JP2003222555A - Thermal-type infrared solid image pickup element - Google Patents

Thermal-type infrared solid image pickup element

Info

Publication number
JP2003222555A
JP2003222555A JP2002023683A JP2002023683A JP2003222555A JP 2003222555 A JP2003222555 A JP 2003222555A JP 2002023683 A JP2002023683 A JP 2002023683A JP 2002023683 A JP2002023683 A JP 2002023683A JP 2003222555 A JP2003222555 A JP 2003222555A
Authority
JP
Japan
Prior art keywords
constant current
voltage
circuit
reference signal
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002023683A
Other languages
Japanese (ja)
Other versions
JP3806042B2 (en
Inventor
Masafumi Ueno
雅史 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002023683A priority Critical patent/JP3806042B2/en
Publication of JP2003222555A publication Critical patent/JP2003222555A/en
Application granted granted Critical
Publication of JP3806042B2 publication Critical patent/JP3806042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/673Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction by using reference sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal-type infrared solid image pickup element less affected by a voltage drop caused by resistance of a drive line and less fluctuated in output by fluctuation in power supply voltage or fluctuation in element temperature. <P>SOLUTION: A second constant current source 18 connected in common by a bias line 17 is provided in the proximity of a first constant current source 2 connected to pixels 1. Difference between a voltage across the first source 2 and a voltage across the second source 18 is integrated for a fixed period of time by a differential integration circuit 7 and outputted, thereby cancelling voltage distribution appearing in the drive line. From a reference signal output circuit 11 driven by a pixel power supply 6, a reference signal corresponding to the temperature of the whole element is inputted into the bias line 17. Drifts of the signal caused by fluctuation in power supply voltage and fluctuation in element temperature are subtracted by the differential integration circuit, thereby preventing the drifts from being outputted to the exterior. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、入射赤外線によ
る温度変化を2次元配列された半導体センサで検出する
熱型赤外線固体撮像素子に関し、特に、半導体センサか
らの電気信号を信号処理回路にて積分処理した後に出力
する熱型赤外線固体撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal infrared solid-state image sensor in which temperature changes due to incident infrared rays are detected by a two-dimensionally arranged semiconductor sensor, and in particular, an electric signal from the semiconductor sensor is integrated by a signal processing circuit. The present invention relates to a thermal infrared solid-state imaging device that outputs after processing.

【0002】[0002]

【従来の技術】図10及び図11は、Proc.SPIE Vol.36
98 1999 556頁から564頁に記載された従来の熱型赤外線
固体撮像素子である。図10(a)及び(b)に示よう
に、赤外線撮像素子の画素1において、温度センサとな
るPN接合ダイオード902は、2本の長い支持脚11
01によってシリコン基板1102に設けられた中空部
1103の上に支持されており、ダイオード902の電
極配線1104が支持脚1101に埋め込まれている。
PN接合ダイオード902は、感度を高めるために複数
個が直列に接続されている。中空部1103は、ダイオ
ード902とシリコン基板1102との間の熱抵抗を高
めて、断熱構造を形成している。ダイオード902は、
基板1102と独立した層にする必要があるので、SOI
基板を用いてSOI層上に形成されており、SOI層下の埋め
込み酸化膜は中空構造を支持する構造体の一部になって
いる。また、ダイオード部に熱的に接触している赤外線
吸収構造1106が、図の上方から入射する赤外線を効
率良く吸収できるように、支持脚1101の上方に張り
出した構造となっている。尚、図10(b)では下部の構
造を判りやすくするため、図の前方の部分での赤外線吸
収構造を除いて描いてある。
2. Description of the Related Art FIGS. 10 and 11 show Proc.SPIE Vol.36.
98 1999 Conventional thermal infrared solid-state imaging device described on pages 556 to 564. As shown in FIGS. 10A and 10B, in the pixel 1 of the infrared imaging device, the PN junction diode 902 serving as the temperature sensor has two long support legs 11
01 is supported on the hollow portion 1103 provided in the silicon substrate 1102, and the electrode wiring 1104 of the diode 902 is embedded in the support leg 1101.
A plurality of PN junction diodes 902 are connected in series to increase sensitivity. The hollow portion 1103 increases the thermal resistance between the diode 902 and the silicon substrate 1102 to form a heat insulating structure. The diode 902 is
Since it needs to be a layer independent of the substrate 1102, SOI
It is formed on the SOI layer using the substrate, and the buried oxide film under the SOI layer is a part of the structure supporting the hollow structure. Further, the infrared absorbing structure 1106 that is in thermal contact with the diode portion has a structure protruding above the support leg 1101 so that infrared rays incident from above in the drawing can be efficiently absorbed. In addition, in FIG. 10B, in order to make the lower structure easy to understand, the infrared absorption structure in the front portion of the drawing is omitted.

【0003】赤外線が画素1に入射すると、赤外線吸収
構造1106で吸収され、上記の断熱構造により画素1
の温度が変化し、温度センサとなるダイオード902の
順方向電圧特性が変化する。このダイオード902の順
方向電圧特性の変化量を、所定の検出回路で読み取るこ
とにより、入射した赤外線量に応じた出力信号を取出す
ことができる。熱型赤外線固体撮像素子では、画素1が
2次元に多数配列されており、それらを順にアクセスし
ていく構造となっている。このような素子では画素間の
特性均一性が重要である。ダイオードの順方向電圧やそ
の温度依存性は固体間のバラツキが非常に小さく、熱型
赤外線撮像素子にとって温度センサにダイオードをもち
いることは特性均一性を図る上で特に有効である。
When infrared rays are incident on the pixel 1, they are absorbed by the infrared absorbing structure 1106, and the heat insulating structure described above allows the pixel 1 to be absorbed.
Changes, and the forward voltage characteristic of the diode 902 serving as a temperature sensor changes. By reading the change amount of the forward voltage characteristic of the diode 902 with a predetermined detection circuit, an output signal according to the incident infrared ray amount can be taken out. In the thermal infrared solid-state imaging device, a large number of pixels 1 are two-dimensionally arranged, and the pixels 1 are sequentially accessed. In such an element, uniformity of characteristics between pixels is important. The forward voltage of the diode and its temperature dependence have very little variation between solids, and it is particularly effective for the thermal infrared imaging element to use the diode as the temperature sensor for achieving uniform characteristics.

【0004】図11に、熱型赤外線固体撮像素子の回路
構成を示す。画素1は、2次元に配列されており、行ご
とに駆動線3によって接続され、列ごとに信号線5によ
って接続されている。垂直走査回路4とスイッチ9によ
り駆動線3が順番に選択され、選択された駆動線3を介
して電源6から画素1に通電される。画素1の陰極側に
接続された信号線5の終端には定電流源2が備えられて
いるため、画素1は定電流駆動となる。定電流源2の両
端の電圧は積分回路39で積分及び増幅され、水平走査
回路8とスイッチ9によって順に出力端子10へ出力さ
れる。
FIG. 11 shows a circuit configuration of a thermal infrared solid-state image pickup device. The pixels 1 are two-dimensionally arranged, and are connected by a drive line 3 for each row and connected by a signal line 5 for each column. The drive line 3 is sequentially selected by the vertical scanning circuit 4 and the switch 9, and the pixel 1 is energized from the power supply 6 via the selected drive line 3. Since the constant current source 2 is provided at the end of the signal line 5 connected to the cathode side of the pixel 1, the pixel 1 is driven by constant current. The voltage across the constant current source 2 is integrated and amplified by the integrating circuit 39, and is output to the output terminal 10 sequentially by the horizontal scanning circuit 8 and the switch 9.

【0005】積分回路39の内部を図12に示す。MO
Sトランジスタ40は、積分トランジスタでゲートが入
力端子になる。積分容量40は、トランジスタ40に接
続されており、周期的にトランジスタ26によりリセッ
トされる。バイアス線41からはトランジスタ40の動
作点をきめるバイアス電圧が与えられる。MOSトラン
ジスタ40と積分容量25とで、いわゆるゲート変調積
分回路が構成されている。この積分回路の出力は、サン
プルホールド(S/H)回路27でサンプリングされ、
バッファアンプ28を介して出力される。
The inside of the integrating circuit 39 is shown in FIG. MO
The S transistor 40 is an integrating transistor whose gate serves as an input terminal. The integrating capacitor 40 is connected to the transistor 40 and is periodically reset by the transistor 26. A bias voltage that determines the operating point of the transistor 40 is applied from the bias line 41. The MOS transistor 40 and the integration capacitor 25 constitute a so-called gate modulation integration circuit. The output of this integration circuit is sampled by the sample hold (S / H) circuit 27,
It is output via the buffer amplifier 28.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の熱型赤外線固体撮像素子では以下のような問題があ
った。まず、図11において、積分回路39の入力に
は、定電流源2の両端の電圧が入力されるが、この電圧
は電源6の電圧から画素1の両端の電圧と駆動線3での
電圧降下を引いた値となる。ところが、駆動線3での電
圧降下量は、画素列毎に異なるため、積分回路39の出
力も画素列毎に異なった値となってしまう。このため、
撮像した画像に駆動線3の抵抗によるオフセット分布が
発生してしまう。また、熱型赤外線固体撮像素子の赤外
光に対するレスポンス、即ち、画素1の両端電圧の変化
は、駆動線3における電圧降下成分にくらべはるかに小
さいため、駆動線3による電圧降下分布によって増幅器
が飽和等をおこし、必要な増幅度を確保できない問題も
ある。
However, the above-mentioned conventional thermal infrared solid state image pickup device has the following problems. First, in FIG. 11, the voltage across the constant current source 2 is input to the input of the integrating circuit 39. This voltage drops from the voltage across the power source 6 across the pixel 1 and the voltage across the drive line 3. Is the value obtained by subtracting. However, since the amount of voltage drop on the drive line 3 differs for each pixel column, the output of the integrating circuit 39 also has a different value for each pixel column. For this reason,
An offset distribution due to the resistance of the drive line 3 occurs in the captured image. Further, since the response of the thermal infrared solid-state imaging device to infrared light, that is, the change in the voltage across the pixel 1 is much smaller than the voltage drop component on the drive line 3, the amplifier is affected by the voltage drop distribution on the drive line 3. There is also a problem that the required amplification degree cannot be secured due to saturation or the like.

【0007】また、積分回路39の出力は、電源6の電
圧変動の影響を直接受けるため、出力が不安定となり易
い。即ち、図12に示すようなMOSトランジスタと積
分容量により構成された積分回路を用いて検出を行った
場合、図11において、画素を駆動する電源6の電圧変
動により、定電流源2の両端電圧が変化するため、積分
回路39の出力電圧が変化してしまう。
Further, since the output of the integrating circuit 39 is directly affected by the voltage fluctuation of the power source 6, the output tends to be unstable. That is, when the detection is performed using the integrating circuit configured by the MOS transistor and the integrating capacitor as shown in FIG. 12, the voltage across the constant current source 2 is changed by the voltage fluctuation of the power source 6 for driving the pixel in FIG. Changes, the output voltage of the integration circuit 39 changes.

【0008】さらに、画素1のレスポンスには赤外光の
レスポンス以外に素子温度変化によるレスポンスも含ま
れるため、素子温度制御を精密に行わないと素子出力が
素子温度変化とともにドリフトする現象が現れ安定した
画像取得ができない問題もある。即ち、図10に示す画
素1において、ダイオード902と基板1102は、完
全に断熱されて、画素1の出力電圧が基板1102の温
度変化の影響を受けないことが理想である。しかし、支
持脚1101と中空部1103による断熱構造の熱抵抗
は有限値をもつため、画素1の出力電圧は基板1102
の温度変化によっても変化する。このため、検出動作を
行っているときに、赤外線撮像装置の環境温度が変化し
て基板1102の温度が変化すると、検出部902の出
力も変化してしまう。この環境温度の変化による出力変
動は、入射赤外線の変化と区別がつかないため、赤外線
の測定精度が低下して安定した画像取得ができない
Further, since the response of the pixel 1 includes the response due to the change in the element temperature in addition to the response of the infrared light, the phenomenon that the element output drifts with the change in the element temperature appears if the element temperature control is not precisely performed and is stable. There is also a problem that the acquired image cannot be acquired. That is, in the pixel 1 shown in FIG. 10, it is ideal that the diode 902 and the substrate 1102 are completely insulated so that the output voltage of the pixel 1 is not affected by the temperature change of the substrate 1102. However, since the thermal resistance of the heat insulation structure including the support legs 1101 and the hollow portion 1103 has a finite value, the output voltage of the pixel 1 is the substrate 1102.
It also changes with changes in temperature. For this reason, when the ambient temperature of the infrared imaging device changes and the temperature of the substrate 1102 changes during the detection operation, the output of the detection unit 902 also changes. This change in output due to changes in environmental temperature cannot be distinguished from the change in incident infrared light, so the accuracy of infrared measurement decreases and stable image acquisition is not possible.

【0009】本発明は上記問題点に鑑みてなされたもの
であり、駆動線の抵抗による電圧降下の影響の少ない熱
型赤外線固体撮像素子を提供することを目的とする。さ
らに、電源電圧変動や素子温度変動による出力変動が少
なく、安定した画像取得が可能な熱型赤外線固体撮像素
子を提供することも目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a thermal infrared solid-state image pickup element which is less affected by a voltage drop due to the resistance of a drive line. Another object of the present invention is to provide a thermal infrared solid-state image pickup device that is capable of stable image acquisition with little output change due to power supply voltage change and element temperature change.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の半導体装置は、少なくとも1個以上直列接続
され、断熱構造と赤外線吸収構造を備えたダイオードに
よって画素が構成され、前記画素が2次元状に配列され
た画素エリアと、前記画素の陽極を行毎に共通接続した
複数の駆動線と、前記画素の陰極を列毎に共通接続し、
列毎の終端に第1の定電流化手段を備えた複数の信号線
と、前記駆動線を順次選択し、選択した駆動線と画素用
電源を接続する垂直走査回路と、前記信号線を順次選択
し、選択した信号線について、前記第1の定電流化手段
の両端電圧を前記信号線毎に設けられた積分回路を介し
て出力する水平駆動回路とを備えた熱型赤外線固体撮像
素子であって、前記信号線毎に、前記第1の定電流化手
段の近傍に設けられ、前記第1の定電流化手段と実質的
に同一の電流を流す第2の定電流化手段と、前記第2の
定電流化手段の入力端を前記駆動線と平行に共通接続
し、前記駆動線と略同一の抵抗を有するバイアス線と、
前記バイアス線にバイアス電圧を与えるバイアス電圧出
力回路とを有し、前記積分回路が、前記第1の定電流化
手段と前記第2の定電流化手段の両端電圧の差を一定時
間積分して出力することを特徴とする。
In order to achieve the above object, at least one semiconductor device of the present invention is connected in series, and a pixel is constituted by a diode having a heat insulating structure and an infrared absorbing structure. A pixel area arranged two-dimensionally, a plurality of drive lines in which the anodes of the pixels are commonly connected in each row, and a cathode in the pixels are commonly connected in each column,
A plurality of signal lines provided with a first constant current conversion unit at the end of each column, a vertical scanning circuit that sequentially selects the drive lines and connects the selected drive lines to a pixel power source, and the signal lines sequentially. A thermal infrared solid-state image sensor including a horizontal drive circuit that outputs a voltage across the first constant current conversion unit to a selected signal line via an integrating circuit provided for each signal line. A second constant current conversion unit that is provided in the vicinity of the first constant current conversion unit for each signal line and flows substantially the same current as the first constant current conversion unit; A bias line having an input end of the second constant current converting means commonly connected in parallel to the drive line and having a resistance substantially the same as that of the drive line;
A bias voltage output circuit for applying a bias voltage to the bias line, wherein the integration circuit integrates a difference between the voltages across the first constant current conversion means and the second constant current conversion means for a certain period of time. It is characterized by outputting.

【0011】第1、第2及び第3の定電流化手段には、
定電流源又は負荷抵抗を用いることができる。バイアス
線と駆動線が実質同じ抵抗であり、列毎に接続される第
1の定電流化手段と第2の定電流化手段の電流も実質同
じであるため、バイアス線と駆動線に現れる電圧分布は
実質同じである。そして、列毎に接続された差動積分回
路で両者は互いに減算されるので、駆動線とバイアス線
に現れる電圧分布は積分回路出力によってキャンセルさ
れる。したがって、撮像した画像から駆動線の抵抗によ
るオフセット分布を減少し、また、駆動線での電圧降下
分布による増幅器の飽和等を防止して必要な増幅度を容
易に確保することができる。
The first, second and third constant current means are
A constant current source or load resistance can be used. Since the bias line and the drive line have substantially the same resistance, and the currents of the first constant current conversion unit and the second constant current conversion unit connected for each column are substantially the same, the voltage appearing on the bias line and the drive line. The distribution is essentially the same. Then, the two are subtracted from each other by the differential integrator circuit connected for each column, so that the voltage distribution appearing on the drive line and the bias line is canceled by the output of the integrator circuit. Therefore, the offset distribution due to the resistance of the drive line can be reduced from the captured image, and the saturation of the amplifier due to the voltage drop distribution on the drive line can be prevented and the necessary amplification degree can be easily ensured.

【0012】前記バイアス電圧出力回路は、前記画素電
源によって駆動されて素子全体の温度に応じた参照信号
を出力する参照信号出力回路と、前記参照信号出力回路
の出力に接続されたバッファアンプとを有することが好
ましい。これにより、バイアス線に、電源電圧変動と素
子全体の温度変動による信号出力変化を校正するための
基準信号が入力される。したがって、電源電圧変動と素
子温度変動による信号のドリフトを差動積分回路で減算
し、外部に出力しないようにすることができる。
The bias voltage output circuit includes a reference signal output circuit that is driven by the pixel power source and outputs a reference signal according to the temperature of the entire element, and a buffer amplifier connected to the output of the reference signal output circuit. It is preferable to have. Thus, the reference signal for calibrating the signal output change due to the power supply voltage change and the temperature change of the entire element is input to the bias line. Therefore, it is possible to subtract the signal drift caused by the power supply voltage fluctuation and the element temperature fluctuation by the differential integration circuit and prevent the signal from being output to the outside.

【0013】また、前記バイアス電圧出力回路が、前記
バッファアンプの入力側又は出力側の少なくとも一方に
低域通過フィルタを備えることが好ましい。参照信号出
力回路の出力と差動積分回路の入力端子の間に低域通過
フィルタを入れ、環境温度や電源回路のドリフト等によ
る電圧変動のみを通過するようにすることで、参照信号
出力回路からの雑音を抑制し、差動による雑音増加を抑
制することができる。
Further, it is preferable that the bias voltage output circuit includes a low pass filter on at least one of an input side and an output side of the buffer amplifier. By inserting a low-pass filter between the output of the reference signal output circuit and the input terminal of the differential integrator circuit, and allowing only voltage fluctuations due to environmental temperature and drift of the power supply circuit to pass, the reference signal output circuit Noise can be suppressed, and noise increase due to differential can be suppressed.

【0014】さらに、前記参照信号出力回路が、温度に
応じて電気特性が変化する感温素子と、前記感温素子の
陰極側に接続された第3の定電流化手段とを有し、前記
第3の定電流化手段の両端電圧を参照信号として出力す
ることが好ましい。これにより、参照信号出力回路か
ら、赤外線吸収によらない素子の温度ドリフトを校正す
るための基準信号を出力することができる。
Further, the reference signal output circuit has a temperature sensitive element whose electric characteristics change according to temperature, and a third constant current-generating means connected to the cathode side of the temperature sensitive element, It is preferable to output the voltage across the third constant current conversion means as a reference signal. As a result, the reference signal output circuit can output the reference signal for calibrating the temperature drift of the element that does not depend on infrared absorption.

【0015】またさらに、前記参照信号出力回路が、N
個(Nは自然数)の前記感温素子と、前記N個の感温素
子の陰極側に共通に接続された1つの前記第3の定電流
化手段とを有し、前記第3の定電流化手段が前記第1の
定電流化手段のN倍の電流を流しても良い。素子面積が
ある程度広い場合には、素子面内に温度分布が存在する
場合がある。また、感温素子の特性にばらつきがある場
合がある。感温素子を複数個設けていることで、素子面
内の温度分布の影響や感温素子の特性ばらつきを平均化
することができる。
Furthermore, the reference signal output circuit is N
A plurality of (N is a natural number) the temperature sensitive elements, and one of the third constant current conversion means commonly connected to the cathode side of the N number of the temperature sensitive elements, the third constant current The current conversion unit may flow N times as much current as the first constant current conversion unit. When the element area is wide to some extent, a temperature distribution may exist in the element surface. Further, there may be variations in the characteristics of the temperature sensitive element. By providing a plurality of temperature sensitive elements, it is possible to average the influence of the temperature distribution in the element plane and the characteristic variation of the temperature sensitive elements.

【0016】また、前記参照信号出力回路が、N個(N
は自然数)の前記感温素子と、前記感温素子の個々の陰
極側に接続されたN個の前記第3の定電流化手段と、前
記N個の第3の定電流化手段の両端電圧を平均化して参
照信号として出力する平均化回路とを有するようにして
も良い。
Further, the number of reference signal output circuits is N (N
Is a natural number), the N third constant current conversion means connected to each cathode side of the temperature detection element, and the voltage across the N third constant current conversion means. May be averaged and output as a reference signal.

【0017】前記感温素子は、例えば、断熱構造と赤外
線吸収構造の少なくとも一方を有しないことを除いて前
記画素と実質同一構造の参照画素とすることができる。
これにより、入射する赤外線に関係無く環境等による素
子の温度変化だけを検出することができる。また、参照
画素に代えて、サーミスタを感温素子として用いても良
い。
The temperature sensitive element may be, for example, a reference pixel having substantially the same structure as the pixel except that it does not have at least one of a heat insulating structure and an infrared absorbing structure.
This makes it possible to detect only the temperature change of the element due to the environment or the like, regardless of the incident infrared rays. Further, instead of the reference pixel, a thermistor may be used as the temperature sensitive element.

【0018】前記積分回路は、前記第1の定電流化手段
と前記第2の定電流化手段の両端電圧の差を差動電圧電
流変換アンプによって電流に変換し、その電流を、前記
差動電圧電流変換アンプに接続されて周期的に一定電圧
にリセットされる容量に積分することが好ましい。これ
により、積分回路の構成が演算増幅器を用いた場合にく
らべて簡略になる。
The integrator circuit converts a difference in voltage between both ends of the first constant current conversion unit and the second constant current conversion unit into a current by a differential voltage-current conversion amplifier, and converts the current into the differential voltage. It is preferable to integrate the capacitance connected to the voltage-current conversion amplifier and periodically reset to a constant voltage. This simplifies the configuration of the integrating circuit as compared with the case where an operational amplifier is used.

【0019】[0019]

【発明の実施の形態】以下、図面を参照しながら、本発
明の実施の形態について説明する。尚、従来と同一又は
対応する部材には、図10乃至12と同一の符号を付し
ている。 実施の形態1.図1は、本発明の実施の形態1に係る熱
型赤外線固体撮像素子の回路構成を示す回路図である。
従来の熱型赤外線固体撮像素子と同様に、複数個が直列
接続され、赤外線吸収構造と断熱構造を備えたダイオー
ドによって個々の画素1が構成されており、その画素1
が2次元状に配列された画素エリアを構成している。画
素1の各行ごとに駆動線3が共通して接続されている。
また、画素1の各列ごとに信号線5が共通して接続さ
れ、各信号線5の終端には定電流源2が接続されてい
る。また、垂直走査回路4とスイッチ9により駆動線3
が順番に選択され、定電流源2の両端の電圧が積分回路
7で積分及び増幅され、水平走査回路8とスイッチ9に
よって順に出力端子10へ出力される。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. It should be noted that the same or corresponding members as the conventional ones are denoted by the same reference numerals as those in FIGS. Embodiment 1. 1 is a circuit diagram showing a circuit configuration of a thermal infrared solid-state imaging device according to a first embodiment of the present invention.
Similar to the conventional thermal infrared solid-state imaging device, a plurality of pixels are connected in series and each pixel 1 is composed of a diode having an infrared absorption structure and a heat insulation structure.
Form a two-dimensionally arranged pixel area. The drive line 3 is commonly connected to each row of the pixels 1.
The signal line 5 is commonly connected to each column of the pixels 1, and the constant current source 2 is connected to the terminal end of each signal line 5. Further, the drive line 3 is formed by the vertical scanning circuit 4 and the switch 9.
Are sequentially selected, the voltage across the constant current source 2 is integrated and amplified by the integrating circuit 7, and the voltage is sequentially output to the output terminal 10 by the horizontal scanning circuit 8 and the switch 9.

【0020】本実施の形態に係る熱型赤外線固体撮像素
子では、(1)積分回路に差動積分回路7を用いる点、
(2)抵抗が駆動線3と実質同じであるバイアス線17
が駆動線3と平行に画素エリア外に設けられており、か
つ、バイアス線の画素列毎に定電流源2と実質的に同じ
電流を流す定電流源18を設けている点、(3)差動積
分回路には、定電流源2と18の両端電圧の差が入力さ
れる点、において従来の熱型赤外線固体撮像素子と大き
く異なっている。
In the thermal infrared solid-state image pickup device according to this embodiment, (1) the differential integrating circuit 7 is used as the integrating circuit,
(2) Bias line 17 whose resistance is substantially the same as that of drive line 3
Is provided outside the pixel area in parallel with the drive line 3, and a constant current source 18 for flowing substantially the same current as the constant current source 2 is provided for each pixel column of the bias line, (3) The difference between the constant-current sources 2 and 18 is input to the differential integration circuit, which is a big difference from the conventional thermal infrared solid-state imaging device.

【0021】定電流源2と定電流源18の流す電流は同
一であり、バイアス線17と駆動線3の抵抗は実質的に
同一であるので、バイアス線17における電圧降下は駆
動線3における電圧降下と同じになる。したがって、定
電流源2と定電流源18の両端電圧の差を差動積分回路
7で一定時間積分して出力することにより、駆動線3の
抵抗による電圧降下分布を差動積分回路で減算し、外部
に出力しないようにすることができる。
The constant current source 2 and the constant current source 18 supply the same current, and the bias line 17 and the drive line 3 have substantially the same resistance. Therefore, the voltage drop on the bias line 17 is the voltage on the drive line 3. It will be the same as the descent. Therefore, the voltage difference distribution due to the resistance of the drive line 3 is subtracted by the differential integrator circuit by integrating and outputting the difference between the voltages across the constant current source 2 and the constant current source 18 in the differential integrator circuit 7 for a certain period of time. , It is possible not to output to the outside.

【0022】また、本実施の形態に係る熱型赤外線固体
撮像素子では、(4)画素の駆動と共通の電源6によっ
て駆動され、素子温度変化に応じた出力をだす参照信号
出力回路11を設け、参照信号出力回路11の出力をバ
ッファ15を介してバイアス線17に入力する回路構成
(「バイアス電圧出力回路」)を有している点、において
も従来の熱型赤外線固体撮像素子と大きく異なってい
る。
Further, in the thermal infrared solid-state image pickup device according to the present embodiment, (4) a reference signal output circuit 11 is provided which is driven by the power source 6 common to the driving of the pixels and outputs an output according to the temperature change of the device. Also, in the point that it has a circuit configuration (“bias voltage output circuit”) for inputting the output of the reference signal output circuit 11 to the bias line 17 via the buffer 15, it is also significantly different from the conventional thermal infrared solid-state imaging device. ing.

【0023】バイアス線17には、画素1を駆動する電
源6の電圧変動と素子全体の温度変動に対する信号出力
変化が入力され、その信号が定電流源18の両端電圧と
して差動積分回路17に入力される。したがって、電源
電圧変動と素子温度変動による信号のドリフトを差動積
分回路7で減算し、外部に出力しないようにすることが
できる。以下、本実施の形態に係る熱型赤外線固体撮像
素子の具体的な構成について詳細に説明する。
A bias line 17 receives a voltage output of the power source 6 for driving the pixel 1 and a signal output change in response to a temperature change of the entire element. The signal is supplied to the differential integrator circuit 17 as a voltage across the constant current source 18. Is entered. Therefore, the signal drift due to the power supply voltage fluctuation and the element temperature fluctuation can be subtracted by the differential integration circuit 7 so as not to be output to the outside. Hereinafter, a specific configuration of the thermal infrared solid-state imaging device according to this embodiment will be described in detail.

【0024】〔バイアス電圧出力回路〕まず、バイアス
電圧出力回路について説明する。本実施の形態におい
て、バイアス電圧出力回路は、参照信号出力回路11、
バッファアンプ15、低域通過フィルタ14及び16か
ら成っている。
[Bias Voltage Output Circuit] First, the bias voltage output circuit will be described. In the present embodiment, the bias voltage output circuit is the reference signal output circuit 11,
It comprises a buffer amplifier 15 and low-pass filters 14 and 16.

【0025】参照信号出力回路11は、画素エリア外に
設けられた参照画素12とそれに定電流を流す定電流源
13が直列接続された構成となっており、定電流源13
の両端電圧の差が出力される。参照画素12は、入射す
る赤外線に関係無く環境等による素子の温度変化だけを
検出することができるように赤外線吸収構造あるいは断
熱構造の何れかまたは両方を除いた構造となっている。
断熱構造を有しない画素を形成するには、例えば、図1
0(a)(b)に示した検出器の構造において、基板1
102に中空部1103を形成しないか、あるいは支持
脚1101の長さを画素1に比べ充分短くすれば良い。
また、赤外線吸収構造を有しない画素を形成するには、
例えば、図10(a)(b)の画素1において赤外線吸
収構造1106の形成を省略すれば良い。また、電流源
13の電流は画素1に対する定電流源2と実質等しい電
流である。したがって、参照信号出力回路11からは、
赤外線吸収によらない素子の温度ドリフトを校正するた
めの基準信号を出力することができる。
The reference signal output circuit 11 has a configuration in which a reference pixel 12 provided outside the pixel area and a constant current source 13 for supplying a constant current to the reference pixel 12 are connected in series.
The voltage difference between the two terminals is output. The reference pixel 12 has a structure excluding either or both of the infrared absorbing structure and the heat insulating structure so that only the temperature change of the element due to the environment or the like can be detected regardless of the incident infrared ray.
To form a pixel that does not have a heat insulating structure, for example, as shown in FIG.
In the detector structure shown in FIGS. 0 (a) and 0 (b), the substrate 1
The hollow portion 1103 may not be formed in 102, or the length of the support leg 1101 may be made sufficiently shorter than that of the pixel 1.
Further, to form a pixel having no infrared absorption structure,
For example, the formation of the infrared absorption structure 1106 may be omitted in the pixel 1 of FIGS. The current of the current source 13 is substantially the same as that of the constant current source 2 for the pixel 1. Therefore, from the reference signal output circuit 11,
It is possible to output a reference signal for calibrating the temperature drift of the element that does not depend on infrared absorption.

【0026】そして、参照信号出力回路11の出力は低
域通過フィルタ14で雑音除去され、バッファ15で電
流駆動能力を上げ、再び低域通過フィルタ16で雑音除
去されたのち、バイアス線17に与えられる。
Then, the output of the reference signal output circuit 11 is noise-removed by the low-pass filter 14, the current driving capability is increased by the buffer 15, the noise is again removed by the low-pass filter 16, and the result is given to the bias line 17. To be

【0027】低域通過フィルタ14と16は参照画素1
2と定電流源13の雑音をカットし温度ドリフト成分の
みを抽出するためのものである。即ち、低域通過フィル
タ14及び16は、参照信号出力回路11を設けること
による雑音の増大を防止する役割を果たしている。一般
に、高S/Nを目指す赤外線検出器では、電源系の雑音
は電源回路で充分低減されており、検出部からの雑音が
装置の雑音主成分となる。従って、同一構成の画素1と
参照画素12の出力を差動積分回路7に入力すると、両
者の雑音は無相関であるので、雑音は従来の√2倍にな
る。一方、環境温度変化による検出部出力変化や、環境
温度変化に伴う電源回路特性変動による電源電圧の変化
は、その変動が一般に秒オーダ以上の緩やかなものであ
る。したがって、それをモニタするバイアス電圧出力回
路の帯域は、赤外線を検出する信号ラインに必要な帯域
にくらべて充分狭くてもよい。そこで、参照信号出力回
路11の出力と差動積分回路7の入力端子の間に低域通
過フィルタ14と16を入れ、環境温度や電源回路のド
リフト等による電圧変動のみを通過するようにすれば、
参照信号出力回路11からの雑音を抑制し、差動による
雑音増加を抑制することができる。
The low-pass filters 14 and 16 are used for the reference pixel 1
This is for cutting noise of 2 and the constant current source 13 and extracting only the temperature drift component. That is, the low pass filters 14 and 16 play a role of preventing an increase in noise due to the provision of the reference signal output circuit 11. Generally, in an infrared detector aiming at a high S / N, the noise of the power supply system is sufficiently reduced by the power supply circuit, and the noise from the detection unit becomes the main noise component of the device. Therefore, when the outputs of the pixel 1 and the reference pixel 12 having the same configuration are input to the differential integration circuit 7, the noises of both are uncorrelated, and the noise becomes √2 times that of the conventional one. On the other hand, changes in the output of the detector due to changes in the ambient temperature and changes in the power supply voltage due to changes in the power supply circuit characteristics due to changes in the ambient temperature are generally gradual, on the order of seconds or more. Therefore, the band of the bias voltage output circuit for monitoring it may be sufficiently narrower than the band required for the signal line for detecting infrared rays. Therefore, if low-pass filters 14 and 16 are inserted between the output of the reference signal output circuit 11 and the input terminal of the differential integrator circuit 7, only voltage fluctuations due to environmental temperature, drift of the power supply circuit, etc. can be passed. ,
Noise from the reference signal output circuit 11 can be suppressed, and noise increase due to differential can be suppressed.

【0028】尚、このような赤外線固体撮像素子の画素
にとっての雑音帯域幅の代表的な値は数KHzであるの
で、その1/100以下にカットオフ周波数をきめておけば
良い。電源電圧変動及び温度変動の観点からは、その変
動周期は早くて秒オーダであるから数Hzの帯域があれば
十分である。また、本実施の形態では低域通過フィルタ
をバッファ15の前後に挿入しているが、何れか一方だ
けでもよい。
Since the typical value of the noise bandwidth for a pixel of such an infrared solid-state image pickup device is several KHz, the cutoff frequency may be set to 1/100 or less thereof. From the viewpoint of power supply voltage fluctuations and temperature fluctuations, the fluctuation cycle is short and on the order of seconds, so a band of several Hz is sufficient. Further, although the low-pass filter is inserted before and after the buffer 15 in the present embodiment, only one of them may be inserted.

【0029】〔参照信号出力回路〕本実施の形態では、
参照信号出力回路11を参照画素12と電流源13の直
列接続構成としたが、他の参照信号出力回路の構成例を
図2から5に示す。図2は、参照画素12を複数個並列
にし、その個数分だけ電流をました定電流源19を直列
接続したものである。即ち、N個の参照画素12を並列
に配置した場合には、定電流源2のN倍の電流を定電流
源19によって流すようにする。熱型赤外線固体撮像素
子の温度は、有限の大きさをもつ素子領域内で分布をも
つことがあるので、複数の参照画素12を素子領域内に
適当に分布設置すれば、その平均温度に反映した出力を
とりだすことができる。
[Reference Signal Output Circuit] In the present embodiment,
Although the reference signal output circuit 11 has a configuration in which the reference pixel 12 and the current source 13 are connected in series, configuration examples of other reference signal output circuits are shown in FIGS. 2 to 5. In FIG. 2, a plurality of reference pixels 12 are arranged in parallel, and a constant current source 19 whose current is equal to the number of the reference pixels 12 is connected in series. That is, when the N reference pixels 12 are arranged in parallel, the N times the current of the constant current source 2 is made to flow by the constant current source 19. The temperature of the thermal infrared solid-state imaging device may have a distribution in a device region having a finite size, so if a plurality of reference pixels 12 are appropriately distributed and installed in the device region, the temperature is reflected in the average temperature. Can output the output.

【0030】また、同様な目的は、図3の構成の参照信
号出力回路11でも実現できる。図3では、参照画素1
2と定電流源13が直列接続されたものを一組として、
その組み合わせた構成そのものを素子領域内に適当に分
布設置し、各々の出力を平均化回路20で平均化するも
のである。平均化回路20は、演算増幅器を用いた周知
の回路である加算回路と除算回路の組み合わせで実現で
きる。
The same purpose can be realized by the reference signal output circuit 11 having the configuration of FIG. In FIG. 3, the reference pixel 1
2 and constant current source 13 are connected in series as a set,
The combined configuration itself is appropriately installed in the element region, and the respective outputs are averaged by the averaging circuit 20. The averaging circuit 20 can be realized by a combination of an adding circuit and a dividing circuit, which are well-known circuits using operational amplifiers.

【0031】図4の参照信号出力回路11は、参照画素
12の代わりに、温度により抵抗が変化するサーミスタ
21を定電流源22で定電流駆動させた例である。この
構成では、バッファアンプ15の出力電圧が図1の場合
と同一になるように、サーミスタ21の抵抗設定あるい
は、定電流源22の電流設定をする必要がある。また、
バッファアンプ15にレベルシフト動作を含めることに
よって、バッファ回路15の出力電圧が図1の場合と同
様になるようにしても良い。
The reference signal output circuit 11 of FIG. 4 is an example in which, instead of the reference pixel 12, a thermistor 21 whose resistance changes with temperature is driven by a constant current source 22 at a constant current. In this configuration, it is necessary to set the resistance of the thermistor 21 or the current of the constant current source 22 so that the output voltage of the buffer amplifier 15 becomes the same as in the case of FIG. Also,
By including the level shift operation in the buffer amplifier 15, the output voltage of the buffer circuit 15 may be the same as that in the case of FIG.

【0032】さらに、図5の参照信号出力回路11は、
図4の構成で定電流源22のかわりに負荷抵抗23を用
い、サーミスタ21を定電流駆動させた例である。この
例でも、バッファ回路15の出力電圧が図1の場合と同
様になるように、サーミスタ21と負荷抵抗23の抵抗
を設定し、あるいは、バッファアンプ15にレベルシフ
ト動作を含める必要がある。
Further, the reference signal output circuit 11 of FIG.
This is an example in which the thermistor 21 is driven with a constant current by using a load resistor 23 instead of the constant current source 22 in the configuration of FIG. Also in this example, it is necessary to set the resistances of the thermistor 21 and the load resistor 23 so that the output voltage of the buffer circuit 15 is the same as in the case of FIG. 1, or to include the level shift operation in the buffer amplifier 15.

【0033】〔低域通過フィルタ〕低域通過フィルタ1
4及び16の回路構成例を、図6(a)と図6(b)に示す。
以下に示す構成は、低域通過フィルタ14及び16のい
ずれにも用いることができる。図6(a)の低域通過フィ
ルタは、受動素子を用いたもので33は抵抗もしくはリ
アクタンスであり、34は容量である。バッファアンプ
15の後側に挿入するフィルタ(=低域通過フィルタ1
6)としては直流電圧降下がないリアクタンスの方が望
ましい。一方、バッファアンプ15の手前側に設けるフ
ィルタ(=低域通過フィルタ14)としては、フィルタ
としての特性が得られ易い抵抗を用いる方が望ましい。
また、抵抗33は、電源回路6の内部抵抗あるいはバッ
ファアンプ15の内部抵抗で代用してもよい。
[Low-pass filter] Low-pass filter 1
Examples of the circuit configurations of 4 and 16 are shown in FIGS. 6 (a) and 6 (b).
The configuration shown below can be used for both the low-pass filters 14 and 16. The low-pass filter of FIG. 6A uses passive elements, 33 is a resistance or reactance, and 34 is a capacitance. A filter (= low-pass filter 1 to be inserted on the rear side of the buffer amplifier 15
As 6), a reactance with no DC voltage drop is preferable. On the other hand, as the filter (= low-pass filter 14) provided on the front side of the buffer amplifier 15, it is desirable to use a resistor that easily obtains the characteristics as a filter.
Further, the resistor 33 may be substituted with the internal resistance of the power supply circuit 6 or the internal resistance of the buffer amplifier 15.

【0034】図6(b)の低域通過フィルタは、能動素子
である演算増幅器35を用いた積分回路であり、この回
路構成も低域通過フィルタとして一般的であるので詳細
な説明は省略する。
The low pass filter shown in FIG. 6 (b) is an integrating circuit using an operational amplifier 35 which is an active element. Since this circuit configuration is also a general low pass filter, detailed description thereof will be omitted. .

【0035】本発明における低域通過フィルタ14及び
16は、図6(a)及び(b)に例示するものに限定さ
れるものではなく、他のフィルタ(例えば、スイッチト
キャパシタ回路)を用いることもできる。また、低域通
過フィルタ14及び16は、バッファアンプ15の前側
か後側のいずれか一方だけに設けても良いが、その場合
はバッファアンプ15の前側のフィルタ(=フィルタ1
4)を残すことが好ましい。バッファアンプ15の後側
には大きな電流が流れるため、フィルタでの電圧降下が
バイアス電圧の変動の原因となるからである。
The low-pass filters 14 and 16 in the present invention are not limited to those illustrated in FIGS. 6A and 6B, and other filters (for example, switched capacitor circuits) may be used. it can. Further, the low-pass filters 14 and 16 may be provided only on either the front side or the rear side of the buffer amplifier 15, but in that case, the filter on the front side of the buffer amplifier 15 (= filter 1)
It is preferable to leave 4). This is because a large current flows on the rear side of the buffer amplifier 15, and the voltage drop in the filter causes fluctuations in the bias voltage.

【0036】〔差動積分回路〕次に、差動積分回路7の
具体的な構成例について説明する。差動積分回路7の構
成例を図7と図8に示す。図7において、24は差動電
圧電流変換アンプで入力信号の差を電流に変換し、周期
的にトランジスタ26でリセットされる積分容量25に
積分するものである。図8は、演算増幅器31と32を
用いた例で回路ユニット29は差動増幅回路で、回路ユ
ニット30は積分回路である。いずれの場合も、積分後
の出力はS/H回路27でサンプリングされバッファ28
を介して出力される。
[Differential Integrator Circuit] Next, a specific configuration example of the differential integrator circuit 7 will be described. A configuration example of the differential integration circuit 7 is shown in FIGS. 7 and 8. In FIG. 7, reference numeral 24 is a differential voltage-current conversion amplifier which converts the difference between input signals into a current and integrates it into an integration capacitor 25 which is periodically reset by a transistor 26. FIG. 8 shows an example using the operational amplifiers 31 and 32. The circuit unit 29 is a differential amplifier circuit, and the circuit unit 30 is an integrating circuit. In either case, the output after integration is sampled by the S / H circuit 27 and is buffered by the buffer 28.
Is output via.

【0037】図7は、本件発明者が先に特許出願(特願
2000−386974)したもので、後述の演算増幅
器を用いる場合にくらべ構成が簡略になる効果がある。
以下、図7に示す差動積分回路7について詳細に説明す
る。
FIG. 7 is a patent application (Japanese Patent Application No. 2000-386974) previously filed by the inventor of the present application, which has the effect of simplifying the configuration as compared with the case of using an operational amplifier described later.
Hereinafter, the differential integration circuit 7 shown in FIG. 7 will be described in detail.

【0038】図7に示す差動積分回路は、定電流源2の
両端電圧と定電流源18の両端電圧を入力側に接続した
差動電圧電流変換アンプ24と、差動電圧電流変換アン
プ24の出力側に接続された積分容量25と、積分容量
25を周期的に電圧Vrefにリセットするように接続さ
れたリセットトランジスタ26を備える。差動電圧電流
変換アンプ24は、負帰還なしの状態で接続されてお
り、その出力インピーダンスと積分容量25のキャパシ
タンスCiとの積(=時定数)が積分時間Tの5倍以上
となるように設定されている。
The differential integration circuit shown in FIG. 7 includes a differential voltage-current conversion amplifier 24 in which the voltage across the constant current source 2 and the voltage across the constant current source 18 are connected to the input side, and a differential voltage-current conversion amplifier 24. Of the integrating capacitor 25 and a reset transistor 26 connected so as to periodically reset the integrating capacitor 25 to the voltage V ref . The differential voltage-current conversion amplifier 24 is connected without negative feedback, and the product (= time constant) of its output impedance and the capacitance C i of the integration capacitor 25 is five times or more the integration time T i. Is set.

【0039】積分容量25の入力端には、サンプルホー
ルド用トランジスタとサンプルホールド容量から成るサ
ンプルホールド回路27が接続されている。積分後の出
力が、サンプルホールド回路27でサンプリングされ、
バッファ28を介して出力される。
A sample and hold circuit 27 including a sample and hold transistor and a sample and hold capacitor is connected to the input terminal of the integration capacitor 25. The output after integration is sampled by the sample hold circuit 27,
It is output via the buffer 28.

【0040】図7の差動積分回路7では、負帰還をしな
い状態の差動電圧電流変換アンプ24を用いて積分回路
を構成しているため、図8で示すような演算増幅器を用
いた積分回路に比して回路構成を大巾に簡略化すること
ができる。図7に示す差動電圧電流変換アンプ24が積
分動作をすることについて説明する。一般の帰還を施し
ていない電圧増幅器の入出力応答特性Avは、電圧増幅器
の相互コンダクタンスをgm、出力インピーダンスを
Rout、積分時間をTとして、 Av =gm Rout{ 1−exp(−Ti / Ta ) } (1) Ta= Rout Ci (2) で表される。ここで、Tは時定数である。 Ta≫Ti (3) であれば、 Av = gm Rout Ti / Ta= gm Ti / Ci (4) となり、積分器の応答特性となる。
In the differential integration circuit 7 of FIG. 7, since the integration circuit is configured using the differential voltage-current conversion amplifier 24 in the state where negative feedback is not performed, the integration using the operational amplifier as shown in FIG. 8 is performed. The circuit configuration can be greatly simplified as compared with the circuit. It will be described that the differential voltage-current conversion amplifier 24 shown in FIG. 7 performs an integration operation. The input / output response characteristics Av of a voltage amplifier without general feedback are the transconductance of the voltage amplifier, gm, and the output impedance.
R out , where the integration time is T i , A v = gm R out {1−exp (−T i / T a )} (1) T a = R out C i (2) Here, T a is a time constant. If T a >> T i (3), A v = gm R out T i / T a = gm T i / C i (4), which is the response characteristic of the integrator.

【0041】(3)式は、出力インピーダンスRoutと積
分容量の積で表される時定数が積分時間に比べ充分長い
ことを示している。例えば、時定数Tを積分時間T
の少なくとも5倍以上とすれば、積分器の応答特性から
のずれを10%以内とすることができる。時定数T
大きくするためには、出力インピーダンスRoutが非常
に大きな電圧増幅器を使えばよい。一般に、電圧利得gm
・Routの大きな負帰還を用いない単一のアンプは、出力
インピーダンスRoutが大きくなる。例えば、図8に示す
演算増幅器のうちの差動アンプ31のみを取出して、図
7に示すように負帰還や入力抵抗無しで接続することに
より、差動電圧電流変換アンプ24を構成することがで
きる。したがって、図7の差動積分回路によれば、図8
に示す積分回路よりも遥かに簡単な回路構成によって、
積分回路を構成することができる。
The equation (3) shows that the time constant represented by the product of the output impedance R out and the integration capacitance is sufficiently longer than the integration time. For example, the time constant T a is set to the integration time T i
If it is at least 5 times or more, the deviation from the response characteristic of the integrator can be kept within 10%. In order to increase the time constant T a , a voltage amplifier with a very large output impedance R out may be used. Generally, the voltage gain gm
· Single amplifier without using the large negative feedback of R out is the output impedance R out is increased. For example, the differential voltage-current conversion amplifier 24 can be constructed by taking out only the differential amplifier 31 of the operational amplifier shown in FIG. 8 and connecting it as shown in FIG. 7 without negative feedback or input resistance. it can. Therefore, according to the differential integration circuit of FIG.
With a much simpler circuit configuration than the integration circuit shown in
An integrating circuit can be constructed.

【0042】実施の形態2.図9は、本発明に係る熱型
赤外線固体撮像素子の他の実施形態である。定電流源
2、13及び18に代えて、負荷抵抗36、37及び3
8を用いた点を除けば、実施の形態1と同様である。負
荷抵抗36、37及び38の抵抗を実質的に同じにして
おけば、実施の形態1の場合と同様の効果を得ることが
できる。
Embodiment 2. FIG. 9 shows another embodiment of the thermal infrared solid-state imaging device according to the present invention. Instead of the constant current sources 2, 13 and 18, load resistors 36, 37 and 3
8 is the same as that of the first embodiment except that 8 is used. If the load resistors 36, 37 and 38 have substantially the same resistance, the same effect as in the first embodiment can be obtained.

【0043】[0043]

【発明の効果】本発明は、以上説明したように構成され
ているため、下記の効果を奏する。本発明の半導体装置
は、画素に接続された第1の定電流源の近傍に、バイア
ス線で共通接続された第2の定電流源を設け、第1の定
電流源と第2の定電流源の両端電圧の差を一定時間積分
して出力するため、駆動線に現れる電圧分布を積分回路
出力によってキャンセルすることができる。これによ
り、撮像した画像から駆動線の抵抗によるオフセット分
布を減少し、また、駆動線での電圧降下分布による増幅
器の飽和等を防止して必要な増幅度を容易に確保するこ
とができる。
Since the present invention is constructed as described above, it has the following effects. In the semiconductor device of the present invention, a second constant current source commonly connected by a bias line is provided in the vicinity of the first constant current source connected to the pixel, and the first constant current source and the second constant current source are provided. Since the difference between the voltages across the source is integrated and output for a certain period of time, the voltage distribution appearing on the drive line can be canceled by the output of the integrating circuit. As a result, the offset distribution due to the resistance of the drive line can be reduced from the captured image, and the saturation of the amplifier due to the voltage drop distribution on the drive line can be prevented to easily secure the required amplification degree.

【0044】また、バイアス電圧出力回路を、画素電源
によって駆動されて素子全体の温度に応じた参照信号を
出力する参照信号出力回路と、参照信号出力回路の出力
に接続されたバッファアンプとで構成することにより、
電源電圧変動と素子温度変動による信号のドリフトを差
動積分回路で減算し、外部に出力しないようにすること
ができる。
Further, the bias voltage output circuit is composed of a reference signal output circuit which is driven by the pixel power source and outputs a reference signal according to the temperature of the entire element, and a buffer amplifier which is connected to the output of the reference signal output circuit. By doing
It is possible to subtract the signal drift due to the power supply voltage fluctuation and the element temperature fluctuation by the differential integration circuit so as not to be output to the outside.

【0045】さらに、バイアス電圧出力回路が、バッフ
ァアンプの入力側又は出力側のいずれかに低域通過フィ
ルタを備えることにより、参照信号出力回路からの雑音
を抑制し、差動による雑音増加を抑制することができ
る。
Further, since the bias voltage output circuit is provided with a low-pass filter on either the input side or the output side of the buffer amplifier, the noise from the reference signal output circuit is suppressed and the noise increase due to the differential is suppressed. can do.

【0046】また、参照信号出力回路を、温度に応じて
電気特性が変化する感温素子と、感温素子の陰極側に接
続された第3の定電流源とで構成し、第3の定電流源の
両端電圧の差を参照信号として出力することにより、赤
外線吸収によらない素子の温度ドリフトを校正するため
の基準信号を出力することができる。
Further, the reference signal output circuit is composed of a temperature sensitive element whose electric characteristics change according to temperature, and a third constant current source connected to the cathode side of the temperature sensitive element. By outputting the difference between the voltages across the current source as the reference signal, it is possible to output the reference signal for calibrating the temperature drift of the element that is not due to infrared absorption.

【0047】またさらに、参照信号出力回路として、複
数個の感温素子を設けることにより、素子面内の温度分
布の影響や感温素子の特性ばらつきを平均化することが
できる。
Furthermore, by providing a plurality of temperature sensitive elements as the reference signal output circuit, it is possible to average the influence of the temperature distribution in the element plane and the characteristic variation of the temperature sensitive elements.

【0048】加えて、感温素子を、断熱構造を実質的に
有しないことを除いて画素と実質同一構造の参照画素と
することにより、入射する赤外線に関係無く環境等によ
る素子の温度変化だけを検出することができる。また、
参照画素に代えて、サーミスタを感温素子として用いれ
ば、簡略な構成によって参照信号出力回路を形成するこ
とができる。
In addition, the temperature sensitive element is a reference pixel having substantially the same structure as the pixel except that it does not have a heat insulating structure, so that only the temperature change of the element due to the environment or the like does not occur regardless of incident infrared rays. Can be detected. Also,
If a thermistor is used as the temperature sensitive element instead of the reference pixel, the reference signal output circuit can be formed with a simple configuration.

【0049】また、差動電圧電流変換アンプによって変
換した電流を、差動電圧電流変換アンプに接続されて周
期的に一定電圧にリセットされる容量に積分することに
より、簡略な構成で積分回路を構成することができる。
Further, by integrating the current converted by the differential voltage / current conversion amplifier into the capacitance connected to the differential voltage / current conversion amplifier and periodically reset to a constant voltage, an integrating circuit can be formed with a simple structure. Can be configured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明の実施の形態1に係る熱型赤
外線固体撮像素子を示す回路図である。
FIG. 1 is a circuit diagram showing a thermal infrared solid-state imaging device according to a first embodiment of the present invention.

【図2】 図2は、参照信号出力回路の別の例を示す回
路図である。
FIG. 2 is a circuit diagram showing another example of the reference signal output circuit.

【図3】 図3は、参照信号出力回路のさらに別の例を
示す回路図である。
FIG. 3 is a circuit diagram showing still another example of the reference signal output circuit.

【図4】 図4は、参照信号出力回路のさらに別の例を
示す回路図である。
FIG. 4 is a circuit diagram showing still another example of the reference signal output circuit.

【図5】 図5は、参照信号出力回路のさらに別の例を
示す回路図である。
FIG. 5 is a circuit diagram showing still another example of the reference signal output circuit.

【図6】 図6(a)及び(b)は、低域通過フィルタ
の一例を示す回路図である。
FIG. 6A and FIG. 6B are circuit diagrams showing an example of a low-pass filter.

【図7】 図7は、差動積分回路の一例を示す回路図で
ある。
FIG. 7 is a circuit diagram showing an example of a differential integration circuit.

【図8】 図8は、差動積分回路の別の一例を示す回路
図である。
FIG. 8 is a circuit diagram showing another example of the differential integration circuit.

【図9】 図9は、本発明の実施の形態2に係る熱型赤
外線固体撮像素子を示す回路図である。
FIG. 9 is a circuit diagram showing a thermal infrared solid-state imaging device according to a second embodiment of the present invention.

【図10】 図10(a)及び(b)は、従来の熱型赤
外線固体撮像素子の画素構造を示す断面図及び斜視図で
ある。
10A and 10B are a cross-sectional view and a perspective view showing a pixel structure of a conventional thermal infrared solid-state imaging device.

【図11】 図11は、従来の熱型赤外線固体撮像素子
を示す回路図である。
FIG. 11 is a circuit diagram showing a conventional thermal infrared solid-state imaging device.

【図12】 図12は、従来の熱型赤外線固体撮像素子
の積分回路を示す回路図である。
FIG. 12 is a circuit diagram showing an integrating circuit of a conventional thermal infrared solid-state imaging device.

【符号の説明】[Explanation of symbols]

1 画素、2、13,18 定電流源、3 駆動線、4
垂直走査回路、5 信号線、6 電源、7 差動積分
回路、8 水平走査回路、9 スイッチ、10出力端
子、11 参照信号出力回路、12 参照画素、14、
16 低域通過フィルタ、15 バッファアンプ、17
バイアス線。
1 pixel, 2, 13, 18 constant current source, 3 drive line, 4
Vertical scanning circuit, 5 signal lines, 6 power supply, 7 differential integration circuit, 8 horizontal scanning circuit, 9 switch, 10 output terminal, 11 reference signal output circuit, 12 reference pixel, 14,
16 low pass filter, 15 buffer amplifier, 17
Bias line.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01J 5/48 G01J 5/48 E H01L 27/14 H04N 5/33 27/146 H01L 27/14 K H04N 5/33 A Fターム(参考) 2G065 AA04 AA08 AB02 BA02 BA06 BA12 BA20 BA34 BC05 BC08 BC15 CA21 DA18 2G066 BA09 BA13 BB11 BC02 BC11 4M118 AA10 AB01 BA14 BA30 CA03 CA23 DD09 DD10 FA06 GA10 GB09 5C024 AX06 CX03 CX43 GY31 HX29 HX31 HX48 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01J 5/48 G01J 5/48 E H01L 27/14 H04N 5/33 27/146 H01L 27/14 K H04N 5 / 33 AF term (reference) 2G065 AA04 AA08 AB02 BA02 BA06 BA12 BA20 BA34 BC05 BC08 BC15 CA21 DA18 2G066 BA09 BA13 BB11 BC02 BC11 4M118 AA10 AB01 BA14 BA30 CA03 CA23 DD09 DD10 FA06 GA10 GB09 5C024 AX06 CX03 HX29 H29H

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1個以上直列接続され、断熱
構造と赤外線吸収構造を備えたダイオードによって画素
が構成され、前記画素が2次元状に配列された画素エリ
アと、 前記画素の陽極を行毎に共通接続した複数の駆動線と、 前記画素の陰極を列毎に共通接続し、列毎の終端に第1
の定電流化手段を備えた複数の信号線と、 前記駆動線を順次選択し、選択した駆動線と画素用電源
を接続する垂直走査回路と、 前記信号線を順次選択し、選択した信号線について、前
記第1の定電流化手段の両端電圧を前記信号線毎に設け
られた積分回路を介して出力する水平駆動回路と、を備
えた熱型赤外線固体撮像素子であって、 前記信号線毎に、前記第1の定電流化手段の近傍に設け
られ、前記第1の定電流化手段と実質的に同一の電流を
流す第2の定電流化手段と、 前記第2の定電流化手段の入力端を前記駆動線と平行に
共通接続し、前記駆動線と略同一の抵抗を有するバイア
ス線と、 前記バイアス線にバイアス電圧を与えるバイアス電圧出
力回路とを有し、 前記積分回路が、前記第1の定電流化手段と前記第2の
定電流化手段の両端電圧の差を一定時間積分して出力す
ることを特徴とする熱型赤外線固体撮像素子。
1. A pixel area in which at least one or more of the pixels are connected in series and each of which has a heat insulating structure and an infrared absorbing structure, and the pixels are arranged two-dimensionally. A plurality of drive lines commonly connected to each other and a cathode of the pixel are commonly connected to each column,
A plurality of signal lines having constant current conversion means, a vertical scanning circuit that sequentially selects the drive lines and connects the selected drive lines to a pixel power supply, and the signal lines that are sequentially selected and selected Regarding the above, the thermal infrared solid-state image sensor including: a horizontal drive circuit that outputs the voltage across the first constant current generating means through an integrating circuit provided for each signal line; And a second constant current converting unit that is provided near the first constant current converting unit and flows substantially the same current as the first constant current converting unit. An input terminal of the means is commonly connected in parallel to the drive line, and has a bias line having substantially the same resistance as the drive line, and a bias voltage output circuit for applying a bias voltage to the bias line, wherein the integration circuit is , The first constant current conversion means and the second constant current conversion means Thermal-type infrared solid-state imaging device and outputs the difference between the voltage across a fixed time integrated to.
【請求項2】 前記バイアス電圧出力回路が、前記画素
電源によって駆動されて素子全体の温度に応じた参照信
号を出力する参照信号出力回路と、前記参照信号出力回
路の出力に接続されたバッファアンプとを有することを
特徴とする請求項1記載の熱型赤外線固体撮像素子。
2. A reference signal output circuit in which the bias voltage output circuit is driven by the pixel power source to output a reference signal according to the temperature of the entire element, and a buffer amplifier connected to the output of the reference signal output circuit. The thermal infrared solid-state imaging device according to claim 1, further comprising:
【請求項3】 前記バイアス電圧出力回路が、前記バッ
ファアンプの入力側又は出力側の少なくとも一方に低域
通過フィルタを備えたことを特徴とする請求項2記載の
熱型赤外線固体撮像素子。
3. The thermal infrared solid-state image pickup device according to claim 2, wherein the bias voltage output circuit includes a low-pass filter on at least one of an input side and an output side of the buffer amplifier.
【請求項4】 前記参照信号出力回路が、温度に応じて
電気特性が変化する感温素子と、前記感温素子の陰極側
に接続された第3の定電流化手段とを有し、前記第3の
定電流化手段の両端電圧を参照信号として出力すること
を特徴とする請求項2又は3に記載の熱型赤外線固体撮
像素子。
4. The reference signal output circuit includes a temperature sensitive element whose electrical characteristics change according to temperature, and a third constant current-generating unit connected to the cathode side of the temperature sensitive element, The thermal infrared solid-state imaging device according to claim 2 or 3, wherein the voltage across the third constant current means is output as a reference signal.
【請求項5】 前記参照信号出力回路が、N個(Nは自
然数)の前記感温素子と、前記N個の感温素子の陰極側
に共通に接続された1つの前記第3の定電流化手段とを
有し、前記第3の定電流化手段が前記第1の定電流化手
段のN倍の電流を流すことを特徴とする請求項4記載の
熱型赤外線固体撮像素子。
5. The reference signal output circuit includes N (N is a natural number) the temperature sensitive elements, and one third constant current commonly connected to the cathode side of the N temperature sensitive elements. 5. The thermal infrared solid-state image pickup device according to claim 4, further comprising: a current conversion unit, wherein the third constant current conversion unit supplies N times as much current as the first constant current conversion unit.
【請求項6】 前記参照信号出力回路が、N個(Nは自
然数)の前記感温素子と、前記感温素子の個々の陰極側
に接続されたN個の前記第3の定電流化手段と、前記N
個の第3の定電流化手段の両端電圧を平均化して参照信
号として出力する平均化回路とを有することを特徴とす
る請求項4記載の熱型赤外線固体撮像素子。
6. The reference signal output circuit comprises N (N is a natural number) the temperature sensitive elements, and N third constant current converting means connected to respective cathode sides of the temperature sensitive elements. And the above N
5. The thermal infrared solid-state imaging device according to claim 4, further comprising an averaging circuit for averaging the voltages across the third constant current generating means and outputting the averaged voltage as a reference signal.
【請求項7】 前記感温素子が、断熱構造と赤外線吸収
構造の少なくとも一方を有しないことを除いて前記画素
と実質同一構造の参照画素であることを特徴とする請求
項4乃至6のいずれか1項に記載の熱型赤外線固体撮像
素子。
7. The reference pixel according to claim 4, wherein the temperature sensitive element is a reference pixel having substantially the same structure as the pixel except that the temperature sensitive element does not have at least one of a heat insulating structure and an infrared absorbing structure. The thermal infrared solid-state image sensor according to item 1.
【請求項8】 前記感温素子が、サーミスタであること
を特徴とする請求項4乃至6のいずれか1項に記載の熱
型赤外線固体撮像素子。
8. The thermal infrared solid-state imaging device according to claim 4, wherein the temperature sensitive device is a thermistor.
【請求項9】 前記積分回路が、前記第1の定電流化手
段と前記第2の定電流化手段の両端電圧の差を差動電圧
電流変換アンプによって電流に変換し、その電流を、前
記差動電圧電流変換アンプに接続されて周期的に一定電
圧にリセットされる容量に積分することを特徴とする請
求項1乃至8のいずれか1項に記載の熱型赤外線固体撮
像素子。
9. The integrator circuit converts a difference in voltage between both ends of the first constant current conversion unit and the second constant current conversion unit into a current by a differential voltage-current conversion amplifier, and the current is converted into the current. 9. The thermal infrared solid-state imaging device according to claim 1, wherein the thermal infrared solid-state imaging device is connected to a differential voltage-current conversion amplifier and is integrated into a capacitance that is periodically reset to a constant voltage.
JP2002023683A 2002-01-31 2002-01-31 Thermal infrared solid-state image sensor Expired - Lifetime JP3806042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002023683A JP3806042B2 (en) 2002-01-31 2002-01-31 Thermal infrared solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002023683A JP3806042B2 (en) 2002-01-31 2002-01-31 Thermal infrared solid-state image sensor

Publications (2)

Publication Number Publication Date
JP2003222555A true JP2003222555A (en) 2003-08-08
JP3806042B2 JP3806042B2 (en) 2006-08-09

Family

ID=27746325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002023683A Expired - Lifetime JP3806042B2 (en) 2002-01-31 2002-01-31 Thermal infrared solid-state image sensor

Country Status (1)

Country Link
JP (1) JP3806042B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241501A (en) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp Thermal infrared detecting element
JP2007511751A (en) * 2003-10-27 2007-05-10 イーストマン コダック カンパニー Circuit that detects ambient light on the display
JP2008022315A (en) * 2006-07-13 2008-01-31 Mitsubishi Electric Corp Thermal infrared detection circuit
JP2008534936A (en) * 2005-04-01 2008-08-28 トルンプ・ヴェルクツォイクマシーネン・ゲーエム・ベーハー・ウント・コンパニ・カーゲー Optical element and method for recording beam parameters comprising a temperature sensor provided in the form of a pixel matrix
US7718966B2 (en) 2007-04-05 2010-05-18 Mitsubishi Electric Corporation Thermal infrared solid state imaging device and infrared camera
US8431900B2 (en) 2010-02-26 2013-04-30 Mitsubishi Electric Corporation Infrared solid-state imaging device
US8502872B2 (en) 2009-03-17 2013-08-06 Mitsubishi Electric Corporation Infrared solid-state imaging device
CN109073458A (en) * 2016-04-19 2018-12-21 三菱电机株式会社 Infrared ray capturing element and infrared camera

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203659A (en) * 1995-08-11 1997-08-05 Nec Corp Bolometer type infrared detector
JP2000019015A (en) * 1998-06-30 2000-01-21 Toshiba Corp Infrared detecting device
JP2000114467A (en) * 1998-10-06 2000-04-21 Nec Corp Semiconductor device
WO2000023774A1 (en) * 1998-10-19 2000-04-27 Mitsubishi Denki Kabushiki Kaisha Infrared sensor and infrared sensor array comprising the same
JP2001215152A (en) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp Infrared solid-state imaging element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203659A (en) * 1995-08-11 1997-08-05 Nec Corp Bolometer type infrared detector
JP2000019015A (en) * 1998-06-30 2000-01-21 Toshiba Corp Infrared detecting device
JP2000114467A (en) * 1998-10-06 2000-04-21 Nec Corp Semiconductor device
WO2000023774A1 (en) * 1998-10-19 2000-04-27 Mitsubishi Denki Kabushiki Kaisha Infrared sensor and infrared sensor array comprising the same
JP2001215152A (en) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp Infrared solid-state imaging element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007511751A (en) * 2003-10-27 2007-05-10 イーストマン コダック カンパニー Circuit that detects ambient light on the display
JP2005241501A (en) * 2004-02-27 2005-09-08 Mitsubishi Electric Corp Thermal infrared detecting element
JP2008534936A (en) * 2005-04-01 2008-08-28 トルンプ・ヴェルクツォイクマシーネン・ゲーエム・ベーハー・ウント・コンパニ・カーゲー Optical element and method for recording beam parameters comprising a temperature sensor provided in the form of a pixel matrix
JP2008022315A (en) * 2006-07-13 2008-01-31 Mitsubishi Electric Corp Thermal infrared detection circuit
US7718966B2 (en) 2007-04-05 2010-05-18 Mitsubishi Electric Corporation Thermal infrared solid state imaging device and infrared camera
US8502872B2 (en) 2009-03-17 2013-08-06 Mitsubishi Electric Corporation Infrared solid-state imaging device
US8431900B2 (en) 2010-02-26 2013-04-30 Mitsubishi Electric Corporation Infrared solid-state imaging device
CN109073458A (en) * 2016-04-19 2018-12-21 三菱电机株式会社 Infrared ray capturing element and infrared camera
CN109073458B (en) * 2016-04-19 2021-01-22 三菱电机株式会社 Infrared imaging element and infrared camera

Also Published As

Publication number Publication date
JP3806042B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP5127278B2 (en) Thermal infrared solid-state imaging device and infrared camera
US7417230B2 (en) Microbolometer focal plane array with temperature compensated bias
JP3866069B2 (en) Infrared solid-state imaging device
JP5335006B2 (en) Infrared solid-state image sensor
JP4372097B2 (en) Infrared sensor, infrared camera, driving method of infrared sensor, and driving method of infrared camera
JP3216616B2 (en) Semiconductor device
KR100264920B1 (en) Thermal-type infrared imaging device
JP4009598B2 (en) Infrared solid-state image sensor
US8368789B2 (en) Systems and methods to provide reference current with negative temperature coefficient
JP3226859B2 (en) Imaging device
JP2008268155A (en) Thermal type infrared solid-state imaging element
JP3806042B2 (en) Thermal infrared solid-state image sensor
US20110260041A1 (en) Illuminance sensor
JP5264418B2 (en) Thermal infrared detector
JP2008022315A (en) Thermal infrared detection circuit
JP3974902B2 (en) Thermal infrared detector
JP2004233314A (en) Thermal type infrared solid-state imaging element
JP4959735B2 (en) Thermal infrared detector
JP4290034B2 (en) Infrared solid-state imaging device
JP4071122B2 (en) Thermal infrared solid-state image sensor
JP3011212B1 (en) Infrared imaging device
JP3787067B2 (en) Infrared detector
JP3377000B2 (en) Semiconductor device
JP2004336099A (en) Thermal type infrared solid-state imaging apparatus
JP2000106651A (en) Epn correction data generating method and image pickup device using the method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3806042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term