JP2003227416A - Liquefied gas fuel feeding system - Google Patents

Liquefied gas fuel feeding system

Info

Publication number
JP2003227416A
JP2003227416A JP2002026360A JP2002026360A JP2003227416A JP 2003227416 A JP2003227416 A JP 2003227416A JP 2002026360 A JP2002026360 A JP 2002026360A JP 2002026360 A JP2002026360 A JP 2002026360A JP 2003227416 A JP2003227416 A JP 2003227416A
Authority
JP
Japan
Prior art keywords
fuel
pressure
gas
bypass
closing valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002026360A
Other languages
Japanese (ja)
Other versions
JP3966733B2 (en
Inventor
Keiji Iwatsuki
恵司 岩月
Shigehiro Suzuki
重弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Original Assignee
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co Ltd filed Critical Central Motor Wheel Co Ltd
Priority to JP2002026360A priority Critical patent/JP3966733B2/en
Publication of JP2003227416A publication Critical patent/JP2003227416A/en
Application granted granted Critical
Publication of JP3966733B2 publication Critical patent/JP3966733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a leakage of a fuel from respective injection holes by maintaining the injection holes of respective fuel injector to an approximately atmospheric pressure at the time of stopping of an engine in the engine using a liquefied gas fuel. <P>SOLUTION: A high pressure route closing valve 11 is provided on a high pressure fuel feeding passage S at an upstream side of a common rail 4 and a return route switch valve 12 and a pressure adjuster 7 are provided on a fuel return route at a downstream side of the common rail 4 to constitute a separation part K between both valves 11, 12. A first by-path route R1 connected to the fuel return route R through the pressure adjuster 7 is provided on the return route switch valve 12. A second by-path route R2 is provided between the separation part K and the fuel return route R and a by-path route closing valve 13 and a compressor 10 are provided thereon. A gas/liquid sensor 21 and a pressure sensor 22 are provided at the separation park K. The respective valves or the like are controlled at the time of stopping of the engine, and a pressure in the separation part K is reduced. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、液化ガスを燃料と
する液化ガス燃料供給システムに関するもので、詳しく
はエンジン停止中に於けるエンジンシリンダ内への液化
ガス燃料の漏れを防止するシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquefied gas fuel supply system using liquefied gas as fuel, and more particularly to a system for preventing leakage of liquefied gas fuel into an engine cylinder while the engine is stopped.

【0002】[0002]

【従来の技術】液化ガス燃料をエンジンシリンダ内に噴
射して燃焼させる場合、液化ガスを加圧して液体の状態
で噴射系に供給する必要があるが、特にディーゼルエン
ジンのような高圧縮エンジンに用いる場合には、液化ガ
スを極めて高い圧力で加圧して燃料噴射系に供給する必
要がある。
2. Description of the Related Art When liquefied gas fuel is injected into an engine cylinder and burned, it is necessary to pressurize the liquefied gas and supply it in a liquid state to an injection system, especially in a high compression engine such as a diesel engine. When used, it is necessary to pressurize the liquefied gas at an extremely high pressure and supply it to the fuel injection system.

【0003】各種の液化ガスのうち、軽油に代わるディ
ーゼル燃料として、セタン価が高く且つPMとNOxの
発生が少なく、とりわけススの発生の極めて少ないジメ
チルエーテル(以下、DMEと言う)が低公害燃料とし
て検討されているが、軽油に比べて粘性が大幅に低いた
め、エンジン停止中に於いて燃料配管内の高い燃料残圧
により、メタルシールの電磁弁を有するインジェクタに
あっても、インジェクタの噴孔からエンジンシリンダ内
へDMEが徐々に漏れて滞留し、エンジンの始動時に異
常燃焼を生じるという問題がある。
Among various liquefied gases, dimethyl ether (hereinafter referred to as DME), which has a high cetane number, generates little PM and NOx, and produces very little soot, is used as a low-pollution fuel instead of diesel oil. Although it has been studied, the viscosity is much lower than that of light oil, so the high fuel residual pressure in the fuel pipe when the engine is stopped causes the injector injection hole even if the injector has a metal seal solenoid valve. There is a problem in that DME gradually leaks and stays in the engine cylinder, causing abnormal combustion when the engine is started.

【0004】この問題を解決するため、従来より各種の
提案がされているが、代表的なものとしてドイツ特許第
19611434号A1公報が挙げられる。
In order to solve this problem, various proposals have been made in the past, but a typical example is German Patent No. 1961434A1.

【0005】前記公報は、エンジン停止中にインジェク
タへ高圧燃料を供給するコモンレールを含む高圧燃料供
給系及びインジェクタへの余剰燃料を燃料タンクに戻す
燃料リターン系の配管内に残留する高圧液状のDME
を、複数の弁装置を開閉制御して低圧の捕集容器(パー
ジタンクとも言う)に回収することにより、インジェク
タの噴孔を大気圧に維持して、噴孔からのDMEの漏れ
を防止するものである。
In the above publication, high-pressure liquid DME remaining in the high-pressure fuel supply system including a common rail for supplying high-pressure fuel to the injector while the engine is stopped, and the fuel return system for returning excess fuel to the injector to the fuel tank.
By controlling the opening and closing of a plurality of valve devices and collecting them in a low-pressure collection container (also called a purge tank) to maintain the injector injection hole at atmospheric pressure and prevent leakage of DME from the injection hole. It is a thing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記公
報に開示されているパージタンクは、高圧液状の残留D
MEを低圧のガス状態で回収し貯留するために必然的に
大容量となり、例えば、180リットルもある大型タン
クとなるため、車両への搭載性に特に難点があることに
加え装置コストも高くなるので、実用化に当たっては問
題があった。
However, the purge tank disclosed in the above publication has a high-pressure liquid residue D.
Since ME is inevitably large in capacity to be collected and stored in a low-pressure gas state, for example, it becomes a large tank of 180 liters, so that it is particularly difficult to mount it on a vehicle and the cost of the apparatus also increases. Therefore, there was a problem in practical application.

【0007】本発明は、前述の問題に鑑みてなされたも
ので、エンジン停止中に於いて燃料噴射器の噴孔からエ
ンジンシリンダ内へDMEのような粘性の低い液化ガス
燃料が漏れないようにすると共に、車両への搭載性に問
題が無く且つ装置コストの安い液化ガス燃料供給システ
ムを提供することを目的とする。
The present invention has been made in view of the above problems, and prevents liquefied gas fuel with low viscosity such as DME from leaking from the injection hole of the fuel injector into the engine cylinder while the engine is stopped. At the same time, it is an object of the present invention to provide a liquefied gas fuel supply system which has no problem in mountability on a vehicle and is low in device cost.

【0008】[0008]

【課題を解決するための手段】本発明は前述の問題を解
決するため、次の技術的手段を用いるものである。
The present invention uses the following technical means in order to solve the above-mentioned problems.

【0009】請求項1に記載の第1の発明は、液化ガス
を貯留する燃料タンクから高圧ポンプを介してエンジン
への燃料噴射器に燃料を供給し、所定の燃料噴射圧力に
調圧する圧力調整器を介して前記燃料タンクに燃料を戻
す液化ガス燃料供給システムに於いて、前記高圧ポンプ
から前記燃料噴射器に接続される高圧燃料供給経路に設
けられ、該高圧燃料供給経路を開閉する高圧経路開閉弁
と、前記圧力調整器を介して燃料タンクに燃料を戻す燃
料リターン経路に設けられ、該燃料リターン経路を開閉
すると共に前記圧力調整器をバイパスして前記燃料リタ
ーン経路に接続される第1のバイパス経路へ切り替える
リターン経路切替弁と、前記高圧経路開閉弁と前記リタ
ーン経路切替弁とにより区画される隔離部分から分岐
し、前記燃料リターン経路に接続される第2のバイパス
経路と、該第2のバイパス経路に設けられ、該第2のバ
イパス経路を開閉するバイパス経路開閉弁と、前記第2
のバイパス経路に設けられ、前記隔離部分のガスを吸引
圧縮して前記燃料タンクに戻すコンプレッサと、前記隔
離部分に設けられ、該隔離部分のガス比率を検出する気
液センサと、前記隔離部分に設けられ、該隔離部分の圧
力を検出する圧力センサと、エンジン停止時は、前記気
液センサと圧力センサの検出値に基づいて前記高圧経路
開閉弁、リターン経路切替弁及びバイパス経路開閉弁の
開閉切り替えを行うと共に、前記コンプレッサを作動さ
せて前記隔離部分に残留する燃料を前記燃料タンクに回
収する制御手段と、を備えたことを特徴とする。
According to a first aspect of the present invention, a fuel tank for storing liquefied gas supplies a fuel to a fuel injector to an engine through a high pressure pump to adjust the fuel pressure to a predetermined fuel injection pressure. In a liquefied gas fuel supply system for returning fuel to the fuel tank via a fuel injector, a high-pressure passage that is provided in a high-pressure fuel supply passage connected from the high-pressure pump to the fuel injector and opens and closes the high-pressure fuel supply passage A first return valve provided on a fuel return path for returning fuel to a fuel tank via the on-off valve and the pressure regulator, and opening and closing the fuel return path and bypassing the pressure regulator and connected to the fuel return path. A return path switching valve for switching to a bypass path of the fuel cell, and a branch from an isolation portion defined by the high-pressure path opening / closing valve and the return path switching valve, A second bypass path connected to the path, provided in the bypass passage of the second, and the bypass passage on-off valve for opening and closing the bypass path of the second, the second
A compressor that is provided in a bypass path for sucking and compressing the gas in the isolated portion and returning it to the fuel tank; a gas-liquid sensor that is provided in the isolated portion and detects the gas ratio of the isolated portion; A pressure sensor that is provided to detect the pressure in the isolated portion, and when the engine is stopped, opens and closes the high-pressure passage opening / closing valve, the return passage switching valve, and the bypass passage opening / closing valve based on the detection values of the gas-liquid sensor and the pressure sensor. Control means for performing switching and operating the compressor to recover the fuel remaining in the isolated portion into the fuel tank.

【0010】上記の発明によれば、前記の高圧経路開閉
弁とリターン経路切替弁とにより区画される隔離部分
は、燃料噴射器の噴孔に連通しており、且つ前記の両弁
により前記の燃料タンクに比べて大幅に小さい容積に区
画設定されている。
According to the above invention, the isolation portion defined by the high-pressure passage opening / closing valve and the return passage switching valve communicates with the injection hole of the fuel injector, and the both valves make the above-mentioned configuration possible. The volume is set to be significantly smaller than that of the fuel tank.

【0011】ここで、エンジン停止時には、前記の隔離
部分のガス比率と圧力が検出され、この両検出値に基づ
いて前記の高圧経路開閉弁、リターン経路切替弁、バイ
パス経路開閉弁及びコンプレッサが制御されるため、後
述のように、隔離部分に残留する高圧液状燃料は直接に
燃料タンクに回収され、隔離部分の残留燃料がガス状と
なってから、隔離部分の圧力が略大気圧に低下するまで
コンプレッサにより吸引されて減圧されるので、エンジ
ン停止時に於いて、隔離部分に連通している燃料噴射器
の噴孔からエンジンシリンダ内への燃料漏れは無くな
る。
Here, when the engine is stopped, the gas ratio and pressure of the isolated portion are detected, and the high pressure passage opening / closing valve, the return passage switching valve, the bypass passage opening / closing valve and the compressor are controlled based on the detected values. Therefore, as will be described later, the high-pressure liquid fuel remaining in the isolated portion is directly collected in the fuel tank, and the residual fuel in the isolated portion becomes a gas state, and then the pressure in the isolated portion decreases to substantially atmospheric pressure. Since the air is sucked by the compressor and decompressed, no fuel leaks from the injection hole of the fuel injector communicating with the isolated portion into the engine cylinder when the engine is stopped.

【0012】請求項2に記載の第2の発明は、前記請求
項1に記載の第1の発明に於いて、エンジン停止時は、
前記高圧経路開閉弁とバイパス経路開閉弁を閉じると共
に前記リターン経路切替弁を前記第1のバイパス経路に
切り替え、前記気液センサの検出値が設定値以上になる
と、前記リターン経路切替弁を閉じて前記バイパス経路
開閉弁を開くと共に前記コンプレッサを作動させ、前記
圧力センサの検出値が設定値以下になると、前記バイパ
ス経路開閉弁を閉じて前記コンプレッサの作動を停止す
るように制御することを特徴とする。
A second invention according to claim 2 is the first invention according to claim 1, wherein when the engine is stopped,
The high-pressure path opening / closing valve and the bypass path opening / closing valve are closed, the return path switching valve is switched to the first bypass path, and the return path switching valve is closed when the detection value of the gas / liquid sensor becomes equal to or more than a set value. The bypass passage opening / closing valve is opened and the compressor is operated, and when the detection value of the pressure sensor is equal to or less than a set value, the bypass passage opening / closing valve is closed to stop the operation of the compressor. To do.

【0013】上記の発明によれば、エンジン停止時に
は、前記の高圧経路開閉弁とバイパス経路開閉弁が閉
じ、リターン経路切替弁が前記の第1のバイパス経路に
切り替えられるので、燃料噴射器の噴孔に通じる高圧液
状燃料部が区画されて隔離部分が形成されると共に、隔
離部分に残留する高圧液状燃料は第1のバイパス経路を
介して直接燃料タンクに戻される。
According to the above invention, when the engine is stopped, the high pressure passage opening / closing valve and the bypass passage opening / closing valve are closed, and the return passage switching valve is switched to the first bypass passage. The high-pressure liquid fuel portion communicating with the hole is partitioned to form the isolation portion, and the high-pressure liquid fuel remaining in the isolation portion is directly returned to the fuel tank via the first bypass path.

【0014】ここで、隔離部分に残留する高圧液状燃料
は、隔離部分の容積は小さいので、急速に比較的低圧の
ガス状燃料に変化し、隔離部分の温度によって決まる蒸
気圧でバランスするが、前記の気液センサにより検出さ
れる隔離部分のガス比率が設定値以上になると、リター
ン経路切替弁が閉じバイパス経路開閉弁が開くと共にコ
ンプレッサが作動するので、隔離部分の低圧ガス状燃料
はコンプレッサにより吸引圧縮され、前記の第2のバイ
パス経路を介して燃料タンクに戻る所謂ガス抜きが行わ
れ、容積の小さい隔離部分は急速に減圧されて行く。
Here, since the high pressure liquid fuel remaining in the isolation portion has a small volume in the isolation portion, it rapidly changes to a relatively low pressure gaseous fuel and is balanced by the vapor pressure determined by the temperature of the isolation portion. When the gas ratio of the isolated part detected by the gas-liquid sensor becomes equal to or higher than the set value, the return path switching valve closes, the bypass path open / close valve opens, and the compressor operates. So-called degassing is performed, which is suction-compressed and returns to the fuel tank via the second bypass path, and the isolated portion having a small volume is rapidly depressurized.

【0015】前記の圧力センサによって検出される隔離
部分の圧力が設定値(例えば、大気圧)になると、バイ
パス経路開閉弁が閉じると共にコンプレッサの作動が停
止するので、隔離部分に連通する燃料噴射器の噴孔も燃
料が漏れない大気圧の状態になる。
When the pressure in the isolated portion detected by the pressure sensor reaches a set value (for example, atmospheric pressure), the bypass passage opening / closing valve is closed and the operation of the compressor is stopped, so that the fuel injector communicating with the isolated portion is closed. The injection holes are also at atmospheric pressure where fuel does not leak.

【0016】請求項3に記載の第3の発明は、液化ガス
を貯留する燃料タンクから高圧ポンプを介してエンジン
への燃料噴射器に燃料を供給し、所定の燃料噴射圧力に
調圧する圧力調整器を介して前記燃料タンクに燃料を戻
す液化ガス燃料供給システムに於いて、前記高圧ポンプ
から前記燃料噴射器に接続される高圧燃料供給経路に設
けられ、該高圧燃料供給経路を開閉する高圧経路開閉弁
と、前記圧力調整器を介して燃料タンクに燃料を戻す燃
料リターン経路に設けられ、該燃料リターン経路を開閉
するリターン経路開閉弁と、前記高圧経路開閉弁と前記
リターン経路開閉弁とにより区画される隔離部分から分
岐し、前記燃料リターン経路に接続される第2のバイパ
ス経路と、該第2のバイパス経路に設けられ、該第2の
バイパス経路を開閉するとともに前記圧力調整器をバイ
パスして前記燃料リターン経路に接続される第3のバイ
パス経路へ切り替えるバイパス経路切替弁と、前記第2
のバイパス経路に設けられ、前記隔離部分のガスを吸引
圧縮して前記燃料タンクに戻すコンプレッサと、前記隔
離部分に設けられ、該隔離部分のガス比率を検出する気
液センサと、前記隔離部分に設けられ、該隔離部分の圧
力を検出する圧力センサと、エンジン停止時は、前記気
液センサと圧力センサの検出値に基づいて前記高圧経路
開閉弁、リターン経路開閉弁及びバイパス経路切替弁の
開閉切り替えを行うと共に、前記コンプレッサを作動さ
せて前記隔離部分に残留する燃料を前記燃料タンクに回
収する制御手段と、を備えたことを特徴とする。
According to a third aspect of the present invention, the fuel is supplied from a fuel tank for storing liquefied gas to a fuel injector to the engine through a high-pressure pump to adjust the pressure to a predetermined fuel injection pressure. In a liquefied gas fuel supply system for returning fuel to the fuel tank via a fuel injector, a high-pressure passage that is provided in a high-pressure fuel supply passage connected from the high-pressure pump to the fuel injector and opens and closes the high-pressure fuel supply passage An opening / closing valve, a return path opening / closing valve that is provided in a fuel return path for returning fuel to the fuel tank through the pressure regulator, and opens / closes the fuel return path, the high-pressure path opening / closing valve, and the return path opening / closing valve. A second bypass path that branches from the isolated portion and is connected to the fuel return path, and that is provided in the second bypass path and that opens the second bypass path. A third bypass path switching valve for switching to the bypass path connected to the bypass to the fuel return path the pressure regulator as well as, the second
A compressor that is provided in a bypass path for sucking and compressing the gas in the isolated portion and returning it to the fuel tank; a gas-liquid sensor that is provided in the isolated portion and detects the gas ratio of the isolated portion; A pressure sensor that is provided to detect the pressure in the isolated portion, and when the engine is stopped, opens and closes the high-pressure path opening / closing valve, the return path opening / closing valve, and the bypass path switching valve based on the detection values of the gas-liquid sensor and the pressure sensor. Control means for performing switching and operating the compressor to recover the fuel remaining in the isolated portion into the fuel tank.

【0017】上記の発明によれば、請求項1に記載の発
明に対して異なる点は、請求項1に記載のリターン経路
切替弁に代えてリターン経路開閉弁を用いた点と、バイ
パス経路開閉弁に代えてバイパス経路切替弁を用いた点
であり、それに伴い前記の隔離部分を区画する弁と、前
記の第1のバイパス経路に相当する第3のバイパス経路
に切り替える弁とが違っているだけであるので、前述の
請求項1に記載の発明に於いて述べた作用効果が得られ
る。
According to the above invention, different points from the invention according to claim 1 are that a return path switching valve is used instead of the return path switching valve according to claim 1, and that a bypass path opening / closing is used. This is a point that a bypass path switching valve is used instead of the valve, and accordingly, the valve that partitions the isolated portion is different from the valve that switches to the third bypass path corresponding to the first bypass path. Therefore, the function and effect described in the above-mentioned invention of claim 1 can be obtained.

【0018】請求項4記載の第4の発明は、前記請求項
3に記載の第3の発明に於いて、エンジン停止時は、前
記高圧経路開閉弁とリターン経路開閉弁を閉じると共に
前記バイパス経路切替弁を前記第3のバイパス経路に切
り替え、前記気液センサの検出値が設定値以上になる
と、前記バイパス経路切替弁を前記第2のバイパス経路
に切り替えると共に前記コンプレッサを作動させ、前記
圧力センサの検出値が設定値以下になると、前記バイパ
ス経路切替弁を閉じて前記コンプレッサの作動を停止す
るように制御することを特徴とする。
According to a fourth aspect of the present invention, in the third aspect of the present invention, when the engine is stopped, the high pressure passage opening / closing valve and the return passage opening / closing valve are closed and the bypass passage is formed. When the switching valve is switched to the third bypass path, and the detection value of the gas-liquid sensor becomes equal to or more than a set value, the bypass path switching valve is switched to the second bypass path and the compressor is operated to operate the pressure sensor. When the detected value of is less than or equal to the set value, the bypass path switching valve is closed to control the operation of the compressor.

【0019】上記の発明によれば、請求項2に記載の発
明に対して制御する開閉弁と切替弁は異なるが、エンジ
ン停止時に於いて、前記の隔離部分に残留する高圧液状
燃料を第3のバイパス経路を介して直接に燃料タンクに
戻すことにより、隔離部分を低圧ガス状燃料とし、次い
で隔離部分のガス状燃料を第2のバイパス経路を介して
コンプレッサにより吸引して燃料タンクに戻しながら隔
離部分を大気圧まで減圧する作用については、前述の請
求項2に記載の発明と同じである。
According to the above invention, the on-off valve and the switching valve which are controlled with respect to the invention according to claim 2 are different, but when the engine is stopped, the high pressure liquid fuel remaining in the isolated portion is changed to the third one. By directly returning to the fuel tank via the bypass path of the above, the isolated portion is made into low-pressure gaseous fuel, and then the gaseous fuel of the isolated portion is sucked by the compressor through the second bypass path and returned to the fuel tank. The action of reducing the pressure of the isolated portion to the atmospheric pressure is the same as that of the invention described in claim 2.

【0020】請求項5に記載の第5の発明は、前記第1
乃至4のいずれかに記載の発明に於いて、前記気液セン
サに代えて温度センサを用い、該温度センサと前記圧力
センサの各検出値に基づいて前記隔離部分のガス比率を
算出し、前記気液センサの機能を代行することを特徴と
する。
A fifth invention according to claim 5 is the first invention.
In the invention according to any one of 4 to 4, a temperature sensor is used in place of the gas-liquid sensor, the gas ratio of the isolated portion is calculated based on each detection value of the temperature sensor and the pressure sensor, It is characterized in that it substitutes the function of a gas-liquid sensor.

【0021】上記の発明によれば、気液センサに代えて
温度センサを用いることにより、隔離部分の温度と前記
の圧力センサで検出される隔離部分の圧力とにより、D
MEの蒸気圧線図(図9参照)から隔離部分のガス比率
が求められるので、気液センサの機能が代行される。
According to the above invention, by using the temperature sensor in place of the gas-liquid sensor, the temperature of the isolated portion and the pressure of the isolated portion detected by the pressure sensor are used to obtain D
Since the gas ratio of the isolated portion is obtained from the vapor pressure diagram of ME (see FIG. 9), the function of the gas-liquid sensor is substituted.

【0022】[0022]

【発明の実施の形態】以下、本発明の好適な実施の形態
を図1乃至図8に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to FIGS.

【0023】図1は本発明の第1実施例を示すシステム
構成図で、図中、1は液化ガスを貯留する燃料タンクで
あり、例えば20℃で約0.5MPaの蒸気圧を有する
DMEが貯留されている。この燃料タンク1内には、D
MEを所定圧(例えば約3MPa)に昇圧して圧送する
フィードポンプ2が配設されており、フィードポンプ2
から圧送されたDEMを更に所定圧(例えば25MPa
〜35MPa)の高圧に昇圧する高圧ポンプ3が配設さ
れていて、この高圧ポンプ3から圧送される高圧のDM
Eを蓄圧するコモンレール4を通じ、エンジン6の各シ
リンダ(図示せず)に高圧のDMEを噴射する電磁弁
(図示せず)を内蔵したインジェクタ5が設けられてい
る。
FIG. 1 is a system configuration diagram showing a first embodiment of the present invention. In the figure, 1 is a fuel tank for storing liquefied gas, for example, a DME having a vapor pressure of about 0.5 MPa at 20.degree. It is stored. In this fuel tank 1, D
A feed pump 2 is arranged to increase the pressure of ME to a predetermined pressure (for example, about 3 MPa) and feed the pressure.
The DEM that has been pressure-fed from the
A high pressure pump 3 for increasing the pressure to a high pressure of up to 35 MPa), and a high pressure DM pumped from the high pressure pump 3
An injector 5 having a solenoid valve (not shown) for injecting high-pressure DME is provided in each cylinder (not shown) of the engine 6 through a common rail 4 for accumulating E.

【0024】高圧ポンプ3とコモンレール4を結ぶ高圧
燃料供給経路Sには、該経路Sを開閉する電磁式の二方
弁より成る高圧経路開閉弁11が設けられている。ま
た、コモンレール4からは、圧力調整器7を介して前記
燃料タンク1へ連通する燃料リターン経路Rが設けられ
ており、コモンレール4から高圧の余剰DMEが圧力調
整器7で所定の燃料噴射圧力(例えば25MPa〜35
MPa)に調圧されてから、燃料リターン経路Rを介し
て、例えば熱交換器より成る冷却器8と逆止弁9を通じ
て燃料タンク1に戻されるようになっている。
A high-pressure fuel supply passage S connecting the high-pressure pump 3 and the common rail 4 is provided with a high-pressure passage opening / closing valve 11 which is an electromagnetic two-way valve for opening / closing the passage S. Further, a fuel return path R communicating from the common rail 4 to the fuel tank 1 via a pressure regulator 7 is provided, and a high-pressure surplus DME from the common rail 4 is supplied to the fuel regulator 1 at a predetermined fuel injection pressure ( For example, 25 MPa to 35
After adjusting the pressure to (MPa), the fuel is returned to the fuel tank 1 through the fuel return path R through the cooler 8 including a heat exchanger and the check valve 9.

【0025】なお、冷却器8は燃料タンク1にリターン
して来るDMEを出来るだけ冷却して燃料タンク1に戻
すために用いられるものであり、逆止弁9は燃料タンク
1内の圧力が過大となった場合、燃料リターン経路Rに
DMEが逆流するのを阻止するためのものである。
The cooler 8 is used for cooling the DME returning to the fuel tank 1 as much as possible and returning it to the fuel tank 1, and the check valve 9 has an excessive pressure in the fuel tank 1. In the case of, the DME is prevented from flowing back into the fuel return route R.

【0026】ここで、コモンレール4と圧力調整器7と
を結ぶ燃料リターン経路部分には、該燃料リターン経路
部分を開閉すると共に、圧力調整器7をバイパスして燃
料リターン経路Rに接続される第1のバイパス経路R1
に切り替えることができる電磁式の三方弁より成るリタ
ーン経路切替弁12が設けられている。更に、コモンレ
ール4から分岐され、前記圧力調整器7をバイパスして
燃料リターン経路Rに接続される第2のバイパス経路R
2が設けられていて、この第2のバイパス経路R2に
は、該経路R2を開閉する電磁式の二方弁より成るバイ
パス経路開閉弁13とコンプレッサ10が設けられてい
る。
Here, in the fuel return path portion connecting the common rail 4 and the pressure regulator 7, the fuel return path portion is opened and closed, and the pressure regulator 7 is bypassed and connected to the fuel return path R. Bypass route R1
A return path switching valve 12 including an electromagnetic three-way valve that can be switched to is provided. Further, a second bypass route R branched from the common rail 4 and bypassing the pressure regulator 7 and connected to the fuel return route R
2 is provided, and the second bypass route R2 is provided with a bypass route opening / closing valve 13 and a compressor 10 which are electromagnetic two-way valves that open and close the route R2.

【0027】コモンレール4とインジェクタ5を含む高
圧燃料経路部分には、高圧経路開閉弁11とリターン経
路切替弁12との閉弁によって区画される隔離部分Kが
形成され、隔離部分Kと前記の各インジェクタ5の噴孔
(図示せず)は連通している。この隔離部分Kの容積
は、エンジン停止時に残留DMEを迅速に燃料タンク1
に回収するため、燃料タンク1に比べて遙かに小さい容
積となるように前記の両弁11と12の配設位置が設定
されている。
In the high-pressure fuel passage portion including the common rail 4 and the injector 5, an isolation portion K defined by closing the high-pressure passage opening / closing valve 11 and the return passage switching valve 12 is formed. The injection holes (not shown) of the injector 5 communicate with each other. The volume of the isolated portion K is such that the residual DME can be quickly removed when the engine is stopped.
For recovery, the positions of the valves 11 and 12 are set so that the volume is much smaller than that of the fuel tank 1.

【0028】また、コモンレール4内には、例えば電極
間のインピーダンスによりガス比率を検出する気液セン
サ21と圧力を検出する圧力センサ22が設けられてい
る。
Further, in the common rail 4, a gas-liquid sensor 21 for detecting the gas ratio and a pressure sensor 22 for detecting the pressure are provided by the impedance between the electrodes, for example.

【0029】前記のフィードポンプ2、高圧ポンプ3、
各インジェクタ5の電磁弁、コンプレッサ10と、高圧
経路開閉弁11、リターン経路切替弁12、バイパス経
路開閉弁13と、気液センサ21、圧力センサ22等
は、電子制御装置(以下、ECUと言う)30に接続さ
れており、エンジンの始動運転と停止の作動区分及び気
液センサ21と圧力センサ22の検出値に基づいて、フ
ィードポンプ2、高圧ポンプ3、コンプレッサ10の作
動と、各インジェクタ5の電磁弁、高圧経路開閉弁1
1、リターン経路切替弁12、バイパス経路開閉弁13
の開閉切り替えが、ECU30によって制御される。
The above-mentioned feed pump 2, high-pressure pump 3,
The electromagnetic valve of each injector 5, the compressor 10, the high-pressure path opening / closing valve 11, the return path switching valve 12, the bypass path opening / closing valve 13, the gas-liquid sensor 21, the pressure sensor 22 and the like are electronic control devices (hereinafter referred to as ECUs). ) 30, the operation of the feed pump 2, the high-pressure pump 3, the compressor 10, and the injectors 5 based on the operating start and stop operation of the engine and the detection values of the gas-liquid sensor 21 and the pressure sensor 22. Solenoid valve, high-pressure path open / close valve 1
1, return path switching valve 12, bypass path opening / closing valve 13
The open / close switching of is controlled by the ECU 30.

【0030】次に、図2は本発明の第2実施例を示すシ
ステム構成図で、図1の第1実施例と同じ符号を付した
ものは、同一又は同等の部分を示す。
Next, FIG. 2 is a system configuration diagram showing a second embodiment of the present invention, in which the same reference numerals as those in the first embodiment of FIG. 1 indicate the same or equivalent parts.

【0031】前述の第1実施例に比べて構成上から異な
る点は、図2に示すように、前記のリターン経路切替弁
12に代えて、電磁式の二方弁より成るリターン経路開
閉弁14を用いた点と、前記のバイパス経路開閉弁13
に代えて、電磁式の三方弁より成るバイパス経路切替弁
15を用いた点である。
As shown in FIG. 2, the difference from the above-described first embodiment in structure is that the return path switching valve 12 is replaced by a return path opening / closing valve 14 composed of an electromagnetic two-way valve. And the bypass path opening / closing valve 13 described above.
Instead of this, a bypass path switching valve 15 composed of an electromagnetic three-way valve is used.

【0032】それに伴い、前記の隔離部分Kが前記のリ
ターン経路切替弁12に代わって、リターン経路開閉弁
14によって区画され、且つ前記第1のバイパス経路R
1に代わってバイパス経路切替弁15と燃料リターン経
路Rを連通する第3のバイパス経路R3を設け、調圧弁
7をバイパスする切り替えが前記のリターン経路切替弁
12と第1のバイパス通路R1に代わって、バイパス経
路切替弁15と第3のバイパス経路R3によって切り替
えられる点が違っており、その他の点については図1の
第1実施例と同じである。
Accordingly, the isolated portion K is partitioned by the return passage opening / closing valve 14 instead of the return passage switching valve 12 and the first bypass passage R is provided.
In place of 1, the third bypass path R3 that connects the bypass path switching valve 15 and the fuel return path R is provided, and the switching that bypasses the pressure regulating valve 7 is replaced by the return path switching valve 12 and the first bypass path R1. The third embodiment is different from the first embodiment shown in FIG. 1 in that it is switched by the bypass path switching valve 15 and the third bypass path R3.

【0033】次に、本実施の形態にうち、第1実施例の
作用について説明する。
Next, the operation of the first embodiment of the present embodiment will be described.

【0034】先ず、エンジン始動及び運転時は、図1に
於いて、ECU30によりフィードポンプ2と高圧ポン
プ3が作動すると共に、各インジェクタ5の電磁弁、高
圧経路開閉弁11、リターン経路切替弁12が開き、且
つバイパス経路開閉弁13が閉じる。そのため、燃料タ
ンク1内のDMEは、高圧燃料供給経路Sを通じてコモ
ンレール4に流入して蓄圧され、各インジェクタ5の噴
孔からエンジン6の各シリンダ(図示せず)内に高圧噴
射されてエンジン6が始動する。各シリンダ内に噴射さ
れたDMEの余剰燃料は、圧力調整器7で調圧されてか
ら燃料リターン経路Rを介して冷却器8と逆止弁9を通
り、燃料タンク1に戻るエンジン始動及び運転時の周知
の燃料循環が行われる。
First, at the time of engine startup and operation, in FIG. 1, the ECU 30 operates the feed pump 2 and the high-pressure pump 3, and at the same time, the solenoid valve of each injector 5, the high-pressure path opening / closing valve 11, and the return path switching valve 12 are operated. Is opened, and the bypass passage opening / closing valve 13 is closed. Therefore, the DME in the fuel tank 1 flows into the common rail 4 through the high-pressure fuel supply path S to accumulate pressure, and is high-pressure injected into the cylinders (not shown) of the engine 6 from the injection holes of the injectors 5 to generate high pressure. Will start. Excess fuel of DME injected into each cylinder is pressure-regulated by the pressure regulator 7, then passes through the cooler 8 and the check valve 9 via the fuel return route R, and returns to the fuel tank 1. Engine start and operation The well-known fuel circulation of time is performed.

【0035】ここで、エンジン停止時については、図3
と図4の燃料流れ経路図及び図7の制御フローチャート
に基づいて説明する。
Here, when the engine is stopped, FIG.
And the fuel flow path diagram of FIG. 4 and the control flowchart of FIG. 7.

【0036】先ず、エンジン停止時には、図7に示すよ
うに、エンジンスイッチ(図示せず)がOFFされ(ス
テップ101)、このOFF信号がECU30に入力さ
れる。それにより、周知の如くフィードポンプ2と高圧
ポンプ3の作動が停止し、且つ各インジェクタ5の電磁
弁が閉じるが、これに加えて本発明では、高圧経路開閉
弁11が閉じバイパス経路開閉弁13が継続して閉じ
(ステップ102)、リターン経路切替弁12が第1の
バイパス経路R1側に切り替わる(ステップ103)。
First, when the engine is stopped, as shown in FIG. 7, an engine switch (not shown) is turned off (step 101), and this OFF signal is input to the ECU 30. As a result, as well known, the operation of the feed pump 2 and the high pressure pump 3 is stopped, and the solenoid valve of each injector 5 is closed. In addition to this, in the present invention, the high pressure passage opening / closing valve 11 is closed and the bypass passage opening / closing valve 13 is closed. Is continuously closed (step 102), and the return path switching valve 12 is switched to the first bypass path R1 side (step 103).

【0037】この場合、図3の矢印で示すように、コモ
ンレール4と各インジェクタ5を含む隔離部分Kに残留
する高圧液状のDMEは、リターン経路切替弁12通
じ、第1のバイパス経路R1を介して冷却器8と逆止弁
9を通り、燃料タンク1内へ直接に戻る流れとなる。
In this case, as shown by the arrow in FIG. 3, the high-pressure liquid DME remaining in the isolation portion K including the common rail 4 and each injector 5 communicates with the return path switching valve 12 and the first bypass path R1. Through the cooler 8 and the check valve 9 to directly return to the inside of the fuel tank 1.

【0038】ここで、隔離部分Kは容積が小さいので、
高圧液状のDMEは急速に比較的低圧のガス状DMEに
変化し、隔離部分Kの温度によって決まる蒸気圧でバラ
ンスするが、図7に於いて、気液センサ21により直接
に検出される隔離部分Kのガス比率が設定値以上(例え
ばガス比率90%以上)になると(ステップ104)、
リターン経路切替弁12が閉じて(ステップ105)、
バイパス経路開閉弁13が開き(ステップ106)、コ
ンプレッサ10が作動する(ステップ107)。なお、
ステップ104で気液センサ21の検出値が設定値以下
の場合は、ステップ102に戻り前記のフローを繰り返
す。
Since the isolated portion K has a small volume,
The high-pressure liquid DME rapidly changes to a relatively low-pressure gaseous DME and balances with the vapor pressure determined by the temperature of the isolation portion K. In FIG. 7, the isolation portion directly detected by the gas-liquid sensor 21. When the gas ratio of K becomes equal to or more than the set value (for example, gas ratio of 90% or more) (step 104),
The return path switching valve 12 is closed (step 105),
The bypass passage opening / closing valve 13 is opened (step 106), and the compressor 10 is operated (step 107). In addition,
When the detected value of the gas-liquid sensor 21 is less than or equal to the set value in step 104, the process returns to step 102 and the above flow is repeated.

【0039】コンプレッサ10の作動により、隔離部分
Kに残留するガス状のDME(例えば図9に示すよう
に、DMEは80℃で約2.2MPaの蒸気圧を有して
いる。)は、図4の矢印で示すように、隔離部分Kから
第2のバイパス経路R2を介してコンプレッサ10によ
り吸引され、冷却器8と逆止弁9を通り、燃料タンク1
に戻る流れとなる。
By the operation of the compressor 10, the gaseous DME remaining in the isolated portion K (for example, as shown in FIG. 9, DME has a vapor pressure of about 2.2 MPa at 80 ° C.) is shown in the figure. As indicated by the arrow 4, the compressor 10 is sucked from the isolated portion K via the second bypass route R2, passes through the cooler 8 and the check valve 9, and passes through the fuel tank 1
The flow returns to.

【0040】ここで、コンプレッサ10の作動により、
隔離部分K内は急速に減圧されていくが、図7に示すよ
うに、圧力センサ22により検出される隔離部分K内の
圧力が設定値以下(例えば圧力0.12MPa以下)に
なると(ステップ108)、バイパス経路開閉弁13が
閉じ(ステップ109)、コンプレッサ10の作動が停
止する(ステップ110)。なお、ステップ108で圧
力センサ22の検出値が設定値以上の場合は、ステップ
105に戻り前記のフローを繰り返す。これにより、各
インジェクタ5の噴孔に通じる隔離部分Kの圧力は大気
圧近くになるので、噴孔からエンジンシリンダ内にDM
Eが漏れることは無くなる。
Here, by the operation of the compressor 10,
The pressure in the isolated portion K is rapidly reduced, but as shown in FIG. 7, when the pressure in the isolated portion K detected by the pressure sensor 22 becomes equal to or lower than a set value (for example, pressure 0.12 MPa or less) (step 108). ), The bypass passage opening / closing valve 13 is closed (step 109), and the operation of the compressor 10 is stopped (step 110). When the detected value of the pressure sensor 22 is equal to or larger than the set value in step 108, the process returns to step 105 and the above flow is repeated. As a result, the pressure of the isolated portion K communicating with the injection hole of each injector 5 becomes close to the atmospheric pressure, so that DM is injected from the injection hole into the engine cylinder.
E will not leak.

【0041】次に、本実施の形態のうち、第2実施例の
作用について説明する。
Next, the operation of the second embodiment of the present embodiment will be described.

【0042】先ず、エンジン始動及び運転時は、第1実
施例の場合と同じ燃料循環であるので、説明は省略す
る。
First, since the fuel circulation is the same as in the case of the first embodiment at the time of starting and operating the engine, the description thereof will be omitted.

【0043】エンジン停止時については、図5と図6の
燃料流れ経路図及び図8の制御フローチャートに基づい
て、第1実施例の場合と同じ部分は省略しながら説明す
る。
The time when the engine is stopped will be described based on the fuel flow path diagrams of FIGS. 5 and 6 and the control flowchart of FIG. 8 while omitting the same portions as those in the first embodiment.

【0044】初めに、エンジン6が停止すると、図8に
示すように、エンジンスイッチのOFF(ステップ20
1)により、高圧経路開閉弁11とリターン経路開閉弁
14が閉じ(ステップ202)、バイパス経路切替弁1
5が第3のバイパス経路R3側に切り替わる(ステップ
203)。
First, when the engine 6 is stopped, as shown in FIG. 8, the engine switch is turned off (step 20).
Due to 1), the high pressure passage opening / closing valve 11 and the return passage opening / closing valve 14 are closed (step 202), and the bypass passage switching valve 1
5 is switched to the third bypass route R3 side (step 203).

【0045】この場合、図5の矢印で示すように、隔離
部分Kに残留する高圧液状のDMEは、バイパス経路切
替弁15を通じ、第3のバイパス経路R3を介して冷却
器8と逆止弁9を通り、燃料タンク1内へ直接に戻る流
れとなる。
In this case, as shown by the arrow in FIG. 5, the high-pressure liquid DME remaining in the isolated portion K passes through the bypass path switching valve 15 and the third bypass path R3 and the cooler 8 and the check valve. The flow passes through 9 and returns directly to the fuel tank 1.

【0046】次いで、図8に示すように、気液センサ2
1により検出される隔離部分Kのガス比率が設定値以上
(例えばガス比率90%以上)になると(ステップ20
4)、バイパス経路切替弁15が第2のバイパス経路R
2側に切り替わり(ステップ205)、コンプレッサ1
0が作動する(ステップ206)。
Next, as shown in FIG. 8, the gas-liquid sensor 2
When the gas ratio of the isolated portion K detected by 1 becomes equal to or more than a set value (for example, gas ratio of 90% or more) (step 20
4), the bypass path switching valve 15 is the second bypass path R
Switch to 2 side (step 205), compressor 1
0 is activated (step 206).

【0047】この場合、隔離部分Kに残留するガス状の
DMEは、図6の矢印で示すように、第2のバイパス経
路R2を介してコンプレッサ10に吸引され、冷却器8
と逆止弁9を通り、燃料タンク1内へ戻る流れとなる。
そして、図8に示すように、圧力センサ22により検出
される隔離部分Kの圧力が設定値以下(例えば圧力0.
12MPa以下)になると(ステップ207)、バイパ
ス経路切替弁15が閉じ(ステップ208)、コンプレ
ッサ10の作動が停止するので(ステップ209)、第
1実施例の場合と同じく、各インジェクタ5の噴孔から
エンジンの各シリンダ内にDMEが漏れることは無くな
る。
In this case, the gaseous DME remaining in the isolated portion K is sucked by the compressor 10 via the second bypass route R2 as shown by the arrow in FIG.
Then, the flow returns to the inside of the fuel tank 1 through the check valve 9.
Then, as shown in FIG. 8, the pressure of the isolated portion K detected by the pressure sensor 22 is equal to or lower than a set value (for example, pressure 0.
12 MPa or less) (step 207), the bypass path switching valve 15 is closed (step 208) and the operation of the compressor 10 is stopped (step 209). Therefore, as in the case of the first embodiment, the injection holes of each injector 5 are injected. No longer leaks DME into each cylinder of the engine.

【0048】次に、本実施例では、隔離部分Kのガス比
率を気液センサ21で直接に検出する方法を用いたが、
気液センサ21に代えて温度センサを用いることによ
り、温度センサで検出される隔離部分Kの温度と、前記
の圧力センサ22で検出される隔離部分Kの圧力とによ
り、図9に示すDMEの蒸気圧線図から隔離部分Kのガ
ス比率を間接的に求めることが可能である。
Next, in the present embodiment, a method of directly detecting the gas ratio of the isolated portion K with the gas-liquid sensor 21 was used.
By using a temperature sensor instead of the gas-liquid sensor 21, the temperature of the isolated portion K detected by the temperature sensor and the pressure of the isolated portion K detected by the pressure sensor 22 are used to detect the DME shown in FIG. It is possible to indirectly determine the gas ratio of the isolated portion K from the vapor pressure diagram.

【0049】更に、第1のバイパス経路R1又はR3側
への切り替えから第2のバイパス経路R2側への切り替
えに要する時間を予め実験で求めておけば、この時間を
タイマで制御することにより、隔離部分Kのガス比率を
間接的に検出して制御するのと同じになるので、気液セ
ンサ21は廃止される。
Furthermore, if the time required for switching from the first bypass route R1 or R3 side to the second bypass route R2 side is previously obtained by an experiment, this time can be controlled by a timer. The gas-liquid sensor 21 is eliminated because it is the same as indirectly detecting and controlling the gas ratio of the isolated portion K.

【0050】次に、本実施例では、コモンレール式の燃
料噴射装置に適用した場合について述べたが、従来から
あるジャーク式の燃料噴射装置にも適用することができ
る。
Next, in the present embodiment, the case of application to the common rail type fuel injection device has been described, but the present invention can also be applied to a conventional jerk type fuel injection device.

【0051】なお、液化ガス燃料としてDMEを取り上
げたが、DMEのように粘性の低い液化ガスならば、本
実施例と同様の効果が得られる。また、燃料リターン経
路やバイパス経路の切替弁として電磁式の三方弁を用い
たが、通常の電磁式の二方弁をそれぞれ2個用いること
により、同様の機能を得ることができる。
Although DME was taken as the liquefied gas fuel, the same effect as that of the present embodiment can be obtained with liquefied gas having a low viscosity such as DME. Further, although the electromagnetic three-way valve is used as the switching valve for the fuel return path and the bypass path, the same function can be obtained by using two ordinary two-way electromagnetic valves.

【0052】[0052]

【発明の効果】本発明は以上述べたように構成されてい
るので、次の効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0053】(1)隔離部分に連通している各燃料噴射
器の各噴孔は、エンジン停止時に於いて、略大気圧に維
持されるので、各噴孔からエンジンの各シリンダ内への
燃料の漏れが無くなり、それによってエンジン始動時の
異常燃焼の発生が防止される。
(1) Since the injection holes of each fuel injector communicating with the isolated portion are maintained at substantially atmospheric pressure when the engine is stopped, the fuel injected from each injection hole into each cylinder of the engine is maintained. Is eliminated, which prevents the occurrence of abnormal combustion at engine start.

【0054】(2)高圧液状の燃料を捕集するための大
型パージタンクを必要としないので、車両への搭載性も
問題が無く、且つシステムが比較的簡単な構成と簡単な
制御で成り立つので、システムの装置コストが安くな
る。
(2) Since a large purge tank for collecting the high-pressure liquid fuel is not required, there is no problem in mountability on the vehicle, and the system is composed of a relatively simple structure and simple control. , The equipment cost of the system is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示すシステム構成図であ
る。
FIG. 1 is a system configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示すシステム構成図であ
る。
FIG. 2 is a system configuration diagram showing a second embodiment of the present invention.

【図3】第1実施例のエンジン停止当初の燃料流れを示
す経路図である。
FIG. 3 is a path diagram showing a fuel flow when the engine is stopped in the first embodiment.

【図4】第1実施例のエンジン停止途中からの燃料流れ
を示す経路図である。
FIG. 4 is a route diagram showing a fuel flow after the engine is stopped in the first embodiment.

【図5】第2実施例のエンジン停止当初の燃料流れを示
す経路図である。
FIG. 5 is a route diagram showing a fuel flow when the engine is stopped in the second embodiment.

【図6】第2実施例のエンジン停止途中からの燃料流れ
を示す経路図である。
FIG. 6 is a route diagram showing a fuel flow after the engine is stopped in the second embodiment.

【図7】第1実施例のエンジン停止時の制御フローチャ
ートである。
FIG. 7 is a control flowchart when the engine is stopped in the first embodiment.

【図8】第2実施例のエンジン停止時の制御フローチャ
ートである。
FIG. 8 is a control flowchart when the engine is stopped in the second embodiment.

【図9】DME(ジメチルエーテル)の蒸気圧線図であ
る。
FIG. 9 is a vapor pressure diagram of DME (dimethyl ether).

【符号の説明】[Explanation of symbols]

1 燃料タンク 2 フィードポンプ 3 高圧ポンプ 4 コモンレール 5 燃料噴射器(インジェクタ) 6 エンジン 7 圧力調整器 8 冷却器 9 逆止弁 10 コンプレッサ 11 高圧経路開閉弁 12 リターン経路切替弁 13 バイパス経路開閉弁 14 リターン経路開閉弁 15 バイパス経路切替弁 21 気液センサ 22 圧力センサ 30 電子制御装置(ECU) S 高圧燃料供給経路 R 燃料リターン経路 R1 第1のバイパス経路 R2 第2のバイパス経路 R3 第3のバイパス経路 1 fuel tank 2 feed pump 3 high pressure pump 4 common rail 5 Fuel injector (injector) 6 engine 7 Pressure regulator 8 cooler 9 Check valve 10 compressor 11 High pressure path open / close valve 12 Return path switching valve 13 Bypass path open / close valve 14 Return path open / close valve 15 Bypass path switching valve 21 Gas-liquid sensor 22 Pressure sensor 30 electronic control unit (ECU) S High pressure fuel supply route R fuel return route R1 First bypass path R2 Second bypass route R3 Third bypass route

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液化ガスを貯留する燃料タンクから高圧
ポンプを介してエンジンへの燃料噴射器に燃料を供給
し、所定の燃料噴射圧力に調圧する圧力調整器を介して
前記燃料タンクに燃料を戻す液化ガス燃料供給システム
に於いて、 前記高圧ポンプから前記燃料噴射器に接続される高圧燃
料供給経路に設けられ、該高圧燃料供給経路を開閉する
高圧経路開閉弁と、 前記圧力調整器を介して燃料タンクに燃料を戻す燃料リ
ターン経路に設けられ、該燃料リターン経路を開閉する
と共に前記圧力調整器をバイパスして前記燃料リターン
経路に接続される第1のバイパス経路へ切り替えるリタ
ーン経路切替弁と、 前記高圧経路開閉弁と前記リターン経路切替弁とにより
区画される隔離部分から分岐し、前記燃料リターン経路
に接続される第2のバイパス経路と、 該第2のバイパス経路に設けられ、該第2のバイパス経
路を開閉するバイパス経路開閉弁と、 前記第2のバイパス経路に設けられ、前記隔離部分のガ
スを吸引圧縮して前記燃料タンクに戻すコンプレッサ
と、 前記隔離部分に設けられ、該隔離部分のガス比率を検出
する気液センサと、 前記隔離部分に設けられ、該隔離部分の圧力を検出する
圧力センサと、 エンジン停止時は、前記気液センサと圧力センサの検出
値に基づいて前記高圧経路開閉弁、リターン経路切替弁
及びバイパス経路開閉弁の開閉切り替えを行うと共に、
前記コンプレッサを作動させて前記隔離部分に残留する
燃料を前記燃料タンクに回収する制御手段と、 を備えたことを特徴とする液化ガス燃料供給システム。
Claim: What is claimed is: 1. A fuel tank for storing liquefied gas supplies fuel to a fuel injector to an engine via a high-pressure pump, and supplies fuel to the fuel tank via a pressure regulator that regulates a predetermined fuel injection pressure. In the liquefied gas fuel supply system for returning, a high pressure passage opening / closing valve which is provided in a high pressure fuel supply passage connected from the high pressure pump to the fuel injector and opens and closes the high pressure fuel supply passage, and the pressure regulator are provided. A return path switching valve that is provided in a fuel return path for returning fuel to a fuel tank, opens and closes the fuel return path, and bypasses the pressure regulator to switch to a first bypass path connected to the fuel return path. A second bypass branching from an isolation portion defined by the high-pressure passage opening / closing valve and the return passage switching valve and connected to the fuel return passage. A bypass path, a bypass path opening / closing valve provided in the second bypass path and opening / closing the second bypass path, and a bypass path provided in the second bypass path for sucking and compressing the gas in the isolated portion A compressor for returning to a fuel tank, a gas-liquid sensor provided in the isolated portion for detecting a gas ratio of the isolated portion, a pressure sensor provided in the isolated portion for detecting the pressure of the isolated portion, and when the engine is stopped. Is for switching the high-pressure path opening / closing valve, the return path switching valve and the bypass path opening / closing valve based on the detection values of the gas-liquid sensor and the pressure sensor,
A liquefied gas fuel supply system comprising: a control unit that operates the compressor to recover the fuel remaining in the isolated portion into the fuel tank.
【請求項2】 エンジン停止時は、前記高圧経路開閉弁
とバイパス経路開閉弁を閉じると共に前記リターン経路
切替弁を前記第1のバイパス経路に切り替え、前記気液
センサの検出値が設定値以上になると、前記リターン経
路切替弁を閉じて前記バイパス経路開閉弁を開くと共に
前記コンプレッサを作動させ、前記圧力センサの検出値
が設定値以下になると、前記バイパス経路開閉弁を閉じ
て前記コンプレッサの作動を停止するように制御するこ
とを特徴とする請求項1記載の液化ガス燃料供給システ
ム。
2. When the engine is stopped, the high pressure passage opening / closing valve and the bypass passage opening / closing valve are closed, the return passage switching valve is switched to the first bypass passage, and the detection value of the gas / liquid sensor is equal to or higher than a set value. Then, the return path switching valve is closed to open the bypass path opening / closing valve and the compressor is operated, and when the detection value of the pressure sensor is equal to or less than a set value, the bypass path opening / closing valve is closed to operate the compressor. The liquefied gas fuel supply system according to claim 1, wherein the liquefied gas fuel supply system is controlled to stop.
【請求項3】 液化ガスを貯留する燃料タンクから高圧
ポンプを介してエンジンへの燃料噴射器に燃料を供給
し、所定の燃料噴射圧力に調圧する圧力調整器を介して
前記燃料タンクに燃料を戻す液化ガス燃料供給システム
に於いて、 前記高圧ポンプから前記燃料噴射器に接続される高圧燃
料供給経路に設けられ、該高圧燃料供給経路を開閉する
高圧経路開閉弁と、 前記圧力調整器を介して燃料タンクに燃料を戻す燃料リ
ターン経路に設けられ、該燃料リターン経路を開閉する
リターン経路開閉弁と、 前記高圧経路開閉弁と前記リターン経路開閉弁とにより
区画される隔離部分から分岐し、前記燃料リターン経路
に接続される第2のバイパス経路と、 該第2のバイパス経路に設けられ、該第2のバイパス経
路を開閉するとともに前記圧力調整器をバイパスして前
記燃料リターン経路に接続される第3のバイパス経路へ
切り替えるバイパス経路切替弁と、 前記第2のバイパス経路に設けられ、前記隔離部分のガ
スを吸引圧縮して前記燃料タンクに戻すコンプレッサ
と、 前記隔離部分に設けられ、該隔離部分のガス比率を検出
する気液センサと、 前記隔離部分に設けられ、該隔離部分の圧力を検出する
圧力センサと、 エンジン停止時は、前記気液センサと圧力センサの検出
値に基づいて前記高圧経路開閉弁、リターン経路開閉弁
及びバイパス経路切替弁の開閉切り替えを行うと共に、
前記コンプレッサを作動させて前記隔離部分に残留する
燃料を前記燃料タンクに回収する制御手段と、 を備えたことを特徴とする液化ガス燃料供給システム。
3. Fuel is supplied from a fuel tank for storing liquefied gas to a fuel injector to an engine via a high-pressure pump, and the fuel is supplied to the fuel tank via a pressure regulator for adjusting a fuel injection pressure to a predetermined value. In the liquefied gas fuel supply system for returning, a high pressure passage opening / closing valve which is provided in a high pressure fuel supply passage connected from the high pressure pump to the fuel injector and opens and closes the high pressure fuel supply passage, and the pressure regulator are provided. A return path opening / closing valve for opening and closing the fuel return path, which is provided in a fuel return path for returning fuel to a fuel tank, and is branched from an isolated portion defined by the high pressure path opening / closing valve and the return path opening / closing valve, A second bypass path connected to the fuel return path; and a second bypass path provided in the second bypass path for opening and closing the second bypass path and adjusting the pressure. And a bypass path switching valve that switches to a third bypass path that is connected to the fuel return path, and that is provided in the second bypass path and sucks and compresses the gas in the isolated portion to return it to the fuel tank. A compressor, a gas-liquid sensor provided in the isolated portion to detect the gas ratio of the isolated portion, a pressure sensor provided in the isolated portion to detect the pressure of the isolated portion, and the gas sensor when the engine is stopped. Based on the detection values of the liquid sensor and the pressure sensor, the high pressure path opening / closing valve, the return path opening / closing valve, and the bypass path switching valve are opened / closed, and
A liquefied gas fuel supply system comprising: a control unit that operates the compressor to recover the fuel remaining in the isolated portion into the fuel tank.
【請求項4】 エンジン停止時は、前記高圧経路開閉弁
とリターン経路開閉弁を閉じると共に前記バイパス経路
切替弁を前記第3のバイパス経路に切り替え、前記気液
センサの検出値が設定値以上になると、前記バイパス経
路切替弁を前記第2のバイパス経路に切り替えると共に
前記コンプレッサを作動させ、前記圧力センサの検出値
が設定値以下になると、前記バイパス経路切替弁を閉じ
て前記コンプレッサの作動を停止するように制御するこ
とを特徴とする請求項3記載の液化ガス燃料供給システ
ム。
4. When the engine is stopped, the high pressure passage opening / closing valve and the return passage opening / closing valve are closed, the bypass passage switching valve is switched to the third bypass passage, and the detected value of the gas-liquid sensor becomes equal to or higher than a set value. Then, the bypass path switching valve is switched to the second bypass path and the compressor is operated, and when the detection value of the pressure sensor becomes equal to or less than a set value, the bypass path switching valve is closed and the operation of the compressor is stopped. The liquefied gas fuel supply system according to claim 3, wherein the liquefied gas fuel supply system is controlled to
【請求項5】 前記気液センサに代えて温度センサを用
い、該温度センサと前記圧力センサの各検出値に基づい
て前記隔離部分のガス比率を算出し、前記気液センサの
機能を代行することを特徴とする請求項1乃至4のいず
れかに記載の液化ガス燃料供給システム。
5. A temperature sensor is used instead of the gas-liquid sensor, the gas ratio of the isolated portion is calculated based on the detection values of the temperature sensor and the pressure sensor, and the function of the gas-liquid sensor is substituted. The liquefied gas fuel supply system according to any one of claims 1 to 4, characterized in that.
JP2002026360A 2002-02-04 2002-02-04 Liquefied gas fuel supply system Expired - Fee Related JP3966733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002026360A JP3966733B2 (en) 2002-02-04 2002-02-04 Liquefied gas fuel supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002026360A JP3966733B2 (en) 2002-02-04 2002-02-04 Liquefied gas fuel supply system

Publications (2)

Publication Number Publication Date
JP2003227416A true JP2003227416A (en) 2003-08-15
JP3966733B2 JP3966733B2 (en) 2007-08-29

Family

ID=27748223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002026360A Expired - Fee Related JP3966733B2 (en) 2002-02-04 2002-02-04 Liquefied gas fuel supply system

Country Status (1)

Country Link
JP (1) JP3966733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114655A1 (en) * 2008-03-13 2009-09-17 Cummins Intellectual Properties, Inc. High pressure common rail fuel system with gas injection
KR101290430B1 (en) 2013-04-24 2013-07-26 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas
KR101405772B1 (en) 2008-08-08 2014-06-10 현대자동차주식회사 Apparatus For Prevention Of Fuel Leak In LPI System

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114655A1 (en) * 2008-03-13 2009-09-17 Cummins Intellectual Properties, Inc. High pressure common rail fuel system with gas injection
US7950370B2 (en) 2008-03-13 2011-05-31 Cummins Inc. High pressure common rail fuel system with gas injection
KR101405772B1 (en) 2008-08-08 2014-06-10 현대자동차주식회사 Apparatus For Prevention Of Fuel Leak In LPI System
KR101290430B1 (en) 2013-04-24 2013-07-26 현대중공업 주식회사 A fuel gas supply system of liquefied natural gas

Also Published As

Publication number Publication date
JP3966733B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
KR101878500B1 (en) Fuel supply system and high-pressure pump for combustion engine
RU2638491C2 (en) Fuel system for gaseous fuel engine and method of adjusting pressure of gaseous fuel
US8122871B2 (en) Fuel supply device for internal combustion engine and control device for the fuel supply device
KR20140057025A (en) Lpg direct injection system
JP3456689B2 (en) Diesel engine fuel system using dimethyl ether fuel
KR100580459B1 (en) Diesel engine fuel supply system for preventing fuel pressure loss in vehicle
JP5345692B2 (en) Fluid accumulator device for internal combustion engine
KR101920258B1 (en) Method and device for controlling the fuel supply of an internal combustion engine operated with liquefied gas
JP2003227416A (en) Liquefied gas fuel feeding system
KR20050090134A (en) Liquefied gas-delivering device for diesel engine
JP3966749B2 (en) Liquefied gas fuel supply system
JP3796146B2 (en) DME engine fuel supply system
JP3966734B2 (en) Liquefied gas fuel supply system
JP2006274997A (en) Fuel supply device for engine
KR101004331B1 (en) Fuel supply system for liquefied gas internal combustion engine
EP2735722B1 (en) Fuel system for an excavator
JP2003056409A (en) Fuel supply device for dme engine
JP3221659B2 (en) Diesel engine fuel system using dimethyl ether fuel
JP2003097307A (en) Fuel supply system of diesel engine for dimethylether
CN111878261A (en) Gas recirculation system, dual-fuel engine and gas recirculation control method
JP2003336557A (en) Dme fuel supply device for diesel engine
JP2003322063A (en) Dme fuel supply device of diesel engine
AU2019228707A1 (en) Fuel supply system and assembly for injecting liquefied vapour under high pressure into a combustion chamber
KR100728915B1 (en) Gas feeding apparatus of gas fuel vehicles
JP2004044574A (en) Dme fuel supply device of diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees