JP2003222572A - Phase measuring system - Google Patents

Phase measuring system

Info

Publication number
JP2003222572A
JP2003222572A JP2002024469A JP2002024469A JP2003222572A JP 2003222572 A JP2003222572 A JP 2003222572A JP 2002024469 A JP2002024469 A JP 2002024469A JP 2002024469 A JP2002024469 A JP 2002024469A JP 2003222572 A JP2003222572 A JP 2003222572A
Authority
JP
Japan
Prior art keywords
light
film
phase
grating
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002024469A
Other languages
Japanese (ja)
Other versions
JP3581689B2 (en
Inventor
Seiji Takeuchi
誠二 竹内
Minoru Yoshii
実 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002024469A priority Critical patent/JP3581689B2/en
Priority to EP03250495A priority patent/EP1333260A3/en
Priority to US10/356,231 priority patent/US7030998B2/en
Publication of JP2003222572A publication Critical patent/JP2003222572A/en
Application granted granted Critical
Publication of JP3581689B2 publication Critical patent/JP3581689B2/en
Priority to US11/264,044 priority patent/US7327467B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase measuring system capable of measuring with ease and high precision the phase characteristics of a film provided on a curved or plane mirror. <P>SOLUTION: The phase measuring system has a light source, a branch grating for branching the flux from the light source into a plurality of fluxes and for guiding them to a plurality of positions on a subject with a film applied to its surface, a combination grating for combining two reflections from two neighboring points on the subject, and a detecting means for detecting interference data involving the combined fluxes. Based on the interference data collected by the detecting means, phase data which are dependent on the position of the film on the subject are determined. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光学薄膜の位相測定
装置に関し、例えばIC、LSI等の半導体デバイス、
CCD等の撮影デバイス、液晶パネル等の表示デバイス
等のデバイス製造用のステップ・アンド・リピート方式
やステップ・アンド・スキャン方式等の露光装置に用い
る光学系の反射面や透過面につけられている光学薄膜の
位相を計測する際に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical thin film phase measuring apparatus, for example, a semiconductor device such as an IC or LSI,
Optics attached to the reflective or transmissive surface of an optical system used in an exposure apparatus such as a step-and-repeat method or a step-and-scan method for manufacturing a device such as a photographing device such as a CCD or a display device such as a liquid crystal panel. It is suitable for measuring the phase of a thin film.

【0002】[0002]

【従来の技術】デバイスパターンの微細化に伴い、デバ
イスパターンを感光材料に投影露光するときの露光波長
はますます短波長化されている。例えば露光波長とし
て、KrF(波長248nm)からArF(波長193
nm)、F2レーザ(波長157nm)さらにはEUV
の波長13.4nmの光まで用いるようになってきてい
る。
2. Description of the Related Art With the miniaturization of device patterns, the exposure wavelength when projecting and exposing a device pattern on a photosensitive material is becoming shorter and shorter. For example, as the exposure wavelength, from KrF (wavelength 248 nm) to ArF (wavelength 193)
nm), F2 laser (wavelength 157 nm), and EUV
The light having a wavelength of 13.4 nm has come to be used.

【0003】デバイスパターンの微細化は半導体産業の
ダイナミックスを支えるもっとも大きなファクタで、2
56M DRAMで線幅0.25ミクロンの解像を要求
した時代から、さらに線幅180nm、130nm、1
00nmへと世代が急速に変わりつつある。露光光とし
てi線(波長365nm)を利用したリソグラフィでは
波長以下の線幅の解像は使われてこなかった。
The miniaturization of device patterns is the largest factor supporting the dynamics of the semiconductor industry.
Line widths of 180nm, 130nm, 1
The generation is rapidly changing to 00 nm. In lithography using i-line (wavelength 365 nm) as the exposure light, resolution with a line width less than the wavelength has not been used.

【0004】これに対してKrFは248nmの波長で
ありながら180nmさらには150nmの線幅を対象
としたリソグラフィに適用されている。レジストの改
良、超解像技術等の成果を駆使して、波長以下の線幅の
解像が実用化されつつある。種々の超解像技術を駆使す
れば、lines and spacesで1/2波長の線幅のパターン
解像が実用の視野に入ってきている。
On the other hand, KrF is applied to lithography for a line width of 180 nm or even 150 nm even though the wavelength is 248 nm. Resolving line widths below the wavelength is being put to practical use by making full use of the results of resist improvement and super-resolution technology. By making full use of various super-resolution techniques, pattern resolution with 1/2 wavelength line width in lines and spaces has come into practical use.

【0005】しかしながら超解像技術にはパターンの製
造上の制約が伴うことも多く、解像力向上の王道は何と
いっても露光光の波長を短くし、投影光学系のNAを向
上させることである。上記事実が露光光の短波長化への
大きなモーティベーションとなっており、波長10〜1
5nmの光を露光光として用いるEUVリソグラフィを
開発する所以となっている。
However, the super-resolution technique is often accompanied by restrictions in the production of patterns, and the royal road for improving resolution is to shorten the wavelength of exposure light and improve the NA of the projection optical system. . The above fact has been a great motivation for shortening the wavelength of the exposure light.
This is the reason for developing EUV lithography that uses 5 nm light as exposure light.

【0006】[0006]

【発明が解決しようとする課題】EUV光を露光光とし
て用いる場合は、EUV波長域で透明な物質が存在しな
い為、EUV領域を対象とする光学系では使用できる材
料に大きな制限が加わる。特に透過型の光学素子はもは
や使用できず総て反射系の構成となるEUV領域では光
学材料の光学定数が1に近い為にミラー表面の反射率が
低くなる。所定の反射率を得る為に反射鏡(ミラー)に
つける反射増強用の膜の特性が大きな課題となってい
る。膜についても材料の制約が大きく、実質的にはMo
とSiの交互層で作られる膜(多層膜)が基本構成をな
すことになる。この他にも、例えばBe−Si、Rh−
Siの多層膜等がある。膜はMoとSiの交互層を1ペ
アと考えると40ペアほどの多層が要求されることにな
り、光学特性の変化が非常に激しくなる。
When EUV light is used as the exposure light, since there is no transparent substance in the EUV wavelength range, there are great restrictions on the materials that can be used in optical systems targeting the EUV range. In particular, in the EUV region where a transmission type optical element can no longer be used and a reflection system is formed, the reflectance of the mirror surface is low because the optical constant of the optical material is close to 1. A major issue is the characteristics of a reflection enhancing film attached to a reflecting mirror (mirror) to obtain a predetermined reflectance. The material of the film is also largely restricted, and it is substantially Mo.
A film (multi-layer film) made of alternating layers of Si and Si forms the basic structure. In addition to this, for example, Be-Si, Rh-
There are Si multilayer films and the like. Considering one pair of alternating layers of Mo and Si, the film is required to have a multilayer of about 40 pairs, and the change of the optical characteristics becomes extremely severe.

【0007】EUV領域を対象とした膜で特徴的なのは
反射率とともに膜の位相(位相分布)の管理が要求され
ることである。EUV光が膜で反射する際に、その位相
が変化する。膜の位相分布はミラー面に入射した波面を
ひずませることになり、ミラー面内で膜の周期長にずれ
があると収差(波面収差)を発生させる原因となる。こ
のため、ミラー面に膜をつけた時点で膜の位相(位相分
布)を測定することが望ましい。特に、膜を施した各位
置における位相と膜に種々な角度で入射したときの角度
特性を測定することが望ましい。
A characteristic of the film for the EUV region is that the management of the phase (phase distribution) of the film as well as the reflectance is required. When the EUV light is reflected by the film, its phase changes. The phase distribution of the film distorts the wavefront incident on the mirror surface, and if the cycle length of the film deviates within the mirror surface, it causes aberration (wavefront aberration). Therefore, it is desirable to measure the phase (phase distribution) of the film when the film is attached to the mirror surface. In particular, it is desirable to measure the phase at each position where the film is applied and the angular characteristics when the film is incident on the film at various angles.

【0008】特に反射結像系の収差を補正するために
は、ミラーの基板の曲率や非球面量など、基板の形状を
高精度に製造する他に、反射増強用の多層膜の性能も精
度良く管理する必要がある。このときの多層膜は1つの
ミラー面の中でも反射する位置に応じて反射の際に光に
与える位相が大きく異ならないように精度良く制御する
必要がある。
In particular, in order to correct the aberration of the reflective imaging system, in addition to manufacturing the substrate shape such as the curvature of the mirror substrate and the amount of aspherical surface with high accuracy, the performance of the multilayer film for reflection enhancement is also accurate. Need to be well managed. At this time, the multilayer film needs to be accurately controlled so that the phase given to the light at the time of reflection does not greatly differ depending on the reflection position within one mirror surface.

【0009】この他、反射結像系を組み上げる前に、ミ
ラーの形状を仕上げ、ミラー面上に多層膜を積層させた
それぞれの位置での反射位相が設計値と同じく製造され
ているかを検査する必要がある。
In addition to this, before assembling the reflection imaging system, the shape of the mirror is finished, and it is inspected whether the reflection phase at each position where the multilayer film is laminated on the mirror surface is manufactured as the designed value. There is a need.

【0010】本発明は、曲率のある反射鏡や平面反射鏡
に施した膜の各位置における位相特性又は/及び入射角
に依存する膜の位相特性を容易に、しかも高精度に測定
することができる位相測定装置の提供を目的とする。
According to the present invention, it is possible to easily and highly accurately measure the phase characteristic at each position of the film formed on the reflecting mirror or the plane reflecting mirror having a curvature or / and the phase characteristic of the film depending on the incident angle. It is an object of the present invention to provide a phase measuring device capable of performing the above.

【0011】[0011]

【課題を解決するための手段】請求項1の発明の位相測
定装置は、光源手段と、該光源手段からの光束を複数の
光束に分岐し、表面上に膜を施した被検物体上の複数の
位置に導光する分岐グレーティングと、該被検物体上の
該複数の位置のうち、近傍する2点で反射した2つの反
射光を結合させる結合グレーティングと、該結合グレー
ティングにより結合された2つの光に基づく干渉情報を
検出する検出手段と、を有し、該検出手段で得られる干
渉情報より、該被検物体上に施した膜の位置に依存する
位相情報を測定することを特徴としている。
According to a first aspect of the present invention, there is provided a phase measuring apparatus comprising: a light source means; and a light beam from the light source means. A branch grating that guides light to a plurality of positions, a coupling grating that couples two reflected lights reflected at two neighboring points among the plurality of positions on the object to be measured, and a coupling grating that couples the two components. Detecting means for detecting interference information based on two lights, and measuring the phase information depending on the position of the film applied on the object to be inspected, from the interference information obtained by the detecting means. There is.

【0012】請求項2の発明の位相測定装置は、光源手
段と、該光源手段からの光束を集光し、入射角にある幅
を有するようにして、表面上に膜を施した被検物体上に
入射させる反射手段と、該被検物体で反射した光の波面
を検出する検出手段と、を有し、該検出手段で得られる
波面情報より、該被検物体上に施した膜への入射角度に
依存する位相情報を測定することを特徴としている。
According to a second aspect of the present invention, there is provided a phase measuring device comprising a light source means and an object to be inspected having a film formed on a surface thereof so as to collect a light beam from the light source means and have a width at an incident angle. The reflecting means for making the light incident on the upper side and the detecting means for detecting the wavefront of the light reflected by the object to be inspected are provided, and the wavefront information obtained by the detecting means is used to detect the film applied to the object to be inspected. The feature is that the phase information depending on the incident angle is measured.

【0013】請求項3の発明の位相測定装置は、光源手
段と、該光源手段からの光束を集光し、入射角にある幅
を有するようにして、表面上に膜を施した被検物体上に
入射させる反射手段と、該被検物体で反射した光を複数
の光束に分岐する分岐グレーティングと、該分岐グレー
ティングにより分岐した複数の光束のうち2つの光に基
づく干渉情報を検出する検出手段と、を有し、該検出手
段で得られる干渉情報より、該被検物体上に施した膜へ
の入射角度に依存する位相情報を測定することを特徴と
している。
According to a third aspect of the present invention, there is provided a phase measuring apparatus comprising a light source means and an object to be inspected having a film formed on the surface thereof so as to collect a light beam from the light source means and have a width at an incident angle. Reflecting means incident on the upper side, branching grating for branching the light reflected by the object to be examined into a plurality of light fluxes, and detecting means for detecting interference information based on two lights of the plurality of light fluxes branched by the branching gratings. And the phase information depending on the angle of incidence on the film formed on the object to be measured is measured from the interference information obtained by the detection means.

【0014】請求項4の発明は請求項2又は3の発明に
おいて、前記被検物体に入射する光束は、前記被検物体
上の1点に入射することを特徴としている。
The invention of claim 4 is characterized in that, in the invention of claim 2 or 3, the light beam incident on the object to be inspected is incident on one point on the object to be inspected.

【0015】請求項5の発明の位相測定装置は、光源手
段と、該光源手段からの光束を複数の光束に分岐し、表
面上に膜を施した被検物体上の複数の位置に導光する分
岐グレーティングGaと、該被検物体上の該複数の位置
のうち、近傍する2点で反射した2つの反射光を結合さ
せる結合グレーティングと、該結合グレーティングによ
り結合された2つの光に基づく干渉情報を検出する検出
手段と、を有し、該検出手段で得られる干渉情報より、
該被検物体上に施した膜の位置に依存する位相情報を測
定することと共に、該分岐グレーティングGaと結合グ
レーティングを光路中より退避させ、それらの代わりに
該光源手段からの光束を集光し、入射角にある幅を有す
るようにして,表面上に膜を施した被検物体上に入射さ
せる反射手段と、該被検物体で反射した光を複数の光束
に分岐する分岐グレーティングGbを光路中に設け、該
分岐グレーティングGbにより分岐した複数の光束のう
ち2つの光に基づく干渉情報を該検出手段で検出し、該
検出手段で得られる干渉情報より、該被検物体上に施し
た膜への入射角度に依存する位相情報を測定することを
特徴としている。
According to a fifth aspect of the present invention, there is provided a phase measuring apparatus, wherein light source means and light flux from the light source means are branched into a plurality of light fluxes, and the light fluxes are guided to a plurality of positions on an object to be inspected having a film on its surface. Branching grating Ga, a coupling grating that couples two reflected lights reflected at two neighboring points among the plurality of positions on the object to be inspected, and interference based on the two lights coupled by the coupling grating. Detecting means for detecting information, and from the interference information obtained by the detecting means,
While measuring the phase information depending on the position of the film applied on the object to be inspected, the branch grating Ga and the coupling grating are retracted from the optical path, and the light flux from the light source means is condensed instead of them. A reflection means for making the light incident on an object to be inspected having a film on the surface so as to have a width at an incident angle, and a branch grating Gb for branching the light reflected by the object to be inspected into a plurality of light beams. A film provided on the object to be inspected, the interference information based on two lights among a plurality of light beams branched by the branch grating Gb being detected by the detection means, and based on the interference information obtained by the detection means. It is characterized by measuring the phase information depending on the incident angle to the.

【0016】請求項6の発明は請求項1から5のいずれ
か1項の発明において、さらに偏光選択手段を有し、選
択した偏光における位相情報を測定することを特徴とし
ている。
The invention of claim 6 is characterized in that, in the invention of any one of claims 1 to 5, it further comprises polarization selecting means, and measures the phase information in the selected polarization.

【0017】請求項7の発明の露光装置は、請求項1乃
至6いずれか1項の位相測定装置で測定した光学部材を
有していることを特徴としている。
An exposure apparatus according to a seventh aspect of the invention is characterized in that it has an optical member measured by the phase measuring apparatus according to any one of the first to sixth aspects.

【0018】請求項8の発明の位相測定方法は、表面上
に膜を施した被検物体に対して、実質的に1点に光束を
入射し、前記1点からの光束をシアリング干渉させるこ
とにより、膜の位置及び角度依存の位相情報を、位置及
び/又は角度に関して概略微分することにより、前記膜
への入射角度に依存する位相情報を測定することを特徴
としている。
According to the eighth aspect of the phase measuring method of the present invention, a light beam is substantially incident on one point and the light beam from the one point is subjected to shearing interference with respect to an object to be inspected having a film on its surface. According to the above, the phase information depending on the position and / or angle of the film is roughly differentiated with respect to the position and / or the angle to measure the phase information depending on the incident angle to the film.

【0019】請求項9の発明の露光装置は、請求項8に
記載の前記位相測定方法により位相測定を行った光学部
材を有していることを特徴としている。
An exposure apparatus according to a ninth aspect of the present invention is characterized in that it has an optical member for which phase measurement is performed by the phase measurement method according to the eighth aspect.

【0020】請求項10の発明のデバイスの製造方法
は、請求項9に記載の露光装置により被露光体に露光す
る工程と、露光された前記被露光体を現像する工程とを
有することを特徴としている。
A device manufacturing method according to a tenth aspect of the present invention comprises the steps of exposing the exposed object by the exposure apparatus according to the ninth aspect, and developing the exposed object. I am trying.

【0021】[0021]

【発明の実施の形態】本発明の膜(多層膜)の反射位相
分布の測定では、膜が施されている面の場所による膜の
反射位相分布の特定と、膜への入射角の違いによる反射
位相(膜の入射角依存性)の測定とを行っている。
BEST MODE FOR CARRYING OUT THE INVENTION In the measurement of the reflection phase distribution of a film (multilayer film) of the present invention, the reflection phase distribution of the film is specified by the location of the surface on which the film is applied, and the difference in the incident angle to the film is used. The reflection phase (incident angle dependence of the film) is measured.

【0022】図1、図2は本発明の位相測定装置の実施
形態1の要部概略図であり、EUV波長域を対象とした
ミラー面上の膜の位相情報を測定する場合を系してい
る。図1は膜が施されているミラー面上の場所による膜
の反射位相分布の測定を示す要部概略図である。図2は
膜が施されているミラー面の光の入射角による膜の反射
位相の測定を示す要部概略図である。
FIG. 1 and FIG. 2 are schematic views of the essential parts of the first embodiment of the phase measuring apparatus of the present invention, based on the case of measuring the phase information of the film on the mirror surface in the EUV wavelength range. There is. FIG. 1 is a schematic view of a main part showing a measurement of a reflection phase distribution of a film according to a position on a mirror surface on which the film is applied. FIG. 2 is a schematic diagram of a main part showing a measurement of a reflection phase of a film depending on an incident angle of light on a mirror surface provided with the film.

【0023】本実施形態において測定は図1と図2に示
す装置で2回に分けて行う。まず図1の測定系について
説明する。光源1から出た光L1は楕円面や双物面等の
反射鏡2で反射し、部材3に設けたピンホール3aを通
して点光源からの波面とし、波面を整えている。光源1
としてはレーザプラズマ光源や放射光(SR)を用いて
いる。ピンホール3aからの光L2を絞り4を通すこと
で、直径1mm程度のビームL3にしている。このビー
ムL3をミラーM1を介し、分波グレーティングG1に
よって2つの光La、Lbに分け、多層膜5に施された
被検物体6上の微小にずれた2点5a、5bに角度をも
って照射する。ここで光La、Lbの膜5への入射角は
僅かに異なるが、ここでは簡単の為に略同一角度θとし
てみなしている。
In this embodiment, the measurement is carried out in two steps by the apparatus shown in FIGS. First, the measurement system of FIG. 1 will be described. The light L1 emitted from the light source 1 is reflected by a reflecting mirror 2 such as an ellipsoidal surface or a dihedral surface, and is made a wavefront from a point light source through a pinhole 3a provided in the member 3 to adjust the wavefront. Light source 1
For this, a laser plasma light source or synchrotron radiation (SR) is used. The light L2 from the pinhole 3a is passed through the diaphragm 4 to form a beam L3 having a diameter of about 1 mm. This beam L3 is split into two lights La and Lb by a demultiplexing grating G1 through a mirror M1 and is irradiated at two points 5a and 5b, which are slightly displaced on the object 6 to be inspected, applied to the multilayer film 5 at an angle. . Here, the incident angles of the lights La and Lb on the film 5 are slightly different, but here they are regarded as substantially the same angle θ for simplicity.

【0024】又、入射位置5a、5bの差も僅かである
ので略同一位置とみなしている。照射した2点5a、5
bからの反射光La、Lbを結合グレーティングG2に
よって重ね合わせ、干渉させてCCDなどの検出手段7
で干渉信号を得ている。尚、光源手段1からの光の波長
が検出手段の検出可能な波長域外にあるときは、例えば
光を蛍光板に入射させ、該蛍光板に形成される干渉情報
を検出手段で検出しても良い。
Further, since the difference between the incident positions 5a and 5b is slight, they are regarded as substantially the same position. Irradiated 2 points 5a, 5
The reflected light La and Lb from b are superposed by the coupling grating G2 and interfered with each other to detect the light by means of a detection means 7 such as CCD.
Is getting an interference signal at. When the wavelength of the light from the light source means 1 is outside the wavelength range that can be detected by the detecting means, for example, the light may be incident on the fluorescent plate and the interference information formed on the fluorescent plate may be detected by the detecting means.

【0025】演算手段8は検出手段7からの干渉信号を
用いて、光の入射角θにおける多層膜5の面上における
反射位相分布を被検物体6と測定系の相対的位置を変え
て計測している。位置による反射位相分布は位置をx、
入射角をθであらわすと、位置xにおける膜の位相差
は、 φ(x+Δx,θ)−φ(x,θ) という位相の差分を干渉信号の強度として求めている。
Δx、すなわちビームのずらし量を非常に微小にして
(微分により波面をシフトさせて)、
The calculation means 8 uses the interference signal from the detection means 7 to measure the reflection phase distribution on the surface of the multilayer film 5 at the incident angle θ of light by changing the relative positions of the object 6 and the measurement system. is doing. The reflection phase distribution by position is x,
When the incident angle is represented by θ, the phase difference of the film at the position x is obtained by calculating the phase difference of φ (x + Δx, θ) −φ (x, θ) as the intensity of the interference signal.
Δx, that is, the beam shift amount is made extremely small (the wavefront is shifted by differentiation),

【0026】[0026]

【数1】 [Equation 1]

【0027】を得る。To obtain

【0028】ビームLa、Lbで被検物体6と測定系の
相対的な移動によって多層膜5の全面を走査し、膜5面
の位置xで積分することで、第1の入射角θにおける膜
5の位相の位置による反射位置分布φ(x,θ)を算出
している。ビームは広がりを持たせて膜5面上に入射さ
せ、2次元信号としてデータ採取することにより、積分
による位相データのつながりがよくなり、精度の高い測
定結果を得られる。もしくは、細いビームで走査し、受
光面の小さな検出手段を用いて、高速に走査してデータ
を採取するようにしても良い。
The beams La and Lb scan the entire surface of the multilayer film 5 by the relative movement of the object 6 to be measured and the measurement system, and integrate at the position x of the film 5 surface to obtain the film at the first incident angle θ. The reflection position distribution φ (x, θ) according to the position of the phase of 5 is calculated. The beam is made incident on the surface of the film 5 with a divergence, and data is collected as a two-dimensional signal, whereby the connection of the phase data by integration is improved, and a highly accurate measurement result can be obtained. Alternatively, the data may be acquired by scanning with a narrow beam and using a detecting means having a small light-receiving surface to perform high-speed scanning.

【0029】本実施形態は、分波グレーティングG1と
結合グレーティングG2を用いることにより、膜の各位
置における反射位相情報を参照波面を形成する光学面を
用いずに測定している。
In this embodiment, by using the demultiplexing grating G1 and the coupling grating G2, the reflection phase information at each position of the film is measured without using the optical surface forming the reference wavefront.

【0030】また、図1において、多層膜ミラーに入射
する光は、位置微分が可能な範囲の拡がりを持ちつつ、
ほぼ一点に集光した状態で多層膜ミラーに入射してい
る。換言すると、位置微分が行える範囲の大きさを持っ
たほぼ1点に集光している。
Further, in FIG. 1, the light incident on the multilayer mirror has a spread of a range in which position differentiation is possible,
The light is incident on the multilayer mirror in a state where the light is condensed at almost one point. In other words, the light is focused on almost one point having a size of the range in which the position differentiation can be performed.

【0031】次に、図2の膜による反射位相の入射角分
布の測定について説明する。光源1からの光L1は反射
鏡2で反射し、部材3に設けたピンホール3aを通して
点光源とし、波面を整える。ピンホール3aから広がっ
たビームL4を、楕円面、放物面、回転非対称非球面等
の反射鏡9を介して、膜(被検光面)5上で第1の入射
角θ1から第2の入射角θ2までの幅(範囲)をもった光
束L5として膜5面上の測定点5cに集光するように照
射する。膜5上の測定点5cで反射した光L6を分波グ
レーティングG1によって反射した光束L6をシアリン
グして2つの光束に分離し、互いに干渉させ、該干渉情
報をCCDなどの検出手段7によって検出する。
Next, the measurement of the incident angle distribution of the reflection phase by the film of FIG. 2 will be described. The light L1 from the light source 1 is reflected by the reflecting mirror 2 and becomes a point light source through the pinhole 3a provided in the member 3 to adjust the wavefront. The beam L4 diverged from the pinhole 3a is passed through the reflecting mirror 9 having an elliptical surface, a parabolic surface, a rotationally asymmetrical aspherical surface or the like on the film (test surface) 5 from the first incident angle θ 1 to the second incident angle θ 1 . The light beam L5 having a width (range) up to the incident angle θ 2 is irradiated so as to be focused on the measurement point 5c on the surface of the film 5. The light L6 reflected at the measurement point 5c on the film 5 is sheared by the light beam L6 reflected by the demultiplexing grating G1 to separate the light beams into two light beams, which interfere with each other, and the interference information is detected by the detection means 7 such as a CCD. .

【0032】そして演算手段8によって検出手段7から
の信号を用いて測定点5cの反射位相の入射角θ1〜θ2
における入射角分布を得ている。入射角分布は、 φ(x,θ1+Δθ)−φ(x,θ1) という位相の差分を干渉信号の強度として求めている。
Then, the calculating means 8 uses the signal from the detecting means 7 to make incident angles θ 1 to θ 2 of the reflection phase at the measuring point 5c.
The incident angle distribution at is obtained. In the incident angle distribution, the phase difference of φ (x, θ 1 + Δθ) −φ (x, θ 1 ) is obtained as the intensity of the interference signal.

【0033】ΔθはビームL6のずらし角によって決ま
り、上記式は第1の入射角での値を示しているが、入射
角θ1に幅を持っているので、第1の入射角θ1から第2
の入射角θ2までの範囲でこの値を求めている。Δを非
常に微小にして、
Δθ is determined by the shift angle of the beam L6, and the above equation shows the value at the first incident angle. However, since the incident angle θ 1 has a width, the first incident angle θ 1 Second
This value is obtained in the range up to the incident angle θ 2 . Δ is very small,

【0034】[0034]

【数2】 [Equation 2]

【0035】を第1の位置x1において測定している。Is measured at the first position x 1 .

【0036】ビームL5は被検物体6と測定系の相対的
な移動によって多層膜全面を走査し、全面における入射
角度特性を求めている。また、この積分値を微分するこ
とでその位置x1における入射角分分布φ(x1,θ)を
得ている。
The beam L5 scans the entire surface of the multilayer film by the relative movement of the object 6 to be measured and the measuring system, and obtains the incident angle characteristic on the entire surface. Further, by differentiating this integrated value, the incident angle distribution φ (x 1 , θ) at the position x 1 is obtained.

【0037】以上のように本実施形態では、一定のNA
を有する集光光学系(反射鏡)9によって膜5面上に入
射角に幅(範囲)をもった光を入射させ、膜5面からの
反射光をグレーティングG1によって波面をシアリング
させて、干渉させ、該干渉情報より膜5の入射角による
位相情報を得ている。
As described above, in this embodiment, a constant NA
A light having a width (range) at an incident angle is made incident on the surface of the film 5 by the condensing optical system (reflecting mirror) 9 having the light, and the reflected light from the surface of the film 5 is sheared by the grating G1 to cause interference. Then, the phase information based on the incident angle of the film 5 is obtained from the interference information.

【0038】本実施形態では、図1に示す系で得られる
第1の測定のデータによって、ある入射角θにおける反
射光の相対位相をミラー(膜)の位置の関数として得て
おり、図2に示す系で得られる第2の測定のデータによ
って、それぞれの位置における反射の相対位相を入射角
θの関数として得ていて、2つの相対位相測定によって
全データを繋げている。例えば必要に応じて、第1と第
2の入射角θ1とθ2の間にある、第3の入射角θ3にお
ける位置の位相データを算出している。
In this embodiment, the relative phase of the reflected light at a certain incident angle θ is obtained as a function of the position of the mirror (film) by the data of the first measurement obtained by the system shown in FIG. By the data of the second measurement obtained by the system shown in (1), the relative phase of reflection at each position is obtained as a function of the incident angle θ, and all the data are connected by two relative phase measurements. For example, if necessary, the phase data of the position at the third incident angle θ 3 between the first and second incident angles θ 1 and θ 2 is calculated.

【0039】膜を施したミラーの種類によっては実際の
結像に寄与する光の入射角分布はミラー内の位置に依存
しているため、全ての面において入射角θ1で測定する
必要がない場合もある。
Depending on the type of the mirror provided with the film, the incident angle distribution of light that contributes to actual image formation depends on the position in the mirror, and therefore it is not necessary to measure the incident angle θ 1 on all surfaces. In some cases.

【0040】本実施形態の測定装置では、膜5面上への
光の入射角が可変となっており、図1に示す第1の測定
においては入射角を場所に応じて変化しながら測定を行
い、それぞれの場所近傍での基準入射角での相対位相差
を求めており、一方で図2に示す第2の測定においても
入射角θ1と入射角θ2を変化させて、常にそれぞれの位
置では第1の測定を行った基準入射角が入射角θ1と入
射角θ2の間にあるような関係を保って測定している。
こうして基準入射角を通して位置の相対位相のつながり
と、第2の測定での基準入射角を含む入射角範囲の相対
位相とのつながりを行っている。
In the measuring apparatus of this embodiment, the incident angle of light on the surface of the film 5 is variable, and in the first measurement shown in FIG. 1, the measurement is performed while changing the incident angle depending on the place. The relative phase difference at the reference incident angle in the vicinity of each position is obtained, while the incident angle θ 1 and the incident angle θ 2 are changed in the second measurement shown in FIG. At the position, the reference incident angle at which the first measurement is performed is measured with the relationship such that the reference incident angle is between the incident angle θ 1 and the incident angle θ 2 .
Thus, the connection of the relative phase of the position through the reference incident angle and the connection of the relative phase of the incident angle range including the reference incident angle in the second measurement are performed.

【0041】尚、図2の構成としては、図1の構成にお
いて絞り4とミラーM1、分岐グレーティングG1の代
わりに集光光学系9を交換して用い、結合グレーティン
グG2の代わりに分岐グレーティングを交換して用い、
これらの各部材を目的に応じて交換可能にして1つの装
置とに用いるようにしても良い。
In the configuration of FIG. 2, the diaphragm 4 and the mirror M1 in the configuration of FIG. 1 are replaced by the condensing optical system 9 in place of the branch grating G1, and the branch grating is replaced in place of the coupling grating G2. Used as
These respective members may be exchangeable according to the purpose and used in one device.

【0042】分波グレーティングG1や結合グレーティ
ングG2は透過型でも反射型でも構わない。また、ビー
ムを分ける、もしくは結合させる部材であればグレーテ
ィング以外のものでも構わない。
The demultiplexing grating G1 and the coupling grating G2 may be transmission type or reflection type. Further, a member other than the grating may be used as long as it is a member for dividing or combining the beams.

【0043】例えば図1の2つのグレーティングG1,
G2は平面ミラーM1に対しては同じ格子定数のグレー
ティングがCCD7への波面の入射角度を揃えるために
望ましい形態である。図2の波面も干渉波面の角度が大
きい場合は2つのグレーティングを重ねて使い、角度を
合わせるなどの工夫も可能である。
For example, the two gratings G1 shown in FIG.
G2 is a desirable form for the plane mirror M1 because a grating having the same lattice constant is used to make the incident angles of the wavefronts on the CCD 7 uniform. When the wavefront of FIG. 2 also has a large angle of interference wavefront, it is possible to use two gratings in an overlapping manner so as to match the angles.

【0044】以上の実施形態において、膜5面上に光を
集光させずに少しデフォーカスした光束で膜面上を走査
しても良く、これによれば位置と入射角の両方が複合的
にシアリングされた位相データが得られる。つまり、 φ(x+Δx,θ+Δθ)−φ(x,θ1) である。光束のずれ量を微小にすることで、
In the above embodiment, the film surface may be scanned with a slightly defocused light beam without condensing the light on the surface of the film 5, whereby both the position and the incident angle are combined. To obtain phase data sheared by. That is, φ (x + Δx, θ + Δθ) −φ (x, θ 1 ). By making the amount of deviation of the luminous flux very small,

【0045】[0045]

【数3】 [Equation 3]

【0046】が得られる。この測定データから、位置と
角度で積分することで位置と角度の位相分布データを得
るようにしても良い。
Is obtained. The position and angle phase distribution data may be obtained by integrating the position and angle from this measurement data.

【0047】また、各実施形態において、入射光学系の
中に偏光素子を挿入することで、所望の偏光に対する反
射位相分布を測定できる。具体的な挿入位置としては例
えば図1の分波グレーティングG1の前、もしくは後
や、図2の集光ミラー9の後などである。または、反射
直後に偏光素子をいれることで同様の効果は得られる。
この場合の偏光素子の挿入位置は、例えば図1の結合グ
レーティングG2の前、もしくは後や、図2の分波グレ
ーティングG1の前、もしくは後である。
Further, in each of the embodiments, a reflection phase distribution for a desired polarized light can be measured by inserting a polarizing element in the incident optical system. The specific insertion position is, for example, before or after the demultiplexing grating G1 in FIG. 1, or after the condenser mirror 9 in FIG. Alternatively, the same effect can be obtained by inserting the polarizing element immediately after reflection.
In this case, the polarizing element is inserted, for example, before or after the coupling grating G2 in FIG. 1 or before or after the demultiplexing grating G1 in FIG.

【0048】偏光素子としては、例えば、W. Hu, M. Ya
mamoto, M. Watanabe, "Development of EUV free-stan
ding multilayer polarizers," Proc. SPIE Vol. 2873,
p.74-77 に紹介されている透過型のものや、一般的に
垂直入射用の高反射膜として設計製作された多層膜ミラ
ーを入射角45度で使うような反射型のものがある。
As the polarizing element, for example, W. Hu, M. Ya
mamoto, M. Watanabe, "Development of EUV free-stan
ding multilayer polarizers, "Proc. SPIE Vol. 2873,
There are a transmission type introduced on p.74-77 and a reflection type that generally uses a multilayer mirror designed and manufactured as a high reflection film for vertical incidence at an incident angle of 45 degrees.

【0049】以上の各実施形態において、膜MLの位相
分布の測定はEUV光に限らず、可視光であっても同様
に測定できる。
In each of the above embodiments, the measurement of the phase distribution of the film ML is not limited to EUV light, and the same measurement can be performed with visible light.

【0050】図3は本発明の位相測定装置で測定対象と
なる反射鏡(ミラー)を用いたEUV波長域(10〜1
5nm)の光を露光光として用いたデバイス製造用のE
UV露光装置の要部概略図である。
FIG. 3 shows an EUV wavelength range (10 to 1) using a reflecting mirror (mirror) to be measured by the phase measuring apparatus of the present invention.
E for device manufacturing using light of 5 nm) as exposure light
It is a principal part schematic diagram of a UV exposure apparatus.

【0051】図3に示すEUV露光装置は、EUV光
源、照明光学系、反射型レチクル、投影光学系、レチク
ルステージ、ウエハステージ、アライメント光学系、真
空系などを有している。
The EUV exposure apparatus shown in FIG. 3 has an EUV light source, an illumination optical system, a reflection type reticle, a projection optical system, a reticle stage, a wafer stage, an alignment optical system and a vacuum system.

【0052】本実施形態のEUV光源にはレーザプラズ
マ光源が用いられる。これは真空容器701中に供給さ
れたターゲット材TAに、高強度のパルスレーザ光を照
射し、高温のプラズマ705を発生させ、これから放射
される例えば波長13nm程度のEUV光を利用するも
のである。ターゲット材としては、金属薄膜、不活性ガ
ス、液滴などが用いられ、ガスジェット等の手段を具備
したターゲット供給装置702によって真空容器701
内に供給される。また、パルスレーザ光は励起用パルス
レーザ703より出力され、集光レンズ704を介して
ターゲット材TAに照射される。放射されるEUV光の
平均強度を高くするためにはパルスレーザの繰り返し周
波数は高い方が良く、励起用パルスレーザ703は通常
数kHzの繰り返し周波数で運転される。
A laser plasma light source is used as the EUV light source of this embodiment. This is to irradiate the target material TA supplied into the vacuum container 701 with high-intensity pulsed laser light to generate high-temperature plasma 705, and use EUV light with a wavelength of, for example, about 13 nm emitted from this. . A metal thin film, an inert gas, droplets, or the like is used as the target material, and a vacuum container 701 is provided by a target supply device 702 equipped with a means such as a gas jet.
Supplied within. Further, the pulsed laser light is output from the excitation pulsed laser 703 and is irradiated on the target material TA via the condenser lens 704. In order to increase the average intensity of the emitted EUV light, the pulse laser preferably has a high repetition frequency, and the excitation pulse laser 703 is normally operated at a repetition frequency of several kHz.

【0053】なお、EUV光源として放電プラズマ光源
を用いることも可能である。放電プラズマ光源は、真空
容器中に置かれた電極周辺にガスを放出し、電極にパル
ス電圧を印加して放電を起こし高温のプラズマを発生さ
せ、これから放射される例えば波長13nm程度のEU
V光を利用するものである。放射されるEUV光の平均
強度を高くするためには放電の繰り返し周波数は高い方
が良く、通常数kHzの繰り返し周波数で運転される。
It is also possible to use a discharge plasma light source as the EUV light source. The discharge plasma light source emits a gas around an electrode placed in a vacuum container, applies a pulse voltage to the electrode to generate a high-temperature plasma, and emits a high-temperature plasma, for example, an EU having a wavelength of about 13 nm.
It utilizes V light. In order to increase the average intensity of the emitted EUV light, the higher the discharge repetition frequency is, the better, and the operation is usually performed at a repetition frequency of several kHz.

【0054】照明光学系は、複数の多層膜または斜入射
ミラーとオプティカルインテグレータ等を有している。
本実施形態の照明光学系は、照明系第1ミラー706、
オプティ力ルインテグレータ707、照明系第2ミラー
708、照明系第3ミラー709を有し、これらの部材
によってプラズマ705から放射されたEUV光をレチ
クル(マスク)711に導いている。
The illumination optical system has a plurality of multilayer films or oblique incidence mirrors and an optical integrator.
The illumination optical system of the present embodiment includes an illumination system first mirror 706,
It has an optical power integrator 707, an illumination system second mirror 708, and an illumination system third mirror 709, and these members guide the EUV light emitted from the plasma 705 to a reticle (mask) 711.

【0055】照明光学系の初段の集光ミラー(照明系第
1ミラー)706はレーザプラズマ705からほぼ等方
的に放射されるEUV光を集める役割を果たす。オプテ
ィカルインテグレータ707はレチクル711を均一に
所定の開口数で照明する役割を持っている。また照明光
学系のレチクル711と共役な位置にはレチクル面で照
明される領域を円弧状に限定するための円弧開口のアパ
ーチャ710が設けられている。
The first-stage focusing mirror (first illumination system mirror) 706 of the illumination optical system plays a role of collecting the EUV light emitted isotropically from the laser plasma 705. The optical integrator 707 has a role of uniformly illuminating the reticle 711 with a predetermined numerical aperture. An aperture 710 having an arc opening is provided at a position conjugate with the reticle 711 of the illumination optical system to limit the area illuminated by the reticle surface to an arc shape.

【0056】アパーチャ710を通過した円弧状の光束
によりレチクル711が照射され、その反射光が反射鏡
721〜724を含む投影光学系を経てウエハ731に
照射される。EUV領域で用いられる多層膜を施したミ
ラー(多層膜ミラー)は可視光のミラーに比べて光の損
失が大きいので、ミラーの枚数は最小限に抑えることが
必要である。725は開口制限用の絞りである。
The reticle 711 is irradiated with the arc-shaped light flux that has passed through the aperture 710, and the reflected light is irradiated onto the wafer 731 through the projection optical system including the reflecting mirrors 721 to 724. Since a mirror provided with a multilayer film (multilayer film mirror) used in the EUV region has a larger light loss than a visible light mirror, it is necessary to minimize the number of mirrors. 725 is a diaphragm for limiting the aperture.

【0057】本実施形態では、少ない枚数のミラーで広
い露光領域を有した投影光学系を実現するに、光軸から
一定の距離だけ離れた細い円弧状の領域(リングフィー
ルド)だけを用いるリングフィールド光学系を利用して
いる。そしてレチクル711とウエハ731を同時に同
期走査して広い露光面積で転写する方法(スキャン露
光)を用いている。レチクル711面上の円弧状の照明
領域は照明光学系内のオプティカルインテグレータ70
7や前後のミラー708、709によって形成してい
る。
In the present embodiment, in order to realize a projection optical system having a wide exposure area with a small number of mirrors, only a thin arc-shaped area (ring field) separated from the optical axis by a certain distance is used. Utilizes an optical system. Then, a method (scan exposure) in which the reticle 711 and the wafer 731 are simultaneously scanned synchronously and transferred in a wide exposure area is used. The arc-shaped illumination area on the reticle 711 surface is an optical integrator 70 in the illumination optical system.
7 and front and rear mirrors 708 and 709.

【0058】投影光学系にも複数のミラーを用いてい
る。図3では、投影系第1〜第4ミラー(721〜72
4)によって、レチクル711からの反射光をウエハチ
ャック733に装着されたウエハ731上に導いてい
る。ミラーの枚数は少ない方がEUV光の利用効率が高
いが、収差補正が難しくなる。良好なる収差補正を行う
為に、ミラー枚数を4枚から6枚程度としている。ミラ
ーの反射面の形状は凸面または凹面の球面、非球面、そ
して回転非対称非球面等を用いている。投影光学系の開
口数NAは0.1〜0.3程度である。
A plurality of mirrors are also used in the projection optical system. In FIG. 3, the projection system first to fourth mirrors (721 to 72
4), the reflected light from the reticle 711 is guided onto the wafer 731 mounted on the wafer chuck 733. The smaller the number of mirrors, the higher the EUV light utilization efficiency, but it becomes difficult to correct aberrations. In order to perform good aberration correction, the number of mirrors is set to about 4 to 6. The shape of the reflecting surface of the mirror is a convex or concave spherical surface, an aspherical surface, or a rotationally asymmetrical aspherical surface. The numerical aperture NA of the projection optical system is about 0.1 to 0.3.

【0059】各ミラーは低膨張率ガラスやシリコンカー
バイド等の剛性が高く硬度が高く、熱膨張率が小さい材
料からなる基板を、研削・研磨して所定の反射面形状を
創生した後、反射面にモリブデン/シリコンなどの多層
膜を成膜したものを用いている。ミラー面内の場所によ
って入射角が一定でない場合、ブラツグの式から明らか
なように、膜周期一定の多層膜では場所によって反射率
が高くなるEUV光の波長がずれてしまう。そこでミラ
ー面内で同一の波長のEUV光が効率よく反射されるよ
うに膜周期分布を持たせるようにしている。
Each mirror is formed by grinding and polishing a substrate made of a material having a high rigidity and a high hardness and a small coefficient of thermal expansion such as low expansion coefficient glass or silicon carbide to create a predetermined reflection surface shape, and then reflect it. A multi-layered film of molybdenum / silicon or the like is formed on the surface. When the incident angle is not constant depending on the position on the mirror surface, the wavelength of the EUV light having a high reflectance varies depending on the position in a multilayer film having a constant film period, as is clear from the Bragg equation. Therefore, a film period distribution is provided so that EUV light having the same wavelength is efficiently reflected on the mirror surface.

【0060】レチクルステージ712とウエハステージ
732は、投影光学系の縮小倍率に比例した速度比で同
期して走査する機構をもつ。ここで座標系として、レチ
クル711又はウエハ732の面内で走査方向をX軸、
それに垂直な方向をY軸、レチクル又はウエハ面に垂直
な方向をZ軸とする。
The reticle stage 712 and the wafer stage 732 have a mechanism for synchronously scanning at a speed ratio proportional to the reduction magnification of the projection optical system. Here, as the coordinate system, the scanning direction is the X axis in the plane of the reticle 711 or the wafer 732.
The direction perpendicular to it is the Y axis, and the direction perpendicular to the reticle or wafer surface is the Z axis.

【0061】レチクル711は、レチクルステージ71
2上のレチクルチャック713に保持される。レチクル
ステージ712はX方向に高速移動する機構をもつ。ま
た、X方向、Y方向、Z方向、および各軸の回りの回転
方向に微動機構をもち、レチクル711の位置決めがで
きるようになっている。レチクルステージ712の位置
と姿勢はレーザ干渉計(不図示)によって公知の方法で
計測され、その結果に基いて、位置と姿勢が制御され
る。
The reticle 711 is a reticle stage 71.
2 is held by the reticle chuck 713 above. The reticle stage 712 has a mechanism that moves at high speed in the X direction. In addition, the reticle 711 can be positioned by having a fine movement mechanism in the X direction, the Y direction, the Z direction, and the rotation directions around the respective axes. The position and orientation of the reticle stage 712 are measured by a known method by a laser interferometer (not shown), and the position and orientation are controlled based on the result.

【0062】ウエハ731はウエハチャック733によ
ってウエハステージ732に保持される。ウエハステー
ジ732はレチクルステージ712と同様にX方向に高
速移動する機構をもつ。また、X方向、Y方向、Z方
向、および各軸の回りの回転方向に微動機構をもち、ウ
エハ位置決めができるようになっている。ウエハステー
ジ732の位置と姿勢はレーザ干渉計(不図示)によっ
て公知の方法で計測され、その結果に基いて、位置と姿
勢が制御される。
The wafer 731 is held on the wafer stage 732 by the wafer chuck 733. The wafer stage 732 has a mechanism that moves at high speed in the X direction similarly to the reticle stage 712. Further, a fine movement mechanism is provided in the X direction, the Y direction, the Z direction, and the rotation directions around the respective axes so that the wafer can be positioned. The position and orientation of the wafer stage 732 are measured by a known method by a laser interferometer (not shown), and the position and orientation are controlled based on the result.

【0063】レチクル711とウエハ731の相対的な
位置関係を検出する為、アライメント検出機構714、
734によってレチクル711の位置と投影光学系の光
軸との位置関係、およびウエハ731の位置と投影光学
系の光軸との位置関係が計測され、レチクル711の投
影像がウエハ731の所定の位置に一致するようにレチ
クルステージ712およびウエハステージ732の位置
と角度が設定されている。
In order to detect the relative positional relationship between the reticle 711 and the wafer 731, an alignment detection mechanism 714,
734 measures the positional relationship between the position of the reticle 711 and the optical axis of the projection optical system, and the positional relationship between the position of the wafer 731 and the optical axis of the projection optical system, and the projected image of the reticle 711 is measured at a predetermined position on the wafer 731. The positions and angles of the reticle stage 712 and the wafer stage 732 are set so as to coincide with.

【0064】また、投影光学系の最良結像位置を検出す
るフォーカス位置検出機構735によってウエハ面でZ
方向のフォーカス位置が計測され、ウエハステージ73
2の位置及び角度を制御することによって、露光中は常
時ウエハ面を投影光学系による最良結像位置に保つ。
Further, the focus position detecting mechanism 735 for detecting the best image forming position of the projection optical system is used to move the Z position on the wafer surface.
Direction focus position is measured and the wafer stage 73
By controlling the position and angle of 2, the wafer surface is always kept at the best imaging position by the projection optical system during exposure.

【0065】ウエハ731上で1回のスキャン露光が終
わると、ウエハステージ732はX,Y方向にステップ
移動して次の走査露光開始位置に移動し、再びレチクル
ステージ712及びウエハステージ732が投影光学系
の縮小倍率に比例した速度比でX方向に同期走査して、
レチクル711のパターンをウエハ731に露光してい
る。
When one scan exposure is completed on the wafer 731, the wafer stage 732 moves stepwise in the X and Y directions and moves to the next scan exposure start position, and the reticle stage 712 and the wafer stage 732 again project the projection light. Synchronous scanning in the X direction at a speed ratio proportional to the reduction ratio of the system,
The pattern of the reticle 711 is exposed on the wafer 731.

【0066】このようにして、レチクル711の縮小投
影像がとウエハ731上に結像した状態でそれらを同期
走査するという動作が繰り返され(ステップ・アンド・
スキャン)、ウエハ全面にレチクルの転写パターンが転
写される。
In this way, the operation of synchronously scanning the reduced projection image of the reticle 711 while it is formed on the wafer 731 is repeated (step and
(Scan), the transfer pattern of the reticle is transferred onto the entire surface of the wafer.

【0067】以上述べたように各実施形態によれば、簡
単な構成で光学素子表面に形成された光学薄膜の位相を
精度良く測定することができる。又、各実施形態の構成
は波長によらないため、EUVのように極端に使用する
光学素子の種類が限られた系であっても適用が可能であ
る。
As described above, according to each embodiment, the phase of the optical thin film formed on the surface of the optical element can be accurately measured with a simple structure. Further, since the configuration of each embodiment does not depend on the wavelength, it can be applied even to a system in which the types of optical elements to be used extremely are limited, such as EUV.

【0068】また、上記に記載の位相測定装置を用いて
測定を行った光学素子を露光装置に組み込んでも良い
し、その他の光学機器に組み込んでも良い。また、上記
に記載の位相測定方法、或いは位相測定装置を用いた露
光装置により被露光体(ウエハ等)を露光する工程、露
光された被露光体を現像する工程を経て、デバイスを製
造するようにしても良い。このデバイスの製造方法に
は、上記の工程の他に、公知の様々な工程を含む。
The optical element measured by using the phase measuring apparatus described above may be incorporated in the exposure apparatus or may be incorporated in other optical equipment. Further, the device may be manufactured through the step of exposing the exposed object (wafer or the like) by the phase measuring method or the exposure apparatus using the phase measuring apparatus described above, and the step of developing the exposed object. You can The manufacturing method of this device includes various known steps in addition to the above steps.

【0069】[0069]

【発明の効果】本発明によれば、曲率のある反射鏡や平
面反射鏡に施した膜の各位置における位相特性又は/及
び入射角に依存する膜の位相特性を容易に、しかも高精
度に測定することができる位相測定装置を達成すること
ができる。
According to the present invention, the phase characteristic at each position of the film formed on the reflecting mirror or the plane reflecting mirror having a curvature or / and the phase characteristic of the film depending on the incident angle can be easily and highly accurately obtained. A phase measuring device that can measure can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態1の位置による位相測定の
要部概略図
FIG. 1 is a schematic view of a main part of phase measurement according to a position according to a first embodiment of the present invention.

【図2】 本発明の実施形態1の入射角による位相測定
の要部概略図
FIG. 2 is a schematic view of a main part of phase measurement according to an incident angle according to the first embodiment of the present invention.

【図3】 本発明の露光装置の要部概略図FIG. 3 is a schematic view of a main part of an exposure apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 光源手段 2 反射鏡 3 部材 4 絞り 5 膜 5c 物体面 6 被検物体 7 検出手段 8 演算手段 9 集光光学系 G1 分岐グレーティング G2 結合グレーティング 1 light source means 2 reflector 3 members 4 aperture 5 membranes 5c Object plane 6 Object to be inspected 7 Detection means 8 computing means 9 Focusing optical system G1 branch grating G2 coupled grating

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 光源手段と、該光源手段からの光束を複
数の光束に分岐し、表面上に膜を施した被検物体上の複
数の位置に導光する分岐グレーティングと、 該被検物体上の該複数の位置のうち、近傍する2点で反
射した2つの反射光を結合させる結合グレーティング
と、 該結合グレーティングにより結合された2つの光に基づ
く干渉情報を検出する検出手段と、を有し、該検出手段
で得られる干渉情報より、該被検物体上に施した膜の位
置に依存する位相情報を測定することを特徴とする位相
測定装置。
1. A light source unit, a branching grating for branching a light beam from the light source unit into a plurality of light beams, and guiding the light beam to a plurality of positions on an object to be inspected having a film on a surface thereof, and the object to be inspected. A coupling grating that couples two reflected lights reflected at two neighboring points among the plurality of positions above, and a detection unit that detects interference information based on the two lights coupled by the coupling grating. Then, the phase measuring device is characterized in that the phase information depending on the position of the film formed on the object to be measured is measured from the interference information obtained by the detecting means.
【請求項2】 光源手段と、該光源手段からの光束を集
光し、入射角にある幅を有するようにして、表面上に膜
を施した被検物体上に入射させる反射手段と、 該被検物体で反射した光の波面を検出する検出手段と、
を有し、該検出手段で得られる波面情報より、該被検物
体上に施した膜への入射角度に依存する位相情報を測定
することを特徴とする位相測定装置。
2. A light source means, and a reflection means for collecting a light beam from the light source means and making it have a width at an incident angle to be incident on an object to be inspected having a film on the surface thereof. Detecting means for detecting the wavefront of the light reflected by the object to be inspected,
And a phase measuring device which measures the phase information depending on the incident angle to the film formed on the object to be measured, from the wavefront information obtained by the detecting means.
【請求項3】 光源手段と、該光源手段からの光束を集
光し、入射角にある幅を有するようにして、表面上に膜
を施した被検物体上に入射させる反射手段と、 該被検物体で反射した光を複数の光束に分岐する分岐グ
レーティングと、 該分岐グレーティングにより分岐した複数の光束のうち
2つの光に基づく干渉情報を検出する検出手段と、を有
し、該検出手段で得られる干渉情報より、該被検物体上
に施した膜への入射角度に依存する位相情報を測定する
ことを特徴とする位相測定装置。
3. A light source means, and a reflection means for condensing a light beam from the light source means and making it have a width at an incident angle to be incident on an object to be inspected having a film on the surface thereof. The detection means includes: a branching grating for branching the light reflected by the object to be examined into a plurality of light fluxes, and a detection means for detecting interference information based on two lights of the plurality of light fluxes branched by the branching grating. A phase measuring device, which measures the phase information depending on the incident angle to the film formed on the object to be inspected, from the interference information obtained in (1).
【請求項4】 前記被検物体に入射する光束は、前記被
検物体上の1点に入射することを特徴とする請求項2又
は3記載の位相測定装置。
4. The phase measuring device according to claim 2, wherein the light beam incident on the object to be inspected is incident on one point on the object to be inspected.
【請求項5】 光源手段と、該光源手段からの光束を複
数の光束に分岐し、表面上に膜を施した被検物体上の複
数の位置に導光する分岐グレーティングGaと、 該被検物体上の該複数の位置のうち、近傍する2点で反
射した2つの反射光を結合させる結合グレーティング
と、 該結合グレーティングにより結合された2つの光に基づ
く干渉情報を検出する検出手段と、を有し、該検出手段
で得られる干渉情報より、該被検物体上に施した膜の位
置に依存する位相情報を測定することと共に、該分岐グ
レーティングGaと結合グレーティングを光路中より退
避させ、それらの代わりに該光源手段からの光束を集光
し、入射角にある幅を有するようにして,表面上に膜を
施した被検物体上に入射させる反射手段と、 該被検物体で反射した光を複数の光束に分岐する分岐グ
レーティングGbを光路中に設け、該分岐グレーティン
グGbにより分岐した複数の光束のうち2つの光に基づ
く干渉情報を該検出手段で検出し、 該検出手段で得られる干渉情報より、該被検物体上に施
した膜への入射角度に依存する位相情報を測定すること
を特徴とする位相測定装置。
5. A light source means, a branch grating Ga for branching a light flux from the light source means into a plurality of light fluxes, and guiding the light flux to a plurality of positions on an object to be inspected having a film on a surface thereof, and the branch grating Ga. Of the plurality of positions on the object, a combined grating that combines two reflected lights reflected at two neighboring points, and a detection unit that detects interference information based on the two lights combined by the combined grating are provided. And measuring the phase information depending on the position of the film applied on the object to be measured from the interference information obtained by the detecting means, and retracting the branch grating Ga and the coupling grating from the optical path, Instead of, the light flux from the light source means is condensed, and is made to have a width at an incident angle, and is incident on an object to be inspected having a film on the surface thereof, and is reflected by the object to be inspected. Multiple light A branching grating Gb for branching into a light beam is provided in the optical path, interference information based on two lights of a plurality of light beams branched by the branching grating Gb is detected by the detecting means, and the interference information obtained by the detecting means is A phase measuring apparatus, which measures phase information depending on an incident angle to a film formed on the object to be inspected.
【請求項6】 さらに偏光選択手段を有し、選択した偏
光における位相情報を測定することを特徴とする請求項
1乃至5いずれか1項の記載の位相測定装置。
6. The phase measuring device according to claim 1, further comprising polarization selecting means for measuring phase information of the selected polarized light.
【請求項7】 請求項1乃至6いずれか1項の位相測定
装置で測定した光学部材を有していることを特徴とする
露光装置。
7. An exposure apparatus comprising an optical member measured by the phase measuring apparatus according to any one of claims 1 to 6.
【請求項8】 表面上に膜を施した被検物体に対して、
実質的に1点に光束を入射し、前記1点からの光束をシ
アリング干渉させることにより、膜の位置及び角度依存
の位相情報を、位置及び/又は角度に関して概略微分す
ることにより、前記膜への入射角度に依存する位相情報
を測定することを特徴とする位相測定方法。
8. An object to be inspected having a film on its surface,
By substantially differentiating the position and / or angle-dependent phase information of the film with respect to the position and / or the angle by injecting the light beam into substantially one point and causing shearing interference of the light beam from the one point to the film. A phase measuring method characterized by measuring phase information depending on an incident angle of.
【請求項9】 請求項8に記載の前記位相測定方法によ
り位相測定を行った光学部材を有していることを特徴と
する露光装置。
9. An exposure apparatus comprising an optical member having a phase measured by the phase measuring method according to claim 8.
【請求項10】 請求項9に記載の露光装置により被露
光体に露光する工程と、露光された前記被露光体を現像
する工程とを有することを特徴とするデバイスの製造方
法。
10. A method for manufacturing a device, comprising the steps of exposing the exposed object by the exposure apparatus according to claim 9, and developing the exposed object.
JP2002024469A 2002-01-31 2002-01-31 Phase measurement device Expired - Fee Related JP3581689B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002024469A JP3581689B2 (en) 2002-01-31 2002-01-31 Phase measurement device
EP03250495A EP1333260A3 (en) 2002-01-31 2003-01-28 Phase measuring method and apparatus
US10/356,231 US7030998B2 (en) 2002-01-31 2003-01-31 Phase measurement apparatus for measuring characterization of optical thin films
US11/264,044 US7327467B2 (en) 2002-01-31 2005-11-02 Phase measuring method and apparatus for measuring characterization of optical thin films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024469A JP3581689B2 (en) 2002-01-31 2002-01-31 Phase measurement device

Publications (2)

Publication Number Publication Date
JP2003222572A true JP2003222572A (en) 2003-08-08
JP3581689B2 JP3581689B2 (en) 2004-10-27

Family

ID=27746906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024469A Expired - Fee Related JP3581689B2 (en) 2002-01-31 2002-01-31 Phase measurement device

Country Status (1)

Country Link
JP (1) JP3581689B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005321285A (en) * 2004-05-07 2005-11-17 Canon Inc Optical system assembling/adjusting method
JP2008541439A (en) * 2005-05-13 2008-11-20 カール ツァイス エスエムテー アーゲー EUV projection optical system with six reflectors
JP2009508150A (en) * 2005-09-13 2009-02-26 カール・ツァイス・エスエムティー・アーゲー Microlithography projection optics, method for manufacturing an instrument, method for designing an optical surface
JP2010015149A (en) * 2008-07-02 2010-01-21 Samsung Electronics Co Ltd Method of measuring phase of phase inversion mask and apparatus for the method
US7999917B2 (en) 2007-07-17 2011-08-16 Carl Zeiss Smt Gmbh Illumination system and microlithographic projection exposure apparatus including same
US8018650B2 (en) 2007-01-17 2011-09-13 Carl Zeiss Smt Gmbh Imaging optical system
US8027022B2 (en) 2007-07-24 2011-09-27 Carl Zeiss Smt Gmbh Projection objective
US8094380B2 (en) 2006-03-27 2012-01-10 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8934085B2 (en) 2007-09-21 2015-01-13 Carl Zeiss Smt Gmbh Bundle-guiding optical collector for collecting the emission of a radiation source
US8970819B2 (en) 2006-04-07 2015-03-03 Carl Zeiss Smt Gmbh Microlithography projection optical system, tool and method of production
JP5725681B1 (en) * 2014-01-22 2015-05-27 レーザーテック株式会社 Interferometer and phase shift amount measuring apparatus
CN112083631A (en) * 2020-08-31 2020-12-15 北京理工大学 Informatics calculation photoetching method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8967817B2 (en) 2001-05-25 2015-03-03 Carl Zeiss Smt Gmbh Imaging optical system with at most 11.6% of the illuminated surfaces of the pupil plane being obscured
JP4522137B2 (en) * 2004-05-07 2010-08-11 キヤノン株式会社 Optical system adjustment method
JP2005321285A (en) * 2004-05-07 2005-11-17 Canon Inc Optical system assembling/adjusting method
JP2008541439A (en) * 2005-05-13 2008-11-20 カール ツァイス エスエムテー アーゲー EUV projection optical system with six reflectors
JP2012008574A (en) * 2005-09-13 2012-01-12 Carl Zeiss Smt Gmbh Microlithography projection optical system, method for manufacturing device, and method for designing optical surface
JP2009508150A (en) * 2005-09-13 2009-02-26 カール・ツァイス・エスエムティー・アーゲー Microlithography projection optics, method for manufacturing an instrument, method for designing an optical surface
JP2013210647A (en) * 2005-09-13 2013-10-10 Carl Zeiss Smt Gmbh Microlithography projection optical system, method for manufacturing apparatus, and method for designing optical surface
JP2010107988A (en) * 2005-09-13 2010-05-13 Carl Zeiss Smt Ag Microlithography projection optical system, method for manufacturing device, and method to design optical surface
US9465300B2 (en) 2005-09-13 2016-10-11 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8169694B2 (en) 2005-09-13 2012-05-01 Carl Zeiss Smt Gmbh Catoptric objectives and systems using catoptric objectives
US8094380B2 (en) 2006-03-27 2012-01-10 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8810927B2 (en) 2006-03-27 2014-08-19 Carl Zeiss Smt Gmbh Projection objective and projection exposure apparatus with negative back focus of the entry pupil
US8970819B2 (en) 2006-04-07 2015-03-03 Carl Zeiss Smt Gmbh Microlithography projection optical system, tool and method of production
US9482961B2 (en) 2006-04-07 2016-11-01 Carl Zeiss Smt Gmbh Microlithography projection optical system, tool and method of production
US8208200B2 (en) 2007-01-17 2012-06-26 Carl Zeiss Smt Gmbh Imaging optical system
US8810903B2 (en) 2007-01-17 2014-08-19 Carl Zeiss Smt Gmbh Imaging optical system
US8018650B2 (en) 2007-01-17 2011-09-13 Carl Zeiss Smt Gmbh Imaging optical system
US9298100B2 (en) 2007-01-17 2016-03-29 Carl Zeiss Smt Gmbh Imaging optical system
US7999917B2 (en) 2007-07-17 2011-08-16 Carl Zeiss Smt Gmbh Illumination system and microlithographic projection exposure apparatus including same
US8027022B2 (en) 2007-07-24 2011-09-27 Carl Zeiss Smt Gmbh Projection objective
US8934085B2 (en) 2007-09-21 2015-01-13 Carl Zeiss Smt Gmbh Bundle-guiding optical collector for collecting the emission of a radiation source
JP2010015149A (en) * 2008-07-02 2010-01-21 Samsung Electronics Co Ltd Method of measuring phase of phase inversion mask and apparatus for the method
JP5725681B1 (en) * 2014-01-22 2015-05-27 レーザーテック株式会社 Interferometer and phase shift amount measuring apparatus
US9719859B2 (en) 2014-01-22 2017-08-01 Lasertec Corporation Interferometer and phase shift amount measuring apparatus with diffraction gratings to produce two diffraction beams
CN112083631A (en) * 2020-08-31 2020-12-15 北京理工大学 Informatics calculation photoetching method
CN112083631B (en) * 2020-08-31 2021-06-08 北京理工大学 Informatics calculation photoetching method

Also Published As

Publication number Publication date
JP3581689B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
TWI416272B (en) Surface shape measuring apparatus, exposure apparatus, and device manufacturing method
US7528966B2 (en) Position detection apparatus and exposure apparatus
TWI525397B (en) Metrology method and apparatus, lithographic apparatus, and device manufacturing method
US7327467B2 (en) Phase measuring method and apparatus for measuring characterization of optical thin films
EP1605312B1 (en) Radiation system, lithographic apparatus and device manufacturing method
TWI437378B (en) Lithographic apparatus and device manufacturing method
KR100724050B1 (en) A method for measuring information about a substrate, and a substrate for use in a lithographic apparatus
JP6006919B2 (en) Catadioptric lighting system for metrology
US9885558B2 (en) Interferometric apparatus for detecting 3D position of a diffracting object
KR20090034784A (en) Measuring apparatus, exposure apparatus, and device fabrication method
JP5361322B2 (en) Exposure apparatus and device manufacturing method
JP2011040547A (en) Measurement apparatus, exposure apparatus, and method of manufacturing device
TW200305928A (en) Exposure apparatus and method
TWI434151B (en) Diffraction elements for alignment targets
JP3581689B2 (en) Phase measurement device
TWI460559B (en) Level sensor arrangement for lithographic apparatus, lithographic apparatus and device manufacturing method
JP2006191046A (en) Method and exposure equipment for performing inclined focusing, and device manufactured according to the same
KR100588116B1 (en) Lithographic Apparatus and Method to determine Beam Size and Divergence
TWI358529B (en) Shape measuring apparatus, shape measuring method,
JPH07130636A (en) Position detector and manufacture of semiconductor element using same
JP2007096293A (en) Lighting beam measurement
JP2004045043A (en) Phase measurement device, and optical element, exposure apparatus and device manufacturing method using the same
JP2005167139A (en) Wavelength selection method, position detection method and apparatus, and exposure apparatus
JP2001358059A (en) Method for evaluating exposure apparatus and exposure apparatus
JP3581690B2 (en) Phase measuring method and phase measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040720

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040723

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090730

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090730

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110730

LAPS Cancellation because of no payment of annual fees