JP2003223206A - Compensation method of nc data for generation-grinding controlling numerically controlled grinder, and numerical control grinder conducting method thereof - Google Patents

Compensation method of nc data for generation-grinding controlling numerically controlled grinder, and numerical control grinder conducting method thereof

Info

Publication number
JP2003223206A
JP2003223206A JP2002022008A JP2002022008A JP2003223206A JP 2003223206 A JP2003223206 A JP 2003223206A JP 2002022008 A JP2002022008 A JP 2002022008A JP 2002022008 A JP2002022008 A JP 2002022008A JP 2003223206 A JP2003223206 A JP 2003223206A
Authority
JP
Japan
Prior art keywords
fourier series
dimension
data
frequency component
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002022008A
Other languages
Japanese (ja)
Other versions
JP3784330B2 (en
Inventor
Nobumitsu Hori
伸充 堀
Yuji Sasaki
雄二 佐々木
Toshio Takano
寿男 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2002022008A priority Critical patent/JP3784330B2/en
Publication of JP2003223206A publication Critical patent/JP2003223206A/en
Application granted granted Critical
Publication of JP3784330B2 publication Critical patent/JP3784330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which performs compensation of NC data which can satisfy dynamic characteristics. <P>SOLUTION: In the method, the grinding part of a workpiece is generation-ground by NC data made, based on finishing size at each phase angle from a reference line of the grinding part of the structure, each measurement size at each phase angle from the reference line of the grinding part is measured, each finishing size and measurement size at each phase angle are transformed through Fourier transform, each amplitude ratio of each frequency component of Fourier series of each finishing size to Fourier series of each measurement size is calculated, each amplitude ratio is multiplied by the amplitude of each of the frequency components of Fourier series of the fishing size, the difference between the phase of each frequency component of Fourier series of the measurement size and the phase of each frequency component of Fourier series of the finishing size is taken, the Fourier series of a compensation size is obtained by subtracting each of the differences from the phase of each frequency component of Fourier series of the finishing size, the correction size at each phase angle is obtained through its inverse Fourier transform, and correction NC data are made based on the correction size. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

本発明は、数値制御研削盤を制御する創成研削用NCデ
ータの補正方法及びその方法を実施する数値制御研削盤
に関する。
The present invention relates to a method for correcting NC data for generating grinding that controls a numerical control grinding machine and a numerical control grinding machine that implements the method.

【0001】[0001]

【従来の技術】ベッド上に、クランクシャフト、カムシ
ャフト等の工作物を回転可能に支持する工作物支持装置
と、砥石を回転駆動可能に支承する砥石台を備え、この
砥石台を工作物の回転に関連して進退移動し工作物を創
成研削するNC制御研削盤はよく知られている。クラン
クシャフトのピン部などの研削箇所を創成研削する場
合、研削箇所の寸法精度の要求は厳しく、通常のフィー
ドバック制御系だけでは、工作物の剛性や研削抵抗の変
化等により要求精度を満足することができず、従来は、
試研削を行って得られた研削箇所の測定データに基づい
てNCデータを補正することが行われていた。
2. Description of the Related Art On a bed, a work support device for rotatably supporting a work such as a crankshaft and a camshaft, and a whetstone base for rotatably driving a whetstone are provided. NC controlled grinders that move back and forth in relation to rotation to generate workpieces are well known. When generating ground parts such as the pin of the crankshaft, the dimensional accuracy of the grinding part is strictly required, and the normal feedback control system alone must meet the required accuracy due to the rigidity of the workpiece and changes in grinding resistance. In the past,
The NC data was corrected based on the measurement data of the ground portion obtained by performing the trial grinding.

【0002】[0002]

【発明が解決しようとする課題】しかしながら、上記従
来方法では、研削箇所の仕上寸法と試研削された研削箇
所の測定寸法との比を仕上寸法に乗じて補正仕上寸法を
求め、この補正仕上寸法に基づいてNCデータを補正して
いただけであるので、動特性上満足できるNCデータの補
正を行なうことができなかった。
However, in the above-mentioned conventional method, the corrected finished dimension is obtained by multiplying the finished dimension by the ratio of the finished dimension of the ground portion and the measured dimension of the trial ground grinding portion to obtain the corrected finished dimension. Since the NC data was only corrected based on the above, it was not possible to correct the NC data that was satisfactory in terms of dynamic characteristics.

【0003】[0003]

【課題を解決するための手段】上記の課題を解決するた
め、請求項1に係る発明は、工作物の回転中心と研削箇
所の形状中心とを含む基準線からの各位相角度における
研削箇所の形状中心から放射方向の各仕上寸法が定義さ
れた工作物を、工作物支持装置の主軸に前記基準線を位
相決めして支持し、砥石が回転駆動可能に支承された砥
石台を数値制御装置からの指令に基づいて前記工作物の
回転と関連して工作物に向かって進退移動させて前記研
削箇所を前記砥石により創成研削する数値制御研削盤を
制御する創成研削用NCデータの補正方法において、前記
研削箇所を仕上寸法に創成するために前記工作物の回転
と前記砥石台との進退移動を関連付けて指令する仕上NC
データにより前記数値制御研削盤を制御して前記工作物
を創成研削し、該創成研削された研削箇所の前記基準線
からの各位相角度における形状中心から放射方向の各測
定寸法を計測し、前記各位相角度における仕上寸法及び
測定寸法を夫々フーリェ変換して仕上寸法フーリェ級数
及び測定寸法フーリェ級数を求め、前記仕上寸法フーリ
ェ級数の各周波数成分の振幅と前記測定寸法フーリェ級
数の各周波数成分の振幅との各比を前記仕上寸法フーリ
ェ級数の各周波数成分の振幅に夫々乗じるとともに、前
記測定寸法フーリェ級数の各周波数成分の位相と前記仕
上寸法フーリェ級数の各周波数成分の位相との各差を前
記仕上寸法フーリェ級数の各周波数成分の位相から減算
して補正寸法フーリェ級数を求め、該補正寸法フーリェ
級数を逆フーリェ変換して前記各位相角度における補正
寸法を求め、該各位相角度における補正寸法に基づいて
補正NCデータを作成することである。
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to the grinding position at each phase angle from a reference line including the rotation center of the workpiece and the shape center of the grinding position. Numerical control device for a grinding wheel stand that supports a workpiece in which each finishing dimension in the radial direction from the shape center is defined by deciding the reference line on the spindle of the workpiece supporting device and rotatably driving the grinding stone. In the method of correcting the NC data for generating grinding, which controls the numerical control grinder that moves the workpiece toward and away from the workpiece in association with the rotation of the workpiece based on a command from , A finishing NC for associating and commanding the rotation of the work piece and the advance / retreat movement of the grindstone head in order to create the finishing position in the finishing dimension.
Data is ground by controlling the numerically controlled grinding machine by data, and each measurement dimension in the radial direction is measured from the shape center at each phase angle from the reference line of the ground location of the ground grinding. The Fourier transform of the finished dimension and measured dimension at each phase angle is performed to obtain the finished dimension Fourier series and the measured dimension Fourier series, and the amplitude of each frequency component of the finished dimension Fourier series and the amplitude of each frequency component of the measured dimension Fourier series. And multiplying the amplitude of each frequency component of the finishing dimension Fourier series respectively, the difference between the phase of each frequency component of the measurement dimension Fourier series and the phase of each frequency component of the finishing dimension Fourier series The corrected dimension Fourier series is obtained by subtracting from the phase of each frequency component of the finished dimension Fourier series, and the corrected dimension Fourier series is inverse Fourier Obtain correction dimension in each of the phase angle by conversion, it is to create a corrected NC data based on the correction dimension at respective phase angles.

【0004】請求項2に係る発明は、請求項1に記載の
数値制御研削盤を制御する創成研削用NCデータの補正方
法において、前記数値制御研削盤を前記補正NCデータに
より制御して工作物を創成研削し、該補正NCデータによ
り創成研削された研削箇所の前記基準線からの各位相角
度における形状中心から放射方向の各再測定寸法を計測
し、前記各位相角度における再測定寸法をフーリェ変換
して再測定寸法フーリェ級数を求め、前記仕上寸法フー
リェ級数の各周波数成分の振幅と前記再測定寸法フーリ
ェ級数の各周波数成分の振幅との各比を前記補正寸法フ
ーリェ級数の各周波数成分の振幅に夫々乗じるととも
に、前記再測定寸法フーリェ級数の各周波数成分の位相
と前記仕上寸法フーリェ級数の各周波数成分の位相との
各差を前記補正寸法フーリェ級数の各周波数成分の位相
から減算して再補正寸法フーリェ級数を求め、該再補正
寸法フーリェ級数を逆フーリェ変換して各位相角度にお
ける各再補正寸法を求め、該各位相角度における各再補
正寸法に基づいて再補正NCデータを作成することであ
る。
The invention according to claim 2 is the method for correcting NC data for generating grinding for controlling the numerically controlled grinding machine according to claim 1, wherein the numerically controlled grinding machine is controlled by the corrected NC data and the workpiece is controlled. The re-measured dimension in the radial direction from the center of the shape at each phase angle from the reference line of the ground location ground by the corrected NC data is measured, and the re-measured dimension at each phase angle is calculated by Fourier Obtain the remeasured dimension Fourier series by converting, the ratio of the amplitude of each frequency component of the finishing dimension Fourier series and the amplitude of each frequency component of the remeasured dimension Fourier series of each frequency component of the corrected dimension Fourier series The amplitude is multiplied respectively, and the difference between the phase of each frequency component of the remeasured dimension Fourier series and the phase of each frequency component of the finishing dimension Fourier series is calculated as the corrected dimension factor. Re-correction dimension Fourier series is obtained by subtracting from the phase of each frequency component of the Lie series, and each re-correction dimension at each phase angle is obtained by inverse Fourier transforming the re-correction dimension Fourier series, and each re-correction dimension at each phase angle is obtained. This is to create re-correction NC data based on the corrected dimensions.

【0005】請求項3の発明は、請求項1又は2に記載
の数値制御研削盤を制御する創成研削用NCデータの補正
方法において、前記仕上NCデータ又は補正NCデータによ
り研削した研削箇所の測定寸法フーリエ級数又は再測定
寸法フーリェ級数の振幅をみて前記補正寸法フーリェ級
数又は再補正寸法フーリェ級数の次数を設定することで
ある。
According to a third aspect of the present invention, in the method of correcting NC data for generating grinding for controlling the numerically controlled grinding machine according to the first or second aspect, measurement of a ground portion ground by the finish NC data or the corrected NC data is performed. The order of the corrected size Fourier series or the re-corrected size Fourier series is set by looking at the amplitude of the size Fourier series or the remeasured size Fourier series.

【0006】請求項4の発明は、請求項1乃至3のいず
れかに記載の数値制御研削盤を制御する創成研削用NCデ
ータの補正方法を実施する数値制御研削盤において、前
記各フーリエ級数の各周波数成分の振幅及び位相を前記
数値制御装置にパラメータ設定可能としたことである。
According to a fourth aspect of the present invention, there is provided a numerical control grinder for carrying out the method for correcting NC data for generating grinding for controlling the numerical control grinder according to any one of the first to third aspects, wherein each Fourier series The amplitude and phase of each frequency component can be parameterized in the numerical control device.

【0007】請求項5の発明は、請求項4に記載の数値
制御研削盤において、フーリェ級数の取り扱い次数を前
記数値制御装置にパラメータ設定可能としたことであ
る。
According to a fifth aspect of the present invention, in the numerical control grinding machine according to the fourth aspect, the order of handling the Fourier series can be set in the numerical control device as a parameter.

【0008】[0008]

【発明の作用・効果】上記のように構成した請求項1に
係る発明においては、工作物の研削箇所の基準線からの
各位相角度における仕上寸法に基づいて作成されたNC
データにより創成研削し、創成研削された研削箇所の各
位相角度における各測定寸法を計測し、これら各位相角
度における仕上寸法及び測定寸法を夫々フーリェ変換し
て仕上寸法フーリェ級数及び測定寸法フーリェ級数を求
め、仕上寸法フーリェ級数の測定寸法フーリェ級数に対
する振幅比を周波数成分毎に求め、これを仕上寸法フー
リェ級数の各周波数成分の振幅に夫々乗じ、さらに測定
寸法フーリェ級数の位相と仕上寸法フーリェ級数の位相
との差を周波数成分毎にとり、各差を仕上寸法フーリェ
級数の各周波数成分の位相から減算して補正寸法フーリ
ェ級数を得、これを逆フーリェ変換して各位相角度にお
ける補正寸法を求め、この補正寸法に基づいて補正NCデ
ータを作成するもので、NCデータを補正するための各位
相角度における仕上寸法の補正をフーリェ級数に展開し
て各周波数成分にまで掘り下げて行なうことができ、動
特性上高精度な補正が可能となり、工作物の研削箇所を
高精度に研削することができる。
In the invention according to claim 1 configured as described above, the NC is created based on the finish dimension at each phase angle from the reference line of the ground portion of the workpiece.
Generated grinding is performed based on the data, and each measured dimension at each phase angle of the ground location that has been ground is measured, and the finished dimension and measured dimension at each of these phase angles are converted to Fourier to obtain the finished dimension Fourier series and the measured dimension Fourier series. Calculate the amplitude ratio of the finished dimension Fourier series to the measured dimension Fourier series for each frequency component, multiply this by the amplitude of each frequency component of the finished dimension Fourier series, and then calculate the phase of the measured dimension Fourier series and the finished dimension Fourier series. The difference with the phase is taken for each frequency component, and each difference is subtracted from the phase of each frequency component of the finishing dimension Fourier series to obtain the corrected dimension Fourier series, and the inverse Fourier transform is performed on this to obtain the corrected dimension at each phase angle, Compensation NC data is created based on this compensation dimension. Finishing at each phase angle for compensating NC data It is possible to expand the dimension correction to the Fourier series and dig down to each frequency component, and it is possible to perform highly accurate correction in terms of dynamic characteristics, and it is possible to grind the ground portion of the workpiece with high accuracy.

【0009】上記のように構成した請求項2に係る発明
においては、請求項1で得られた補正NCデータにより研
削した研削箇所の各位相角度における寸法を再測定し、
この再測定寸法をフーリェ級数に展開し、当該再測定寸
法フーリェ級数に対する仕上寸法フーリェ級数の振幅比
を周波数成分毎に求め、この振幅比を前記補正寸法フー
リェ級数の各周波数成分の振幅に乗じ、再測定寸法フー
リェ級数と仕上寸法フーリェ級数との位相差を各周波数
成分毎に求め、この位相差を補正寸法フーリェ級数の各
周波数成分の位相より減算して、再補正寸法フーリェ級
数を得、これを逆フーリェ変換して各位相角度における
再補正寸法を求め、この再補正寸法に基づいて補正NC
データを再補正するもので、請求項1で求めた補正NC
データにより研削した研削箇所の測定結果に基づき補正
NCデータを再補正して研削箇所を系の動特性に応じて
二次補正し研削箇所をより高精度の創成研削することが
できる。
In the invention according to claim 2 configured as described above, the dimension at each phase angle of the ground portion ground by the corrected NC data obtained in claim 1 is remeasured,
This remeasured dimension is expanded to a Fourier series, the amplitude ratio of the finished dimension Fourier series to the remeasured dimension Fourier series is obtained for each frequency component, and this amplitude ratio is multiplied by the amplitude of each frequency component of the corrected dimension Fourier series, Obtain the phase difference between the remeasured dimension Fourier series and the finished dimension Fourier series for each frequency component, and subtract this phase difference from the phase of each frequency component of the corrected dimension Fourier series to obtain the recorrected dimension Fourier series. Inverse Fourier transform to obtain the recorrected dimension at each phase angle, and the corrected NC based on this recorrected dimension
The data is re-corrected, and the correction NC obtained in claim 1
The corrected NC data is recorrected based on the measurement result of the ground portion ground by the data, and the ground portion is secondarily corrected according to the dynamic characteristics of the system, so that the ground portion can be ground more accurately.

【0010】上記のように構成した請求項3に係る発明
においては、仕上NCデータ又は補正NCデータにより研削
した研削箇所の測定寸法フーリエ級数又は再測定寸法フ
ーリェ級数の振幅をみて補正寸法フーリェ級数又は再補
正寸法フーリェ級数の次数を設定することができるの
で、フーリェ級数の次数を必要最小限にして補正時間を
短縮し、研削箇所の所望寸法精度を得るためのNCデータ
の補正を効率的に行なうことができる。
In the invention according to claim 3 configured as described above, the corrected dimension Fourier series or the measured dimension Fourier series or the remeasured dimension Fourier series of the ground portion ground by the finish NC data or the corrected NC data is checked. Re-correction dimension Since the order of the Fourier series can be set, the order of the Fourier series is minimized to shorten the correction time, and the NC data is efficiently corrected to obtain the desired dimensional accuracy of the grinding point. be able to.

【0011】上記のように構成した請求項4に係る発明
においては、各フーリエ級数の各周波数成分の振幅及び
位相を数値制御装置にパラメータとして設定できるの
で、NCデータの補正作業を容易に行なうことができる。
In the invention according to claim 4 configured as described above, since the amplitude and phase of each frequency component of each Fourier series can be set as parameters in the numerical control device, the NC data correction operation can be easily performed. You can

【0012】上記のように構成した請求項5に係る発明
においては、フーリェ級数の取り扱い次数をパラメータ
として設定できるので、NCデータの補正作業を迅速かつ
容易に行なうことができる。
In the invention according to claim 5 configured as described above, since the handling order of the Fourier series can be set as a parameter, the NC data correction work can be performed quickly and easily.

【0013】[0013]

【発明の実施の形態】以下、本発明に係る数値制御研削
盤を制御する創成研削用NCデータの補正方法及びその
方法を実施する数値制御研削盤の実施形態を図面に基づ
いて説明する。図1において、ベッド10上にはテーブ
ル11が摺動可能に載置され、サーボモータにより回転
駆動される送りねじ機構によりY軸方向に移動されるよ
うになっている。テーブル11上には、工作物支持装置
である一対の主軸台12が対向して載置され、各主軸台
12には主軸13がY軸方向に回転可能に軸承され、各
主軸13はサーボモータによりC軸回りに同期して回転
駆動される。各主軸13の先端にはセンタが対向して突
設され、この両センタ間に工作物であるクランクシャフ
トWの両端ジャーナル部Jが挟持され、工作物WはC軸
回りの回転方向に位相決めされて主軸13に回転連結さ
れている。クランクシャフトWには、研削箇所であるピ
ン部Pがジャーナル部Jから偏心量Aだけ偏心して形成さ
れ、クランクシャフトWの回転中心であるジャーナル部J
の中心Woと研削箇所の形状中心Poであるピン部Pの中心
とを含む線分が基準線Sであり、クランクピンWは基準
線Sを位相合わせして主軸13に回転連結されている。
NCデータの作成において、クランクシャフトWのピン部
Pの仕上形状は、基準線Sからの反時計方向の各位相角
度における形状中心Poから放射方向の各仕上寸法rによ
り定義される。ピン部Pでは、各位相角度θにおける形
状中心Poから放射方向の各仕上寸法rはピン部Pの半径
である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a method for correcting NC data for generating grinding for controlling a numerically controlled grinding machine according to the present invention and a numerically controlled grinding machine for carrying out the method will be described below with reference to the drawings. In FIG. 1, a table 11 is slidably mounted on a bed 10, and is moved in the Y-axis direction by a feed screw mechanism that is rotationally driven by a servo motor. On the table 11, a pair of headstocks 12, which are work supporting devices, are placed so as to face each other, and a spindle 13 is rotatably supported on each headstock 12 in the Y-axis direction. Thus, it is rotationally driven in synchronization with the C axis. A center is provided at the tip of each main shaft 13 so as to face each other, and both end journals J of a crankshaft W, which is a workpiece, are sandwiched between the centers, and the workpiece W is phased in the rotational direction around the C axis. And is rotatably connected to the main shaft 13. The crankshaft W is formed with a pin portion P, which is a ground portion, eccentric from the journal portion J by an eccentric amount A, and a journal portion J that is the rotation center of the crankshaft W.
Is a reference line S, and the crankpin W is rotationally connected to the main shaft 13 by aligning the reference line S with the center line Wo and the center of the pin portion P which is the shape center Po of the ground portion.
In the creation of the NC data, the finished shape of the pin portion P of the crankshaft W is defined by the finished dimension r in the radial direction from the shape center Po at each phase angle in the counterclockwise direction from the reference line S. In the pin portion P, each finishing dimension r in the radial direction from the shape center Po at each phase angle θ is the radius of the pin portion P.

【0014】ベッド10上に設けられた案内ベース15
には砥石台16が摺動可能に載置され、サーボモータ1
7により回転駆動される送りねじ機構18によりY軸と
直角なX軸方向に進退移動される。砥石台16には先端
に砥石Gが装着される砥石軸19がY軸方向に軸承さ
れ、砥石駆動モータにより回転駆動される。これによ
り、主軸台12の主軸13にクランクシャフトWを基準
線Sを位相決めして支持し、砥石Gが回転駆動可能に支
承された砥石台16を数値制御装置20からの指令に基
づいて前記クランクシャフトWの回転と関連してクラン
クシャフトWに向かってX軸方向に進退移動させてピン
部Pを砥石Gにより創成研削することができる。
A guide base 15 provided on the bed 10
A grindstone base 16 is slidably mounted on the servomotor 1
A feed screw mechanism 18 that is rotationally driven by 7 moves back and forth in the X-axis direction that is perpendicular to the Y-axis. A whetstone shaft 19 having a whetstone G mounted on its tip is supported in the Y-axis direction on the whetstone base 16 and is rotationally driven by a whetstone drive motor. As a result, the crankshaft W is supported on the spindle 13 of the spindle stock 12 with the reference line S being phased, and the grindstone base 16 on which the grindstone G is rotatably driven is based on a command from the numerical controller 20. In association with the rotation of the crankshaft W, the pin portion P can be generated and ground by the grindstone G by moving the crankshaft W forward and backward in the X-axis direction.

【0015】数値制御装置20は、インターフェース2
1、ドライバ22を介して主軸駆動用サーボモータ及び
砥石台駆動用サーボモータ17に接続され、後述する仕
上NCデータ等の創成研削用NCデータに基づいて両サーボ
モータに駆動指令を送出し、主軸13の回転に関連して
砥石台16を進退移動する。
The numerical controller 20 has an interface 2
1. Connected to the spindle drive servomotor and the grinding wheel head drive servomotor 17 via the driver 22, and sends a drive command to both servomotors based on the NC data for generating grinding such as finishing NC data, which will be described later. In association with the rotation of 13, the whetstone base 16 is moved back and forth.

【0016】図2は、砥石台16をクランクシャフトW
の回転に関連してX軸方向に進退移動させてピン部Pを
砥石Gにより創成研削するNCデータを作成するために、
クランクシャフトW、即ち基準線Sの各回転角度τにお
けるクランクシャフトWの回転中心Woと砥石Gの回転中
心Goとの間のWo−Go間距離Xを算出する方法を示す説明
図である。クランクシャフトWは主軸13に支持されて
回転中心Wo回りに反時計方向に回転され、クランクシャ
フトWの回転角度τは、クランクシャフトWの回転中心W
oと砥石Gの回転中心Goとを結ぶ線分Wo−Goに対して基
準線Sが反時計方向に回転した角度である。この状態に
おいてピン部Pは砥石Gにより研削点Qにおいて接触し
て研削加工され、線分Po−Qが基準線Sとなす角度が位
相角度θとなり、ピン部Pの形状中心Poと研削点Qとを
結ぶ線分Po−Qの長さrが、位相角度θにおけるピン部
Pの形状中心Poから放射方向の仕上寸法rとなる。工作
物Wの回転角度τにおけるクランクシャフトWの回転中
心Woと砥石Gの回転中心Goとの間の距離Xは、(X−A
cosτ)2 =(R+r)2−A2sin2τ なる関係
からX=Acosτ+√((R+r)2−A2sin
2τ)・・・(1)となる。ここにおいて、Aは工作物
Wの回転中心Woとピン部Pの形状中心Poとの間の偏心
量、Rは砥石Gの半径である。なお、研削箇所がピン部
の場合は、仕上寸法rは一定値である。
In FIG. 2, the grindstone base 16 is attached to the crankshaft W.
In order to create NC data for moving the pin part P back and forth in the X-axis direction in relation to the rotation of
6 is an explanatory diagram showing a method of calculating a Wo-Go distance X between a rotation center Wo of a crankshaft W and a rotation center Go of a grindstone G at each rotation angle τ of a crankshaft W, that is, a reference line S. FIG. The crankshaft W is supported by the main shaft 13 and rotated counterclockwise around the rotation center Wo, and the rotation angle τ of the crankshaft W is the rotation center W of the crankshaft W.
The reference line S is an angle rotated counterclockwise with respect to a line segment Wo-Go connecting o and the rotation center Go of the grindstone G. In this state, the pin P is contacted and ground by the grindstone G at the grinding point Q, the angle formed by the line segment Po-Q with the reference line S becomes the phase angle θ, and the shape center Po of the pin P and the grinding point Q. A length r of a line segment Po-Q connecting with and is a finishing dimension r in the radial direction from the shape center Po of the pin portion P at the phase angle θ. The distance X between the rotation center Wo of the crankshaft W and the rotation center Go of the grindstone G at the rotation angle τ of the workpiece W is (X−A
cos τ) 2 = (R + r) 2 −A 2 sin 2 τ, X = A cos τ + √ ((R + r) 2 −A 2 sin
2 τ) ... (1) Here, A is the amount of eccentricity between the rotation center Wo of the workpiece W and the shape center Po of the pin portion P, and R is the radius of the grindstone G. When the ground portion is a pin portion, the finishing dimension r is a constant value.

【0017】工作物Wの回転角度τと研削点Qの位相角度
θとの関係は、X/sinθ=(R+r)/sinτか
らsinθ=Xsinτ/(R+r)・・・(2)とな
る。上記(1),(2)式から工作物Wの各回転角度
τ、即ち主軸13の各回転角度に対応して、研削点Qの
各位相角度θ、及び各位相角度θにおける各仕上寸法r
に基づいてクランクシャフトWの回転中心Woと砥石Gの
回転中心Goとの間の距離Xが算出され、算出した距離X
から主軸13の各回転角度τにおける砥石台16のX軸
方向位置が求められ、砥石Gが支承された砥石台16を
クランクシャフトWを支持する主軸13の回転に関連し
てX軸方向に進退移動させてピン部Pを砥石Gにより創
成研削する創成研削用NCデータが作成される。このよう
に研削箇所の仕上寸法rに基づいて作成された仕上NCデ
ータは数値制御装置20のNCデータ記憶エリア23に記
憶される。
The relationship between the rotation angle τ of the workpiece W and the phase angle θ of the grinding point Q is X / sin θ = (R + r) / sin τ and sin θ = X sin τ / (R + r) (2) From the above equations (1) and (2), each phase angle θ of the grinding point Q and each finishing dimension r at each phase angle θ corresponding to each rotation angle τ of the workpiece W, that is, each rotation angle of the spindle 13.
The distance X between the rotation center Wo of the crankshaft W and the rotation center Go of the grindstone G is calculated based on the calculated distance X
The X-axis direction position of the grindstone base 16 at each rotation angle τ of the main spindle 13 is obtained from this, and the grindstone base 16 on which the grindstone G is supported is moved back and forth in the X-axis direction in association with the rotation of the main spindle 13 supporting the crankshaft W. NC data for generating grinding is generated in which the pin portion P is moved and generated by the grindstone G. The finish NC data created based on the finish dimension r of the ground portion in this manner is stored in the NC data storage area 23 of the numerical controller 20.

【0018】図3は、基準線Sからの各位相角度θにお
けるピン部Pの形状中心Poからの放射方向の測定寸法rm
を計測する方法を示す説明図である。クランクシャフト
Wは測定機のセンタ間に支持されて回転中心Wo回りに反
時計方向に回転され、クランクシャフトWの回転角度τ
は、水平線Lに対して基準線Sが反時計方向に回転した
角度である。この状態においてピン部Pの頂部Tと水平
線Lとの間の距離Hが測定され、線分Po−Tが基準線S
となす角度が位相角度θとなり、頂部Tとピン部Pの形
状中心Poとを結ぶ線分Po−Tの長さrmが、位相角度θに
おけるピン部Pの形状中心Poから放射方向の測定寸法rm
である。測定寸法rmは、距離H、ピン部Pの偏心量A及
びクランクシャフトWの回転角度τから、H=rm+As
inτ・・・(3)により算出される。頂部Tの位相角
度θは、θ=π+(π/2−τ)=3/2π−τ・・・
(4)で算出される。このように研削されたピン部Pの
各位相角度θにおける測定寸法rmは数値制御装置20の
測定寸法記憶エリア24に記憶される。
FIG. 3 is a measurement dimension rm in the radial direction from the shape center Po of the pin portion P at each phase angle θ from the reference line S.
It is explanatory drawing which shows the method of measuring. The crankshaft W is supported between the centers of the measuring machines and is rotated counterclockwise around the rotation center Wo, and the rotation angle τ of the crankshaft W is
Is the angle at which the reference line S rotates counterclockwise with respect to the horizontal line L. In this state, the distance H between the top T of the pin P and the horizontal line L is measured, and the line segment Po-T is the reference line S.
Is the phase angle θ, and the length rm of the line segment Po-T connecting the top portion T and the shape center Po of the pin portion P is measured in the radial direction from the shape center Po of the pin portion P at the phase angle θ. rm
Is. From the distance H, the eccentricity A of the pin P, and the rotation angle τ of the crankshaft W, the measurement dimension rm is H = rm + As
inτ ... Calculated by (3). The phase angle θ of the top portion T is θ = π + (π / 2−τ) = 3 / 2π−τ ...
Calculated in (4). The measured dimension rm at each phase angle θ of the pin portion P ground in this way is stored in the measured dimension storage area 24 of the numerical controller 20.

【0019】次に、上記数値制御研削盤の作動ととも
に、数値制御研削盤を制御する創成研削用NCデータの補
正方法について説明する。クランクシャフトWのジャー
ナル部Jを主軸13に基準線Lを主軸13の基線に位相
合わせして取り付け、仕上NCデータにより主軸13、砥
石台16をサーボモータにより関連付けて駆動し、ピン
部Pを砥石Gにより創成研削する(ステップ31)。研
削したクランクシャフトWを主軸13から取り外し、測
定機のスピンドルに基準線Lをスピンドルに位相合わせ
して両端のジャーナル部Jで挟持し、クランクシャフト
Wの各回転角度τに対するピン部Pの頂部Tの水平線L
からの距離Hを測定する(ステップ32)。測定した距
離Hから式(3),(4)式に基づいて各位相角度θに
おけるピン部Pの測定寸法rmが求められ、数値制御装置
20の測定寸法記憶エリア24に記憶される(ステップ
33)。数値制御装置20では、各位相角度θにおける
仕上寸法r及び測定寸法rmを夫々フーリェ展開し、仕上
寸法フーリェ級数の各周波数成分の振幅Ark=√(ark 2
+brk 2)と、測定寸法フーリェ級数の各周波数成分の振
幅Armk=√(armk 2+brmk 2)との各比Ark/Armkを求
め、この各比を仕上寸法フーリェ級数の振幅Arkに各周
波数成分毎に乗じて補正寸法フーリェ級数の各周波数成
分の振幅Arckを得る。測定寸法フーリェ級数の各周波数
成分の位相φrmk=tan-1armk/brmkと、仕上寸法フーリ
ェ級数の各周波数成分の位相φrk=tan-1ark/brkとの
各差(φrmk−φrk)を仕上寸法フーリェ級数の各周波
数成分の位相φrkから減算して補正寸法フーリェ級数の
各周波数成分の位相φrckを得る(ステップ34)。こ
の補正寸法フーリェ級数を逆フーリェ変換してピン部P
の各位相角度θにおける各補正寸法rcを求め(ステップ
35)、該各位相角度θにおける補正寸法rcと仕上寸法
rとの差(rc−r)に基づいて仕上NCデータを補正して
補正NCデータを作成し、NCデータ記憶エリア23に記憶
する(ステップ36)。この仕上NCデータの補正方法の
一例としては、式(1),(2)により算出された工作
物Wの回転角度τにおける砥石Gの回転中心Goとクラン
クシャフトWの回転中心Woとの間の距離Xに(rc−r)
×cos(π−τ−θ)を加算して距離Xを補正し、この
補正された距離Xに基づいて補正NCデータを作成する。
Next, a method of correcting the NC data for generating grinding for controlling the numerically controlled grinding machine and the operation of the numerically controlled grinding machine will be described. The journal portion J of the crankshaft W is attached to the main spindle 13 by aligning the reference line L with the base line of the main spindle 13, and the main spindle 13 and the grindstone head 16 are driven by the servomotor in association with the finish NC data to drive the pin portion P to the grindstone. Generating grinding is performed by G (step 31). The ground crankshaft W is removed from the main shaft 13, the reference line L is aligned with the spindle of the measuring machine and clamped by the journal portions J at both ends, and the top portion T of the pin portion P with respect to each rotation angle τ of the crankshaft W. Horizontal line L
The distance H from is measured (step 32). From the measured distance H, the measurement dimension rm of the pin portion P at each phase angle θ is obtained based on the equations (3) and (4), and stored in the measurement dimension storage area 24 of the numerical controller 20 (step 33). ). In the numerical controller 20, the finished dimension r and the measured dimension rm at each phase angle θ are subjected to Fourier expansion, and the amplitude Ar k = √ (ar k 2 of each frequency component of the finished dimension Fourier series.
+ Br k 2 ) and the amplitude of each frequency component of the measurement size Fourier series, Arm k = √ (arm k 2 + brm k 2 ), and obtain each ratio Ar k / Arm k. Multiply Ar k for each frequency component to obtain the amplitude Arc k of each frequency component of the corrected dimension Fourier series. Difference between the phase φrm k = tan- 1 arm k / brm k of each frequency component of the measured size Fourier series and the phase φ r k = tan- 1 ar k / br k of each frequency component of the finished size Fourier series (φrm k −φr k ) is subtracted from the phase φr k of each frequency component of the finished size Fourier series to obtain the phase φrc k of each frequency component of the corrected size Fourier series (step 34). The corrected dimension Fourier series is inversely Fourier-transformed and the pin portion P
Each correction dimension rc at each phase angle θ is calculated (step 35), and the finishing NC data is corrected based on the difference (rc−r) between the correction dimension rc and the finishing dimension r at each phase angle θ to correct the correction NC. Data is created and stored in the NC data storage area 23 (step 36). As an example of the correction method of the finish NC data, between the rotation center Go of the grindstone G and the rotation center Wo of the crankshaft W at the rotation angle τ of the workpiece W calculated by the equations (1) and (2), At distance X (rc-r)
× cos (π−τ−θ) is added to correct the distance X, and the corrected NC data is created based on the corrected distance X.

【0020】仕上寸法フーリェ級数及び測定寸法フーリ
ェ級数の各周波数成分の振幅及び位相は、数値制御装置
20の振幅記憶エリア25及び位相記憶エリア26に周
波数毎にフーリェ級数別にパラメータとして設定できる
ようになっている。また、測定寸法フーリェ級数の振幅
が十分小さくなった次数でフーリェ級数展開を終了し、
計算時間の短縮を図るために、フーリェ級数の次数を数
値制御装置20の次数記憶エリア27にパラメータとし
て設定できるようになっている。
The amplitude and phase of each frequency component of the finished size Fourier series and the measured size Fourier series can be set as parameters for each frequency in the amplitude storage area 25 and the phase storage area 26 of the numerical controller 20. ing. In addition, the Fourier series expansion is terminated at the order in which the amplitude of the measured size Fourier series becomes sufficiently small,
In order to reduce the calculation time, the order of the Fourier series can be set as a parameter in the order storage area 27 of the numerical controller 20.

【0021】さらに、補正NCデータの補正が必要な場
合、クランクシャフトWを主軸13に位相合わせして取
り付け、補正NCデータによりピン部Pを砥石Gにより試
し創成研削する(ステップ41)。研削したクランクシ
ャフトWを測定機に取り付け、各回転角度τに対するピ
ン部Pの頂部Tの水平線Lからの距離Hを測定する(ス
テップ42)。測定した距離Hから各位相角度θにおけ
る再測定寸法rmmが求められ、数値制御装置20の測定
寸法記憶エリア24に記憶される(ステップ43)。数
値制御装置20では、各位相角度θにおける仕上寸法r
及び再測定寸法rmmを夫々フーリェ展開し、仕上寸法フ
ーリェ級数の振幅Arkと、再測定寸法フーリェ級数の振
幅Armk=√(armmk 2+brmmk 2)との比Ark/Armmkを周波
数成分毎に求め、この各比を補正寸法フーリェ級数の振
幅Arckに各周波数成分毎に乗じて、再補正寸法フーリェ
級数の各周波数成分の振幅Arcckを得る。再測定寸法フ
ーリェ級数の各周波数成分の位相φrmmk=tan-1armmk
brmmkと、仕上寸法フーリェ級数の各周波数成分の位相
φrkとの各差(φrmmk−φrk)を補正寸法フーリェ級数
の各周波数成分の位相φrckから減算して再補正寸法フ
ーリェ級数の各周波数成分の位相φrcckを得る(ステッ
プ44)。この再補正寸法フーリェ級数を逆フーリェ変
換してピン部Pの各位相角度θにおける各再補正寸法rc
cを求め(ステップ45)、該各位相角度θにおける再
補正寸法rccと補正寸法rcとの差(rcc−r)に基づいて
補正NCデータを補正して再補正NCデータを作成し、NCデ
ータ記憶エリア23に記憶する(ステップ46)。この
再補正NCデータの作成は、工作物Wの回転角度τにおけ
る補正されたGo−Wo間距離、X+(rc−r)×cos(π
−τ−θ)に、(rcc−r)×cos(π−τ−θ)を加算
して再補正されたGo−Wo間距離、X+(rc+rcc−2
r)×cos(π−τ−θ)に基づいて行なわれる。再測
定寸法フーリェ級数の各周波数成分の振幅及び位相も数
値制御装置20の振幅記憶エリア25及び位相記憶エリ
ア26に周波数毎にパラメータとして設定される。
Further, when it is necessary to correct the corrected NC data, the crankshaft W is attached in phase with the main shaft 13, and the pin portion P is trially generated and ground by the grindstone G based on the corrected NC data (step 41). The ground crankshaft W is attached to the measuring machine, and the distance H from the horizontal line L of the top T of the pin P to each rotation angle τ is measured (step 42). The remeasured dimension rmm at each phase angle θ is obtained from the measured distance H, and is stored in the measured dimension storage area 24 of the numerical controller 20 (step 43). In the numerical controller 20, the finish dimension r at each phase angle θ
And remeasuring dimensions rmm to each Fourier expansion, the frequency and amplitude Ar k finish dimension Fourier series, the ratio Ar k / Armm k of the amplitude of the re-measurement dimension Fourier series Arm k = √ (armm k 2 + brmm k 2) For each component, this ratio is multiplied by the amplitude Arc k of the corrected size Fourier series for each frequency component to obtain the amplitude Arccc k of each frequency component of the recorrected size Fourier series. Remeasurement dimension Phase of each frequency component of Fourier series φrmm k = tan- 1 armm k /
and brmm k, finish dimensions Fourier series of the difference (φrmm k -φr k) the corrected dimension Fourier subtraction to recalibrate dimensional Fourier series from the phase .phi.RC k of each frequency component of the series of the phase [phi] r k of each frequency component The phase φrcc k of each frequency component is obtained (step 44). Each recorrected dimension rc at each phase angle θ of the pin portion P is obtained by inverse Fourier transforming this recorrected dimension Fourier series.
c is calculated (step 45), the corrected NC data is corrected based on the difference (rcc-r) between the recorrected dimension rcc and the corrected dimension rc at each phase angle θ, and recorrected NC data is created. It is stored in the storage area 23 (step 46). This re-correction NC data is created by correcting the Go-Wo distance at the rotation angle τ of the workpiece W, X + (rc-r) × cos (π
−τ−θ), and (rcc−r) × cos (π−τ−θ) is added to recorrect the Go-Wo distance, X + (rc + rcc-2
r) × cos (π−τ−θ). The amplitude and phase of each frequency component of the remeasured dimension Fourier series are also set as parameters for each frequency in the amplitude storage area 25 and the phase storage area 26 of the numerical controller 20.

【0022】上記実施形態では、クランクシャフトのピ
ン部を研削しているが、カムシャフトのカム部の場合
は、カムシャフトの回転中心とカム部の形状中心とが一
致するので、回転中心と形状中心とを含む基準線Lの他
端をカム部のベース円の中央部に設定するとよい。基準
線Lからの各回転位相における形状中心から放射方向の
各仕上寸法が定義されたカムを研削するための仕上NCデ
ータの作成は公知の方法により作成することができる。
In the above embodiment, the pin portion of the crankshaft is ground, but in the case of the cam portion of the camshaft, the center of rotation of the camshaft and the shape center of the cam portion coincide, so the center of rotation and the shape The other end of the reference line L including the center may be set at the center of the base circle of the cam portion. The known NC method can be used to create the finishing NC data for grinding the cam in which the respective finishing dimensions in the radial direction are defined from the shape center at each rotational phase from the reference line L.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態である数値制御研削盤の
概略図。
FIG. 1 is a schematic view of a numerical control grinding machine according to an embodiment of the present invention.

【図2】 クランクシャフトの各回転角度τにおけるク
ランクシャフトの回転中心と砥石の回転中心との間の距
離Xを算出する方法を示す説明図。
FIG. 2 is an explanatory diagram showing a method of calculating a distance X between a rotation center of a crankshaft and a rotation center of a grindstone at each rotation angle τ of the crankshaft.

【図3】 各位相角度におけるピン部の形状中心からの
放射方向の測定寸法を計測する方法を示す説明図。
FIG. 3 is an explanatory diagram showing a method of measuring a measurement dimension in a radial direction from a shape center of a pin portion at each phase angle.

【図4】 仕上NCデータを補正して補正NCデータを得る
フロー図。
FIG. 4 is a flowchart for obtaining the corrected NC data by correcting the finish NC data.

【図5】 補正NCデータを再補正して再補正NCデータを
得るフロー図。
FIG. 5 is a flowchart for re-correcting the corrected NC data to obtain re-corrected NC data.

【符号の説明】[Explanation of symbols]

12・・・主軸台、13・・・主軸、16・・・砥石
台、17・・・サーボモータ、20・・・数値制御装
置、25・・・振幅記憶エリア、26・・・位相記憶エ
リア、27・・・次数記憶エリア、G・・・砥石、W・
・・クランクシャフト(工作物)、P・・・ピン部(研
削箇所)。
12 ... Headstock, 13 ... Spindle, 16 ... Grindstone, 17 ... Servo motor, 20 ... Numerical control device, 25 ... Amplitude storage area, 26 ... Phase storage area , 27 ... Order storage area, G ... Whetstone, W
..Crank shafts (workpieces), P ... Pins (ground points)

フロントページの続き (72)発明者 高野 寿男 愛知県刈谷市朝日町1丁目1番地 豊田工 機株式会社内 Fターム(参考) 3C043 AC21 CC03 3C049 AA03 AA11 AB01 BA07 BB01 BB09 CB01 5H269 AB07 BB03 EE13 FF06 QB17Continued front page    (72) Inventor Toshio Takano             1-1 Asahi-cho, Kariya city, Aichi             Machine Co., Ltd. F-term (reference) 3C043 AC21 CC03                 3C049 AA03 AA11 AB01 BA07 BB01                       BB09 CB01                 5H269 AB07 BB03 EE13 FF06 QB17

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 工作物の回転中心と研削箇所の形状中心
とを含む基準線からの各位相角度における研削箇所の形
状中心から放射方向の各仕上寸法が定義された工作物
を、工作物支持装置の主軸に前記基準線を位相決めして
支持し、砥石が回転駆動可能に支承された砥石台を数値
制御装置からの指令に基づいて前記工作物の回転と関連
して工作物に向かって進退移動させて前記研削箇所を前
記砥石により創成研削する数値制御研削盤を制御する創
成研削用NCデータの補正方法において、前記研削箇所を
仕上寸法に創成するために前記工作物の回転と前記砥石
台との進退移動を関連付けて指令する仕上NCデータによ
り前記数値制御研削盤を制御して前記工作物を創成研削
し、該創成研削された研削箇所の前記基準線からの各位
相角度における形状中心から放射方向の各測定寸法を計
測し、前記各位相角度における仕上寸法及び測定寸法を
夫々フーリェ変換して仕上寸法フーリェ級数及び測定寸
法フーリェ級数を求め、前記仕上寸法フーリェ級数の各
周波数成分の振幅と前記測定寸法フーリェ級数の各周波
数成分の振幅との各比を前記仕上寸法フーリェ級数の各
周波数成分の振幅に夫々乗じるとともに、前記測定寸法
フーリェ級数の各周波数成分の位相と前記仕上寸法フー
リェ級数の各周波数成分の位相との各差を前記仕上寸法
フーリェ級数の各周波数成分の位相から減算して補正寸
法フーリェ級数を求め、該補正寸法フーリェ級数を逆フ
ーリェ変換して前記各位相角度における補正寸法を求
め、該各位相角度における補正寸法に基づいて補正NCデ
ータを作成することを特徴とする数値制御研削盤を制御
する創成研削用NCデータの補正方法。
1. A workpiece supporting a workpiece in which each finishing dimension in the radial direction is defined from the shape center of the grinding point at each phase angle from a reference line including the rotation center of the workpiece and the shape center of the grinding point. The reference line is phased and supported on the spindle of the device, and the grindstone supported by the grindstone rotatably driven toward the workpiece in association with the rotation of the workpiece based on a command from the numerical controller. In the method of correcting the NC data for generating grinding, which controls the numerical control grinding machine to move the advancing / retreating to generate the grinding portion by the grinding stone, the rotation of the workpiece and the grinding stone in order to create the finishing position of the grinding portion. In the shape at each phase angle from the reference line of the ground location of the workpiece ground by controlling the numerical control grinding machine by the finishing NC data that commands the movement back and forth with respect to the table. Measure each measurement dimension in the radial direction from, and obtain the finished dimension Fourier series and the measured dimension Fourier series by Fourier transforming the finished dimension and the measured dimension at each phase angle, and obtain the amplitude of each frequency component of the finished dimension Fourier series. And multiplying each ratio of the amplitude of each frequency component of the measured size Fourier series to the amplitude of each frequency component of the finished size Fourier series, and the phase of each frequency component of the measured size Fourier series and the finished size Fourier series. The difference between the phase of each frequency component and the phase of each frequency component of the finishing dimension Fourier series is subtracted to obtain the corrected dimension Fourier series, and the corrected dimension Fourier series is subjected to inverse Fourier transform to correct at each phase angle. A numerical control laboratory characterized by obtaining dimensions and creating corrected NC data based on the corrected dimensions at each phase angle. Correction method generation grinding for NC data for controlling the board.
【請求項2】 前記数値制御研削盤を前記補正NCデータ
により制御して工作物を創成研削し、該補正NCデータに
より創成研削された研削箇所の前記基準線からの各位相
角度における形状中心から放射方向の各再測定寸法を計
測し、前記各位相角度における再測定寸法をフーリェ変
換して再測定寸法フーリェ級数を求め、前記仕上寸法フ
ーリェ級数の各周波数成分の振幅と前記再測定寸法フー
リェ級数の各周波数成分の振幅との各比を前記補正寸法
フーリェ級数の各周波数成分の振幅に夫々乗じるととも
に、前記再測定寸法フーリェ級数の各周波数成分の位相
と前記仕上寸法フーリェ級数の各周波数成分の位相との
各差を前記補正寸法フーリェ級数の各周波数成分の位相
から減算して再補正寸法フーリェ級数を求め、該再補正
寸法フーリェ級数を逆フーリェ変換して各位相角度にお
ける各再補正寸法を求め、該各位相角度における各再補
正寸法に基づいて再補正NCデータを作成することを特徴
とする請求項1に記載の数値制御研削盤を制御する創成
研削用NCデータの補正方法。
2. The numerically controlled grinding machine is controlled by the corrected NC data to perform ground grinding of a workpiece, and from the shape center at each phase angle from the reference line of the ground position ground by the corrected NC data. Measuring each remeasured dimension in the radial direction, obtaining the remeasured dimension Fourier series by Fourier transforming the remeasured dimension at each phase angle, and determining the amplitude of each frequency component of the finished dimension Fourier series and the remeasured dimension Fourier series. While multiplying the amplitude of each frequency component of the correction dimension Fourier series by each ratio with the amplitude of each frequency component of the phase component of each frequency component of the remeasured dimension Fourier series and each frequency component of the finishing dimension Fourier series Each difference from the phase is subtracted from the phase of each frequency component of the corrected size Fourier series to obtain a recorrected size Fourier series, and the recorrected size Fourier series is calculated. 4. The numerical control grinder according to claim 1, wherein the Fourier transform is performed to obtain each recorrection dimension at each phase angle, and recorrection NC data is created based on each recorrection dimension at each phase angle. Controlled NC data correction method for generating grinding.
【請求項3】 前記仕上NCデータ又は補正NCデータによ
り研削した研削箇所の測定寸法フーリエ級数又は再測定
寸法フーリェ級数の振幅をみて前記補正寸法フーリェ級
数又は再補正寸法フーリェ級数の次数を設定することを
特徴とする請求項1又は2に記載の数値制御研削盤を制
御する創成研削用NCデータの補正方法。
3. The order of the corrected size Fourier series or the re-corrected size Fourier series is set by observing the amplitude of the measured size Fourier series or remeasured size Fourier series of the ground portion ground by the finish NC data or the corrected NC data. A method for correcting NC data for generating grinding for controlling the numerically controlled grinding machine according to claim 1 or 2.
【請求項4】 請求項1乃至3のいずれかに記載の数値
制御研削盤を制御する創成研削用NCデータの補正方法を
実施する数値制御研削盤において、前記各フーリエ級数
の各周波数成分の振幅及び位相を前記数値制御装置にパ
ラメータ設定可能としたことを特徴とする数値制御研削
盤。
4. A numerical control grinder for implementing the method for correcting NC data for generating grinding for controlling the numerical control grinder according to claim 1, wherein the amplitude of each frequency component of each Fourier series is A numerical control grinding machine characterized in that the parameter and the phase can be set in the numerical control device.
【請求項5】 フーリェ級数の取り扱い次数を前記数値
制御装置にパラメータ設定可能としたことを特徴とする
請求項4に記載の数値制御研削盤。 〔発明の属する技術分野〕
5. The numerically controlled grinding machine according to claim 4, wherein the handling order of the Fourier series can be parameterized in the numerical controller. [Technical field to which the invention belongs]
JP2002022008A 2002-01-30 2002-01-30 NC data correction method for generating grinding for controlling numerically controlled grinding machine and numerically controlled grinding machine for implementing the method Expired - Fee Related JP3784330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022008A JP3784330B2 (en) 2002-01-30 2002-01-30 NC data correction method for generating grinding for controlling numerically controlled grinding machine and numerically controlled grinding machine for implementing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022008A JP3784330B2 (en) 2002-01-30 2002-01-30 NC data correction method for generating grinding for controlling numerically controlled grinding machine and numerically controlled grinding machine for implementing the method

Publications (2)

Publication Number Publication Date
JP2003223206A true JP2003223206A (en) 2003-08-08
JP3784330B2 JP3784330B2 (en) 2006-06-07

Family

ID=27745095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022008A Expired - Fee Related JP3784330B2 (en) 2002-01-30 2002-01-30 NC data correction method for generating grinding for controlling numerically controlled grinding machine and numerically controlled grinding machine for implementing the method

Country Status (1)

Country Link
JP (1) JP3784330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846685B1 (en) * 2001-01-31 2008-07-16 가부시키가이샤 니콘 Working shape prediction method, working requirement determination method, working method, working system, method of manufacturing semiconductor device, computer program, and computer program storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846685B1 (en) * 2001-01-31 2008-07-16 가부시키가이샤 니콘 Working shape prediction method, working requirement determination method, working method, working system, method of manufacturing semiconductor device, computer program, and computer program storage medium

Also Published As

Publication number Publication date
JP3784330B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP4051872B2 (en) Measuring method of processing part and processing method
JP5277692B2 (en) Post-process sizing controller
JP4487387B2 (en) Roundness measuring device
US7376482B2 (en) Grinding method and apparatus
US6419563B1 (en) Method of and an apparatus for machining a workpiece with plural tool heads
GB2303091A (en) Control of circularly asymmetric machining
JP6101115B2 (en) Machine tool and method of processing workpiece by machine tool
JP2003223206A (en) Compensation method of nc data for generation-grinding controlling numerically controlled grinder, and numerical control grinder conducting method thereof
EP1245333B1 (en) Grinding method and numerically controlled grinding machine
JP3664349B2 (en) Crank pin grinding method and grinding apparatus
JP3821345B2 (en) Crank pin grinding method and grinding apparatus
JP3687770B2 (en) Method and apparatus for controlling sizing of twin head grinder
JP3528197B2 (en) Grinding equipment
JP2002239873A (en) Work clamping method and device for grinding machine
JP3731715B2 (en) How to create cylindrical cross-section contour data
JP2019063962A (en) Machine tool
JP3086534B2 (en) Grinding machine for processing non-circular workpieces
JP2001212757A (en) Grinding method and grinding device
JP3836098B2 (en) Crank pin grinding method and grinding apparatus
JP2001009717A (en) External cylindrical grinding machine
JP5401764B2 (en) Roundness measuring device and cylindrical grinder
JP4539557B2 (en) Method and apparatus for controlling sizing of machine tool
JP2002292546A (en) Grinding machine provided with steady rest and its grinding method
JP3920995B2 (en) Crankshaft processing equipment
JP2002239901A (en) Method for grinding revolving workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040401

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Effective date: 20060301

Free format text: JAPANESE INTERMEDIATE CODE: A712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees