JP2004045043A - Phase measurement device, and optical element, exposure apparatus and device manufacturing method using the same - Google Patents

Phase measurement device, and optical element, exposure apparatus and device manufacturing method using the same Download PDF

Info

Publication number
JP2004045043A
JP2004045043A JP2002199019A JP2002199019A JP2004045043A JP 2004045043 A JP2004045043 A JP 2004045043A JP 2002199019 A JP2002199019 A JP 2002199019A JP 2002199019 A JP2002199019 A JP 2002199019A JP 2004045043 A JP2004045043 A JP 2004045043A
Authority
JP
Japan
Prior art keywords
light
wavelength
phase
measured
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002199019A
Other languages
Japanese (ja)
Inventor
Minoru Yoshii
吉井 実
Chigusa Oouchi
大内 千種
Seiji Takeuchi
竹内 誠二
Mitsuo Sugita
杉田 充朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002199019A priority Critical patent/JP2004045043A/en
Publication of JP2004045043A publication Critical patent/JP2004045043A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase measurement device which can easily measure phase characteristics corresponding to an EUV wavelength of a reflective coating film applied on a curved mirror or a flat mirror with a high degree of precision. <P>SOLUTION: The phase measurement device comprises an optical system for illumination in which a light flux including EUV light and light with a wavelength of 248 nm is emitted to an inspection surface within a predetermined angle range, and an optical system for detection in which interference fringes of the EUV light and the light with a wavelength of 248 nm are formed on a detection means due to the reflected light from the inspection surface. In addition, by measuring the interference fringes detected by the detection means, the dependence of the phase of the EUV light due to the inspection surface on an incident angle of the EUV light to the inspection surface is measured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は光学薄膜の位相測定装置に関し、例えばIC、LSI等の半導体デバイス、CCD等の撮影デバイス、液晶パネル等の表示デバイス等のデバイス製造用のステップ・アンド・リピート方式やステップ・アンド・スキャン方式等の露光装置に用いる光学系の反射面や透過面につけられている光学薄膜の位相を計測する際に好適なものである。
【0002】
【従来の技術】
デバイスパターンの微細化に伴い、デバイスパターンをウエハ等の感光材料に投影露光するときの露光光の波長はますます短波長化されている。例えば露光波長として、波長約248nmのKrF、波長約193nmのArF、波長約157nmのF2レーザ、さらには波長10〜15nmのEUVの光まで用いるようになってきている。
【0003】
デバイスパターンの微細化は半導体産業のダイナミックスを支えるもっとも大きなファクタで、256M DRAMを作成する際に線幅0.25ミクロンのパターンの解像を要求した時代から、要求される解像可能な線幅が180nm、130nm、100nmと急速に微細化してきている。露光光としてi線(波長約365nm)を利用したリソグラフィでは波長以下の線幅の解像は使われてこなかった。
【0004】
これに対して、KrFを光源として用いた露光装置においては、露光光の波長が約248nmの波長であるにもかかわらず、180nmさらには150nmの線幅を対象としたリソグラフィに適用されている。レジストの改良、超解像技術等の成果を駆使して、波長以下の線幅の解像が実用化されつつある。種々の超解像技術を駆使すれば、lines and spacesで1/2波長の線幅のパターン解像が実用の視野に入ってきている。
【0005】
しかしながら、超解像技術にはパターンの製造上の制約が伴うことも多く、解像力向上の王道は何といっても露光光の波長を短くし、投影光学系のNAを向上させることである。上記事実が露光光の短波長化への大きなモーティベーションとなっており、波長10〜15nm(13〜14nm)の光を露光光として用いるEUVリソグラフィを開発する所以となっている。
【0006】
【発明が解決しようとする課題】
EUV光を露光光として用いる場合は、EUV波長域で透明な(EUV光を高い透過率で透過する)物質が現状では存在しない為、EUV領域を対象とする光学系では使用できる材料に大きな制限が加わる。特に、従来用いていたような透過型(屈折型)の光学素子はもはや使用できず、ほぼ総ての光学系を反射系の構成としなければならない。このようなEUV光を用いた露光装置においては、EUV光に対する光学材料の光学定数(屈折率)が1に近くなってしまう為、ミラー表面の反射率が低くなり、各ミラーでの吸収率が高くなってしまうという問題がある。つまり、所定の反射率を得る為に反射鏡(ミラー)につける反射増強用の膜の特性(反射率等)が大きな課題となっている。
【0007】
KrF、ArF、F2等のレーザー光を用いた場合と異なり、EUV領域の短波長の光を対象とした反射膜で特徴的なのは、反射率とともに膜の位相(位相分布)の管理が要求されることである。EUV光が反射膜で反射する際、EUV光の位相が変化する。EUV光の反射膜への入射角が均一でない場合は、入射角によって反射膜の周期長にずれが生じるため、反射膜で反射されたEUV光の位相差はミラー面(反射膜)に入射した波面をひずませることになり、その結果収差(波面収差)を発生させる原因となる。
【0008】
このため、反射面に膜をつけた時点で反射膜の位相特性(反射光の位相分布)を測定する必然性が生じてきた。特に、反射膜を施した各位置において反射膜に種々な角度でEUV光が入射したときの角度特性(入射角依存性)を測定することが望ましい。
【0009】
また、反射結像系の収差を補正するためには、ミラー(反射面)の基板の曲率や非球面量など、基板の形状を高精度に製造する他に、反射増強用の多層膜の性能も精度良く管理する必要がある。このときの多層膜は1つのミラー面(反射面)の中でも反射する位置に応じて反射の際に光に与える位相が大きく異ならないように精度良く制御しなければならない。そのため、反射結像系を組み上げる前に、ミラーの形状を仕上げ、ミラー面上に多層膜を積層させたそれぞれの位置での反射位相が設計値と同じく製造されているかを検査する必要がある。
【0010】
本発明は、反射鏡に施した膜の各位置における入射角に依存する膜の位相特性、すなわち被検面である反射鏡(反射面)がEUV波長領域(10nm−15nm、好ましくは13nm−15nm)の光に与える位相の、第1波長の光の被検面への入射角への依存性、を容易にしかも高精度に測定することができる位相測定装置の提供を目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するために、本発明の位相測定装置は、第1波長の光と第2波長の光を含む光束を披検面に所定の角度範囲を持って入射させる照明光学系と、前記被検面からの反射光により前記第1波長の光の干渉縞と前記第2波長の光の干渉縞とを検出手段上に形成する検出光学系とを有し、前記検出手段により検出された前記干渉縞を測定することによって、前記被検面が前記第1波長の光に与える位相の、前記第1波長の光の前記被検面への入射角への依存性を測定することを特徴としている。
【0012】
ここで、前記第1波長の光の前記被検面への入射角に対する、前記被検面が前記第1波長の光に与える位相変化と、前記第2波長の光の前記被検面への入射角に対する、前記第2波長の光の位相変化とから、前記被検面が前記第1波長の光に与える位相の、前記第1波長の光の前記被検面への入射角への依存性を測定するようにしても良い。
【0013】
また、前記被検面からの反射光を横ずらしすることによって、前記第1波長の光の干渉縞及び前記第2波長の光の干渉縞を形成しており、前記横ずらしに起因する位相の変化量を前記第2波長の光の干渉縞から求め、前記第1波長の光の干渉縞と前記横ずらしに起因する位相の変化量から、前記被検面が前記第1波長の光に与える位相の、前記第1波長の光の前記被検面への入射角への依存性を測定するようにしても良い。
【0014】
ここで、前記第1波長が前記第2波長よりも短いことが好ましく、さらに、前記第2波長が前記第1波長の10倍より長いと尚好ましい。より具体的には、前記第1波長は、10nm以上15nm以下の波長、さらに好ましくは、13nm以上14nm以下の波長であると良く、前記第2波長は、150nm以上の波長であると良い。
【0015】
また、前記被検面は、MoとSiを用いて形成された反射用多層膜を有すると良い。勿論、Be−Si、Rh−Si膜でも構わない。Be−Si膜を用いる場合は波長が10nm−12nmの範囲内であることが好ましい。
【0016】
ここで、前記被検面からの反射光を複数の光束に分岐する分岐光学素子を有し、前記複数の光束のうち少なくとも2つの光束を干渉させることにより、前記第1波長の光の干渉縞と前記第2波長の光の干渉縞とを検出手段上に形成するようにすると良い。
【0017】
また、前記分岐光学素子が、分岐回折格子(回折格子)であると好ましい。さらに、前記検出光学系が、前記分岐光学素子により分岐された複数の光束のうち2つの光束を選択的に透過する遮光部材を有すると尚良い。また、前記2つの光束のうち1つの光束が、前記遮光部材よりも前記検出手段側において、理想的な球面波となるように前記遮光部材を形成しても良いし、さらに、前記遮光部材が、前記分岐光学素子から出射した光のうち、前記第1波長の光を透過するための第1開口部と、前記第2波長の光を透過するための第2開口部とを有し、前記第1開口部と前記第2開口部とは大きさが異なり、前記第1開口部と前記第2開口部とは少なくとも一部が互いに重なっているように構成しても良い。ここで、前記第1開口部と前記第2開口部とは、互いの中心が略一致していると尚良い。さらに、前記分岐光学素子が分岐回折格子であって、前記第1開口部と前記第2開口部とが重なっている領域を、前記分岐回折格子から出射した0次回折光が透過するように構成すると尚好ましい。
【0018】
また、前記第2波長の光が前記被検面に入射する第2入射角に対する、前記検出手段により検出した前記第2波長の光の干渉縞を光電変換して得られる、前記第2波長の光が前記被検面で反射することにより受ける位相の変化量の傾き成分(チルト成分)を用いて、
前記第1波長の光が前記被検面に入射する第1入射角度に対する、前記検出手段により検出した前記第1波長の光の干渉縞を光電変換して得られる、前記第1波長の光が前記被検面で反射することにより受ける位相の変化量から、前記傾き成分(チルト成分)を除去するように構成すると尚良い。
【0019】
また、前記照明光学系は、前記第1波長の光と前記第2波長の光を重ね合わせるための回折格子を有するにしても良い。勿論ハーフミラー等の部材を用いて両者の光を重ね合わせても構わない。また、第1波長の光と第2波長の光とは、前記被検面に対して、同一の入射角度の幅を以って入射させるようにするのが好ましい。
【0020】
また、前記遮光部材が、前記分岐回折格子より出射する複数の回折光のうち2つの回折光を選択的に透過するように構成しても良いし、その2つの回折光を、プラス1次回折光とマイナス1次回折光としても良いし、又はその2つの回折光のうちの1つが0次回折光であるようにしても良い。
【0021】
また、本発明は位相測定装置に限定されるものではなく、位相測定方法であってもよい。本発明の位相測定装置は、照明光学系で第1波長の光と第2波長の光を含む光束を披検面に所定の角度範囲を持って入射させる工程と、検出光学系により前記被検面からの反射光により前記第1波長の光の干渉縞と前記第2波長の光の干渉縞とを検出手段上に形成する工程と、前記検出手段により検出された前記干渉縞を測定することによって、前記被検面が前記第1波長の光に与える位相の、前記第1波長の光の前記被検面への入射角への依存性を測定する工程とを有することを特徴とする。
【0022】
ここで、本発明の位相測定装置により位相を測定した光学素子や、その光学素子を有する露光装置や、この露光装置を用いて被露光体を露光する工程と、該被露光体を現像する工程とを有することを特徴とするデバイスの製造方法等も本発明の一部である。
【0023】
また、本発明の干渉計としては、被検面からの光を複数の光に分割し、該複数の光の波面を互いに横ずらしした状態で干渉させて干渉縞を形成し、該干渉縞から得られる位相分布に基づいて前記被検面からの光の波面の状態を測定する干渉計において、前記光は互いに波長が異なる第1,第2の光を含み、該第1,第2の光毎に前記干渉縞を形成し、前記第1,第2の光のうちの波長が長い第2の光による前記干渉縞から得られる位相分布から位相変化成分を求め、前記第1の光による前記干渉縞から得られる位相分布と該位相変化成分とを用いて、前記第1の光の前記波面の状態を測定するように構成すると良い。
【0024】
ここで、前記位相変化成分が前記横ずらし及び/又は前記被検面の表面形状に起因するものであると好ましい。
【0025】
前記第2の光の波長が前記第1の光の波長の10倍より長いと尚良い。より具体的には、前記第1の光の波長は、10nm以上15nm以下、より好ましくは13nm以上14nm以下の波長であると良く、前記第2波長は、150nm以上の波長であることが好ましい。
【0026】
ここで、本発明の干渉計により測定を行った被検面を有する光学素子やその光学素子を有することを特徴とする露光装置やその露光装置を用いて被露光体を露光する工程と、該被露光体を現像する工程とを有することを特徴とするデバイスの製造方法も本発明の一部である。
【0027】
【発明の実施の形態】
本実施形態の反射膜(多層膜)の反射位相分布の測定では、EUV光の反射膜への入射角の違いによる反射光の位相(反射膜のEUV光の入射角依存性)の測定を行っている。 本実施例の位相測定装置(干渉計)は、例えば248nmと13.5nmの波長からなるほぼ理想的な球面波に収束光を、集光点の手前で表面上に膜を施した被検物体上に照射する。この248nmと13.5nmの波長の光の波面は同軸で集光点を一致させておく。本来計測したい波長は13.5nmであるが、干渉縞から波面を算出する際に、入射波面に対する反射波面の傾き成分を除去しなければならないが、この傾き成分は13.5nmの波長の光の干渉縞だけからは、13.5nmの光の反射率が低いため求められない場合がある。干渉縞から得られた位相を用いて位相の変化を算出する場合、位相の入射角に対する傾きは基準となるものがないと求めることができない。本発明はこの基準となるものとして、膜の被検面の表面で反射する、可視光もしくはUV光、この例では248nmの波長の波面を用いる。
【0028】
具体的には、被検面で反射した波面を横ずらしするための分岐回折格子(勿論、分岐回折格子に限らず、光束を分岐、横ずらしするものなら、ハーフミラーや格子状に形成されたミラー等のどのような分岐光学素子を使っても構わない。)により分岐し、その集光点においてアパーチャー等により、例えば+1次、−1次光を選び出し、CCD等の検出手段上(検出面)にシアリング干渉縞や点回折干渉縞を発生させ、その干渉縞から波面の位相を求めるものである。ここで、13.5nmの波長と248nmの波長は分岐グレーティングを分割し、それぞれの波長で同一の回折角になるように回折格子のピッチが決めている。13.5nmの波面が248nm用回折格子に入っても、上記アパーチャでけられてしまうし、また逆に248nmの波面が13.5nm用の回折格子に入っても同様にアパーチャでけられる。
【0029】
これまで説明してきたように、248nmの光の波面は被検面の表面形状の情報をもった波面及び/又は被検面からの反射光を横ずらししたことに起因する位相変化成分の情報を持った波面であり、13.5nmの光の波面は膜(被検面、披検膜)の内部の情報をもった波面である。勿論13.5nmの光の波面は、248nmの光の波面が持っている情報も有している。したがって、13.5nmの波長の光248 nmの波面と13.5 nmの波面とが持つ情報に基づいて、反射膜への入射角の違いによる反射光の位相(反射膜のEUV光の入射角依存性)の測定を行うことができる。その波面情報を得る手段として、それぞれの波長の光の干渉縞を測定するという手段がある。
【0030】
また、波面を検出する干渉計として、シアリング干渉計で説明してきたが、点回折干渉計(Point Diffraction Interferometer:PDI)も可能である。PDIの場合は分岐回折格子後の回折光を選択するアパーチャーにおいて一つの開口を波面の収差を反映する程度の大きさのアパーチャーと理想的球面波を発生するほど小さいピンホール(波長の2倍程度、1.5倍以上3倍以下の直径を有するピンホール)で構成する。このピンホールは第2実施例に明示するように、可視光もしくはUV光に対してもEUV光に対しても球面波を発生するように構成したものである。
【0031】
以下具体的な実施例を図を用いて説明する。
【0032】
(第1実施例)
図1〜図5は本発明の位相測定装置の実施例1の要部概略図であり、EUV波長域の光を対象とした反射面上の反射膜の位相情報を測定する場合を示している。
【0033】
図1について説明する。波長13.5nmの光を発するEUV用の光源1(波長は13.5nmに限らず、13.4nmでも構わないし、10nm〜15nmの波長の光であれば構わない)からの光束L1は反射鏡2で反射し、部材3に設けたピンホール3aを通して事実上点光源から発した光束L4とすることにより波面を整えられる。ピンホール3aから広がった光束L4を、楕円面、放物面、回転非対称非球面等の反射鏡9を介して、反射膜(被検面)5上で第1の入射角θ1から第2の入射角θ2までの幅(範囲)をもった光束L5として反射膜5上の測定点5cを照射する。一方波長248nmの光源21は集光光学系19、合波グレーティング22をとおして光束L5と重ね合わせられ、光束L5と同様に第1の入射角θ1から第2の入射角θ2までの幅(範囲)をもった光束L5として反射膜5上の測定点5cを照射する。
【0034】
反射膜5上の測定点5cで反射した光束L6は集光点8に向けて進むが、その途中にある分岐回折格子(光束分割手段)G1によって、それぞれの波長の光が回折し、その結果光束L6がシアリングされ2つの光束に分離される。そして、複数の開口部を有するアパーチャーA1により+1次、−1次回折光のみが選択的にアパーチャーを透過する。その+1次、−1次の回折光を互いに干渉させ、その干渉情報をCCDなどの光電変換器を用いた検出手段7によって検出する。図1では、分岐回折格子G1を出射する光束が分割されていないように見えるが、本当は図5に示すように光束は回折し、0次光、+1次光、−1次光、+2次光・・・等に分割されている。
【0035】
そして演算手段10によって検出手段7からの信号を用いて測定点5cで反射した反射光の位相の入射角θ1θ1〜θ2における入射角分布(入射角依存性)を得ている。入射角分布は、
φ(x,θ+Δθ)−φ(x,θ)
という位相の差分を干渉信号の強度として求めている。
【0036】
Δθは、反射膜5への光の入射角度のθからの角度のずれ(ずらし角)である。上記式は入射角θを基準にして、θからの所定の角度Δθだけ入射角がずれた時の反射光の位相のずれを表しているが、ここでの入射角θは、第1の入射角θ1から第2の入射角θ2までの範囲内の所定の角度である。ここで、反射膜上の第1の位置x1において、Δθを非常に微小にすることによって、dφ(x1,θ)/dθを計測している。
【0037】
光束L5は反射膜5(被検物体6)と測定系の相対的な移動によって多層膜全面を走査することにより、反射膜5全面における、反射光の入射角度特性(入射角度依存性)を求めている。また、この積分値を微分することでその位置xにおける入射角分分布φ(x,θ)を得ることができる。
【0038】
以上のように第一実施例では、一定のNAを有する集光光学系(反射鏡)9によって膜5面上に入射角に幅(範囲)をもった光を入射させ、膜5面からの反射光を分岐回折格子(光束分割手段)G1によって波面をシアリングし、干渉させて、検出手段7でこの干渉情報を得ることにより反射膜5の入射角による位相情報(入射角度依存性)を得ている。
【0039】
図2は図1の被検面と分岐回折格子G1とアパーチャー(開口)A1の位置関係を示したものである。ここでは、光波が進む方向であるZ軸に垂直で紙面と平行な方向をX軸、紙面と垂直な方向をY軸としている。分岐回折格子G1により光束L6は回折し、回折次数0次、±1次、±2次、・・・・の光束に分離する。この分離の様子を示したのが図5で、図3から図6は分岐回折格子G1近傍の様子を図示したものである。ここで、この分岐回折格子G1は、X方向へ移動させる移動機構をもっている。
【0040】
図3は分岐回折格子G1をX−Y平面内で示したもので、X方向が回折格子の周期方向である。またY方向に関しては、中心部G10には波長13.5nm用の回折格子が、その両側G11,G12には248nm用の回折格子が形成されており、G10の回折格子のピッチとG11,G12の回折格子のピッチとは異なっている。これらの回折格子のピッチは、13.5nmの光と248nmの光との回折角(特にプラス1次光の回折角とマイナス1次光の回折角)が等しくなるように、回折格子G10は13.5nmの波長の光用に、回折格子G11及びG12は248nmの波長の光用に形成されている。
【0041】
図4はアパーチャA1をX−Y平面内で表示したものである。図中、黒塗り部は波長13.5nmの光と波長248nmの光を遮光する領域であり、黒塗り部の中の2個の白抜き部A11、A12が開口部である。波長13.5nmの光と波長248nmの光の+1次回折光が開口部A11を透過し、−1次光は開口部A12を透過する。
【0042】
図5はX−Z平面内でみた回折光とアパーチャA1の関係を表している。0次光は遮光され、±1次光のみが開口部を通過する。一方、0次光はアパーチャA1の遮光部でカットされ透過しない。さらに、不図示の±2次光以上の回折光は同様にカットされる。したがって、アパーチャA1により波長13.5nmの光及び波長248nmの光の±1次光のみがアパーチャーA1を透過する。
【0043】
図6はY−Z平面で分岐回折格子G1とアパーチャA1を示したものである。G1を透過した2波長からなる光束のうち、波長248nmの光束はG11とG12の分岐回折格子で回折し、それぞれから出射する光束がL61、L62となりアパーチャーA1上で集光する。波長13.5nmの光束はG10の分岐回折格子で分岐し、光束L60となり、アパーチャーA1上で集光する。すでに説明したが、これらの回折格子の周期はそれぞれの波長の±1次回折光がアパーチャーの開口部A11、A12を透過するように構成している。したがって、波長248nmの光束のうちG10の分岐回折格子で回折した光束は、波長13.5nm用に切られた回折格子を通ると、0次光は直進するため当然ながらアパーチャーにてカットされ、±1次以上の光束は13.5nmよりも波長が長いため、開口部A11、A12よりもかなり外側に向かって光が進むため、同様にアパーチャーによりカットされる。一方、波長13.5nmの光束がG11、G12で回折すると、0次光は直進するためカットされ、±1次以上の回折光は開口部A11、A12のかなり内側に向かって進むため同様にアパーチャーにてカットされる。通常、入射光のうちかなりの光量の光が0次光と1次光に変換される上に、本実施例の場合、波長に13.5nm、248nmとかなり開きがあるため、開口部A11、A12を通過する光が存在したとしても、かなり高次の回折光であるため、光量が僅かであり、検出結果にはほとんど影響を与えないものと考えられる。ここで、開口部A11、A12の位置が、波長13.5nmの光がG11,G12で回折した際のn次の回折光とn+1次の回折光との間になるように、回折格子G10、G11,G12の周期を設定することによっても可能である。また、2次元センサ(CCD等)の248nmの干渉縞ができる部分に短波長カットフィルターを設置し、13.5nmの光束をカットすることも可能である。
【0044】
図7はX−Y平面上で2次元センサ上の干渉縞の形状を模式的にあらわしたものである。71と72は248nmの光束をあらわしたものであり、70は13.5nmの干渉縞をあらわしたものである。図中の70は理解しやすくするため、13.5nmの干渉縞を等価的に248nmの干渉縞に換算して図示したものである。干渉縞は分岐回折格子G1をX方向に248nm用回折格子G11、G12の少なくとも1ピッチ分移動させることにより、位相変調させる。
【0045】
図8は図7の干渉縞を光電変換し、処理系10により干渉縞の強弱信号を位相差に変換したものを、縦軸に位相差(nm単位)、横軸に被検面(反射膜)に対する入射角(検出手段上のX座標に対応)をとって示したグラフである。この処理系はよく知られているように分岐回折格子G1をX方向に移動させ複数の干渉縞画像を得ることにより位相差を正確に求めている。図中81と82は波長248nmの光による位相形状であり、80は波長13.5nmの光による位相差形状である。波長248nmの光と波長13.5nmの光は同一のチルト成分をもつので、248nmのチルト成分を基準として波長13.5nmの光による位相形状のチルト成分を取り除く。すなわち、13.5nmの光(第1波長の光)の被検面への入射角に対する、被検面が第1波長の光に与える位相の傾き成分を、第2波長の光の干渉縞、この干渉縞から得られる情報(傾き成分、チルト成分)を用いて取り除く。具体的には、81と82の位相差をX軸に対し平均し、それを80に対して引くことによりチルト成分を取り除くことができる。つまり、248nmの光の干渉縞から演算等の方法により導き出される位相分布(248nmの光の被検面への入射角に対する位相差の分布)から得られるチルト成分を、EUV波長の光である13.5nmの波長の光の干渉縞から得られる位相分布(13.5nmの光の被検面への入射角に対する位相差の分布)から取り除くことにより、13.5nmの波長の光が被検面に入射する入射角に対する、被検面から反射してきた13.5nmの光の位相を求めることができる。
【0046】
図9は、前述の13.5nmの波長の光の位相分布におけるチルト成分を取り除いた後の波長13.5nmの光の位相(分布)形状である。横軸は被検面(反射膜)に対する入射角(検出手段上のX座標に対応)である。この位相差はシアリング干渉による位相分布なので、これをdX、すなわちdθで積分することにより、求めるべき反射位相形状をもとめることができる。
【0047】
図10は前述の積分を行うことにより、被検面(反射膜)で反射した反射光の位相と、被検面(反射膜)への入射角度の関係(入射角度依存性)を求めたグラフである。
【0048】
以上が本実施例の主要部分の説明である。
【0049】
ここで、本実施例においては、反射鏡9は光束L4を集光光束L5に変換しているが、反射鏡9は正のパワーを有していなくても構わない。つまり、反射膜5に入射する光束は集光光束である必要は無く、入射角度が所定の幅(範囲)を持つように構成されていれば、発散光束でも構わない。その場合、反射膜5で反射した後に反射鏡等で集光光束に変換し、その後本発明と同様に分波回折格子(光束分割手段)等を介して、複数点に集光するように構成すれば良い。
【0050】
また、本実施例で分岐回折格子3は、中央部が13.5nm用、その両側が248nm用と3つの領域に分けて回折格子を形成したが、勿論この限りでは無く、全体を2つに分けて、一方を13.5nm用もう一方を248nm用としても良いし、4つ以上の領域に分けて、13.5nm用と248nm用を適切に(好ましくは交互)配置しても良い。また、Y方向に分割するだけでなく、X方向に関してもいくつかの領域に分割し、13.5nm用と248nm用の回折格子をそれぞれ設けても良い。また、後段のアパーチャーA1において、両者の波長の光の+1次光と−1次光とが開口部を透過しなくても良く、+1次光と−2次光、或いは0次光と−1次光を選択的に透過させても良い。また、無論ではあるが、分岐回折格子は回折格子でなくても、同様の機能を果たす別の光学素子でも構わないし、EUV光以外の波長として248nm以外の波長が用いられる場合は、ここで248nm用の回折格子と記載している部分の回折格子のピッチはその光の波長に従って適切に設計する必要がある。
【0051】
図11は本方式で集光光学系9が無収差でない場合、もともとの測定系(光源から被検面まで光を導く光学系)がもつ収差を取り除く方法をしめしている。図10までは、被検面(反射面)の反射後の波面形状を検出手段を用いて測定していた。ここでは、被検面を取り除き、被検面(反射面)で反射させずに、分岐回折格子G1´とアパーチャーA1´を用いて検出手段7´を用いて干渉縞を測定し、その結果から位相を求める。ここで求めた位相は測定系が与える位相であるので、ここで求めた位相と図10において求めた反射光の位相とから、被検面(反射面)での反射光の位相の入射角依存性を正確に求めることができる。尚、このように被検面を介さない光の位相の測定は、被検面を測定する前後に行うのが好ましいが、披検面の測定の直前或いは直後の少なくともどちらかで行うことにより、経時変化による誤差を最小にすることができる。また、このような被検面を介さない光の位相の測定は、温度、湿度、位相測定装置内部の雰囲気等の条件を、披検面を介した光の位相測定時と略同じにしておくのが好ましい。
【0052】
また、被検面(反射面)への入射角範囲(θ1〜θ2)を変化させることができるように、図12のように、被検面(反射面)をX−Z平面内で回転可能としても良い。尚、図12は、被検面に入射する光束L5と被検面(反射膜)5と被検面を出射した光束L6と検出手段7との位置関係を簡単に表した図面である。この図12においては、被検面が回転することにより、入射光L5の被検面への入射角を調整することができると共に、被検面から出射した光束L6が入射する検出手段7の位置を調整し、被検面が回転しても被検面からの出射光L6を検出手段7に入射させることが可能である様子を示している。矢印は披検面5及び検出手段7の可動な方向を示している。図12は本実施形態の測定装置では、反射膜5上への光の入射角が可変となっており、入射角θ1と入射角θ2を変化させて、測定する。
【0053】
また、この第1実施例では、被検面(反射面)上の1点において反射した光の位相特性を測定したが、この測定を被検面上の所定の数箇所において行うことにより、被検面全面での反射膜特性の均一性も測定するようにしても良い。
【0054】
また、ここで、被検面からの光を複数の光に分割し、該複数の光の波面を互いに横ずらしした状態で
干渉させて干渉縞を形成し、該干渉縞から得られる位相分布に基づいて前記被検面からの光の波面の状態を測定する干渉計において、
前記光は互いに波長が異なる第1,第2の光を含み、該第1,第2の光毎に前記干渉縞を形成し、前記第1,第2の光のうちの波長が長い第2の光による前記干渉縞から得られる位相分布から前記横ずらしに依る位相変化成分を求め、前記第1の光による前記干渉縞から得られる位相分布と該位相変化成分とを用いて、前記第1の光の前記波面の状態を測定することを特徴とする干渉計。
【0055】
(第2実施例)
次に本発明の第2実施例を図13から図15まで説明している。第一実施例がシアリング干渉計方式であるのに対し、本実施例では点回折干渉計方式である。以下図に従って説明をする。以下番号で異なる図でも同一番号の場合は、同じものもしくは同一機能のものを表している。
【0056】
図13は本実施例の全体構成図である。この第2実施例と前述の第1実施例と異なり、分岐回折格子G1を出射した0次回折光を用いて参照光を作っている。その他の特に記載しない部分に関しては第1実施例と同じである。以下、図13に従って簡単に説明する。光源1からの光束L1は反射鏡2で反射し、部材3に設けたピンホール3aを通して実質的に点光源から発した光束と同等として、波面を整える。ピンホール3aから広がった光束L4を、楕円面、放物面、回転非対称非球面等の反射鏡9を介して、膜(被検光面)5上で第1の入射角θ1から第2の入射角θ2までの幅(範囲)をもった光束L5として披検面(反射膜)5上の測定点5cを照射する。反射膜5上の測定点5cで反射した光束L6は、分岐回折格子G1によって2つの光束に分離され、アパーチャーA2に照射される。
【0057】
図14はアパーチャーA2のX−Y平面内の図である。このアパーチャーA2には、A21とA22という2つの開口部が有り、A21は参照光形成用の0次回折光が入射する位置に、A22は+1次光が入射する位置に配置されている。勿論この組み合わせは他の次数の回折光を使っても構わないが、参照光形成用の開口部に入射する回折光の次数は、もう一方の開口部に入射する回折光の次数と同じかそれよりも次数の低い回折光であることが好ましい。このように、第2実施例においては、第1実施例とは異なり、分岐回折格子G1を出射した0次回折光を用いて参照光を作っている。ここでは、より強度の強い0次光を用いて参照光をつくるために、0次回折光を波長の2倍程度の直径でできている微小なピンホールA21へ導く。一方+1次光を被検面による波面形状の乱れをそのまま反映させるよう、大きめのアパーチャA22に導く。A21を通過した光波は理想的な球面波となって参照光となる。一方A22を透過した波面は被検面の情報をそのまま保持しながら透過し、参照波と干渉する。
【0058】
ここで、アパーチャーA2の開口部A21に入射する0次回折光により参照光(球面波を発生する光)を形成するためには、開口部A21の大きさが波長の2倍程度の大きさである必要がある。しかし、開口部A21に入射する光には、波長13.5nmの光と波長248nmの光と波長が異なる2種類の光が含まれているため困難である。そのため、本実施例においては、アパーチャーの開口部A21の近傍を図15に示すように構成した。尚、開口部A22は通常の開口部である。
【0059】
図15は図14のアパーチャーの開口部A21の拡大図である。開口部(ピンホール)は中心を共有する2重のピンホールになっている。これは、波長13.5nmの光と波長248nmの光の両方が理想的な球面波を発生させるようにしたものであり、2つの遮光部材により構成されている。その2つの遮光部材のうち一方は、波長248nmの光(ここでは、非露光光と称する)を遮光する非露光光遮光部材A24に波長248nmの2倍程度の径を持つピンホールを設けたもの、もう一方は、波長248nmの光が透過し、波長13.5nmの光を遮光する露光光遮光部材A23に、波長13.5nmの2倍程度の径を持つピンホールを設けたもの、この両者を組み合わせて2重構造とし、これにより異なる2波長の光がほぼ理想的な球面波を発生するように構成している。勿論、遮光部材に設けられた開口部の径の大きさは波長の2倍に限らないし、又理想的な球面波を有する参照光を発生する別の手段との置換は可能である。
【0060】
このようにして、光束干渉情報を2次元CCDなどの検出手段7によって検出することができる。ここで、2次元CCD上には波長248nmの光と波長13.5nmの光の干渉縞を第1実施例のように場所で分離するよう短波長カットフィルターを用いてもよい。
【0061】
また、この第1実施例では、被検面(反射面)上の1点において反射した光の位相特性を測定したが、この測定を被検面上の所定の数箇所において行うことにより、被検面全面での反射膜特性の均一性も測定するようにしても良い。
【0062】
(第3実施例)
図16を用いて第3実施例を説明する。この第3実施例はシュバルツチルドの光学系の片側半分をもちいた例である。光源近傍に関しては実施例1,2と同様なので省略した。まず、光源からの光を部材3に設けたピンホール3aから出射させ、ピンホール3aから出射するEUV光(波長約13.5nm)を他の波長の光(例えば、波長約248nmの光)と合波する不図示の合波グレーティング等を用いる。その後、合波された光は、反射鏡9´´及び反射鏡9´で反射され、被検面(反射面)5に入射された後、分岐回折格子G1、アパーチャーA1を経て検出手段7に入射する。ここで、干渉縞を測定し、その測定結果から、被検面で反射した光の位相を計測する。その他特に記載しない部分に関しては実施例1と同じである。
【0063】
(第4実施例)
図17を用いて第4実施例を説明する。この第4実施例は、ツェルニターナ光学系を用いた例である。これも不図示の第2波長を同軸で合波している。光源近傍に関しては実施例1,2と同様なので省略した。まず、光源からの光を部材3に設けたピンホール3aから出射させ、ピンホール3aから出射するEUV光(波長約13.5nm)を他の波長の光(例えば、波長約248nmの光)と合波する不図示の合波グレーティング等を用いる。その後、合波された光は反射鏡9´で反射され、被検面(反射面)5に入射された後、反射鏡9´´、分岐回折格子G1、アパーチャーA1を経て検出手段7に入射する。ここで、干渉縞を測定し、その測定結果から、被検面で反射した光の位相を計測する。その他特に記載しない部分に関しては実施例1と同じである。以上の実施例のように、被検面である反射膜位相の角度特性を測定するため、at wavelengthの第1波長を被検面の表面で反射する可視光もしくはUV光の波長である第2波長を用いることにより、正しくもとめることができる。その他特に記載しない部分に関しては実施例1と同じである。
【0064】
(第5実施例)
第5実施例は、前述の実施例1乃至4の方法で、反射膜の入射角依存性(被検面で反射した反射光の位相の入射角依存性)を測定した反射面を用いて、EUV露光装置を構成した例である。
【0065】
本実施形態の波長13.5nmEUV光源にはレーザプラズマ光源が用いられる。これは真空容器701中に供給されたターゲット材TAに、高強度のパルスレーザ光を照射し、高温のプラズマ705を発生させ、これから放射される例えば波長13nm程度のEUV光を利用するものである。ターゲット材としては、金属薄膜、不活性ガス、液滴などが用いられ、ガスジェット等の手段を具備したターゲット供給装置702によって真空容器701内に供給される。また、パルスレーザ光は励起用パルスレーザ703より出力され、集光レンズ704を介してターゲット材TAに照射される。放射されるEUV光の平均強度を高くするためにはパルスレーザの繰り返し周波数は高い方が良く、励起用パルスレーザ703は通常数kHzの繰り返し周波数で運転される。
【0066】
なお、EUV光源として放電プラズマ光源を用いることも可能である。放電プラズマ光源は、真空容器中に置かれた電極周辺にガスを放出し、電極にパルス電圧を印加して放電を起こし高温のプラズマを発生させ、これから放射される例えば波長13nm程度のEUV光を利用するものである。放射されるEUV光の平均強度を高くするためには放電の繰り返し周波数は高い方が良く、通常数kHzの繰り返し周波数で運転される。
【0067】
照明光学系は、複数の多層膜または斜入射ミラーとオプティカルインテグレータ等を有している。本実施形態の照明光学系は、照明系第1ミラー706、オプティ力ルインテグレータ707、照明系第2ミラー708、照明系第3ミラー709を有し、これらの部材によってプラズマ705から放射されたEUV光をレチクル(マスク)711に導いている。
【0068】
照明光学系の初段の集光ミラー(照明系第1ミラー)706はレーザプラズマ705からほぼ等方的に放射されるEUV光を集める役割を果たす。オプティカルインテグレータ707はレチクル711を均一に所定の開口数で照明する役割を持っている。また照明光学系のレチクル711と共役な位置にはレチクル面で照明される領域を円弧状に限定するための円弧開口のアパーチャ710が設けられている。
【0069】
アパーチャ710を通過した円弧状の光束によりレチクル711が照射され、その反射光が反射鏡721〜724を含む投影光学系を経てウエハ731に照射される。EUV領域で用いられる多層膜を施したミラー(多層膜ミラー)は可視光のミラーに比べて光の損失が大きいので、ミラーの枚数は最小限に抑えることが必要である。725は開口制限用の絞りである。
【0070】
本実施形態では、少ない枚数のミラーで広い露光領域を有した投影光学系を実現するに、光軸から一定の距離だけ離れた細い円弧状の領域(リングフィールド)だけを用いるリングフィールド光学系を利用している。そしてレチクル711とウエハ731を同時に同期走査して広い露光面積で転写する方法(スキャン露光)を用いている。レチクル711面上の円弧状の照明領域は照明光学系内のオプティカルインテグレータ707や前後のミラー708、709によって形成している。
【0071】
投影光学系にも複数のミラーを用いている。図3では、投影系第1〜第4ミラー(721〜724)によって、レチクル711からの反射光をウエハチャック733に装着されたウエハ731上に導いている。ミラーの枚数は少ない方がEUV光の利用効率が高いが、収差補正が難しくなる。良好なる収差補正を行う為に、ミラー枚数を4枚から6枚程度としている。ミラーの反射面の形状は凸面または凹面の球面、非球面、そして回転非対称非球面等を用いている。投影光学系の開口数NAは0.1〜0.3程度である。
【0072】
各ミラーは低膨張率ガラスやシリコンカーバイド等の剛性が高く硬度が高く、熱膨張率が小さい材料からなる基板を、研削・研磨して所定の反射面形状を創生した後、反射面にMo−Si膜(モリブデン/シリコンなどの多層膜)を成膜したものを用いている。勿論、反射膜のその他の構成として、Be−Si膜やRh−Si膜を用いても構わない。ミラー面内の場所によって入射角が一定でない場合、ブラツグの式から明らかなように、膜周期一定の多層膜では場所によって反射率が高くなるEUV光の波長がずれてしまう。そこでミラー面内で同一の波長のEUV光が効率よく反射されるように膜周期分布を持たせるようにしている。
【0073】
レチクルステージ712とウエハステージ732は、投影光学系の縮小倍率に比例した速度比で同期して走査する機構をもつ。ここで座標系として、レチクル711又はウエハ732の面内で走査方向をX軸、それに垂直な方向をY軸、レチクル又はウエハ面に垂直な方向をZ軸とする。
【0074】
レチクル711は、レチクルステージ712上のレチクルチャック713に保持される。レチクルステージ712はX方向に高速移動する機構をもつ。また、X方向、Y方向、Z方向、および各軸の回りの回転方向に微動機構をもち、レチクル711の位置決めができるようになっている。レチクルステージ712の位置と姿勢はレーザ干渉計(不図示)によって公知の方法で計測され、その結果に基いて、位置と姿勢が制御される。
【0075】
ウエハ731はウエハチャック733によってウエハステージ732に保持される。ウエハステージ732はレチクルステージ712と同様にX方向に高速移動する機構をもつ。また、X方向、Y方向、Z方向、および各軸の回りの回転方向に微動機構をもち、ウエハ位置決めができるようになっている。ウエハステージ732の位置と姿勢はレーザ干渉計(不図示)によって公知の方法で計測され、その結果に基いて、位置と姿勢が制御される。
【0076】
レチクル711とウエハ731の相対的な位置関係を検出する為、アライメント検出機構714、734によってレチクル711の位置と投影光学系の光軸との位置関係、およびウエハ731の位置と投影光学系の光軸との位置関係が計測され、レチクル711の投影像がウエハ731の所定の位置に一致するようにレチクルステージ712およびウエハステージ732の位置と角度が設定されている。
【0077】
また、投影光学系の最良結像位置を検出するフォーカス位置検出機構735によってウエハ面でZ方向のフォーカス位置が計測され、ウエハステージ732の位置及び角度を制御することによって、露光中は常時ウエハ面を投影光学系による最良結像位置に保つ。
【0078】
ウエハ731上で1回のスキャン露光が終わると、ウエハステージ732はX,Y方向にステップ移動して次の走査露光開始位置に移動し、再びレチクルステージ712及びウエハステージ732が投影光学系の縮小倍率に比例した速度比でX方向に同期走査して、レチクル711のパターンをウエハ731に露光している。
【0079】
このようにして、レチクル711の縮小投影像がとウエハ731上に結像した状態でそれらを同期走査するという動作が繰り返され(ステップ・アンド・スキャン)、ウエハ全面にレチクルの転写パターンが転写される。
【0080】
以上述べたように各実施形態によれば、簡単な構成で光学素子表面に形成された光学薄膜の位相を精度良く測定することができる。又、各実施形態の構成は波長によらないため、EUVのように極端に使用する光学素子の種類が限られた系であっても適用が可能である。
【0081】
また、上記に記載の位相測定装置もしくは干渉計を用いて測定を行った光学素子や、またその光学素子を組み込んだ、EUV波長の光を用いる露光装置やその他のEUV波長領域の光を用いる光学機器等も本発明の実施形態の一部である。
【0082】
また、上記に記載の位相測定方法、或いは位相測定装置、干渉計を用いて測定を行った光学素子を有する露光装置により被露光体(ウエハ等)を露光する工程と、このように露光された被露光体を現像する工程とを経て、デバイスを製造するようにしても良い。このデバイスの製造方法には、上記の工程の他に、公知の様々な工程を含む。
【0083】
以上、本発明の好ましい実施例を説明したが、本発明はこれらに限定されずその要旨の範囲内で様々な変形や変更が可能である。
【0084】
【発明の効果】
本発明によれば、曲率のある反射鏡や平面反射鏡に施した膜の各位置における位相特性又は/及び入射角に依存する膜の位相特性を容易に、しかも高精度に測定することができる位相測定装置を達成することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例の位相測定装置の要部概略図
【図2】本発明の第1実施例の被検面(反射面)付近の拡大図
【図3】本発明の第1実施例の分岐回折格子の概略図
【図4】本発明の第1実施例のアパーチャーの概略図
【図5】本発明の第1実施例の分岐回折格子付近のX−Z平面図
【図6】本発明の第1実施例の分岐回折格子付近のY−Z平面図
【図7】本発明の第1実施例の検出手段で検出した干渉縞の概略図
【図8】本発明の第1実施例における検出手段7での位相差の検出結果
【図9】本発明の第1実施例における被検面で反射したEUV光の位相差
【図10】本発明の第1実施例における被検面がEUV光に与える位相
【図11】本発明の第1実施例の装置がもつエラーの補正する場合の構成図
【図12】本発明の第1実施例の入射角可変機構図
【図13】本発明の第2実施例の位相測定装置の要部概略図
【図14】本発明の第2実施例のアパーチャーの平面図
【図15】本発明の第2実施例のアパーチャーの一部の断面図
【図16】本発明の第3実施例の要部概略図
【図17】本発明の第4実施例の要部概略図
【図18】本発明の第5実施例の要部概略図
【符号の説明】
1 光源部材
2 反射鏡
3a 絞り
5 披検面(反射面、反射膜)
6 被検物体
7 検出手段
9 反射鏡
10 演算手段
22 合波(結合)グレーティング
G1 分岐回折格子
A1 アパーチャー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a phase measuring device for an optical thin film, for example, a step-and-repeat method or a step-and-scan method for manufacturing devices such as semiconductor devices such as ICs and LSIs, photographing devices such as CCDs, and display devices such as liquid crystal panels. This method is suitable for measuring the phase of an optical thin film provided on a reflection surface or a transmission surface of an optical system used in an exposure apparatus such as a system.
[0002]
[Prior art]
With the miniaturization of device patterns, the wavelength of exposure light when projecting and exposing device patterns on photosensitive materials such as wafers is becoming shorter and shorter. For example, as exposure wavelengths, KrF having a wavelength of about 248 nm, ArF having a wavelength of about 193 nm, F2 laser having a wavelength of about 157 nm, and even EUV light having a wavelength of 10 to 15 nm have been used.
[0003]
The miniaturization of device patterns is the largest factor that supports the dynamics of the semiconductor industry, and since the era of demanding the resolution of a pattern with a line width of 0.25 micron when creating a 256M DRAM, the required resolvable lines have been required. The width has been rapidly reduced to 180 nm, 130 nm, and 100 nm. In lithography using i-rays (wavelength: about 365 nm) as exposure light, resolution with a line width smaller than the wavelength has not been used.
[0004]
On the other hand, an exposure apparatus using KrF as a light source is applied to lithography for a line width of 180 nm or 150 nm even though the wavelength of the exposure light is about 248 nm. Utilizing the results of improvements in resists, super-resolution techniques, and the like, resolution with a line width equal to or less than the wavelength is being put to practical use. If various super-resolution techniques are used, pattern resolution with a line width of 波長 wavelength in lines and spaces has come into practical use.
[0005]
However, the super-resolution technique often involves restrictions on the production of patterns, and the royal road to improving the resolution is to shorten the wavelength of exposure light and improve the NA of the projection optical system. The above fact is a great motivation for shortening the wavelength of exposure light, which is the reason why EUV lithography using light having a wavelength of 10 to 15 nm (13 to 14 nm) as exposure light is developed.
[0006]
[Problems to be solved by the invention]
When EUV light is used as the exposure light, there is no substance that is transparent in the EUV wavelength range (transmits EUV light at a high transmittance) at present, so there is a great limitation on the materials that can be used in an optical system targeting the EUV range. Joins. In particular, transmission-type (refraction-type) optical elements as conventionally used can no longer be used, and almost all optical systems must be configured as reflection systems. In such an exposure apparatus using EUV light, the optical constant (refractive index) of the optical material with respect to EUV light is close to 1, so that the reflectivity of the mirror surface is low, and the absorptance of each mirror is low. There is a problem that it becomes high. In other words, the characteristics (reflectance and the like) of the reflection enhancing film attached to the reflecting mirror (mirror) in order to obtain a predetermined reflectance have become a major issue.
[0007]
Unlike the case of using laser light such as KrF, ArF, F2, etc., a characteristic of the reflective film for short-wavelength light in the EUV region is that it is required to manage the phase (phase distribution) of the film together with the reflectance. That is. When the EUV light is reflected by the reflection film, the phase of the EUV light changes. If the incident angle of the EUV light to the reflection film is not uniform, the phase length of the reflection film is shifted depending on the incident angle, so that the phase difference of the EUV light reflected by the reflection film is incident on the mirror surface (reflection film). The wavefront is distorted, and as a result, an aberration (wavefront aberration) is caused.
[0008]
For this reason, it has become necessary to measure the phase characteristic (phase distribution of reflected light) of the reflection film when the film is formed on the reflection surface. In particular, it is desirable to measure the angular characteristics (incident angle dependence) when EUV light enters the reflective film at various angles at each position where the reflective film is applied.
[0009]
In addition, in order to correct the aberration of the reflection imaging system, in addition to manufacturing the shape of the substrate such as the curvature of the substrate of the mirror (reflection surface) and the amount of aspherical surface with high accuracy, the performance of the multilayer film for enhancing reflection is also required. Also need to be managed with high accuracy. At this time, the multilayer film must be accurately controlled so that the phase given to light at the time of reflection does not greatly differ depending on the position of reflection within one mirror surface (reflection surface). Therefore, before assembling the reflection imaging system, it is necessary to finish the shape of the mirror and inspect whether the reflection phase at each position where the multilayer film is laminated on the mirror surface is the same as the design value.
[0010]
According to the present invention, a phase characteristic of a film which depends on an incident angle at each position of a film formed on a reflecting mirror, that is, a reflecting mirror (reflecting surface) as a test surface is in an EUV wavelength region (10 nm to 15 nm, preferably 13 nm to 15 nm). It is an object of the present invention to provide a phase measuring apparatus capable of easily and highly accurately measuring the dependence of the phase given to the light of (1) on the angle of incidence of the light of the first wavelength on the surface to be measured.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a phase measuring device according to the present invention includes: an illumination optical system that causes a light beam including light of a first wavelength and light of a second wavelength to enter a test surface with a predetermined angle range; A detection optical system for forming an interference fringe of the light of the first wavelength and an interference fringe of the light of the second wavelength on detection means by reflected light from the surface to be detected, and detected by the detection means; By measuring the interference fringes, the dependence of the phase given to the light of the first wavelength by the test surface on the angle of incidence of the light of the first wavelength on the test surface is measured. And
[0012]
Here, with respect to the angle of incidence of the light of the first wavelength on the surface to be inspected, a phase change given to the light of the first wavelength by the surface to be inspected, and a change in the light of the second wavelength to the surface to be inspected. From the phase change of the light of the second wavelength with respect to the incident angle, the dependence of the phase given to the light of the first wavelength by the test surface on the angle of incidence of the light of the first wavelength on the test surface The property may be measured.
[0013]
Further, by shifting the reflected light from the surface to be measured laterally, an interference fringe of the light of the first wavelength and an interference fringe of the light of the second wavelength are formed. The amount of change is obtained from the interference fringes of the light of the second wavelength, and the surface to be detected gives the light of the first wavelength from the interference fringes of the light of the first wavelength and the amount of change in phase caused by the lateral shift. The dependence of the phase on the angle of incidence of the light of the first wavelength on the surface to be measured may be measured.
[0014]
Here, it is preferable that the first wavelength is shorter than the second wavelength, and it is further preferable that the second wavelength is longer than 10 times the first wavelength. More specifically, the first wavelength may be a wavelength of 10 nm or more and 15 nm or less, more preferably, a wavelength of 13 nm or more and 14 nm or less, and the second wavelength may be a wavelength of 150 nm or more.
[0015]
Further, it is preferable that the surface to be inspected has a reflective multilayer film formed using Mo and Si. Of course, a Be-Si or Rh-Si film may be used. When a Be-Si film is used, the wavelength is preferably in the range of 10 nm to 12 nm.
[0016]
Here, an interference fringe of the light of the first wavelength is provided by having a branching optical element for branching the reflected light from the surface to be inspected into a plurality of light beams and causing at least two of the plurality of light beams to interfere with each other. And the interference fringes of the light of the second wavelength may be formed on the detecting means.
[0017]
Further, it is preferable that the branch optical element is a branch diffraction grating (diffraction grating). Further, it is more preferable that the detection optical system includes a light blocking member that selectively transmits two light beams among a plurality of light beams branched by the branch optical element. Further, the light shielding member may be formed such that one light beam of the two light beams is an ideal spherical wave on the detection unit side with respect to the light shielding member. Having a first opening for transmitting the light of the first wavelength and a second opening for transmitting the light of the second wavelength, of the light emitted from the branching optical element, The first opening and the second opening may be different in size, and the first opening and the second opening may be configured so that at least a part thereof overlaps with each other. Here, it is more preferable that the first opening and the second opening have substantially the same centers. Further, the branching optical element may be a branching diffraction grating, and a region where the first opening and the second opening overlap each other may be configured to transmit the 0th-order diffracted light emitted from the branching diffraction grating. Still preferred.
[0018]
Further, the second wavelength of the second wavelength, which is obtained by photoelectrically converting an interference fringe of the second wavelength of light detected by the detection unit with respect to a second incident angle at which the second wavelength of light is incident on the surface to be measured, Using a tilt component (tilt component) of a phase change amount received by the light being reflected by the test surface,
The light of the first wavelength is obtained by photoelectrically converting interference fringes of the light of the first wavelength detected by the detection means with respect to a first incident angle at which the light of the first wavelength is incident on the surface to be measured. It is more preferable that the tilt component (tilt component) is removed from the amount of phase change received by the reflection on the test surface.
[0019]
Further, the illumination optical system may include a diffraction grating for superimposing the light of the first wavelength and the light of the second wavelength. Of course, both lights may be superimposed using a member such as a half mirror. Further, it is preferable that the light of the first wavelength and the light of the second wavelength are made to enter the surface to be measured with the same width of the incident angle.
[0020]
Further, the light shielding member may be configured to selectively transmit two diffracted lights out of a plurality of diffracted lights emitted from the branching diffraction grating, or the two diffracted lights may be converted into a plus first-order diffracted light. And minus first-order diffracted light, or one of the two diffracted lights may be zero-order diffracted light.
[0021]
Further, the present invention is not limited to the phase measuring device, but may be a phase measuring method. A phase measuring apparatus according to the present invention includes a step of causing a light beam including light of a first wavelength and light of a second wavelength to enter a test surface with a predetermined angle range in an illumination optical system; Forming interference fringes of the light of the first wavelength and interference fringes of the light of the second wavelength on detection means by light reflected from a surface, and measuring the interference fringes detected by the detection means Measuring the dependence of the phase given to the light of the first wavelength by the test surface on the angle of incidence of the light of the first wavelength on the test surface.
[0022]
Here, an optical element whose phase has been measured by the phase measuring device of the present invention, an exposure apparatus having the optical element, a step of exposing an object to be exposed using the exposure apparatus, and a step of developing the object to be exposed The present invention also includes a method for manufacturing a device having the following.
[0023]
Further, as the interferometer of the present invention, the light from the surface to be inspected is divided into a plurality of lights, and the wavefronts of the plurality of lights are caused to interfere with each other while being shifted laterally from each other to form an interference fringe. In an interferometer for measuring the state of the wavefront of light from the surface to be detected based on the obtained phase distribution, the light includes first and second lights having different wavelengths from each other, and the first and second lights Forming the interference fringes every time, determining a phase change component from a phase distribution obtained from the interference fringes by the second light having a longer wavelength among the first and second lights, It is preferable that the state of the wavefront of the first light be measured using a phase distribution obtained from the interference fringes and the phase change component.
[0024]
Here, it is preferable that the phase change component is caused by the lateral shift and / or the surface shape of the test surface.
[0025]
More preferably, the wavelength of the second light is longer than 10 times the wavelength of the first light. More specifically, the wavelength of the first light is preferably 10 nm or more and 15 nm or less, more preferably 13 nm or more and 14 nm or less, and the second wavelength is preferably 150 nm or more.
[0026]
Here, a step of exposing an object to be exposed using an optical device having the surface to be measured and an optical device having the optical device and an optical device having the optical device measured by the interferometer of the present invention, A method for manufacturing a device, comprising a step of developing the object to be exposed, is also a part of the present invention.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
In the measurement of the reflection phase distribution of the reflection film (multilayer film) of the present embodiment, the phase of the reflected light (dependence on the angle of incidence of the EUV light of the reflection film) due to the difference in the incident angle of the EUV light to the reflection film is measured. ing. The phase measuring apparatus (interferometer) according to the present embodiment is an object to be measured in which convergent light is converted into an almost ideal spherical wave having wavelengths of, for example, 248 nm and 13.5 nm, and a film is formed on the surface in front of the converging point. Irradiate on top. The wavefronts of the light having the wavelengths of 248 nm and 13.5 nm are coaxial and the light-condensing points are made to coincide. Although the wavelength to be originally measured is 13.5 nm, when calculating the wavefront from the interference fringes, the inclination component of the reflected wavefront with respect to the incident wavefront must be removed. In some cases, the interference fringes cannot be obtained because the reflectance of 13.5 nm light is low. When calculating the change in phase using the phase obtained from the interference fringes, the inclination of the phase with respect to the incident angle cannot be obtained unless there is a reference. The present invention uses a wavefront having a wavelength of 248 nm, which is visible light or UV light, which is reflected on the surface of the test surface of the film, as a reference.
[0028]
Specifically, a branch diffraction grating for shifting the wavefront reflected by the surface to be measured laterally (of course, not limited to the branch diffraction grating, but if it is a device for splitting and shifting the light beam, it is formed in a half mirror or lattice shape). Any branching optical element such as a mirror may be used.) At the light-converging point, for example, + 1st-order and -1st-order light are selected by an aperture and the like, and are detected on detection means such as a CCD (detection surface). ), A shearing interference fringe or a point diffraction interference fringe is generated, and the phase of the wavefront is determined from the interference fringes. Here, the wavelength of 13.5 nm and the wavelength of 248 nm divide the branch grating, and the pitch of the diffraction grating is determined so that each wavelength has the same diffraction angle. Even if a 13.5 nm wavefront enters the 248 nm diffraction grating, it is cut by the above-mentioned aperture, and conversely, if a 248 nm wavefront enters the 13.5 nm diffraction grating, it is also cut by the aperture.
[0029]
As described so far, the wavefront of the 248 nm light has the wavefront having the information of the surface shape of the surface to be measured and / or the information of the phase change component caused by laterally shifting the reflected light from the surface to be measured. The wavefront of 13.5 nm light is a wavefront having information inside the film (test surface, test film). Of course, the wavefront of 13.5 nm light also has information that the wavefront of 248 nm light has. Therefore, the phase of the reflected light due to the difference in the incident angle to the reflective film (the incident angle of the EUV light of the reflective film) is based on the information of the wavefront of the light of 248 nm having the wavelength of 13.5 nm and the wavefront of 13.5 nm. Dependence) can be measured. As means for obtaining the wavefront information, there is a means for measuring interference fringes of light of each wavelength.
[0030]
Although the shearing interferometer has been described as an interferometer for detecting a wavefront, a point diffraction interferometer (PDI) is also possible. In the case of PDI, one aperture in the aperture for selecting the diffracted light after the branch diffraction grating has an aperture large enough to reflect the wavefront aberration and a pinhole small enough to generate an ideal spherical wave (about twice the wavelength). , 1.5 times or more and 3 times or less. As clearly shown in the second embodiment, the pinhole is configured to generate a spherical wave with respect to both visible light or UV light and EUV light.
[0031]
Hereinafter, specific examples will be described with reference to the drawings.
[0032]
(First embodiment)
FIGS. 1 to 5 are schematic views of a main part of a first embodiment of a phase measuring apparatus according to the present invention, and show a case where phase information of a reflection film on a reflection surface for EUV wavelength region light is measured. .
[0033]
FIG. 1 will be described. A light beam L1 from a light source 1 for EUV that emits light having a wavelength of 13.5 nm (the wavelength is not limited to 13.5 nm, but may be 13.4 nm, or any light having a wavelength of 10 nm to 15 nm) is a reflecting mirror. The wavefront is adjusted by reflecting the light at 2 and making the light beam L4 substantially emitted from the point light source through the pinhole 3a provided on the member 3. The light beam L4 spread from the pinhole 3a is transmitted from the first incident angle θ1 to the second incident angle θ1 on the reflecting film (test surface) 5 via the reflecting mirror 9 such as an ellipsoid, a paraboloid, or a rotationally asymmetric aspheric surface. The measurement point 5c on the reflection film 5 is irradiated as a light beam L5 having a width (range) up to the incident angle θ2. On the other hand, the light source 21 having a wavelength of 248 nm is superimposed on the light beam L5 through the condensing optical system 19 and the multiplexing grating 22, and similarly to the light beam L5, the width (range) from the first incident angle θ1 to the second incident angle θ2. ) Is irradiated on the measurement point 5c on the reflection film 5 as a light beam L5.
[0034]
The light beam L6 reflected at the measurement point 5c on the reflection film 5 travels toward the condensing point 8, but the light of each wavelength is diffracted by the branch diffraction grating (light beam splitting means) G1 on the way. The light beam L6 is sheared and separated into two light beams. Then, only the + 1st-order and -1st-order diffracted lights selectively pass through the aperture by the aperture A1 having a plurality of openings. The + 1st-order and -1st-order diffracted lights are caused to interfere with each other, and the interference information is detected by detecting means 7 using a photoelectric converter such as a CCD. In FIG. 1, the light beam emitted from the branch diffraction grating G1 does not seem to be split, but the light beam is actually diffracted as shown in FIG. 5, and the 0th-order light, the + 1st-order light, the -1st-order light, and the + 2nd-order light. .. Etc.
[0035]
Then, the arithmetic means 10 obtains the incident angle distribution (incident angle dependency) of the phase of the reflected light reflected at the measurement point 5c at the incident angles θ1θ1 and θ2 using the signal from the detecting means 7. The incident angle distribution is
φ (x, θ + Δθ) -φ (x, θ)
Is obtained as the intensity of the interference signal.
[0036]
Δθ is a deviation (shift angle) of the angle of incidence of light on the reflection film 5 from θ. The above equation represents the phase shift of the reflected light when the incident angle is shifted by a predetermined angle Δθ from θ with respect to the incident angle θ, where the incident angle θ is the first incident angle. This is a predetermined angle within a range from the angle θ1 to the second incident angle θ2. Here, dφ (x1, θ) / dθ is measured by making Δθ very small at the first position x1 on the reflective film.
[0037]
The light beam L5 scans the entire surface of the multilayer film by the relative movement of the reflection film 5 (test object 6) and the measurement system, thereby obtaining the incident angle characteristics (incident angle dependence) of the reflected light on the entire reflection film 5. ing. By differentiating this integral value, the position x 1 Angle distribution φ (x 1 , Θ) can be obtained.
[0038]
As described above, in the first embodiment, light having a width (range) at an incident angle is incident on the film 5 by the condensing optical system (reflecting mirror) 9 having a constant NA. The reflected light is sheared at the wavefront by a branching diffraction grating (light beam splitting means) G1 to cause interference, and the detecting means 7 obtains this interference information, thereby obtaining phase information (incident angle dependency) based on the incident angle of the reflective film 5. ing.
[0039]
FIG. 2 shows the positional relationship among the test surface, the branch diffraction grating G1, and the aperture (aperture) A1 in FIG. Here, a direction perpendicular to the Z axis, which is the direction in which the light wave travels, and parallel to the paper surface is defined as an X axis, and a direction perpendicular to the paper surface is defined as a Y axis. The light beam L6 is diffracted by the branch diffraction grating G1 and is separated into light beams of the 0th order, ± 1st order, ± 2nd order,... FIG. 5 shows the state of this separation, and FIGS. 3 to 6 show the state near the branch diffraction grating G1. Here, the branch diffraction grating G1 has a moving mechanism for moving in the X direction.
[0040]
FIG. 3 shows the branch diffraction grating G1 in the XY plane, and the X direction is the periodic direction of the diffraction grating. In the Y direction, a diffraction grating for a wavelength of 13.5 nm is formed in the central portion G10, and a diffraction grating for 248 nm is formed on both sides G11 and G12, and the pitch of the diffraction grating of G10 and that of G11 and G12 are different. It is different from the pitch of the diffraction grating. The diffraction grating G10 has a pitch of 13 such that the diffraction angles of the 13.5 nm light and the 248 nm light (especially the diffraction angle of the plus first order light and the minus 1st order light) are equal. For light having a wavelength of 0.5 nm, the diffraction gratings G11 and G12 are formed for light having a wavelength of 248 nm.
[0041]
FIG. 4 shows the aperture A1 in the XY plane. In the drawing, black portions are regions that block light having a wavelength of 13.5 nm and light having a wavelength of 248 nm, and two white portions A11 and A12 in the black portions are openings. The + 1st-order diffracted light of the light having the wavelength of 13.5 nm and the light having the wavelength of 248 nm transmits through the opening A11, and the −1st-order light transmits through the opening A12.
[0042]
FIG. 5 shows the relationship between the diffracted light and the aperture A1 as viewed in the XZ plane. The zero-order light is blocked, and only the ± first-order light passes through the opening. On the other hand, the zero-order light is cut by the light-shielding portion of the aperture A1 and is not transmitted. Further, diffracted light of ± second order light or more (not shown) is similarly cut. Therefore, only the ± 1st order light of the light having the wavelength of 13.5 nm and the light having the wavelength of 248 nm is transmitted through the aperture A1 by the aperture A1.
[0043]
FIG. 6 shows the branch diffraction grating G1 and the aperture A1 in the YZ plane. Of the two wavelength light beams transmitted through G1, the light beam having a wavelength of 248 nm is diffracted by the branch diffraction gratings G11 and G12, and the light beams emitted therefrom become L61 and L62 and are condensed on the aperture A1. The light beam having a wavelength of 13.5 nm is branched by the branch diffraction grating G10, becomes a light beam L60, and is condensed on the aperture A1. As described above, the periods of these diffraction gratings are configured such that ± first-order diffracted lights of the respective wavelengths pass through the apertures A11 and A12 of the aperture. Therefore, of the light beam having a wavelength of 248 nm, the light beam diffracted by the G10 branch diffraction grating passes through the diffraction grating cut for the wavelength of 13.5 nm, so that the zero-order light travels straight, and is naturally cut by the aperture. Since the first-order or higher light beam has a wavelength longer than 13.5 nm, the light travels considerably outward from the openings A11 and A12, and is similarly cut by the aperture. On the other hand, when a light beam having a wavelength of 13.5 nm is diffracted at G11 and G12, the 0th-order light is cut because it goes straight, and the diffracted light of ± 1st order or more travels considerably inside the openings A11 and A12, so that the aperture is similarly increased. Is cut at Normally, a considerable amount of incident light is converted into zero-order light and primary light, and in the case of the present embodiment, the wavelength is considerably wide at 13.5 nm and 248 nm. Even if there is light passing through A12, it is considered that the amount of light is small because it is a diffracted light of a considerably high order, and has little effect on the detection result. Here, the diffraction gratings G10 and G10 are arranged so that the positions of the openings A11 and A12 are between the n-th order diffracted light and the (n + 1) th order diffracted light when the light having the wavelength of 13.5 nm is diffracted by the G11 and G12. It is also possible by setting the periods of G11 and G12. It is also possible to install a short-wavelength cut filter at a portion where a 248 nm interference fringe of a two-dimensional sensor (such as a CCD) is formed to cut a 13.5 nm light beam.
[0044]
FIG. 7 schematically shows the shape of interference fringes on the two-dimensional sensor on the XY plane. Reference numerals 71 and 72 represent light beams of 248 nm, and reference numeral 70 represents interference fringes of 13.5 nm. In the figure, for ease of understanding, the reference numeral 70 shows the 13.5 nm interference fringe equivalently converted to a 248 nm interference fringe. The interference fringes are phase-modulated by moving the branch diffraction grating G1 in the X direction by at least one pitch of the diffraction gratings G11 and G12 for 248 nm.
[0045]
FIG. 8 shows the result of photoelectrically converting the interference fringes of FIG. 7 and converting the intensity signal of the interference fringes into a phase difference by the processing system 10. 4) is a graph showing the incident angle (corresponding to the X coordinate on the detecting means) with respect to the angle. As is well known, this processing system moves the branch diffraction grating G1 in the X direction and obtains a plurality of interference fringe images to accurately determine the phase difference. In the figure, reference numerals 81 and 82 denote phase shapes by light having a wavelength of 248 nm, and reference numeral 80 denotes a phase difference shape by light having a wavelength of 13.5 nm. Since the light having the wavelength of 248 nm and the light having the wavelength of 13.5 nm have the same tilt component, the tilt component of the phase shape due to the light having the wavelength of 13.5 nm is removed based on the tilt component of 248 nm. That is, with respect to the incident angle of the light of 13.5 nm (light of the first wavelength) to the surface to be measured, the inclination component of the phase given to the light of the first wavelength by the surface to be measured is determined by the interference fringe of the light of the second wavelength It is removed using information (tilt component, tilt component) obtained from the interference fringes. Specifically, the tilt component can be removed by averaging the phase difference between 81 and 82 with respect to the X axis and subtracting the average with respect to 80. In other words, the tilt component obtained from the phase distribution (distribution of the phase difference with respect to the incident angle of the 248 nm light to the surface to be measured) derived from the interference fringes of the 248 nm light by a method such as an arithmetic operation is the EUV wavelength light 13 By removing from the phase distribution (distribution of the phase difference with respect to the incident angle of the 13.5 nm light to the surface to be measured) obtained from the interference fringe of the light having the wavelength of 0.5 nm, the light having the wavelength of 13.5 nm can be reduced. The phase of the 13.5 nm light reflected from the test surface with respect to the incident angle at which the light is incident can be obtained.
[0046]
FIG. 9 shows the phase (distribution) shape of the 13.5 nm wavelength light after removing the tilt component in the phase distribution of the 13.5 nm wavelength light. The horizontal axis is the angle of incidence (corresponding to the X coordinate on the detection means) with respect to the surface to be measured (reflection film). Since this phase difference is a phase distribution due to shearing interference, a reflection phase shape to be obtained can be obtained by integrating the phase difference with dX, that is, dθ.
[0047]
FIG. 10 is a graph showing the relationship (incident angle dependency) between the phase of the reflected light reflected on the test surface (reflection film) and the incident angle on the test surface (reflection film) by performing the above-described integration. It is.
[0048]
The above is the description of the main part of the present embodiment.
[0049]
Here, in the present embodiment, the reflecting mirror 9 converts the light beam L4 into a condensed light beam L5, but the reflecting mirror 9 does not have to have a positive power. That is, the light beam incident on the reflection film 5 does not need to be a converged light beam, and may be a divergent light beam if the incident angle is configured to have a predetermined width (range). In this case, after being reflected by the reflection film 5, the light is converted into a condensed light beam by a reflecting mirror or the like, and then condensed at a plurality of points via a demultiplexing diffraction grating (light beam splitting means) or the like as in the present invention. Just do it.
[0050]
Further, in this embodiment, the diffraction grating 3 is formed by dividing the central portion into three regions, that is, 13.5 nm at the center portion and 248 nm at both sides. One part may be used for 13.5 nm and the other may be used for 248 nm, or four or more regions may be used and the ones for 13.5 nm and the one for 248 nm may be arranged appropriately (preferably alternately). In addition to the division in the Y direction, it may be divided into several regions in the X direction, and diffraction gratings for 13.5 nm and 248 nm may be provided. Further, in the aperture A1 at the subsequent stage, the + 1st-order light and the -1st-order light of the light of both wavelengths do not need to pass through the opening, and the + 1st-order light and the -secondary light or the 0th-order light and -1st light The next light may be selectively transmitted. Needless to say, the branch diffraction grating is not limited to the diffraction grating, but may be another optical element that performs the same function. If a wavelength other than 248 nm is used as a wavelength other than EUV light, the wavelength is 248 nm. It is necessary to appropriately design the pitch of the diffraction grating in the portion described as the diffraction grating for the light according to the wavelength of the light.
[0051]
FIG. 11 shows a method of removing the aberration of the original measurement system (the optical system for guiding light from the light source to the surface to be measured) when the focusing optical system 9 is not aberration-free in this method. Until FIG. 10, the wavefront shape after reflection of the test surface (reflection surface) was measured using the detection means. Here, the interference fringe is measured using the detecting means 7 'using the branch diffraction grating G1' and the aperture A1 'without removing the surface to be measured and reflecting the light on the surface to be measured (reflection surface). Find the phase. Since the phase obtained here is a phase provided by the measurement system, the phase dependence of the reflected light on the surface to be measured (reflection surface) is determined from the phase obtained here and the phase of the reflected light obtained in FIG. Sex can be accurately determined. Incidentally, the measurement of the phase of light that does not pass through the test surface in this way is preferably performed before and after measuring the test surface, but by performing at least either immediately before or immediately after the measurement of the test surface, Errors due to aging can be minimized. In the measurement of the phase of light without passing through the surface to be measured, conditions such as temperature, humidity, and atmosphere inside the phase measuring device are set to be substantially the same as when measuring the phase of light through the surface to be measured. Is preferred.
[0052]
Also, as shown in FIG. 12, the test surface (reflection surface) can be rotated in the XZ plane so that the incident angle range (θ1 to θ2) on the test surface (reflection surface) can be changed. It is good. FIG. 12 is a drawing simply showing the positional relationship between the light beam L5 incident on the test surface, the test surface (reflection film) 5, the light beam L6 emitted from the test surface, and the detecting means 7. In FIG. 12, the angle of incidence of the incident light L5 on the surface to be inspected can be adjusted by rotating the surface to be inspected, and the position of the detecting means 7 where the light beam L6 emitted from the surface to be inspected is incident. Is adjusted so that the outgoing light L6 from the test surface can be made incident on the detection means 7 even when the test surface rotates. The arrows indicate the directions in which the inspection surface 5 and the detection means 7 are movable. FIG. 12 shows that the angle of incidence of light on the reflective film 5 is variable in the measurement apparatus of the present embodiment, and measurement is performed by changing the angle of incidence θ1 and the angle of incidence θ2.
[0053]
In the first embodiment, the phase characteristic of the light reflected at one point on the surface to be inspected (reflection surface) is measured. The uniformity of the reflective film characteristics over the entire inspection surface may also be measured.
[0054]
Here, the light from the surface to be measured is divided into a plurality of lights, and the wavefronts of the plurality of lights are shifted laterally from each other.
Forming an interference fringe by causing interference, an interferometer for measuring a state of a wavefront of light from the test surface based on a phase distribution obtained from the interference fringe,
The light includes first and second lights having different wavelengths from each other, forms the interference fringes for each of the first and second lights, and includes a second light having a longer wavelength among the first and second lights. A phase change component due to the lateral shift is obtained from a phase distribution obtained from the interference fringe of the first light, and the first and second phase distributions are obtained using the phase distribution obtained from the interference fringe of the first light and the phase change component. An interferometer for measuring a state of the wavefront of the light.
[0055]
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. While the first embodiment is a shearing interferometer system, the present embodiment is a point diffraction interferometer system. The description will be made with reference to the drawings. The same number or the same function is denoted by the same number in the figures with different numbers.
[0056]
FIG. 13 is an overall configuration diagram of the present embodiment. Unlike the second embodiment and the first embodiment described above, the reference light is generated by using the zero-order diffracted light emitted from the branch diffraction grating G1. Other parts not specifically described are the same as in the first embodiment. Hereinafter, a brief description will be given with reference to FIG. The light beam L1 from the light source 1 is reflected by the reflecting mirror 2 and passes through a pinhole 3a provided in the member 3 to make the wavefront substantially equal to the light beam emitted from the point light source. The light beam L4 spread from the pinhole 3a is transmitted from the first incident angle θ1 to the second light on the film (test light surface) 5 via the reflecting mirror 9 such as an ellipsoid, a paraboloid, or a rotationally asymmetric aspheric surface. The measurement point 5c on the test surface (reflection film) 5 is irradiated as a light beam L5 having a width (range) up to the incident angle θ2. The light beam L6 reflected at the measurement point 5c on the reflective film 5 is split into two light beams by the branch diffraction grating G1, and is irradiated on the aperture A2.
[0057]
FIG. 14 is a diagram of the aperture A2 in the XY plane. The aperture A2 has two openings A21 and A22. A21 is arranged at a position where the 0th-order diffracted light for forming the reference light is incident, and A22 is arranged at a position where the + 1st-order light is incident. Of course, this combination may use other orders of diffracted light, but the order of the diffracted light incident on the aperture for forming the reference light is the same or higher than the order of the diffracted light incident on the other aperture. It is preferable that the diffracted light has a lower order than that of the diffracted light. As described above, in the second embodiment, unlike the first embodiment, the reference light is generated using the zero-order diffracted light emitted from the branch diffraction grating G1. Here, in order to generate the reference light using the stronger zero-order light, the zero-order diffracted light is guided to a minute pinhole A21 having a diameter of about twice the wavelength. On the other hand, the + 1st-order light is guided to a larger aperture A22 so as to directly reflect the disturbance of the wavefront shape due to the surface to be measured. The light wave that has passed through A21 becomes an ideal spherical wave and becomes reference light. On the other hand, the wavefront transmitted through A22 is transmitted while retaining the information of the surface to be detected as it is, and interferes with the reference wave.
[0058]
Here, in order to form reference light (light that generates a spherical wave) by the 0th-order diffracted light incident on the opening A21 of the aperture A2, the size of the opening A21 is about twice the wavelength. There is a need. However, the light incident on the opening A21 is difficult because it includes two types of light having different wavelengths from light having a wavelength of 13.5 nm and light having a wavelength of 248 nm. Therefore, in this embodiment, the vicinity of the aperture A21 of the aperture is configured as shown in FIG. The opening A22 is a normal opening.
[0059]
FIG. 15 is an enlarged view of the opening A21 of the aperture of FIG. The opening (pinhole) is a double pinhole sharing the center. This is so that both light having a wavelength of 13.5 nm and light having a wavelength of 248 nm generate ideal spherical waves, and are constituted by two light shielding members. One of the two light blocking members is provided with a pinhole having a diameter of about twice the wavelength of 248 nm in the non-exposure light blocking member A24 that blocks light having a wavelength of 248 nm (hereinafter, referred to as non-exposure light). And the other is provided with a pinhole having a diameter about twice as large as the wavelength of 13.5 nm in the exposure light shielding member A23 for transmitting light of the wavelength of 248 nm and shielding the light of the wavelength of 13.5 nm. Are combined to form a double structure, whereby light of two different wavelengths generates an almost ideal spherical wave. Of course, the size of the diameter of the opening provided in the light-shielding member is not limited to twice the wavelength, and it is possible to substitute another means for generating reference light having an ideal spherical wave.
[0060]
In this way, the light beam interference information can be detected by the detecting means 7 such as a two-dimensional CCD. Here, a short wavelength cut filter may be used on the two-dimensional CCD so as to separate the interference fringes of the light having the wavelength of 248 nm and the light having the wavelength of 13.5 nm in place as in the first embodiment.
[0061]
In the first embodiment, the phase characteristic of the light reflected at one point on the surface to be inspected (reflection surface) is measured. The uniformity of the reflective film characteristics over the entire inspection surface may also be measured.
[0062]
(Third embodiment)
A third embodiment will be described with reference to FIG. The third embodiment is an example using one half of a Schwarzchild optical system. Since the vicinity of the light source is the same as in the first and second embodiments, the description is omitted. First, light from a light source is emitted from a pinhole 3a provided in the member 3, and EUV light (wavelength of about 13.5 nm) emitted from the pinhole 3a is combined with light of another wavelength (for example, light of a wavelength of about 248 nm). A multiplexing grating (not shown) for multiplexing is used. Thereafter, the multiplexed light is reflected by the reflecting mirror 9 ″ and the reflecting mirror 9 ′ and is incident on the surface to be measured (reflecting surface) 5, and then passes through the branch diffraction grating G 1 and the aperture A 1 to the detecting means 7. Incident. Here, the interference fringes are measured, and the phase of the light reflected on the surface to be measured is measured from the measurement result. Other parts not specifically described are the same as in the first embodiment.
[0063]
(Fourth embodiment)
A fourth embodiment will be described with reference to FIG. This fourth embodiment is an example using a Zernnitana optical system. This also multiplexes the second wavelength (not shown) coaxially. Since the vicinity of the light source is the same as in the first and second embodiments, the description is omitted. First, light from a light source is emitted from a pinhole 3a provided in the member 3, and EUV light (wavelength: about 13.5 nm) emitted from the pinhole 3a is combined with light of another wavelength (for example, light having a wavelength of about 248 nm). A multiplexing grating (not shown) for multiplexing is used. Thereafter, the multiplexed light is reflected by the reflecting mirror 9 ′ and is incident on the surface to be measured (reflecting surface) 5, and then is incident on the detecting means 7 via the reflecting mirror 9 ″, the branch diffraction grating G 1, and the aperture A 1. I do. Here, the interference fringes are measured, and the phase of the light reflected on the surface to be measured is measured from the measurement result. Other parts not specifically described are the same as in the first embodiment. As in the above embodiment, in order to measure the angle characteristic of the phase of the reflective film as the surface to be measured, the first wavelength of at wavelength is the wavelength of the visible light or the UV light that is reflected by the surface of the surface to be measured. By using the wavelength, it can be determined correctly. Other parts not specifically described are the same as in the first embodiment.
[0064]
(Fifth embodiment)
In the fifth embodiment, the reflection surface obtained by measuring the incident angle dependence of the reflection film (the incident angle dependence of the phase of the reflected light reflected on the surface to be measured) by the method of the first to fourth embodiments is used. This is an example in which an EUV exposure apparatus is configured.
[0065]
A laser plasma light source is used as the EUV light source having a wavelength of 13.5 nm in the present embodiment. In this method, high-intensity pulsed laser light is applied to the target material TA supplied into the vacuum chamber 701 to generate high-temperature plasma 705, and EUV light with a wavelength of, for example, about 13 nm emitted from this is used. . As the target material, a metal thin film, an inert gas, a droplet, or the like is used, and the target material is supplied into the vacuum vessel 701 by a target supply device 702 having a means such as a gas jet. Further, the pulse laser light is output from the excitation pulse laser 703 and is irradiated on the target material TA via the condenser lens 704. In order to increase the average intensity of the emitted EUV light, the higher the repetition frequency of the pulse laser, the better. The excitation pulse laser 703 is usually operated at a repetition frequency of several kHz.
[0066]
Note that a discharge plasma light source can be used as the EUV light source. A discharge plasma light source emits gas around an electrode placed in a vacuum vessel, applies a pulse voltage to the electrode to cause a discharge to generate high-temperature plasma, and emits EUV light having a wavelength of, for example, about 13 nm emitted from the electrode. To use. In order to increase the average intensity of the emitted EUV light, the higher the repetition frequency of the discharge, the better, and it is usually operated at a repetition frequency of several kHz.
[0067]
The illumination optical system has a plurality of multilayer films or oblique incidence mirrors and an optical integrator. The illumination optical system according to the present embodiment includes an illumination system first mirror 706, an optical integrator 707, an illumination system second mirror 708, and an illumination system third mirror 709, and EUV emitted from the plasma 705 by these members. The light is guided to a reticle (mask) 711.
[0068]
The first-stage condenser mirror (illumination system first mirror) 706 of the illumination optical system plays a role of collecting EUV light emitted almost isotropically from the laser plasma 705. The optical integrator 707 has a role of uniformly illuminating the reticle 711 with a predetermined numerical aperture. An aperture 710 having an arc opening is provided at a position conjugate with the reticle 711 of the illumination optical system to limit an area illuminated on the reticle surface to an arc shape.
[0069]
The reticle 711 is irradiated with an arc-shaped light beam that has passed through the aperture 710, and the reflected light is irradiated on the wafer 731 via a projection optical system including reflecting mirrors 721 to 724. A mirror with a multilayer film (multilayer mirror) used in the EUV region has a large loss of light as compared with a visible light mirror, and therefore, it is necessary to minimize the number of mirrors. Reference numeral 725 denotes an aperture limiting aperture.
[0070]
In the present embodiment, in order to realize a projection optical system having a wide exposure area with a small number of mirrors, a ring field optical system using only a thin arc-shaped area (ring field) separated by a certain distance from the optical axis is used. We are using. Then, a method (scan exposure) in which the reticle 711 and the wafer 731 are simultaneously scanned synchronously and transferred with a wide exposure area is used. An arc-shaped illumination area on the reticle 711 surface is formed by an optical integrator 707 and front and rear mirrors 708 and 709 in the illumination optical system.
[0071]
A plurality of mirrors are also used for the projection optical system. In FIG. 3, the reflected light from the reticle 711 is guided onto the wafer 731 mounted on the wafer chuck 733 by the projection system first to fourth mirrors (721 to 724). The smaller the number of mirrors, the higher the utilization efficiency of EUV light, but it becomes difficult to correct aberrations. In order to perform good aberration correction, the number of mirrors is set to about four to six. The reflecting surface of the mirror has a convex or concave spherical surface, an aspherical surface, a rotationally asymmetrical aspherical surface, or the like. The numerical aperture NA of the projection optical system is about 0.1 to 0.3.
[0072]
Each mirror is ground and polished on a substrate made of a material having a high rigidity and a high hardness such as a low expansion coefficient glass or silicon carbide and a low coefficient of thermal expansion to create a predetermined reflection surface shape. -An Si film (a multilayer film of molybdenum / silicon or the like) is used. Of course, a Be-Si film or a Rh-Si film may be used as another configuration of the reflection film. If the angle of incidence is not constant depending on the location within the mirror surface, as is apparent from the Bragg equation, the wavelength of EUV light whose reflectance increases in a multilayer film having a constant film period shifts depending on the location. Therefore, a film period distribution is provided so that EUV light of the same wavelength is efficiently reflected within the mirror surface.
[0073]
The reticle stage 712 and the wafer stage 732 have a mechanism that scans synchronously at a speed ratio proportional to the reduction magnification of the projection optical system. Here, as the coordinate system, the scanning direction in the plane of the reticle 711 or the wafer 732 is the X axis, the direction perpendicular thereto is the Y axis, and the direction perpendicular to the reticle or wafer surface is the Z axis.
[0074]
Reticle 711 is held by reticle chuck 713 on reticle stage 712. The reticle stage 712 has a mechanism for moving at high speed in the X direction. The reticle 711 has a fine movement mechanism in the X direction, the Y direction, the Z direction, and the rotation direction around each axis, so that the reticle 711 can be positioned. The position and orientation of the reticle stage 712 are measured by a known method using a laser interferometer (not shown), and the position and orientation are controlled based on the result.
[0075]
Wafer 731 is held on wafer stage 732 by wafer chuck 733. The wafer stage 732 has a mechanism that moves at a high speed in the X direction, like the reticle stage 712. Further, a fine movement mechanism is provided in the X direction, the Y direction, the Z direction, and the rotation direction around each axis so that the wafer can be positioned. The position and orientation of wafer stage 732 are measured by a known method using a laser interferometer (not shown), and the position and orientation are controlled based on the results.
[0076]
In order to detect the relative positional relationship between the reticle 711 and the wafer 731, the alignment detecting mechanisms 714 and 734 detect the positional relationship between the position of the reticle 711 and the optical axis of the projection optical system, and the position of the wafer 731 and the light of the projection optical system. The positional relationship with the axis is measured, and the positions and angles of the reticle stage 712 and the wafer stage 732 are set so that the projected image of the reticle 711 matches a predetermined position on the wafer 731.
[0077]
The focus position in the Z direction is measured on the wafer surface by a focus position detection mechanism 735 that detects the best image forming position of the projection optical system, and the position and angle of the wafer stage 732 are controlled. At the best imaging position by the projection optical system.
[0078]
After one scan exposure on the wafer 731 is completed, the wafer stage 732 moves stepwise in the X and Y directions to move to the next scanning exposure start position, and the reticle stage 712 and the wafer stage 732 reduce the size of the projection optical system again. The pattern of the reticle 711 is exposed on the wafer 731 by performing synchronous scanning in the X direction at a speed ratio proportional to the magnification.
[0079]
In this way, the operation of synchronously scanning the reduced projection image of the reticle 711 and the image formed on the wafer 731 is repeated (step-and-scan), and the transfer pattern of the reticle is transferred to the entire surface of the wafer. You.
[0080]
As described above, according to each embodiment, the phase of the optical thin film formed on the optical element surface can be accurately measured with a simple configuration. In addition, since the configuration of each embodiment does not depend on the wavelength, it can be applied to a system in which the types of optical elements used extremely are limited, such as EUV.
[0081]
In addition, an optical element that has been measured using the phase measurement device or the interferometer described above, or an exposure apparatus that incorporates the optical element and uses an EUV wavelength light, or another optical device that uses light in the EUV wavelength region Devices and the like are also part of the embodiments of the present invention.
[0082]
In addition, a step of exposing an object to be exposed (a wafer or the like) by an exposure apparatus having an optical element that has been measured using the phase measurement method, the phase measurement apparatus, or the interferometer described above; The device may be manufactured through the step of developing the object to be exposed. The method for manufacturing the device includes various known steps in addition to the above steps.
[0083]
Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the gist.
[0084]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the phase characteristic in each position of the film | membrane applied to the reflecting mirror with a curvature or a plane reflecting mirror and / or the phase characteristic of the film depending on an incident angle can be measured easily and with high precision. A phase measurement device can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a main part of a phase measuring apparatus according to a first embodiment of the present invention.
FIG. 2 is an enlarged view of the vicinity of a test surface (reflection surface) according to the first embodiment of the present invention.
FIG. 3 is a schematic view of a branch diffraction grating according to the first embodiment of the present invention.
FIG. 4 is a schematic view of an aperture according to the first embodiment of the present invention.
FIG. 5 is an XZ plan view near a branch diffraction grating according to the first embodiment of the present invention.
FIG. 6 is a YZ plan view showing the vicinity of the branch diffraction grating according to the first embodiment of the present invention.
FIG. 7 is a schematic diagram of interference fringes detected by the detection unit according to the first embodiment of the present invention.
FIG. 8 shows a detection result of a phase difference by the detection means 7 in the first embodiment of the present invention.
FIG. 9 shows a phase difference of EUV light reflected on the surface to be measured in the first embodiment of the present invention.
FIG. 10 shows a phase given to EUV light by the surface to be measured in the first embodiment of the present invention.
FIG. 11 is a configuration diagram for correcting an error of the apparatus according to the first embodiment of the present invention.
FIG. 12 is a view showing a variable incident angle mechanism according to the first embodiment of the present invention.
FIG. 13 is a schematic diagram of a main part of a phase measuring apparatus according to a second embodiment of the present invention.
FIG. 14 is a plan view of an aperture according to a second embodiment of the present invention.
FIG. 15 is a partial cross-sectional view of an aperture according to a second embodiment of the present invention.
FIG. 16 is a schematic view of a main part of a third embodiment of the present invention.
FIG. 17 is a schematic view of a main part of a fourth embodiment of the present invention.
FIG. 18 is a schematic view of a main part of a fifth embodiment of the present invention.
[Explanation of symbols]
1 Light source member
2 Reflector
3a aperture
5 Test surface (reflective surface, reflective film)
6 Test object
7 Detecting means
9 Reflector
10 arithmetic means
22 Combining (coupling) grating
G1 Branch diffraction grating
A1 aperture

Claims (30)

第1波長の光と第2波長の光を含む光束を披検面に所定の角度範囲を持って入射させる照明光学系と、前記被検面からの反射光により前記第1波長の光の干渉縞と前記第2波長の光の干渉縞とを検出手段上に形成する検出光学系とを有し、前記検出手段により検出された前記干渉縞を測定することによって、前記被検面が前記第1波長の光に与える位相の、前記第1波長の光の前記被検面への入射角への依存性を測定することを特徴とする位相測定装置。An illumination optical system for causing a light beam including light of the first wavelength and light of the second wavelength to enter the test surface with a predetermined angle range, and interference of the light of the first wavelength by reflected light from the test surface. A detection optical system that forms a fringe and an interference fringe of the light of the second wavelength on a detection unit, and by measuring the interference fringe detected by the detection unit, the surface to be detected becomes the second surface. A phase measuring device for measuring the dependence of the phase given to one wavelength of light on the angle of incidence of the first wavelength of light on the surface to be measured. 前記第1波長の光の前記被検面への入射角に対する、前記被検面が前記第1波長の光に与える位相変化と、前記第2波長の光の前記被検面への入射角に対する、前記第2波長の光の位相変化とから、前記被検面が前記第1波長の光に与える位相の、前記第1波長の光の前記被検面への入射角への依存性を測定することを特徴とする請求項1記載の位相測定装置。The phase change given to the light of the first wavelength by the test surface with respect to the incident angle of the light of the first wavelength to the test surface, and the phase change of the light of the second wavelength to the incident angle to the test surface. Measuring, from the phase change of the light of the second wavelength, the dependence of the phase given to the light of the first wavelength by the test surface on the angle of incidence of the light of the first wavelength on the test surface. The phase measurement device according to claim 1, wherein the phase measurement is performed. 前記被検面からの反射光を横ずらしすることによって、前記第1波長の光の干渉縞及び前記第2波長の光の干渉縞を形成しており、前記横ずらしに起因する位相の変化量を前記第2波長の光の干渉縞から求め、前記第1波長の光の干渉縞と前記横ずらしに起因する位相の変化量から、前記被検面が前記第1波長の光に与える位相の、前記第1波長の光の前記被検面への入射角への依存性を測定することを特徴とする請求項1又は2記載の位相測定装置。By shifting the reflected light from the surface to be measured laterally, an interference fringe of the light of the first wavelength and an interference fringe of the light of the second wavelength are formed, and the amount of phase change caused by the lateral shift Is determined from the interference fringes of the light of the second wavelength, and from the interference fringes of the light of the first wavelength and the amount of phase change caused by the lateral shift, the phase of the phase to be given to the light of the first wavelength 3. The phase measurement apparatus according to claim 1, wherein the dependence of the light of the first wavelength on the incident angle on the surface to be measured is measured. 前記第1波長が前記第2波長よりも短いことを特徴とする請求項1乃至3いずれか1項記載の位相測定装置。4. The phase measuring device according to claim 1, wherein the first wavelength is shorter than the second wavelength. 前記第2波長が前記第1波長の10倍より長いことを特徴とする請求項1乃至4いずれか1項記載の位相測定装置。The phase measuring device according to claim 1, wherein the second wavelength is longer than ten times the first wavelength. 前記第1波長は、10nm以上15nm以下の波長であることを特徴とする請求項1乃至5いずれか1項記載の位相測定装置。The phase measurement device according to claim 1, wherein the first wavelength is a wavelength of 10 nm or more and 15 nm or less. 前記第1波長は、13nm以上14nm以下の波長であることを特徴とする請求項1乃至6いずれか1項記載の位相測定装置。The phase measurement device according to claim 1, wherein the first wavelength is a wavelength of 13 nm or more and 14 nm or less. 前記第2波長は、150nm以上の波長であることを特徴とする請求項1乃至7いずれか1項記載の位相測定装置。The phase measurement device according to claim 1, wherein the second wavelength is a wavelength of 150 nm or more. 前記被検面は、MoとSiを用いて形成された反射用多層膜を有することを特徴とする請求項1乃至8いずれか1項記載の位相測定装置。9. The phase measuring apparatus according to claim 1, wherein the surface to be inspected has a reflective multilayer film formed using Mo and Si. 10. 前記被検面からの反射光を複数の光束に分岐する分岐光学素子を有し、前記複数の光束のうち少なくとも2つの光束を干渉させることにより、前記第1波長の光の干渉縞と前記第2波長の光の干渉縞とを検出手段上に形成することを特徴とする請求項1乃至9いずれか1項記載の位相測定装置。A branch optical element for branching the reflected light from the surface to be inspected into a plurality of light fluxes, and by causing at least two of the plurality of light fluxes to interfere with each other, the interference fringe of the light of the first wavelength and the second 10. The phase measuring device according to claim 1, wherein interference fringes of light of two wavelengths are formed on the detecting means. 前記分岐光学素子が、分岐回折格子であることを特徴とする請求項10記載の位相測定装置。The phase measuring device according to claim 10, wherein the branch optical element is a branch diffraction grating. 前記検出光学系が、前記分岐光学素子により分岐された複数の光束のうち2つの光束を選択的に透過する遮光部材を有することを特徴とする請求項10又は11記載の位相測定装置。The phase measuring device according to claim 10, wherein the detection optical system includes a light blocking member that selectively transmits two light beams out of the plurality of light beams branched by the branch optical element. 前記2つの光束のうち1つの光束が、前記遮光部材よりも前記検出手段側において、理想的な球面波となるように前記遮光部材を形成していることを特徴とする請求項12記載の位相測定装置。13. The phase according to claim 12, wherein the light shielding member is formed such that one of the two light beams has an ideal spherical wave closer to the detection unit than the light shielding member. measuring device. 前記遮光部材が、前記分岐光学素子から出射した光のうち、前記第1波長の光を透過するための第1開口部と、前記第2波長の光を透過するための第2開口部とを有し、前記第1開口部と前記第2開口部とは大きさが異なり、前記第1開口部と前記第2開口部とは少なくとも一部が互いに重なっていることを特徴とする請求項12又は13項記載の位相測定装置。The light-blocking member includes a first opening for transmitting the light of the first wavelength, and a second opening for transmitting the light of the second wavelength, of the light emitted from the branching optical element. The first opening and the second opening have different sizes, and the first opening and the second opening at least partially overlap each other. Or the phase measurement device according to item 13. 前記第1開口部と前記第2開口部とは、互いの中心が略一致していることを特徴とする請求項14記載の位相測定装置。The phase measurement device according to claim 14, wherein the first opening and the second opening have substantially the same centers. 前記分岐光学素子が分岐回折格子であって、前記第1開口部と前記第2開口部とが重なっている領域を、前記分岐回折格子から出射した0次回折光が透過することを特徴とする請求項14又は15記載の位相測定装置。The branch optical element is a branch diffraction grating, and a zero-order diffracted light emitted from the branch diffraction grating is transmitted through a region where the first opening and the second opening overlap. Item 16. The phase measuring device according to item 14 or 15. 前記第2波長の光が前記被検面に入射する第2入射角に対する、前記検出手段により検出した前記第2波長の光の干渉縞を光電変換して得られる、前記第2波長の光が前記被検面で反射することにより受ける位相の変化量の傾き成分を用いて、
前記第1波長の光が前記被検面に入射する第1入射角度に対する、前記検出手段により検出した前記第1波長の光の干渉縞を光電変換して得られる、前記第1波長の光が前記被検面で反射することにより受ける位相の変化量から、傾き成分を除去することを特徴とする請求項1乃至16いずれか1項記載の位相測定装置。
The light of the second wavelength is obtained by photoelectrically converting interference fringes of the light of the second wavelength detected by the detection means with respect to a second incident angle at which the light of the second wavelength is incident on the surface to be measured. By using the gradient component of the amount of phase change received by reflecting on the test surface,
The light of the first wavelength is obtained by photoelectrically converting interference fringes of the light of the first wavelength detected by the detection means with respect to a first incident angle at which the light of the first wavelength is incident on the surface to be measured. 17. The phase measurement device according to claim 1, wherein a tilt component is removed from a phase change amount received by being reflected by the test surface.
請求項1乃至17いずれか1項に記載の位相測定装置により位相を測定した光学素子。An optical element whose phase has been measured by the phase measuring device according to claim 1. 請求項18記載の光学素子を有することを特徴とする露光装置。An exposure apparatus comprising the optical element according to claim 18. 請求項19記載の露光装置を用いて被露光体を露光する工程と、該被露光体を現像する工程とを有することを特徴とするデバイスの製造方法。A method for manufacturing a device, comprising: a step of exposing an object to be exposed using the exposure apparatus according to claim 19; and a step of developing the object to be exposed. 被検面からの光を複数の光に分割し、該複数の光の波面を互いに横ずらしした状態で干渉させて干渉縞を形成し、該干渉縞から得られる位相分布に基づいて前記被検面からの光の波面の状態を測定する干渉計において、前記光は互いに波長が異なる第1,第2の光を含み、該第1,第2の光毎に前記干渉縞を形成し、前記第1,第2の光のうちの波長が長い第2の光による前記干渉縞から得られる位相分布から位相変化成分を求め、前記第1の光による前記干渉縞から得られる位相分布と該位相変化成分とを用いて、前記第1の光の前記波面の状態を測定することを特徴とする干渉計。The light from the surface to be inspected is divided into a plurality of lights, and the wavefronts of the plurality of lights are caused to interfere with each other while being shifted laterally from each other to form an interference fringe, and the inspection is performed based on a phase distribution obtained from the interference fringe. In an interferometer that measures a state of a wavefront of light from a surface, the light includes first and second lights having different wavelengths from each other, and forms the interference fringes for each of the first and second lights. A phase change component is obtained from a phase distribution obtained from the interference fringe by the second light having a longer wavelength of the first and second lights, and a phase distribution obtained from the interference fringe by the first light and the phase An interferometer for measuring a state of the wavefront of the first light using a change component. 前記位相変化成分が前記横ずらしに起因することを特徴とする請求項21記載の干渉計。The interferometer according to claim 21, wherein the phase change component is caused by the lateral shift. 前記位相変化成分が前記被検面の表面形状に起因することを特徴とする請求項21又は22記載の干渉計。23. The interferometer according to claim 21, wherein the phase change component is caused by a surface shape of the test surface. 前記第2の光の波長が前記第1の光の波長の10倍より長いことを特徴とする請求項21乃至23いずれか1項記載の干渉計。24. The interferometer according to claim 21, wherein a wavelength of the second light is longer than 10 times a wavelength of the first light. 前記第1の光の波長は、10nm以上15nm以下の波長であることを特徴とする請求項21乃至24いずれか1項記載の干渉計。25. The interferometer according to claim 21, wherein a wavelength of the first light is a wavelength of 10 nm or more and 15 nm or less. 前記第1波長は、13nm以上14nm以下の波長であることを特徴とする請求項21乃至25いずれか1項記載の干渉計。26. The interferometer according to claim 21, wherein the first wavelength is a wavelength of 13 nm or more and 14 nm or less. 前記第2波長は、150nm以上の波長であることを特徴とする請求項21乃至26いずれか1項記載の干渉計。The interferometer according to any one of claims 21 to 26, wherein the second wavelength is a wavelength of 150 nm or more. 請求項21乃至27いずれか1項に記載の干渉計により波面の状態を測定した光学素子。An optical element whose wavefront state is measured by the interferometer according to any one of claims 21 to 27. 請求項28記載の光学素子を有することを特徴とする露光装置。An exposure apparatus comprising the optical element according to claim 28. 請求項29記載の露光装置を用いて被露光体を露光する工程と、該被露光体を現像する工程とを有することを特徴とするデバイスの製造方法。A method for manufacturing a device, comprising: a step of exposing an object to be exposed using the exposure apparatus according to claim 29; and a step of developing the object to be exposed.
JP2002199019A 2002-07-08 2002-07-08 Phase measurement device, and optical element, exposure apparatus and device manufacturing method using the same Withdrawn JP2004045043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002199019A JP2004045043A (en) 2002-07-08 2002-07-08 Phase measurement device, and optical element, exposure apparatus and device manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002199019A JP2004045043A (en) 2002-07-08 2002-07-08 Phase measurement device, and optical element, exposure apparatus and device manufacturing method using the same

Publications (1)

Publication Number Publication Date
JP2004045043A true JP2004045043A (en) 2004-02-12

Family

ID=31706310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199019A Withdrawn JP2004045043A (en) 2002-07-08 2002-07-08 Phase measurement device, and optical element, exposure apparatus and device manufacturing method using the same

Country Status (1)

Country Link
JP (1) JP2004045043A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196699A (en) * 2005-01-13 2006-07-27 Nikon Corp Method and device for measuring wavefront aberration, projection exposure device and method for manufacturing projection optical system
JP2013537710A (en) * 2010-07-30 2013-10-03 カール・ツァイス・エスエムティー・ゲーエムベーハー Method and apparatus for calibrating an optical system of a projection exposure tool for microlithography
CN105352611A (en) * 2015-10-21 2016-02-24 中国科学院上海光学精密机械研究所 Method for manufacturing step board for measuring transfer function of interferometer
CN106066562A (en) * 2015-04-21 2016-11-02 康代有限公司 There is the inspection system of the angular coverage of extension
JP2018121074A (en) * 2018-04-04 2018-08-02 ソニー株式会社 Semiconductor laser device assembly
KR20180120864A (en) * 2017-04-27 2018-11-07 한양대학교 산학협력단 Defect inspection method for phase shift mask and defect inspection apparatus for same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196699A (en) * 2005-01-13 2006-07-27 Nikon Corp Method and device for measuring wavefront aberration, projection exposure device and method for manufacturing projection optical system
JP4600047B2 (en) * 2005-01-13 2010-12-15 株式会社ニコン Wavefront aberration measuring method, wavefront aberration measuring apparatus, projection exposure apparatus, and projection optical system manufacturing method
JP2013537710A (en) * 2010-07-30 2013-10-03 カール・ツァイス・エスエムティー・ゲーエムベーハー Method and apparatus for calibrating an optical system of a projection exposure tool for microlithography
CN106066562A (en) * 2015-04-21 2016-11-02 康代有限公司 There is the inspection system of the angular coverage of extension
CN106066562B (en) * 2015-04-21 2020-07-10 康代有限公司 Inspection system with extended angular coverage
CN105352611A (en) * 2015-10-21 2016-02-24 中国科学院上海光学精密机械研究所 Method for manufacturing step board for measuring transfer function of interferometer
KR20180120864A (en) * 2017-04-27 2018-11-07 한양대학교 산학협력단 Defect inspection method for phase shift mask and defect inspection apparatus for same
KR102320292B1 (en) 2017-04-27 2021-11-03 한양대학교 산학협력단 Defect inspection method for phase shift mask and defect inspection apparatus for same
JP2018121074A (en) * 2018-04-04 2018-08-02 ソニー株式会社 Semiconductor laser device assembly

Similar Documents

Publication Publication Date Title
US7327467B2 (en) Phase measuring method and apparatus for measuring characterization of optical thin films
US7675629B2 (en) Exposure apparatus and device manufacturing method using a common path interferometer to form an interference pattern and a processor to calculate optical characteristics of projection optics using the interference pattern
US7528966B2 (en) Position detection apparatus and exposure apparatus
US7952726B2 (en) Measurement apparatus, exposure apparatus having the same, and device manufacturing method
US7388696B2 (en) Diffuser, wavefront source, wavefront sensor and projection exposure apparatus
US8004691B2 (en) Measuring apparatus, exposure apparatus and method, and device manufacturing method
US20100177323A1 (en) Wavefront-aberration-measuring device and exposure apparatus
JP2005333141A (en) Shearing interferometer with dynamic pupil fill
JP2004040067A (en) Method of detecting focus and imaging system having focus detecting system
US20090274964A1 (en) Measuring apparatus and exposure apparatus having the same
KR20090093892A (en) Surface shape measuring apparatus, exposure apparatus, and device manufacturing method
JP2009068922A (en) Measurement apparatus, exposure apparatus, and device fabrication method
JP2009004711A (en) Measurement equipment, exposure equipment, and device manufacturing method
JP3581689B2 (en) Phase measurement device
JP3870153B2 (en) Measuring method of optical characteristics
JP2004045043A (en) Phase measurement device, and optical element, exposure apparatus and device manufacturing method using the same
JP2006196699A (en) Method and device for measuring wavefront aberration, projection exposure device and method for manufacturing projection optical system
US20090268188A1 (en) Exposure apparatus and device manufacturing method
JP4280521B2 (en) Aberration measuring apparatus and projection exposure apparatus
JP3958261B2 (en) Optical system adjustment method
JP2000097620A (en) Interferometer
JP2005167139A (en) Wavelength selection method, position detection method and apparatus, and exposure apparatus
JP3581690B2 (en) Phase measuring method and phase measuring device
JP2001272310A (en) Aberration measuring device and method in projection optical system, and mask and exposure device used for them
JP3316761B2 (en) Scanning exposure apparatus and device manufacturing method using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004