JP2003235849A - Biological photometric apparatus - Google Patents

Biological photometric apparatus

Info

Publication number
JP2003235849A
JP2003235849A JP2002036762A JP2002036762A JP2003235849A JP 2003235849 A JP2003235849 A JP 2003235849A JP 2002036762 A JP2002036762 A JP 2002036762A JP 2002036762 A JP2002036762 A JP 2002036762A JP 2003235849 A JP2003235849 A JP 2003235849A
Authority
JP
Japan
Prior art keywords
measurement
time
data
biological
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002036762A
Other languages
Japanese (ja)
Other versions
JP2003235849A5 (en
JP4071506B2 (en
Inventor
Satoshi Ogino
敏 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002036762A priority Critical patent/JP4071506B2/en
Publication of JP2003235849A publication Critical patent/JP2003235849A/en
Publication of JP2003235849A5 publication Critical patent/JP2003235849A5/ja
Application granted granted Critical
Publication of JP4071506B2 publication Critical patent/JP4071506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological photometric apparatus in which real time display is enabled and the continuation of a measurement or a condition change can be arbitrarily performed. <P>SOLUTION: In the biological photometric apparatus provided with a measuring probe for locating a plurality of optical fibers for radiation and optical fibers for detecting on the body surface of a biopsy, a photometric means for detecting the quantity of light received by the optical fibers for detection for each measuring position and a signal processing means for producing and displaying a biological information image by calculating the biological information of the biopsy on the basis of a signal corresponding to the detected quantity of light, the signal processing means stores measuring data for every prescribed time unit and displays the measuring data of the time units in real time during the measurement. Besides, after the unwanted data of the time units are deleted as needed, a signal for each time unit is added and the added result is displayed in real time. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】この発明は、生体に光を照射
し、生体表面で反射し、或いは表面近傍を通過した光を
検出し、その光量から血液循環、血行動態、ヘモグロビ
ン変化などの生体情報を得て、画像化する生体光計測装
置に関し、特に比較的広い領域の計測に適した生体光計
測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to biological information such as blood circulation, hemodynamics and hemoglobin changes, which are obtained by irradiating a living body with light, detecting the light reflected on the surface of the living body, or detecting the light passing near the surface. The present invention relates to a biological optical measurement device for obtaining an image, and particularly to a biological optical measurement device suitable for measuring a relatively wide area.

【0002】[0002]

【従来の技術】生体光計測装置は、可視から赤外領域の
波長を生体に照射し、生体から反射された光或いは生体
を通過した光(以下、まとめて透過光という)を検出
し、生体内部を計測する装置であり、簡便で被検体に対
して低拘束で非侵襲的に生体内部の血行動態などの生体
情報を得ることができる。複数の光ファイバの先端を光
照射部と受光部として配列したプローブを用いることに
より、広がりのある領域を計測可能にした装置が臨床に
応用されつつある(特開昭57-115232号、特開昭63-2753
23号など)。
2. Description of the Related Art A biological light measuring device irradiates a living body with wavelengths in the visible to infrared region, detects light reflected from the living body or light passing through the living body (hereinafter collectively referred to as transmitted light), and It is a device for measuring the inside, and it is possible to obtain biological information such as hemodynamics inside the living body in a simple and non-invasive manner with low constraint on the subject. An apparatus capable of measuring a wide area by using a probe in which the tips of a plurality of optical fibers are arranged as a light emitting section and a light receiving section is being clinically applied (Japanese Patent Application Laid-Open No. 57-115232, Japanese Patent Application Laid-Open No. 57-115232). Sho 63-2753
No. 23).

【0003】このような生体光計測装置を利用した計測
方法として、経時的な信号の変化を追うことにより、て
んかん発作等の突発的変化を検出するイベントモードの
計測と、被検者に所定の負荷(タスク)を反復して与
え、タスク負荷時の脳の活性状態を観察する計測方法
(以下、負荷モードあるいは刺激モードの計測という)
がある。負荷モードの計測については、例えば特開平9-
98972号に記載されており、この計測では光刺激、運動
など所定の負荷(タスク)を一定の間隔で被検者に繰り
返し与えながら、生体光計測を行い、得られた結果から
タスク負荷時におけるヘモグロビン濃度の相対変化(無
負荷時に対する変化)を得る。この際、繰り返しによっ
て得られる負荷時のデータを加算し、統計的な信頼性を
高める方法も採用されている(加算モードの計測と呼ば
れる)。
As a measuring method using such a biological optical measuring device, an event mode measurement for detecting a sudden change such as an epileptic seizure by following a change in a signal over time and a predetermined method for a subject. A measurement method that repeatedly gives a load (task) and observes the activity state of the brain during task load (hereinafter referred to as load mode or stimulation mode measurement)
There is. Regarding the measurement of the load mode, for example, JP-A-9-
It is described in No. 98972, and in this measurement, while performing a predetermined load (task) such as light stimulation and exercise to the subject repeatedly at a fixed interval, biological light measurement is performed, and from the obtained results, the task load The relative change in hemoglobin concentration (change with respect to no load) is obtained. At this time, a method of adding load data obtained by repetition to enhance statistical reliability is also adopted (called measurement in addition mode).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
加算モードによるヘモグロビン濃度の変化量の計測は、
計測終了後になされていたので、計測が終了するまで、
計測部位が適切か、その負荷のかけ方が適正か、繰り返
し回数が適切かわからなかった。そのため、データ解析
後に、例えば繰り返し回数が適切でないことがわかった
場合には、適切であると思われる繰り返し回数を再度設
定して計測し直さなければならなかった。また計測途中
で、被検者が動いたりして、ノイズが混入することがあ
るが、これらノイズも加算結果に反映されてしまうた
め、計測の精度が低下する可能性もあった。
However, the measurement of the amount of change in hemoglobin concentration by the conventional addition mode is as follows.
It was done after the measurement, so until the measurement is completed,
I did not know whether the measurement site was appropriate, how the load was applied, or the number of repetitions was appropriate. Therefore, after the data analysis, for example, when it is found that the number of repetitions is not appropriate, the number of repetitions considered to be appropriate has to be set again and measured again. Further, noise may be mixed in due to the subject moving during the measurement, but since the noise also is reflected in the addition result, the measurement accuracy may be reduced.

【0005】そこで本発明は、加算モードの生体光計測
において1タスク単位の計測毎にリアルタイムで計測結
果を表示することができ、これにより1回の計測で適切
な条件の計測を行うことができる生体光計測装置を提供
することを目的とする。また本発明は、ノイズが加算結
果に混入するのを防止し高精度の計測を行うことが可能
な生体光計測装置を提供することを目的とする。
Therefore, according to the present invention, the measurement result can be displayed in real time for each measurement in a unit of task in the biological light measurement in the addition mode, whereby the measurement under appropriate conditions can be performed by one measurement. An object of the present invention is to provide a biological optical measurement device. Another object of the present invention is to provide a living body optical measurement device capable of preventing noise from being mixed in the addition result and performing highly accurate measurement.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の生体光計測装置は、複数の照射用光ファイバと検出
用光ファイバを生体の体表面に配置する計測プローブ
と、前記検出用光ファイバが受光した光量を計測位置毎
に検出する光計測手段と、検出された光量に対応する信
号をもとに前記被検体の生体情報を計算し、生体情報画
像を形成し表示する信号処理手段とを備えた生体光計測
装置において、前記信号処理手段は、所定の時間単位毎
の計測データ(例えばヘモグロビン濃度の相対変化)を
記憶する手段と、前記時間単位の計測データを計測中に
リアルタイムで表示する手段とを備えたものである。
A living body optical measuring apparatus of the present invention which achieves the above object comprises a measuring probe having a plurality of irradiation optical fibers and a plurality of detecting optical fibers arranged on the body surface of a living body, and the detecting light. Optical measuring means for detecting the amount of light received by the fiber for each measurement position, and signal processing means for calculating biological information of the subject based on a signal corresponding to the detected amount of light and forming and displaying a biological information image. In the living body optical measurement device including, the signal processing means stores the measurement data for each predetermined time unit (for example, relative change of hemoglobin concentration), and the measurement data in the time unit in real time during measurement. And means for displaying.

【0007】このような生体光計測装置によれば、タス
ク負荷時における生体光計測に際し、リアルタイムで計
測結果を観察することができるので、計測が適切か否か
を瞬時に判断し、計測の継続や新たな条件設定を行うこ
とができる。また本発明によれば、ノイズ発生の有無や
ノイズの特性をリアルタイムで把握できるので、それに
応じてノイズが混入した計測データを除くことができ、
正確な計測結果を得ることができる。
According to such a living body light measuring device, the living body light measurement at the time of task load can observe the measurement result in real time. Therefore, it is instantly judged whether or not the measurement is appropriate, and the measurement is continued. It is possible to set new conditions. Further, according to the present invention, since it is possible to grasp the presence or absence of noise and the characteristics of noise in real time, it is possible to remove measurement data in which noise is mixed according to it.
Accurate measurement results can be obtained.

【0008】また本発明の生体光計測装置は、信号処理
手段は、時間単位の計測データを加算する手段を備え、
表示する手段は、加算後の計測データをリアルタイムで
表示する。本発明の生体光計測装置は、リアルタイム表
示を実現するために、例えば、計測の時間単位を制御す
る時計を備え、信号処理手段は、前記時計からの動作信
号に基づき、時間単位毎に計測とデータ取り込み、加算
処理と表示を時分割処理或いは並列処理する。
In the living body optical measurement system of the present invention, the signal processing means includes means for adding measurement data in units of time,
The displaying means displays the measured data after addition in real time. In order to realize real-time display, the biological optical measurement device of the present invention includes, for example, a timepiece that controls the time unit of measurement, and the signal processing means measures the time for each time unit based on the operation signal from the timepiece. Data acquisition, addition processing, and display are time-divisionally processed or in parallel.

【0009】さらに本発明の生体光計測装置は、信号処
理手段は、時間単位の計測データのうち加算対象から除
去すべき時間単位の計測データを選択する手段を備え、
加算する手段は、選択する手段によって選択されなかっ
た時間単位の計測データを用いて加算を行うものであ
る。
Further, in the biological light measuring apparatus of the present invention, the signal processing means includes means for selecting time unit measurement data to be removed from the addition target among time unit measurement data.
The addition means is to add using the measurement data in units of time not selected by the selection means.

【0010】この生体光計測装置によれば、加算処理に
よって統計的な有意性の高められた計測結果をリアルタ
イム表示することができる。また加算処理においてノイ
ズの混入した区間のデータを排除することにより、高精
度の計測結果を得ることができる。
According to this living body light measuring apparatus, it is possible to display the measurement result of which statistical significance is enhanced by the addition processing in real time. Further, by eliminating the data in the section in which noise is mixed in the addition processing, it is possible to obtain a highly accurate measurement result.

【0011】[0011]

【発明の実施の形態】以下、本発明の生体光計測装置の
実施形態を、図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a living body optical measurement system of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明の生体光計測装置の全体概
要を示す図である。この生体光計測装置は、主として、
生体に近赤外光を照射する光源部10と、光源部10からの
光が生体を透過した光或いは生体から反射、散乱した光
(以下、合わせて透過光という)を計測し、電気信号に変
換する光計測部20と、光計測部20からの信号をもとに生
体情報、具体的には血中ヘモグロビン濃度変化を計算
し、結果を表示する信号処理部30とを備えている。さら
にこの生体光計測装置は、光源部10からの光を誘導する
光ファイバの先端を被検体の計測位置に接触させるとと
もに、被検体からの透過光を光計測部20に誘導する光フ
ァイバの先端を被検体の計測位置に接触させるために、
これら光ファイバ先端が固定される装着具(光ファイバ
先端と合わせて計測プローブという)40を備えている。
FIG. 1 is a diagram showing an overall outline of a biological optical measurement device of the present invention. This biological optical measurement device is mainly
A light source unit 10 for irradiating a living body with near-infrared light, and light from the light source unit 10 transmitted through the living body or reflected or scattered from the living body
(Hereinafter, collectively referred to as transmitted light) is measured, and an optical measurement unit 20 that converts it into an electrical signal and biological information based on the signal from the optical measurement unit 20, specifically, a hemoglobin concentration change in blood is calculated. And a signal processing unit 30 for displaying the result. Further, this biological optical measurement device, the tip of the optical fiber that guides the light from the light source unit 10 is brought into contact with the measurement position of the subject, and the tip of the optical fiber that guides the transmitted light from the subject to the optical measurement unit 20. To contact the measurement position of the subject,
A mounting tool (together with the optical fiber tip is referred to as a measurement probe) 40 to which the tip of the optical fiber is fixed is provided.

【0013】光源部10は、可視光から赤外の波長領域内
の複数の波長、例えば780nm及び830nmの光をそれぞれ放
射する半導体レーザ11と、これら2波長の光を複数の異
なる周波数で変調するための変調器を備えた複数の光モ
ジュール12と、光照射用の光ファイバ13とからなる。半
導体レーザ11から放射された2波長の光は、混合された
後、各光モジュール毎に異なる周波数に変調されて、光
ファイバ13を通って、被検体の検査部位に照射される。
The light source unit 10 emits light having a plurality of wavelengths within the wavelength range from visible light to infrared light, for example, light having wavelengths of 780 nm and 830 nm, and a semiconductor laser 11 that modulates these two wavelengths of light at a plurality of different frequencies. It is composed of a plurality of optical modules 12 equipped with modulators for the purpose of the above, and an optical fiber 13 for irradiating light. The two wavelengths of light emitted from the semiconductor laser 11 are mixed, then modulated to a different frequency for each optical module, passed through the optical fiber 13, and irradiated onto the examination site of the subject.

【0014】光計測部20は、検出用光ファイバ21に接続
され、検出用光ファイバ21が誘導する光を光量に対応す
る電気信号に変換するフォトダイオード22等の光電変換
素子と、フォトダイオード22からの電気信号を入力し、
照射位置及び波長に対応した変調信号を選択的に検出す
るためのロックインアンプ23と、ロックインアンプ23か
らの信号をA/D変換するA/D変換器24とからなる。ロ
ックインアンプ23は、少なくとも計測すべき信号の数と
同数のロックインアンプからなる。
The optical measuring section 20 is connected to the detection optical fiber 21, and a photoelectric conversion element such as a photodiode 22 for converting the light guided by the detection optical fiber 21 into an electric signal corresponding to the amount of light, and the photodiode 22. Input the electrical signal from
It comprises a lock-in amplifier 23 for selectively detecting a modulation signal corresponding to the irradiation position and wavelength, and an A / D converter 24 for A / D converting the signal from the lock-in amplifier 23. The lock-in amplifier 23 includes at least the same number of lock-in amplifiers as the number of signals to be measured.

【0015】プローブ40は、3×3、4×4などの適当
な大きさのマトリックスに、照射用光ファイバ先端と検
出用光ファイバ先端とが交互に配列するように光ファイ
バ接続用のソケットを配置したものである。検出用光フ
ァイバによって検出される光は、それと隣接する4つの
照射用光ファイバから照射されて生体を透過した光を混
合したものであり、ロックインアンプ23でこれら照射用
光ファイバによって異なる変調信号を選択検出すること
により、検出用光ファイバ先端と、隣接する照射用光フ
ァイバ先端との間の点(計測点)の情報を得ることがで
きる。これら計測点はロックインアンプ23が検出するチ
ャンネルに対応し、例えば4×4のマトリックスのプロ
ーブでは、光照射位置と検出位置との間の計測点が24と
なり、チャンネル数24の光計測を行うことができる。
The probe 40 has sockets for connecting optical fibers so that the irradiation optical fiber tips and the detection optical fiber tips are alternately arranged in a matrix of an appropriate size such as 3 × 3, 4 × 4. It is arranged. The light detected by the detection optical fiber is a mixture of the lights emitted from the four irradiation optical fibers adjacent thereto and transmitted through the living body, and the lock-in amplifier 23 produces different modulation signals depending on the irradiation optical fibers. By selectively detecting, the information of the point (measurement point) between the detection optical fiber tip and the adjacent irradiation optical fiber tip can be obtained. These measurement points correspond to the channels detected by the lock-in amplifier 23. For example, in the case of a 4 × 4 matrix probe, the measurement point between the light irradiation position and the detection position is 24, and the light measurement of 24 channels is performed. be able to.

【0016】信号処理部30は、装置全体の制御を行う制
御部31と、光計測部20から送られる電圧信号(デジタル
信号)を記憶するとともに信号処理後のデータを記憶す
る記憶手段31と、記憶手段31に記憶された電圧信号を処
理し、生体情報を表す信号、具体的には計測部位のヘモ
グロビン濃度を表すヘモグロビン信号への変換や、トポ
グラフィ像の作成を行う処理手段32と、処理結果を表示
するとともに計測や信号処理に必要な指示を制御部31に
入力するための入出力部33とを備えている。さらに信号
処理部30には、後述する負荷モードの計測において、計
測の時間単位を制御する時計を備え、この時計からの動
作信号に基づき計測と時間単位のデータ取り込み、デー
タを用いた画像の計算と表示を行う。
The signal processing section 30 includes a control section 31 for controlling the entire apparatus, storage means 31 for storing a voltage signal (digital signal) sent from the optical measuring section 20 and for storing data after signal processing. Processing means 32 for processing the voltage signal stored in the storage means 31, a signal indicating biological information, specifically, conversion into a hemoglobin signal indicating the hemoglobin concentration of the measurement site, and a processing means 32 for creating a topography image, and the processing result. And an input / output unit 33 for inputting an instruction necessary for measurement and signal processing to the control unit 31. Furthermore, the signal processing unit 30 is provided with a clock for controlling the time unit of measurement in the load mode measurement described later, and based on the operation signal from this clock, the measurement and the data acquisition of the time unit, the calculation of the image using the data And display.

【0017】このような構成の生体光計測装置におい
て、生体光計測は、照射用光ファイバ13によって異なる
周波数で変調された光を、生体に装着したプローブから
照射するとともに、生体を透過し、検出用光ファイバ21
によって誘導された光を各フォトダイオード22で電気信
号に変換し、それを照射位置及び検出位置の中間点であ
る計測点毎に検出し、計測部位の血中ヘモグロビン濃度
に変換したヘモグロビン信号を得ることにより行われ
る。この計測で得られる情報は、一般的には、酸素化ヘ
モグロビン濃度(Oxy-Hb)、脱酸素化ヘモグロビン濃度
(Deoxy-Hb)、ヘモグロビン総量(Total-Hb)であるが、近
赤外に吸収を有する生体内物質であればチトクローム
等、ヘモグロビン以外の物質も計測の対象とすることが
できる。
In the living body light measuring apparatus having such a structure, the living body light measurement is performed by irradiating the light, which is modulated by the irradiation optical fiber 13 at different frequencies, from the probe attached to the living body and transmitting through the living body to detect the light. For optical fiber 21
The light guided by is converted into an electric signal by each photodiode 22, and it is detected at each measurement point which is an intermediate point between the irradiation position and the detection position to obtain a hemoglobin signal converted into the blood hemoglobin concentration at the measurement site. It is done by The information obtained by this measurement is generally oxygenated hemoglobin concentration (Oxy-Hb), deoxygenated hemoglobin concentration.
(Deoxy-Hb) and total amount of hemoglobin (Total-Hb), but substances other than hemoglobin, such as cytochrome, can also be measured as long as they are in-vivo substances that absorb in the near infrared.

【0018】次に上記生体光計測装置を用いて負荷モー
ド(刺激モード)でヘモグロビン濃度を計測する場合の
動作を説明する。図2は、本発明の生体光計測装置によ
る生体光計測の一実施形態を示す図であり、この計測で
は、まずタスク負荷を行う前に予備計測を行った後、タ
スクの負荷を含む一定区間の計測を繰り返し行い、区間
のヘモグロビン濃度の相対変化を測定する。一つの区間
は、タスクを負荷する前の時間pre、タスクの負荷時間t
ask、タスク負荷後の緩和時間relaxation、及びその後
の時間postからなる。relaxationは負荷による生体の反
応が元に戻るのに要する時間である。ここでは、pre、r
elaxation及びpostをレストと呼ぶこととし、1回のタ
スクとそれに付随するレストを1タスク単位の計測とし
て、それを複数回繰り返す。これら区間の開始及び区間
内の各時間は、装置に備えられた時計(図示せず)に合
わせて、各繰り返しにおいて一定となるように制御され
る。
Next, the operation in the case of measuring the hemoglobin concentration in the load mode (stimulation mode) using the above-mentioned biological light measuring device will be described. FIG. 2 is a diagram showing one embodiment of the biological optical measurement by the biological optical measurement device of the present invention. In this measurement, first, preliminary measurement is performed before performing a task load, and then a constant section including the task load. Is repeated to measure the relative change in hemoglobin concentration in the section. One section is the time pre before loading the task, the task load time t
It consists of ask, relaxation time after task load, and post time after that. Relaxation is the time required for the body reaction due to the load to return to its original state. Where pre, r
Elaxation and post are called rests, and one task and the rests associated with it are measured in units of one task, and this is repeated multiple times. The start of each section and each time in each section are controlled to be constant in each repetition in accordance with a clock (not shown) provided in the device.

【0019】図3に計測の手順を示す。図示するよう
に、まずタスク負荷を行う前に予備計測を行って(ステ
ップ301)、タスクを負荷しない状態における計測の状
態をチェックする(ステップ302)。次いで、1タスク
単位の計測を行い、区間のヘモグロビンHbの相対変
化、即ち、基準データに対する変化を測定する(ステッ
プ303)。タスク単位の計測は、予め設定された回数
(N)繰り返される。
FIG. 3 shows the measurement procedure. As shown in the figure, first, preliminary measurement is performed before task loading (step 301), and the state of measurement in a state where no task is loaded is checked (step 302). Next, the measurement is performed for each task, and the relative change of the hemoglobin Hb in the section, that is, the change with respect to the reference data is measured (step 303). The task-based measurement is repeated a preset number of times (N).

【0020】計測毎に生データはタイムコースで入出力
部33の表示部に表示される(ステップ304)。また計測
されたデータは、1タスク単位の計測毎に記憶手段31の
メモリに格納される(ステップ305)。1タスク単位の
計測データは、図4に示すように、各チャンネル(計測
点)についてpre、task、relaxation、postの4つのデ
ータから成る。
Raw data for each measurement is displayed on the display unit of the input / output unit 33 in a time course (step 304). Further, the measured data is stored in the memory of the storage means 31 for each measurement of one task unit (step 305). As shown in FIG. 4, the measurement data of one task unit consists of four data of pre, task, relaxation, and post for each channel (measurement point).

【0021】図5に、表示部に表示される表示の一例を
示す。図中、(c)は生データ(電圧でター)のタイム
コースの表示であり、ここでは二種類の計測波長(780n
m及び830nm)についてそれぞれ24チャンネルの計測デー
タがタイムコースで表示されている。これは例えば0.1
Sの計測毎に表示する。2本の縦線で区切られた間のデ
ータはタスク負荷時のデータである。また(a)は被検
者のIDや氏名、計測日時を表示するID欄であり、
(b)は計測チャンネルの番号及び位置を示している。
FIG. 5 shows an example of a display displayed on the display unit. In the figure, (c) is a time-course display of raw data (voltage), and here two types of measurement wavelengths (780n
Measurement data of 24 channels for m and 830 nm) are displayed on the time course. This is, for example, 0.1
Display every measurement of S. The data between the two vertical lines is the data when the task load. Further, (a) is an ID column for displaying the ID, name, and measurement date / time of the subject,
(B) shows the number and position of the measurement channel.

【0022】一方、処理手段32は、1タスク単位のデ
ータについて、当該タスク単位のpre、postをつなぐ近
似直線或いは近似曲線をもとめ、この近似直線或いは近
似曲線とタスク負荷時のデータとの差をとって、図2
(イ)に示すように、ヘモグロビンの相対濃度を算出す
る(ステップ306)。そして、算出した相対濃度を図5
に(d)で示すように、表示部に表示する(ステップ30
9)。
On the other hand, the processing means 32 obtains an approximate straight line or an approximate curve connecting pre and post of the task unit for the data of one task unit, and calculates the difference between the approximate straight line or the approximate curve and the data when the task is loaded. Figure 2
As shown in (a), the relative concentration of hemoglobin is calculated (step 306). Then, the calculated relative concentration is shown in FIG.
As shown in (d) on the display (step 30
9).

【0023】2回目のタスク単位の計測についても同様
に、計測の生データを表示部に表示すると共に、当該タ
スク単位のpre、postをつなぐ近似直線或いは近似曲線
との差をとってヘモグロビンの相対濃度を算出する(ス
テップ306)。処理手段32は、さらにこの2回目のデ
ータとそれ以前に計測されたデータ(1回目のデータ)
との平均値を求め、これを表示部に表示する(ステップ
308、309)。以下、設定された回数Nまで、ステップ30
3からステップ309の処理を繰り返し、最終的にN回のタ
スク単位の計測の平均値である相対濃度のグラフを得
る。尚、図5では相対濃度をグラフ表示した例を示した
が、各計測点の相対濃度を、計測領域上に等高線状の画
像で示したトポグラフィを、グラフ表示の代わりに或い
はグラフ表示とともに表示することも可能である。
Similarly for the second task-based measurement, the raw data of the measurement is displayed on the display unit, and the difference between the raw data of the task and the approximate straight line or the approximate curve connecting pre and post of the task is taken to determine the relative hemoglobin. The density is calculated (step 306). The processing means 32 further processes this second data and the data measured before that (first data).
And the average value is calculated and displayed on the display (step
308, 309). Hereafter, up to the set number N, step 30
The process from 3 to step 309 is repeated to finally obtain the graph of the relative density which is the average value of the measurement in task units of N times. Although FIG. 5 shows an example in which the relative densities are displayed as a graph, the relative densities of the respective measurement points are displayed as a topography in which a contour line image is displayed on the measurement area instead of or together with the graph display. It is also possible.

【0024】これらステップ303からステップ309までの
一連の処理は、タスク単位の計測を制御する時計からの
動作信号により、例えば図6に示すように、処理手段3
2のフォアグラウンドとその空き時間であるバックグラ
ウンドを利用してリアルタイムで行われる。即ち、フォ
アグラウンドで例えば0.1秒毎の計測とデータ取り込み
(ステップ303〜305)を行い、1タスク単位の計測が終
了すると、バックグラウンドを立ち上げ、タスク単位毎
の画像の計算を行う。以後、タスク単位の画像の計算及
び結果の表示が終了するまでバックグラウンドで処理を
行う。この際、計測の表示は計測についで優先度の高い
ジョブとして処理する。こうして計測と平行してリアル
タイムで画像の表示を行うことができる。尚、これら処
理は、単一の処理手段32で時分割処理するのではな
く、複数の処理手段で並列処理することも可能である。
The series of processes from step 303 to step 309 is performed by the processing means 3 as shown in FIG. 6 by the operation signal from the clock for controlling the measurement of the task unit.
It is performed in real time using the foreground of 2 and the background, which is the free time. That is, measurement and data acquisition (steps 303 to 305) are performed in the foreground, for example, every 0.1 second, and when the measurement in one task unit is completed, the background is activated and the image is calculated in each task unit. After that, the processing is performed in the background until the calculation of the image of the task unit and the display of the result are completed. At this time, the measurement display is processed as a job with a high priority following the measurement. Thus, the image can be displayed in real time in parallel with the measurement. Note that these processes may be processed in parallel by a plurality of processing means instead of being time-divisionally processed by a single processing means 32.

【0025】このように本実施形態によれば、タスク負
荷を繰り返し行いながら生体計測をする際に、計測と同
時に1タスク単位の計測結果の平均値を順次リアルタイ
ムで表示することができるので、表示されたグラフ等を
見ることにより、計測中に計測条件(負荷のかけ方や計
測の繰り返し回数)が適切かどうかを判断することがで
き、必要に応じて条件を変えてさらに計測を継続したり
終了したりすることが可能である。この場合には、図3
のフローB以下に示したように、例えば、予め設定した
繰り返し回数N終了後(ステップ310の後)に、さらに
継続するか否かを判断し(ステップ311)、入出力部33
を介して、計測の継続又は終了の選択、継続の場合の条
件の設定を行う(ステップ312)。そして、新たな条件
が設定された場合には、その条件によって、予備計測
(ステップ301から)またはタスク単位の計測(ステッ
プ303から)が再開される。
As described above, according to the present embodiment, when the biometric measurement is performed while the task load is repeatedly performed, it is possible to sequentially display the average value of the measurement results for each task in real time simultaneously with the measurement. It is possible to judge whether the measurement conditions (how to apply load or the number of repetitions of the measurement) are appropriate during the measurement by looking at the graphs etc., and change the conditions as necessary to continue the measurement. It is possible to finish. In this case,
Flow B of the input / output unit 33, as shown below, for example, after the preset number of repetitions N is completed (after step 310), it is determined whether or not to continue (step 311).
Via, the continuation or end of measurement is selected, and the condition for continuation is set (step 312). Then, when a new condition is set, preliminary measurement (from step 301) or task-based measurement (from step 303) is restarted depending on the condition.

【0026】また上記の生体光計測においては、タイム
コースで表示される生データを観察することにより、ノ
イズの発生をリアルタイムで知ることができるので、ノ
イズの混入した計測データをその後の処理から削除する
ことも可能である。このような判断は、リアルタイムで
表示された計測結果を見て手動で削除の設定を行うこと
もできるが、処理手段33が自動的に判断することも可能
である。このような自動判断は、図3にステップ307と
して示している。その場合には、予めタスク負荷時の相
対濃度(或いは信号値)の閾値を定めておき、計測デー
タがその閾値を超えたときに、大きなノイズが発生した
とみなし、そのデータを計算から排除するとともに、そ
の計測は繰り返し回数にカウントしないこととする。
In the above-mentioned biological optical measurement, the generation of noise can be known in real time by observing the raw data displayed in the time course. Therefore, the measurement data containing noise is deleted from the subsequent processing. It is also possible to do so. For such a determination, the deletion can be set manually by seeing the measurement result displayed in real time, but the processing means 33 can also make the determination automatically. Such automatic determination is shown as step 307 in FIG. In that case, a threshold value of the relative density (or signal value) at the time of task load is set in advance, and when the measurement data exceeds the threshold value, it is considered that a large noise has occurred, and the data is excluded from the calculation. At the same time, the measurement is not counted in the number of repetitions.

【0027】以上、1種類の負荷を繰り返しかけながら
計測を行う負荷モードの生体光計測を説明したが、本発
明の生体光計測装置は、このような負荷モードのみなら
ず、例えば負荷のかけ方を異ならせながら或いは異なる
タスクを与えながら計測を行う場合にも適用できる。そ
のような実施形態を図7に示す。この実施形態では、例
えば負荷の大きさの異なる3種類のタスクT1、T2、
T3をサイクリックに繰り返し、生体反応を観察する。
The biological optical measurement in the load mode in which the measurement is performed while repeatedly applying one type of load has been described above. However, the biological optical measurement device of the present invention is not limited to such a load mode, and, for example, how to apply the load. It can also be applied to the case where measurement is performed while making different or giving different tasks. Such an embodiment is shown in FIG. In this embodiment, for example, three types of tasks T1, T2,
T3 is cyclically repeated to observe the biological reaction.

【0028】この生体光計測においても、計測毎に生デ
ータをタイムコースとして表示する点及びタスク単位毎
にpre、postをつなぐ近似直線或いは近似曲線と計測生
データとの差からタスク単位毎のヘモグロビン濃度の相
対変化を算出する点は上記実施形態と同様である。但
し、この実施形態では、タスク単位の計測データの加算
は、タスクの種類が同じもの同士で行う。即ち、3回の
タスクT1、T2、T3負荷時の計測に引き続く、2順
目以降の計測において、1回目のタスクT1負荷時の計
測データと2回目のタスクT1負荷時の計測データを加
算し、リアルタイムで表示する。
Also in this biological light measurement, hemoglobin for each task unit is obtained from the difference between the measured raw data and the point where raw data is displayed as a time course for each measurement and the approximate straight line or approximate curve connecting pre and post for each task unit. The calculation of the relative change in concentration is the same as in the above embodiment. However, in this embodiment, the addition of the measurement data in task units is performed between tasks having the same task type. That is, the measurement data when the first task T1 is loaded and the measurement data when the second task T1 is loaded are added in the second and subsequent measurements following the measurement when the tasks T1, T2, and T3 are loaded three times. , Display in real time.

【0029】また別の実施形態として、タスク単位毎の
データの加算を行わずに、負荷を次々と変化させて計測
し、最適な負荷を見出したり、別のテストを行うことも
可能である。
As another embodiment, it is also possible to measure the load by changing the load one after another without adding the data for each task unit, find an optimum load, or perform another test.

【0030】[0030]

【発明の効果】本発明によれば、タスク負荷時における
生体光計測に際し、リアルタイムで計測結果を観察する
ことができるので、計測が適切か否かを瞬時に判断し、
計測の継続や新たな条件設定を行うことができる。また
本発明によれば、ノイズ発生の有無やノイズの特性をリ
アルタイムで把握できるので、それに応じてノイズが混
入した計測データを除くことができ、正確な計測結果を
得ることができる。
As described above, according to the present invention, the measurement result can be observed in real time when measuring the biological light under the task load. Therefore, it is possible to instantly judge whether the measurement is appropriate,
Measurement can be continued and new conditions can be set. Further, according to the present invention, since the presence or absence of noise generation and the characteristics of noise can be grasped in real time, it is possible to eliminate measurement data in which noise is mixed according to it, and obtain an accurate measurement result.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の生体光計測装置の全体概要を示す図FIG. 1 is a diagram showing an overall outline of a biological optical measurement device of the present invention.

【図2】 本発明の生体光計測装置を用いた負荷モード
の計測を説明する図
FIG. 2 is a diagram for explaining load mode measurement using the biological optical measurement device of the present invention.

【図3】 本発明の生体光計測装置を用いた計測の一実
施形態を示すフロー図
FIG. 3 is a flowchart showing an embodiment of measurement using the biological optical measurement device of the present invention.

【図4】 記憶手段に格納される計測データの一例を示
す図
FIG. 4 is a diagram showing an example of measurement data stored in a storage unit.

【図5】 本発明の生体光計測装置の表示の一例を示す
FIG. 5 is a diagram showing an example of a display of the biological optical measurement device of the present invention.

【図6】 処理手段における処理の状態を示す図FIG. 6 is a diagram showing a processing state in a processing means.

【図7】 本発明の生体光計測装置を用いた計測の他の
実施形態を示す図
FIG. 7 is a diagram showing another embodiment of measurement using the biological optical measurement device of the present invention.

【符号の説明】[Explanation of symbols]

10・・・光源部 13・・・照射用光ファイバ 20・・・光計測部 21・・・検出用光ファイバ 30・・・信号処理部 31・・・記憶手段 32・・・処理手段 40・・・プローブ 10 ... Light source 13 ... Irradiation optical fiber 20 ... Optical measurement unit 21 ... Detection optical fiber 30 ... Signal processing unit 31 ... Memory means 32 ... Processing means 40 ... probe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の照射用光ファイバと検出用光ファ
イバを生体の体表面に配置する計測プローブと、前記検
出用光ファイバが受光した光量を計測位置毎に検出する
光計測手段と、検出された光量に対応する信号をもとに
前記被検体の生体情報を計算し、生体情報画像を形成し
表示する信号処理手段とを備えた生体光計測装置におい
て、 前記信号処理手段は、所定の時間単位毎の計測データを
記憶する手段と、前記時間単位の計測データを計測中に
リアルタイムで表示する手段とを備えたことを特徴とす
る生体光計測装置。
1. A measurement probe having a plurality of irradiation optical fibers and a plurality of detection optical fibers arranged on the body surface of a living body, an optical measuring means for detecting the amount of light received by the detection optical fiber at each measurement position, and a detection. In the living body optical measurement device including a signal processing unit that calculates biological information of the subject based on a signal corresponding to the light amount, and forms and displays a biological information image, the signal processing unit is a predetermined A living body optical measurement device comprising: a unit that stores measurement data for each time unit; and a unit that displays the measurement data in units of time in real time during measurement.
【請求項2】 前記信号処理手段は、前記時間単位の計
測データを加算する手段を備え、前記表示する手段は、
加算後の計測データをリアルタイムで表示することを特
徴とする請求項1記載の生体光計測装置。
2. The signal processing means comprises means for adding the measurement data in units of time, and the means for displaying is
The biological optical measurement device according to claim 1, wherein the measured data after the addition is displayed in real time.
【請求項3】 請求項1又は2に記載の生体光計測装置
であって、前記信号処理手段は、時間単位の計測毎に、
計測とデータ取り込み並びに加算処理と表示を時分割処
理或いは並列処理することを特徴とする生体光計測装
置。
3. The biological optical measurement device according to claim 1 or 2, wherein the signal processing means performs measurement every time unit.
A biological optical measurement device characterized by performing time division processing or parallel processing of measurement, data acquisition, addition processing, and display.
【請求項4】 前記信号処理手段は、前記時間単位の計
測データのうち加算対象から除去すべき計測データを選
択する手段を備え、前記加算する手段は、前記選択する
手段によって選択されなかった時間単位の計測データを
用いて加算を行うことを特徴とする請求項2又は3に記
載の生体光計測装置。
4. The signal processing means comprises means for selecting measurement data to be removed from the addition target among the measurement data in units of time, and the addition means is for the time not selected by the selection means. The living body optical measurement system according to claim 2 or 3, wherein addition is performed using measurement data in units.
JP2002036762A 2002-02-14 2002-02-14 Biological light measurement device Expired - Fee Related JP4071506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002036762A JP4071506B2 (en) 2002-02-14 2002-02-14 Biological light measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002036762A JP4071506B2 (en) 2002-02-14 2002-02-14 Biological light measurement device

Publications (3)

Publication Number Publication Date
JP2003235849A true JP2003235849A (en) 2003-08-26
JP2003235849A5 JP2003235849A5 (en) 2005-06-23
JP4071506B2 JP4071506B2 (en) 2008-04-02

Family

ID=27778558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002036762A Expired - Fee Related JP4071506B2 (en) 2002-02-14 2002-02-14 Biological light measurement device

Country Status (1)

Country Link
JP (1) JP4071506B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012151A (en) * 2008-07-07 2010-01-21 Hitachi Medical Corp Living body optical measurement device having stimulus presenting function, and method for presenting stimulus task
JP2011524196A (en) * 2008-06-16 2011-09-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Monitoring patient vital parameters using "IN-SITU" modulation scheme to avoid interference
JP2014036893A (en) * 2004-11-29 2014-02-27 General Hospital Corp Construction, apparatus, endoscope, catheter and method for performing optical image generation by irradiating a plurality of spots on sample simultaneously and detecting the same
JPWO2015141423A1 (en) * 2014-03-18 2017-04-06 株式会社日立製作所 Biological light measurement device and biological light measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014036893A (en) * 2004-11-29 2014-02-27 General Hospital Corp Construction, apparatus, endoscope, catheter and method for performing optical image generation by irradiating a plurality of spots on sample simultaneously and detecting the same
JP2011524196A (en) * 2008-06-16 2011-09-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Monitoring patient vital parameters using "IN-SITU" modulation scheme to avoid interference
JP2010012151A (en) * 2008-07-07 2010-01-21 Hitachi Medical Corp Living body optical measurement device having stimulus presenting function, and method for presenting stimulus task
JPWO2015141423A1 (en) * 2014-03-18 2017-04-06 株式会社日立製作所 Biological light measurement device and biological light measurement method

Also Published As

Publication number Publication date
JP4071506B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP4097522B2 (en) Biological light measurement device
US10299710B2 (en) Organism optical measurement device
US6542763B1 (en) Optical measurement equipment and recording medium and optical measurement method
US4908762A (en) Oximeter with system for testing transmission path
US8289502B2 (en) Measurement apparatus and measurement method
US9433352B2 (en) Optical measuring device
JP3916985B2 (en) Biological light measurement device
JP2003010188A (en) Organism light measuring instrument
JP5248758B2 (en) Optical measuring device
US20050277817A1 (en) Noninvasive measurement system for monitoring activity condition of living body
JP2009095380A (en) Optical biometric apparatus
JP4948300B2 (en) Biological light measurement device
JP4071506B2 (en) Biological light measurement device
JPWO2013168294A1 (en) Photobiological measurement system and method of using the same
JP4151162B2 (en) Optical measuring device
US7330745B2 (en) Living body photometric device
JP5210733B2 (en) Biological light measuring device having stimulation presentation function and stimulation task presentation method
JP2961608B1 (en) Oxygen saturation measurement device
JP2000300569A (en) Biological light measuring instrument
JP4230726B2 (en) Biological light measuring device and biological load reaction measuring device
JP2010125147A (en) Biometric instrument
US20220079504A1 (en) Brain function measurement device
JP3961300B2 (en) Biological light measurement device
JP7425436B2 (en) Blood component concentration measuring device
JP4230729B2 (en) Biological light measurement device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees