desalination apparatus
US4401591A (en) Treatment of organic ion exchange material containing radioactive waste products
JPH0125818B2 (en)
JP2001106725A (en) Method for producing monodisperse anion exchanger having strongly basic functional group
TW200906732A (en) Method for the treatment of tetraalkylammonium ion-containing development waste liquor
JPH0478344B2 (en)
JPS5815016B2 (en) How to clean ion exchange resin
JP4346088B2 (en) Ion-exchange resin drug regeneration method and apparatus
US2213530A (en) Fluid treating composition and method of making same
JP2000126766A (en) Treatment of tetraalkylammonium ion-containing liquid
Beker et al. Removal of boron from geothermal power plant wastewater in Kizildere, Turkey
JPS60114345A (en) Washing method of ion exchange resin bed
JPH10128128A (en) Method for separation and regeneration of ion exchange resin
RU45995U1 (en) WATER TREATMENT PLANT
JP4023834B2 (en) Storage method and operation preparation method of ion exchange resin in hotbed desalination equipment
JPH0999244A (en) Method for separating and regenerating ion exchange resin
RU79549U1 (en) FILTRATION UNIT &#34;AEROKLIN&#34;
JP2005296748A (en) Condensate demineralizer and its regeneration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees