JP2003224009A - Method for manufacturing anisotropic rare earth magnetic powder and bonded magnet using the same - Google Patents

Method for manufacturing anisotropic rare earth magnetic powder and bonded magnet using the same

Info

Publication number
JP2003224009A
JP2003224009A JP2002023382A JP2002023382A JP2003224009A JP 2003224009 A JP2003224009 A JP 2003224009A JP 2002023382 A JP2002023382 A JP 2002023382A JP 2002023382 A JP2002023382 A JP 2002023382A JP 2003224009 A JP2003224009 A JP 2003224009A
Authority
JP
Japan
Prior art keywords
rare earth
magnet
alloy
powder
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002023382A
Other languages
Japanese (ja)
Inventor
Kenichi Machida
町田憲一
Toshiharu Suzuki
鈴木俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002023382A priority Critical patent/JP2003224009A/en
Publication of JP2003224009A publication Critical patent/JP2003224009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth magnetic powder for bonded magnets, and a method for manufacturing anisotropic rare earth bonded magnets by using the same, wherein rare earth magnet wastes are efficiently converted into a rare earth powder for bonded magnets with but a little recycling energy and manpower, consequently, contributing for effective use of rare earth resources. <P>SOLUTION: Deficient products or wastes of rare earth magnets, wherein a hard magnetic phase is constituted by intermetallic compounds of rare earths and transition metals, are utilized as the alloy material or part thereof for manufacturing magnetic powder. The alloy material is melted and then rapidly cooled for development into an alloy piece by the strip cast method. The alloy piece is made to absorb hydrogen gas at high temperature and then to desorb the same. The result is a rare earth alloy powder having an average diameter of 1 μm or less in its hard magnetic phase, with crystal axes uniformly in a specified direction. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、異方性希土類磁
石粉末の製造方法及びそれを用いたボンド磁石の製造方
法に関する。
TECHNICAL FIELD The present invention relates to a method for producing anisotropic rare earth magnet powder and a method for producing a bonded magnet using the same.

【0002】[0002]

【従来の技術】近年、情報通信機器や制御機器、小型モ
ータを使用する民生用弱電機器、さらには医療診断装置
などに高性能な希土類焼結磁石が使用され、その生産量
は年々増加している。また、小型モータ用の円筒形状磁
石などに使用される希土類ボンド磁石も、焼結磁石と比
較して簡潔な工程によって製造することができるために
生産量が増加している。特にNd−Fe−B系焼結磁石
の製造においては、合金溶解から始まり、粉砕、成形、
焼結、切断・研磨、表面処理を経て最終磁石製品が出来
上がるが、この製造工程で発生する焼結不良品や研磨屑
などの磁石スクラップが磁石仕込み量の数十%に達し、
年間数千トンに及んでいると推定される。また、市中の
家電製品に組み込まれた後に廃棄される磁石スクラップ
量も今後増加することが予想される。これらのスクラッ
プには希少資源である希土類元素が相当量含まれるため
に、その回収と再利用が求められている。なお、希土類
ボンド磁石は成形後の切断や研磨工程がなく、また磁気
特性や寸法特性などの品質が安定しているため、工程内
のスクラップ発生は焼結磁石に比べれば比較的少ない。
2. Description of the Related Art In recent years, high-performance rare earth sintered magnets have been used in information and communication equipment, control equipment, light electric appliances for consumer use that use small motors, medical diagnostic equipment, etc., and their production volume has been increasing year by year. There is. In addition, a rare earth bonded magnet used for a cylindrical magnet for a small motor and the like can be manufactured by a simple process as compared with a sintered magnet, so that the production amount is increasing. Especially in the manufacture of Nd-Fe-B system sintered magnet, starting from alloy melting, crushing, molding,
The final magnet product is completed after sintering, cutting / polishing, and surface treatment, but the magnet scrap such as defective sintering and polishing scraps generated in this manufacturing process reaches several tens% of the charged amount of magnet,
It is estimated to reach several thousand tons per year. In addition, it is expected that the amount of magnet scrap that is discarded after being incorporated into household electric appliances in the city will increase in the future. Since these scraps contain a considerable amount of rare earth elements which are rare resources, their recovery and reuse are required. Since the rare earth bonded magnet does not have a cutting or polishing step after molding and the quality such as magnetic characteristics and dimensional characteristics is stable, scrap generation in the step is relatively small as compared with the sintered magnet.

【0003】上記のような焼結磁石の不良品を再利用す
る方法として、以下のような方法が提案されている。
酸に溶解させた後に希土類元素のみを溶媒抽出して分離
・乾燥し、さらに酸化させて再度焼結磁石用の原料とす
る(特開平5−287405号公報、特開平9−217
132号公報)。焼結不良品を粉砕して酸洗浄・乾燥
後にカルシウム還元を行って、焼結用合金粉末の補助材
として再利用する(特開平11−319752号公報、
特開平11−329811号公報)。Nd−Fe−B
系焼結磁石表面には、防錆処理としてNiめっき膜が形
成されることがある。Niは、Nd−Fe−B系焼結磁
石においては残留磁化を低下させる要因となるため、N
iメッキ膜を有する焼結磁石スクラップを焼結磁石用の
原料として再利用する場合には、その剥離除去が必要で
あると考えられている。具体的な方法としては、焼結磁
石に水素を吸放出させて粉砕し、Niめっき膜のみを分
離して残粉末を原料合金として用いる方法(特開平5−
33073号公報)、Ni膜をショットピーニングなど
の機械的手段によって分離して残粉末を原料合金として
用いる方法(特開平13−40425号公報)などが提
案されている。
The following method has been proposed as a method for reusing a defective product of the above sintered magnet.
After being dissolved in an acid, only the rare earth element is solvent-extracted, separated and dried, and further oxidized to obtain a raw material for a sintered magnet again (JP-A-5-287405, JP-A-9-217).
132 publication). Defective sintering products are crushed, acid-washed and dried, and then calcium reduction is performed to reuse them as an auxiliary material for sintering alloy powder (Japanese Patent Laid-Open No. 11-319752,
JP-A-11-329811). Nd-Fe-B
A Ni plating film may be formed on the surface of the system sintered magnet as a rust preventive treatment. Ni is a factor that reduces the residual magnetization in Nd-Fe-B system sintered magnets, so N
When a sintered magnet scrap having an i-plated film is reused as a raw material for a sintered magnet, it is considered necessary to remove it. As a specific method, a method is used in which a sintered magnet is made to absorb and release hydrogen to be pulverized, only the Ni plating film is separated, and the residual powder is used as a raw material alloy (Japanese Patent Laid-Open No. HEI 5-
No. 33073), a method of separating the Ni film by mechanical means such as shot peening and using the residual powder as a raw material alloy (Japanese Patent Laid-Open No. 13-40425), and the like.

【0004】一般に、希土類焼結磁石はNd,Fe,B
などの主要構成元素以外のOやC、およびNiやAl等
の混入を極力抑制して製造することによって高い磁気特
性を確保しているために、スクラップの再利用において
はこれら不純物元素の除去が課題となっている。しかし
異方性希土類ボンド磁石の原料となる、Nd−Fe−B
系合金塊への水素処理によって製造されるHDDR粉末
は、粉末内部の微細結晶組織の大きさや方向を制御する
ことによって磁気特性を確保することができ、原料不純
物の影響は焼結磁石と比較して小さい。さらに近年、合
金溶湯を急冷凝固することによって成分偏析を抑制した
均質な合金が得られるストリップキャスト法が、焼結磁
石用合金の製造に実用されつつある。
Generally, rare earth sintered magnets are Nd, Fe, B
Since high magnetic properties are secured by manufacturing by suppressing as much as possible O, C, Ni, Al, etc. other than the main constituent elements such as, the removal of these impurity elements during scrap reuse It has become a challenge. However, Nd-Fe-B, which is a raw material for anisotropic rare earth bonded magnets,
HDDR powder produced by hydrogen treatment of a system alloy ingot can secure magnetic properties by controlling the size and direction of the fine crystal structure inside the powder, and the influence of raw material impurities is better than that of a sintered magnet. Small. Furthermore, in recent years, a strip casting method, which can obtain a homogeneous alloy in which the segregation of the components is suppressed by rapidly solidifying the molten alloy, is being put to practical use in the production of alloys for sintered magnets.

【0005】[0005]

【発明が解決しようとする課題】希土類焼結磁石は工程
内のスクラップ発生が多く、また今後の市中回収品の再
資源化活用を図るためには、生産効率が良く且つ再生エ
ネルギーが少ない方法が求められる。しかし、上記の
方法は、酸化のために大きなエネルギーを必要とし、ま
た希土類元素の抽出分離工程を数回繰り返す必要があ
り、さらに酸溶液処理の問題など課題が多く、採算的に
問題がある。またの方法も、カルシウム還元に高温エ
ネルギーを要する他、還元処理の副生成物である酸化カ
ルシウムを還元粉末から水洗除去する際に、粉末が酸化
しやすい問題がある。他方、のNi膜剥離方法は、完
全な分離が困難であり、また原料合金再生までの手間が
かかることなどの問題がある。なお、焼結磁石を再粉砕
してプレス成型して再度焼結して磁石となす方法は、粉
末の酸化や粒度分布の悪化などにより保磁力などの磁気
特性が大幅に劣化するために、工業的には用いられてい
ない。
The rare earth sintered magnet has a large amount of scraps generated in the process, and in order to reuse the recovered products in the city in the future, a method with high production efficiency and low renewable energy is required. Is required. However, the above method requires a large amount of energy for oxidation, needs to repeat the step of extracting and separating rare earth elements several times, and has many problems such as the problem of acid solution treatment, which is economically problematic. The other method also requires high-temperature energy for calcium reduction, and also has a problem that the powder is easily oxidized when the calcium oxide, which is a by-product of the reduction treatment, is removed from the reduced powder by washing with water. On the other hand, the Ni film peeling method (1) has the problems that complete separation is difficult and that it takes time to regenerate the raw material alloy. The method of re-grinding a sintered magnet, press-molding it, and re-sintering it into a magnet is an industrial method because the magnetic properties such as coercive force are significantly deteriorated due to the oxidation of powder and deterioration of particle size distribution. Is not used.

【0006】本発明の目的は、少ない再生エネルギ−お
よび工数により希土類磁石スクラップを異方性希土類ボ
ンド磁石粉末に効率的に転換することができ、ひいては
希土類資源の有効利用に寄与するボンド磁石粉末の製造
方法と、それを用いたボンド磁石の製造方法を提供する
ことにある。
The object of the present invention is to efficiently convert rare earth magnet scraps into anisotropic rare earth bonded magnet powders with a small amount of regeneration energy and man-hours, and thus to improve the effective utilization of rare earth resources. It is to provide a manufacturing method and a bonded magnet manufacturing method using the manufacturing method.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、希土類元素と遷移金属元素との金属間化
合物により硬磁性相が構成された希土類磁石の、製造不
良品ないし廃棄品(以下、両者を総称して希土類磁石ス
クラップという)を合金原料の一部または全部として用
い、該合金原料をストリップキャスト法によって溶解後
急冷して合金片となし、引き続き該合金片に高温におい
て水素ガスを吸収させた後に水素ガスを脱離させること
によって、硬磁性相が平均粒径にして1μm以下に微細
粒子化され、且つその結晶軸が特定の方向に揃った結晶
組織を有する粉末となす、異方性希土類磁石粉末の製造
方法を提供する。
In order to achieve the above object, the present invention provides a defective manufactured product or a discarded product of a rare earth magnet having a hard magnetic phase composed of an intermetallic compound of a rare earth element and a transition metal element. (Hereinafter, both are collectively referred to as rare earth magnet scrap) is used as a part or all of the alloy raw material, and the alloy raw material is melted by a strip casting method and then rapidly cooled to form an alloy piece, and subsequently the alloy piece is hydrogenated at high temperature By absorbing the gas and then desorbing the hydrogen gas, the hard magnetic phase is made into fine particles with an average particle size of 1 μm or less, and a powder having a crystal structure in which the crystal axes are aligned in a specific direction is formed. A method for producing anisotropic rare earth magnet powder is provided.

【0008】また、希土類元素と遷移金属元素との金属
間化合物により硬磁性相が構成された希土類磁石の、製
造不良品ないし廃棄品(以下、両者を総称して希土類磁
石スクラップという)を合金原料の一部または全部とし
て用い、該合金原料をストリップキャスト法によって溶
解後急冷して合金片となし、該合金片内の結晶組織を高
温熱処理によって均質化させ、引き続き高温において水
素ガスを吸収させた後に水素ガスを脱離させることによ
って、硬磁性相が平均粒径にして1μm以下に微細粒子
化され、且つその結晶軸が特定の方向に揃った結晶組織
を有する粉末となす、異方性希土類磁石粉末の製造方法
を提供する。
[0008] Further, defectively manufactured or discarded rare earth magnets whose hard magnetic phase is composed of an intermetallic compound of a rare earth element and a transition metal element (hereinafter, both are collectively referred to as rare earth magnet scraps) are used as an alloy raw material. The alloy raw material was melted by the strip casting method and then rapidly cooled to form alloy pieces, and the crystal structure in the alloy pieces was homogenized by high temperature heat treatment, and subsequently hydrogen gas was absorbed at high temperature. An anisotropic rare earth, which is made into a powder having a crystal structure in which the hard magnetic phase has an average particle size of 1 μm or less by desorption of hydrogen gas later and the crystal axes thereof are aligned in a specific direction. A method for manufacturing magnet powder is provided.

【0009】さらに、希土類磁石スクラップは硬磁性相
をなす金属間化合物がRFe14B(ただし、RはN
dを主成分とする希土類元素)の化学量論組成を有し、
かつ希土類元素Rを主成分とする粒界相により硬磁性相
が焼結結合されたR−Fe−B系希土類焼結磁石スクラ
ップであり、希土類磁石粉末はR−Fe−B系異方性希
土類ボンド磁石粉末の製造方法を提供する。また、R−
Fe−B系希土類焼結磁石スクラップは、表面がNi,
Al,Crのいずれかの被覆膜を有するものであり、そ
の被覆膜を剥離することなく合金原料として使用する異
方性希土類ボンド磁石粉末の製造方法を提供する。
Further, in the rare earth magnet scrap, the intermetallic compound forming the hard magnetic phase is R 2 Fe 14 B (where R is N
(a rare earth element whose main component is d) having a stoichiometric composition of
R-Fe-B system rare earth sintered magnet scrap in which a hard magnetic phase is sinter-bonded by a grain boundary phase containing a rare earth element R as a main component, and the rare earth magnet powder is an R-Fe-B system anisotropic rare earth. A method for manufacturing a bonded magnet powder is provided. Also, R-
Fe-B rare earth sintered magnet scrap has Ni,
Provided is a method for producing anisotropic rare earth bonded magnet powder which has a coating film of either Al or Cr and is used as an alloy raw material without peeling off the coating film.

【0010】また、R−Fe−B系希土類磁石粉末は、
Ni、Al及びCrの合計含有量が0.2〜6質量%で
ある、異方性希土類ボンド磁石粉末の製造方法を提供す
る。さらに、R−Fe−B系希土類磁石粉末は、O及び
Cの合計含有量が0.3〜2質量%である、異方性希土
類ボンド磁石粉末の製造方法を提供する。
The R-Fe-B rare earth magnet powder is
Provided is a method for producing anisotropic rare earth bonded magnet powder, wherein the total content of Ni, Al and Cr is 0.2 to 6% by mass. Further, the R-Fe-B rare earth magnet powder provides a method for producing an anisotropic rare earth bonded magnet powder in which the total content of O and C is 0.3 to 2 mass%.

【0011】さらには、前記希土類磁石粉末に結合樹脂
を配合してコンパウンドとなし、該コンパウンドを予め
定められた磁石形状に成型することによりボンド磁石と
する異方性希土類ボンド磁石の製造方法、およびそのボ
ンド磁石を提供する。
Furthermore, a method for producing an anisotropic rare earth bonded magnet, in which a binder resin is mixed with the rare earth magnet powder to form a compound, and the compound is molded into a predetermined magnet shape to form a bond magnet, and The bond magnet is provided.

【0012】[0012]

【発明の実施の形態】本発明で対象とする磁石スクラッ
プは、希土類焼結磁石の製造工程において発生する焼結
体の亀裂不良や、切断時の欠けや端材、研磨屑、Niや
Alメッキおよび樹脂塗装の不良、検査工程での寸法や
磁気特性不良品、および電気製品等の市中製品に組み込
まれた磁石出廃棄処分となったものなどを指す。また、
希土類ボンド磁石の不良品から樹脂分を有機溶剤で分離
除去した残材などを指す。
BEST MODE FOR CARRYING OUT THE INVENTION The magnet scrap which is the object of the present invention is a defective crack of a sintered body which occurs in a manufacturing process of a rare earth sintered magnet, a chip at cutting, a scrap material, polishing scraps, Ni or Al plating. It also refers to defective resin coating, defective dimensions and magnetic characteristics in the inspection process, and magnets incorporated into commercial products such as electrical products that have been discarded. Also,
It refers to the residual material obtained by separating and removing the resin component with an organic solvent from the defective rare earth bonded magnet.

【0013】希土類磁石スクラップは、単独で使用して
ボンド磁石とすることもできるが、例えば焼結磁石をボ
ンド磁石に転換する場合は、両者の組成が必ずしも一致
しない場合がある。このように、最終的に得るべき希土
類ボンド磁石用粉末は希土類磁石スクラップと組成の相
違する場合は、合金原料として、希土類磁石スクラップ
に、該希土類磁石スクラップと希土類ボンド磁石用粉末
との組成差を解消するための組成調整用原料を配合して
なるものを使用することができる。これにより、使用可
能な希土類磁石スクラップの種類を大幅に増やすことが
でき、より効果的なリサイクルを計ることができる。
The rare earth magnet scrap may be used alone as a bonded magnet, but when the sintered magnet is converted into a bonded magnet, the compositions of the two may not always match. Thus, when the rare earth bond magnet powder to be finally obtained has a composition different from that of the rare earth magnet scrap, the rare earth magnet scrap is used as an alloy raw material, and the composition difference between the rare earth magnet scrap and the rare earth bond magnet powder is obtained. It is possible to use the one prepared by blending the composition adjusting raw material for solving the problem. As a result, the types of rare earth magnet scrap that can be used can be significantly increased, and more effective recycling can be achieved.

【0014】対象とするNd−Fe−B系磁石材質につ
いては、他の構成元素としてPr,Dy等の希土類元素
やCo,Zr,Nb,Gaなどの遷移元素、および微量
不純物としてO,C,Siなどを含んでいてもかまわな
い。通常、焼結磁石においては製造工程上で約0.5%
の酸素と約0.1%の炭素を不純物として含んでおり、
ボンド磁石の磁性粉については炭素の混入はほとんどな
いが約0.1%の酸素を含んでいる。市中製品から回収
した磁石の場合は、使われる環境によるが酸化によって
磁石内の酸素量は出荷時より若干増加していることが予
測される。磁石スクラップを再利用する場合は、各種の
材質と種類を用いるために酸素および炭素の総量はそれ
ぞれ異なるが、その総量の下限は0.3%が妥当であり
それ未満のスクラップは現実的に入手することが困難で
ある。また、その上限は2%であることが必要であり、
この量を超えると磁気特性、特に保磁力の低下が大きく
なり好ましくない。
Regarding the Nd-Fe-B system magnet material of interest, other constituent elements such as rare earth elements such as Pr and Dy, transition elements such as Co, Zr, Nb and Ga, and trace impurities such as O, C and It does not matter if it contains Si or the like. Normally, about 0.5% in the manufacturing process for sintered magnets
Contains oxygen and about 0.1% carbon as impurities,
The magnetic powder of the bonded magnet contains almost no carbon, but contains about 0.1% oxygen. In the case of magnets recovered from commercial products, it is expected that the oxygen content in the magnets will increase slightly from the time of shipment due to oxidation, depending on the environment in which they are used. When reusing magnet scrap, the total amount of oxygen and carbon is different due to the use of various materials and types, but the lower limit of the total amount is 0.3% is reasonable, and scrap less than that is practically available. Difficult to do. Also, the upper limit must be 2%,
If this amount is exceeded, the magnetic properties, especially the coercive force, will decrease significantly, which is not preferable.

【0015】一方、磁石表面に形成されたNiやAl,
Crなどの防錆金属膜は分離除去せずに用いて良く、も
ちろん機械的あるいは化学的に除去する工程を経ること
によって、磁気特性の低下を抑制してもよい。また、エ
ポキシ樹脂系の防錆膜の場合には高温加圧した溶剤中で
剥離除去するか、あるいは機械的に除去して用いる。再
利用する場合に含有されるNiやAl,Crの総量は、
めっき膜を有する磁石とめっき未実施の焼結体を単独ま
たは両者混合して用いて良く、総量で0.2%以上含む
ことによって耐食性の改善効果が認められ、6%を超え
ると磁気特性、特に残留磁化と保磁力ともに低下してし
まう。
On the other hand, Ni or Al formed on the surface of the magnet,
The anticorrosive metal film such as Cr may be used without being separated and removed, and of course, the deterioration of the magnetic properties may be suppressed by going through a step of mechanically or chemically removing it. Further, in the case of an epoxy resin-based rustproof film, it is used by peeling and removing it in a solvent pressurized at high temperature or by mechanically removing it. When recycled, the total amount of Ni, Al, Cr contained is
A magnet having a plating film and a non-plated sintered body may be used alone or as a mixture of both, and an effect of improving corrosion resistance is recognized when the total amount is 0.2% or more. In particular, both remanent magnetization and coercive force are reduced.

【0016】スクラップをストリップキャストする方法
として、焼結用Nd−Fe−B系合金の製造で実施され
ているところの、溶融合金を回転する銅ロール上に直接
噴出させて薄片を製作する方法を採用することができ
る。この際に溶融する合金原料としては、予め成分組成
毎に分別したスクラップを用いることが有益であり、ま
た組成調整のためスクラップ以外の新規合金原料を添加
混合しても良い。ストリップキャスト条件としては、一
般に数百〜数千℃/秒の冷却速度が用いられ、数〜数十
ミクロンの微細で均質なNdFe14B結晶組織をも
つ、およその厚さが0.1〜2mmの合金薄片が得られ
る。
As a method of strip-casting scrap, a method of directly ejecting a molten alloy onto a rotating copper roll to produce flakes, which is practiced in the production of Nd-Fe-B type alloys for sintering, is described. Can be adopted. As the alloy raw material to be melted at this time, it is advantageous to use scrap that has been separated according to the component composition in advance, and a new alloy raw material other than scrap may be added and mixed for composition adjustment. As a strip casting condition, a cooling rate of several hundreds to several thousands ° C./second is generally used, and a fine and uniform Nd 2 Fe 14 B crystal structure of several to several tens of microns is used, and an approximate thickness of 0.1. Alloy flakes of ~ 2 mm are obtained.

【0017】合金薄片への水素の吸放出処理、いわゆる
HDDR(Hydrogenation Disproportionation Desorpt
ion Recombination)処理の基本は例えば特開平2−4
901号広報に開示され、原料合金をストリップキャス
トによって製作する方法は特開平7−109504号広
報に開示されている。本願においても上記ストリップキ
ャスト法を適用することにより、α-FeやRFe
17相などの不純物層がない均質な合金薄片を製作する
ことができ、600〜900℃において合金内に水素ガ
スを吸収させて一旦NdFe14B相を分解させ、次
に同じ温度下で脱水素させて再び前期の相を析出させ、
1ミクロン以下の微細な再結晶組織を得る一連の工程の
結果、用いた合金薄片の均質性のゆえに結晶方位が良く
揃った合金粉末となる。こうして薄片から得られた粉末
は、従来の合金塊を用いてHDDR処理した粉末よりも
出発合金の内部組織が均質であるために、再結晶粒の大
きさのばらつきが少なくまた結晶方位の乱れも小さくな
る。
Hydrogen absorption / desorption treatment for alloy flakes, so-called HDDR (Hydrogenation Disproportionation Desorpt)
The basics of ion recombination) processing are described in, for example, Japanese Patent Laid-Open No. 2-4
The method disclosed in JP-A No. 901504 and the method for producing a raw material alloy by strip casting are disclosed in JP-A-7-109504. Also in the present application, by applying the above strip casting method, α-Fe and R 2 Fe can be obtained.
Homogeneous alloy flakes without impurity layers such as 17 phases can be produced, and hydrogen gas is absorbed in the alloy at 600 to 900 ° C. to temporarily decompose the Nd 2 Fe 14 B phase, and then at the same temperature. Dehydrogenate again to precipitate the previous phase,
As a result of a series of steps for obtaining a fine recrystallized structure of 1 micron or less, an alloy powder having a well-arranged crystal orientation is obtained due to the homogeneity of the alloy flakes used. The powder obtained from the flakes in this way has a more uniform internal structure of the starting alloy than the powder subjected to HDDR treatment using a conventional alloy lump, and therefore the recrystallized grains have less variation in size and the crystal orientation is not disturbed. Get smaller.

【0018】この粉末は、適度な粒径に粉砕・篩別して
ボンド磁石に供せられる。ボンド磁石としては、エポキ
シやフェノール等の熱硬化性樹脂を添加混合してプレス
成形によって製作される圧縮成形磁石、ナイロンやPP
S等の熱可塑性樹脂を添加混合して製作される射出成形
磁石、およびウレタンや加硫ゴムを混ぜて製作される押
し出し成形磁石などがあり、いずれの方式においても成
形工程において直流あるいはパルス電流による磁界を加
えることによって、高性能な異方性ボンド磁石を製作す
ることができる。成形後の磁石表面には、通常吹きつけ
あるいは電着によってエポキシ系の防錆被膜を形成して
最終磁石製品とする。
This powder is crushed to a proper particle size and sieved to be used as a bonded magnet. As the bonded magnet, a compression molded magnet manufactured by press molding by adding and mixing a thermosetting resin such as epoxy or phenol, nylon or PP.
There are injection-molded magnets manufactured by adding and mixing thermoplastic resins such as S, and extrusion-molded magnets manufactured by mixing urethane and vulcanized rubber. In either method, direct current or pulse current is used in the molding process. By applying a magnetic field, a high-performance anisotropic bonded magnet can be manufactured. An epoxy-based anticorrosive film is usually formed on the surface of the magnet after molding by spraying or electrodeposition to obtain a final magnet product.

【0019】[0019]

【作用】本発明によれば、製造工程および市中で今後大
量に発生する磁石スクラップを、Niめっき膜等の被膜
を剥離せずにストリップキャスト法によって合金化した
後、水素処理を行うことによって異方性ボンド磁石用原
料として再生することができる。従って、異方性ボンド
磁石を安価に製造できることが可能となり、また資源の
有効再利用も可能となる。
According to the present invention, a large amount of magnet scraps that will be produced in the manufacturing process and in the city in the future are alloyed by strip casting without stripping the coating such as Ni plating film, and then hydrogen treated. It can be regenerated as a raw material for anisotropic bonded magnets. Therefore, the anisotropic bonded magnet can be manufactured at low cost, and the resources can be effectively reused.

【0020】[0020]

【実施例】以下本発明を実施例に従って詳細に説明す
る。 実施例1 Nd−Dy−Fe−Co−B系焼結磁石の、亀裂不良品
と研磨寸法不良品の中から、光ピックアップ向けの5m
m×6mm×2mm形状の角型磁石を用意した。この磁
石の磁気特性をBHトレーサーによって測定した結果、
最大磁気エネルギー積BHmaxは336kJ/m
あった。この角型磁石を、真空ガス置換部、高周波加熱
部、回転ロール部を備えた急冷装置内に設置された石英
菅に装填し、50kPaの圧力下で高周波加熱によって
溶融させた後、石英菅内に加圧ガスを導入して石英菅下
部の細孔から、溶融合金を回転する銅製ロール上に噴出
させて厚さ0.9mmの合金薄片を製作した。このとき
石英菅下部の孔径は0.6mm、銅ロール径は200m
m、周速度は3m/sであった。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 Of the Nd-Dy-Fe-Co-B system sintered magnets, which are defective in cracking and defective in polishing dimension, 5 m for an optical pickup.
A square magnet having a shape of m × 6 mm × 2 mm was prepared. As a result of measuring the magnetic characteristics of this magnet with a BH tracer,
The maximum magnetic energy product BH max was 336 kJ / m 3 . This square magnet was loaded into a quartz tube installed in a quenching device equipped with a vacuum gas replacement section, a high-frequency heating section, and a rotating roll section, melted by high-frequency heating under a pressure of 50 kPa, and then placed in a quartz tube. A pressurized gas was introduced and the molten alloy was ejected from the pores in the lower part of the quartz tube onto a rotating copper roll to produce an alloy flake with a thickness of 0.9 mm. At this time, the hole diameter at the bottom of the quartz tube is 0.6 mm, and the copper roll diameter is 200 m.
m, and the peripheral speed was 3 m / s.

【0021】次にこの合金薄片と、新規原料を用いて金
型鋳造法によって製作したNd−Fe−Co−Ga−Z
r−B合金を、100kPaの水素ガス雰囲気中で78
0℃、3時間保持して水素ガスを吸蔵させ、その後同温
度で水素ガスをArガスで切り替え、さらに真空排気し
て合金中の水素を追い出した。スクラップから得られた
合金粉末を本発明試料(1)、新規原料から金型鋳造を
経て製作された合金粉末を比較例試料(2)とした。
Next, the alloy flakes and Nd-Fe-Co-Ga-Z produced by a die casting method using the new raw material.
r-B alloy in a hydrogen gas atmosphere of 100 kPa 78
The mixture was kept at 0 ° C. for 3 hours to occlude the hydrogen gas, and then the hydrogen gas was switched to Ar gas at the same temperature and further evacuated to expel hydrogen in the alloy. The alloy powder obtained from the scrap was used as the sample (1) of the present invention, and the alloy powder manufactured from the new raw material through die casting was used as the comparative sample (2).

【0022】両者の試料を150ミクロン以下に粉砕調
整して磁界中でワックス固定し、4.8MA/mのパル
ス磁界を加えた後に、振動試料型磁力計を使用して磁気
特性を測定した。図1に各試料のヒステリシス曲線を、
表1に代表的な磁気特性値を示す。各図表から明らかな
ように、本発明試料(1)は比較例試料(1)と比較し
て、多くの酸素やニッケル不純物を含むにもかかわら
ず、ほぼ同等の最大磁気エネルギー積BHmaxが得ら
れた。さらに詳しくは、本発明試料(1)の残留磁化B
rはHDDR処理後の結晶配向性が優れているために比
較例試料(1)のそれよりも大きく、一方保磁力Hcj
は、不純物の影響によりやや低い値を示した。なお、図
1において各ヒステリシス曲線がH軸の上方より下方で
小さくなっている理由は、粉末の保磁力が大きいために
第3象限での反転磁界の大きさが不足していることに起
因している。この結果より、本発明試料は異方性ボンド
磁石用の原料磁性粉として充分実用に供しえることがわ
かった。また、BrとHcj値の大きさの調整は用いる
スクラップの種類やNd量などの補正、およびHDDR
処理条件の調整によって容易に行うことができる。
Both samples were pulverized and adjusted to 150 μm or less, fixed with wax in a magnetic field, applied with a pulsed magnetic field of 4.8 MA / m, and then measured for magnetic characteristics using a vibrating sample magnetometer. Figure 1 shows the hysteresis curve of each sample.
Table 1 shows typical magnetic characteristic values. As is clear from the respective charts, the sample (1) of the present invention has almost the same maximum magnetic energy product BH max as that of the sample (1) of the comparative example, although it contains a large amount of oxygen and nickel impurities. Was given. More specifically, the remanent magnetization B of the sample (1) of the present invention
r is larger than that of the comparative sample (1) due to the excellent crystal orientation after HDDR treatment, while the coercive force Hcj
Shows a rather low value due to the influence of impurities. The reason why each hysteresis curve in FIG. 1 is smaller below the H axis than above is that the magnitude of the reversal magnetic field in the third quadrant is insufficient due to the large coercive force of the powder. ing. From this result, it was found that the sample of the present invention can be sufficiently put to practical use as a raw material magnetic powder for anisotropic bonded magnets. Further, the adjustment of the values of Br and Hcj is performed by correcting the type of scrap to be used, the amount of Nd, etc.
It can be easily performed by adjusting the processing conditions.

【表1】 [Table 1]

【0023】実施例2 BHmaxが355kJ/mのNd−Fe−Co−B
系焼結磁石で、VCM向けの扇型形状をしたNiめっき
不良品を用意した。この不良品を荒く粉砕した後に高圧
容器に装入し、200kPaの加圧水素を充填してさら
に水素崩壊させ、取り出した粉砕物からNiめっき膜を
多く含む粉末を磁気分離した。分離後に残った粉末を、
真空排気して脱水素した後に50MPaの圧力を加えて
固形物とし、実施例1と同様にしてストリップキャスト
して合金薄片とした。続いて、200kPaの加圧水素
中で800℃、2時間の水素化を行い、引き続き同温度
で脱水素処理を行って本発明試料(2)を製作した。こ
の試料の成分組成をICP分析した結果、質量比で3
0.2Nd−3.1Co−1.1B−残Fe組成であっ
た。一方比較例として、ほぼ同様な組成をもつ30.0
Nd−3.2Co−0.1Ga−1.1B−残Feの合
金を金型鋳造し、HDDR処理を行って粉末を製作し、
比較例試料(2)とした。図2に、振動試料型磁力計に
よって測定した各試料のヒステリシス曲線を示す。図2
より、各試料ともに実施例1と比較してやや保磁力が大
きく、本発明試料(2)を比較例試料(2)と比較する
と高Brで低Hcjの特徴をもちつつ、ほぼ同等のBH
maxが得られた。
Example 2 Nd-Fe-Co-B having a BH max of 355 kJ / m 3.
A fan-shaped Ni-plated defective product for VCM was prepared using a sintered magnet. This defective product was roughly crushed, then charged into a high-pressure container, filled with 200 kPa of pressurized hydrogen for further hydrogen collapse, and powder containing a large amount of Ni plating film was magnetically separated from the taken out crushed product. The powder remaining after separation is
After vacuum evacuation and dehydrogenation, a pressure of 50 MPa was applied to make a solid, and strip casting was performed in the same manner as in Example 1 to obtain an alloy thin piece. Subsequently, hydrogenation was carried out at 800 ° C. for 2 hours in pressurized hydrogen of 200 kPa, and then dehydrogenation treatment was carried out at the same temperature to produce sample (2) of the present invention. As a result of ICP analysis of the component composition of this sample, the mass ratio was 3
The composition was 0.2Nd-3.1Co-1.1B-remaining Fe. On the other hand, as a comparative example, 30.0 having almost the same composition
An alloy of Nd-3.2Co-0.1Ga-1.1B-remaining Fe was die-cast, and HDDR treatment was performed to produce powder.
Comparative sample (2) was used. FIG. 2 shows the hysteresis curve of each sample measured by the vibrating sample magnetometer. Figure 2
As a result, the coercive force of each sample is slightly larger than that of Example 1. When the sample of the present invention (2) is compared with the sample of Comparative example (2), the samples have high Br and low Hcj, but have almost the same BH.
max was obtained.

【0024】次に、上記各粉末試料に一液性エポキシ樹
脂を2.2質量%添加混合し、1.2MA/mの磁界中
で1GPaの圧力を加えて圧縮成形し、120℃で1時
間加熱して樹脂を硬化させて円柱状磁石となし、本発明
試料(3)と比較例試料(3)とした。表2に、BHト
レーサによって測定した本発明試料(3)と比較例試料
(3)の磁気特性、および本発明試料(2)と比較例試
料(2)の磁気特性を合わせて示す。表2から明らかな
ように、本発明試料(3)は比較例試料(3)と比べて
遜色ないBHmaxが得られ、ボンド磁石として再生で
きることが明らかになった。
Next, 2.2 mass% of one-pack type epoxy resin was added to and mixed with each of the above powder samples, and compression molding was carried out by applying a pressure of 1 GPa in a magnetic field of 1.2 MA / m, and at 120 ° C. for 1 hour. The resin was heated to cure to form a cylindrical magnet, which was used as the sample of the present invention (3) and the sample of comparative example (3). Table 2 also shows the magnetic properties of the sample (3) of the present invention and the sample (3) of the comparative example, and the magnetic properties of the sample (2) of the present invention and the sample (2) of the comparative example, which were measured by a BH tracer. As is clear from Table 2, the sample (3) of the present invention has a BH max comparable to that of the sample (3) of the comparative example, and it is clear that the sample (3) can be regenerated as a bonded magnet.

【表2】 [Table 2]

【0025】実施例3 Nd−Fe−B系焼結磁石の中から、焼結体の研磨不良
スクラップと、Ni,Al,Crの各めっきスクラッ
プ、および使用済みパソコンから分解回収したVCM用
磁石を、概観と形状による選別を行って磁石の磁気特性
を測定したところ、BHmaxは270〜366kJ/
であった。これらの磁石を数mm程度に破砕し、周
速度を2m/sとして実施例1と同様に溶融急冷して、
厚さ約1.2mmの合金薄片を製作した。一方、Nd,
Fe,Ga,Zrの金属、および20%B−Feを新規
原料として、溶解、金型鋳造して合金塊を製作した。続
いて、これら合金薄片と合金塊をそれぞれ200kPa
の水素ガス雰囲気中で780℃、1時間保持して水素ガ
スを吸収させ、その後同温度で脱水素した。
Example 3 Among Nd-Fe-B system sintered magnets, scraps with poor polishing of sintered bodies, scraps of Ni, Al, and Cr plating, and VCM magnets disassembled and collected from a used personal computer were used. When the magnetic characteristics of the magnet were measured by selecting the appearance and shape, the BH max was 270 to 366 kJ /
It was m 3 . These magnets were crushed to about several mm, melted and quenched in the same manner as in Example 1 at a peripheral speed of 2 m / s,
An alloy flake having a thickness of about 1.2 mm was manufactured. On the other hand, Nd,
Metals of Fe, Ga, Zr and 20% B-Fe were used as new raw materials, and melted and die-casted to produce an alloy lump. Subsequently, the alloy flakes and the alloy lumps are respectively subjected to 200 kPa.
Was kept at 780 ° C. for 1 hour to absorb the hydrogen gas and then dehydrogenated at the same temperature.

【0026】得られた各粉末にエポキシ樹脂を混合し、
実施例2と同様に磁界中で圧縮成形してボンド磁石を製
作した。スクラップから製作された磁石を本発明試料
(4)〜(9)、新規原料から製作された磁石を比較例
試料(4)とした。各試料粉末について、ICPによる
金属元素の分析とガス燃焼法による酸素および炭素分析
を行った結果と、BHトレーサによる磁気特性の測定結
果を表3に示す。表3の結果より、本発明試料(4)〜
(9)は少量のNi,Al,Cr等の不純物元素、およ
び微少量の酸素と炭素を少量含んでいるにもかかわら
ず、比較例試料(4)とほぼ同水準のBHmax値が得
られ、スクラップから再生された異方性ボンド磁石が実
用レベルの優れた磁気特性を有することが明らかとなっ
た。
Epoxy resin was mixed with each of the obtained powders,
A bonded magnet was manufactured by compression molding in a magnetic field in the same manner as in Example 2. Magnets made from scrap were designated as Samples (4) to (9) of the present invention, and magnets made from new raw materials were designated as Comparative Samples (4). Table 3 shows the results of the metal element analysis by ICP and the oxygen and carbon analysis by the gas combustion method, and the measurement results of the magnetic properties by the BH tracer for each sample powder. From the results of Table 3, the present invention samples (4) to
Although (9) contains a small amount of impurity elements such as Ni, Al, and Cr, and a small amount of oxygen and carbon, a BH max value almost equal to that of the comparative sample (4) was obtained. , It was clarified that the anisotropic bonded magnet regenerated from scrap has excellent magnetic properties at a practical level.

【表3】 [Table 3]

【0027】[0027]

【発明の効果】本発明によれば、製造工程内および市中
製品から廃棄される磁石スクラップを、Niめっき膜等
の被膜を剥離せずにストリップキャスト法によって合金
化した後、水素処理を行うことによって異方性ボンド磁
石用原料として再生することができる。従って、異方性
希土類ボンド磁石を安価に製造できることが可能とな
り、また資源の有効再利用も可能となる。
EFFECTS OF THE INVENTION According to the present invention, the magnet scraps discarded in the manufacturing process and in the commercial products are alloyed by the strip casting method without stripping the coating such as the Ni plating film, and then subjected to the hydrogen treatment. As a result, it can be regenerated as a raw material for anisotropic bonded magnets. Therefore, the anisotropic rare-earth bonded magnet can be manufactured at low cost, and resources can be effectively reused.

【0028】[0028]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明試料(1)、および比較例試料(1)の
ヒステリシス曲線である。
FIG. 1 is a hysteresis curve of a sample (1) of the present invention and a sample (1) of a comparative example.

【図2】本発明試料(2)、および比較例試料(2)の
ヒステリシス曲線である。
FIG. 2 is a hysteresis curve of a sample of the present invention (2) and a sample of a comparative example (2).

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/56 C22C 38/56 H01F 41/02 H01F 41/02 G Fターム(参考) 4K017 AA04 BA06 BB12 CA07 DA04 EA12 EC02 FA07 FA08 4K018 AA27 BA18 BB04 CA04 CA11 CA29 CA31 FA25 KA46 5E040 AA04 BC01 BC08 BD01 CA01 HB17 NN05 NN06 5E062 CC05 CD05 CE04 CF02 CG07Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/56 C22C 38/56 H01F 41/02 H01F 41/02 G F term (reference) 4K017 AA04 BA06 BB12 CA07 DA04 EA12 EC02 FA07 FA08 4K018 AA27 BA18 BB04 CA04 CA11 CA29 CA31 FA25 KA46 5E040 AA04 BC01 BC08 BD01 CA01 HB17 NN05 NN06 5E062 CC05 CD05 CE04 CF02 CG07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素と遷移金属元素との金属間化
合物により硬磁性相が構成された希土類磁石の、製造不
良品ないし廃棄品(以下、両者を総称して希土類磁石ス
クラップという)を合金原料の一部または全部として用
い、該合金原料をストリップキャスト法によって溶解後
急冷して合金片となし、引き続き該合金片に高温におい
て水素ガスを吸収させた後に水素ガスを脱離させること
によって、硬磁性相が平均粒径にして1μm以下に微細
粒子化され、且つその結晶軸が特定の方向に揃った結晶
組織を有する粉末となすことを特徴とする異方性希土類
磁石粉末の製造方法。
1. A defective raw material or a waste product (hereinafter, both are collectively referred to as a rare earth magnet scrap) of a rare earth magnet having a hard magnetic phase formed of an intermetallic compound of a rare earth element and a transition metal element, as an alloy raw material. Used as a part or all of the above, the alloy raw material is melted by a strip casting method and then rapidly cooled to form an alloy piece, and then the alloy piece is absorbed with hydrogen gas at a high temperature and then desorbed to remove the hard gas. A method for producing anisotropic rare earth magnet powder, characterized in that the magnetic phase is made into fine particles having an average particle size of 1 μm or less and a crystal structure in which the crystal axes are aligned in a specific direction.
【請求項2】 希土類元素と遷移金属元素との金属間化
合物により硬磁性相が構成された希土類磁石の、製造不
良品ないし廃棄品(以下、両者を総称して希土類磁石ス
クラップという)を合金原料の一部または全部として用
い、該合金原料をストリップキャスト法によって溶解後
急冷して合金片となし、該合金片内の結晶組織を高温熱
処理によって均質化させ、引き続き高温において水素ガ
スを吸収させた後に水素ガスを脱離させることによっ
て、硬磁性相が平均粒径にして1μm以下に微細粒子化
され、且つその結晶軸が特定の方向に揃った結晶組織を
有する粉末となすことを特徴とする異方性希土類磁石粉
末の製造方法。
2. A defective manufacturing product or a waste product (hereinafter, both are collectively referred to as a rare earth magnet scrap) of a rare earth magnet having a hard magnetic phase formed of an intermetallic compound of a rare earth element and a transition metal element as an alloy raw material. The alloy raw material was melted by the strip casting method and then rapidly cooled to form alloy pieces, and the crystal structure in the alloy pieces was homogenized by high temperature heat treatment, and subsequently hydrogen gas was absorbed at high temperature. By desorbing hydrogen gas later, the hard magnetic phase is made into fine particles with an average particle size of 1 μm or less, and the powder has a crystal structure in which the crystal axes are aligned in a specific direction. Method for producing anisotropic rare earth magnet powder.
【請求項3】 前記希土類磁石スクラップは、前記硬磁
性相をなす金属間化合物がRFe14B(ただし、R
はNdを主成分とする希土類元素)の化学量論組成を有
し、かつ、前記希土類元素Rを主成分とする粒界相によ
り前記硬磁性相が焼結結合されたR−Fe−B系希土類
焼結磁石スクラップであり、前記希土類磁石粉末は、R
−Fe−B系希土類ボンド磁石用粉末である請求項1又
は2に記載の異方性希土類磁石粉末の製造方法。
3. In the rare earth magnet scrap, the intermetallic compound forming the hard magnetic phase is R 2 Fe 14 B (provided that R
Is a rare earth element containing Nd as a main component) and an R—Fe—B system in which the hard magnetic phase is sinter-bonded by a grain boundary phase containing the rare earth element R as a main component. It is a rare earth sintered magnet scrap, and the rare earth magnet powder is R
The method for producing anisotropic rare earth magnet powder according to claim 1 or 2, which is a powder for a -Fe-B-based rare earth bonded magnet.
【請求項4】 前記R−Fe−B系希土類焼結磁石スク
ラップは、表面がNi,Al,Crのいずれかの被覆膜
を有するものであり、その被覆膜を剥離することなく前
記合金原料として使用する請求項3記載の異方性希土類
磁石粉末の製造方法。
4. The R-Fe-B rare earth sintered magnet scrap has a coating film of any one of Ni, Al and Cr on the surface, and the alloy is formed without peeling the coating film. The method for producing anisotropic rare earth magnet powder according to claim 3, which is used as a raw material.
【請求項5】 前記R−Fe−B系異方性希土類磁石粉
末は、Ni,Al及びCrの合計含有量が0.2〜6質
量%とされる請求項4に記載の異方性希土類磁石粉末の
製造方法。
5. The anisotropic rare earth magnet according to claim 4, wherein the R-Fe-B anisotropic rare earth magnet powder has a total content of Ni, Al and Cr of 0.2 to 6% by mass. Method of manufacturing magnet powder.
【請求項6】 前記R−Fe−B系異方性希土類磁石粉
末は、O及びCの合計含有量が0.3〜2質量%の範囲
のものとされる請求項1ないし5のいずれか1項に記載
の異方性希土類磁石粉末の製造方法。
6. The anisotropic rare earth magnet powder for R—Fe—B system, wherein the total content of O and C is in the range of 0.3 to 2 mass%. Item 1. The method for producing anisotropic rare earth magnet powder according to item 1.
【請求項7】 請求項1ないし6のいずれか1項の記載
の方法により得られた希土類磁石粉末に結合樹脂を配合
してコンパウンドとなし、該コンパウンドを予め定めら
れた磁石形状に成型することによりボンド磁石とするこ
とを特徴とする異方性希土類ボンド磁石の製造方法。
7. A compound obtained by mixing the rare earth magnet powder obtained by the method according to claim 1 with a binding resin to form a compound, and molding the compound into a predetermined magnet shape. A method for producing an anisotropic rare earth bonded magnet, comprising:
【請求項8】 請求項1ないし6のいずれか1項の記載
の方法により得られた希土類ボンド磁石粉末に結合樹脂
を配合してコンパウンドとなし、該コンパウンドを予め
定められた磁石形状に成型することにより得られる事を
特徴とする異方性希土類ボンド磁石。
8. A compound is formed by compounding a binder resin with the rare earth bonded magnet powder obtained by the method according to claim 1, and the compound is molded into a predetermined magnet shape. An anisotropic rare-earth bonded magnet characterized by being obtained by the above.
JP2002023382A 2002-01-31 2002-01-31 Method for manufacturing anisotropic rare earth magnetic powder and bonded magnet using the same Pending JP2003224009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002023382A JP2003224009A (en) 2002-01-31 2002-01-31 Method for manufacturing anisotropic rare earth magnetic powder and bonded magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002023382A JP2003224009A (en) 2002-01-31 2002-01-31 Method for manufacturing anisotropic rare earth magnetic powder and bonded magnet using the same

Publications (1)

Publication Number Publication Date
JP2003224009A true JP2003224009A (en) 2003-08-08

Family

ID=27746107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002023382A Pending JP2003224009A (en) 2002-01-31 2002-01-31 Method for manufacturing anisotropic rare earth magnetic powder and bonded magnet using the same

Country Status (1)

Country Link
JP (1) JP2003224009A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568736A (en) * 2010-12-21 2012-07-11 上海爱普生磁性器件有限公司 Rigid anisotropy bonded neodymium iron boron permanent magnet
KR101195450B1 (en) * 2010-01-22 2012-10-30 한국기계연구원 The method for preparation of R-Fe-B type rare earth magnet powder for bonded magnet, R-Fe-B type rare earth magnet powder thereby and the method for preparation of bonded magnet using the magnet powder, bonded magnet thereby
KR101219515B1 (en) * 2010-07-02 2013-01-11 한국기계연구원 The method for preparation of R-Fe-B type rare earth magnet powder for bonded magnet, R-Fe-B type rare earth magnet powder thereby and method for preparation of bonded magnet using the magnet powder, bonded magnet thereby
KR20150030075A (en) * 2013-09-11 2015-03-19 엘지전자 주식회사 Recycled neodymium-based sintered magnets having high coercivity and residual magnetic flux density and method of preparing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195450B1 (en) * 2010-01-22 2012-10-30 한국기계연구원 The method for preparation of R-Fe-B type rare earth magnet powder for bonded magnet, R-Fe-B type rare earth magnet powder thereby and the method for preparation of bonded magnet using the magnet powder, bonded magnet thereby
KR101219515B1 (en) * 2010-07-02 2013-01-11 한국기계연구원 The method for preparation of R-Fe-B type rare earth magnet powder for bonded magnet, R-Fe-B type rare earth magnet powder thereby and method for preparation of bonded magnet using the magnet powder, bonded magnet thereby
CN102568736A (en) * 2010-12-21 2012-07-11 上海爱普生磁性器件有限公司 Rigid anisotropy bonded neodymium iron boron permanent magnet
KR20150030075A (en) * 2013-09-11 2015-03-19 엘지전자 주식회사 Recycled neodymium-based sintered magnets having high coercivity and residual magnetic flux density and method of preparing the same
KR102070869B1 (en) * 2013-09-11 2020-01-29 엘지전자 주식회사 Recycled neodymium-based sintered magnets having high coercivity and residual magnetic flux density and method of preparing the same

Similar Documents

Publication Publication Date Title
JP4753030B2 (en) Method for producing rare earth permanent magnet material
JP6037128B2 (en) R-T-B rare earth magnet powder, method for producing R-T-B rare earth magnet powder, and bonded magnet
EP1026706B1 (en) FEEDSTOCK POWDER FOR R-Fe-B MAGNET AND PROCESS FOR PRODUCING R-Fe-B MAGNET
JP2015023285A (en) R-t-m-b-based sintered magnet and production method therefor
KR20130030896A (en) Manufacturing method for bonded magnet
US7972448B2 (en) Method for the production of an anisotropic magnetic powder and a bonded anisotropic magnet produced therefrom
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2005302745A (en) Manufacturing method of rare earth bonded magnet powder and manufacturing method of bonded magnet using same
WO2011030387A1 (en) Magnet material, permanent magnet, and motor and electricity generator each utilizing the permanent magnet
WO2013035628A1 (en) R-t-b rare earth magnet powder, method of producing r-t-b rare earth magnet powder and bond magnet
JP3841722B2 (en) Method for producing sintered body for rare earth magnet
JP2003224009A (en) Method for manufacturing anisotropic rare earth magnetic powder and bonded magnet using the same
JP2000030919A (en) MANUFACTURE OF MATERIAL POWDER FOR R-Fe-B MAGNET
JP6691667B2 (en) Method for manufacturing RTB magnet
US6955729B2 (en) Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP3933415B2 (en) Rare earth bonded magnets made from recycled magnet waste
JPWO2003003392A1 (en) Method of manufacturing RTBC yarn rare earth quenched alloy magnet
Koper et al. Improving the properties of permanent magnets: a study of patents, patent applications and other literature
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JP4701917B2 (en) Reproduction method of composite magnet containing polycrystalline aggregated anisotropic particles
JP2024520299A (en) Method for recycling neodymium (Nd), iron (Fe), boron (B) (NdFeB) type magnets, anisotropic powder obtained from the recycling, and method for producing permanent magnets from said powder
JP2001044013A (en) Reproducing method for rare earth/iron/nitride magnet material
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPH1150110A (en) Production of alloy powder for rare earth magnet