JP2003221642A - Refractory steel product for construction and its manufacturing process - Google Patents

Refractory steel product for construction and its manufacturing process

Info

Publication number
JP2003221642A
JP2003221642A JP2002342733A JP2002342733A JP2003221642A JP 2003221642 A JP2003221642 A JP 2003221642A JP 2002342733 A JP2002342733 A JP 2002342733A JP 2002342733 A JP2002342733 A JP 2002342733A JP 2003221642 A JP2003221642 A JP 2003221642A
Authority
JP
Japan
Prior art keywords
high temperature
precipitation amount
strength
steel
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002342733A
Other languages
Japanese (ja)
Inventor
Kenji Hayashi
謙次 林
Masao Yuga
正雄 柚賀
Toshiro Nakamichi
俊郎 仲道
Takashi Abe
隆 阿部
Kazuhide Takahashi
和秀 高橋
Kaoru Sato
馨 佐藤
Saburo Tani
三郎 谷
Masatoshi Toyonaga
正敏 豊永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002342733A priority Critical patent/JP2003221642A/en
Publication of JP2003221642A publication Critical patent/JP2003221642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel requiring a low production cost which satisfies a strength specified for SN400 or SN490 defined by JIS, ensures a strength at elevated temperature satisfying: (yield strength at 650°C)/(yield strength at ordinary temperature)≥0.5 and (yield strength at 700°C)/(yield strength at ordinary temperature)≥0.4, and shows an excellent weldability (Y crack stopping temperature of ≤0°C), and its manufacturing process. <P>SOLUTION: The steel contains 0.01-0.13 mass% C, 0.01-0.5 mass% Si, 0.01-0.5 mass% Mn, 0.3-1.3 mass% Mo, 0.02-0.1 mass% Nb, 0.003-0.05 mass% sol.Al and ≤0.01 mass% N, wherein the remainder comprises Fe and unavoidable impurities. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火災などで数時間
程度、高温状態になる建築物、橋梁等の鉄骨構造物に用
いる鋼材で、特に、650〜700℃の高温での使用に
耐え得る鋼材およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a steel material used for steel structures such as buildings and bridges which are heated to a high temperature for several hours due to fire or the like, and can withstand use at a high temperature of 650 to 700 ° C. The present invention relates to a steel material and a manufacturing method thereof.

【0002】[0002]

【従来の技術】構造用鋼は、温度の上昇に伴い強度が低
下し、500℃以上では顕著な強度低下を示す。このた
め、従来、火災などでの高温状態において鋼材が350
℃以上とならないように耐火被覆を施すことや、鋼材自
体の高温強度を向上させることが提案されてきた。
2. Description of the Related Art Structural steels show a decrease in strength with an increase in temperature, and a remarkable decrease in strength at 500 ° C. or higher. Therefore, in the past, steel materials have been cooled to 350
It has been proposed to apply a fireproof coating so that the temperature does not exceed ℃, and to improve the high temperature strength of the steel material itself.

【0003】例えば、特許文献1および特許文献2等に
は、Mo,V,Nb,Ti等を添加し、600℃や65
0℃における降伏強度を向上させた常温強度400〜4
90N/mm2級鋼が提案されている。
For example, in Patent Documents 1 and 2, etc., Mo, V, Nb, Ti, etc. are added, and 600 ° C. or 65
Room temperature strength 400-4 with improved yield strength at 0 ° C
90 N / mm 2 grade steel has been proposed.

【0004】[0004]

【特許文献1】特開平2−170943号公報[Patent Document 1] Japanese Unexamined Patent Publication No. 2-170943

【0005】[0005]

【特許文献2】特開平2−163341号公報[Patent Document 2] Japanese Unexamined Patent Publication No. 2-163341

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の鋼材は主に600℃での安全性(耐火性:600℃に
おいて常温規格降伏強度の2/3以上の降伏強度)を保
証するものであり、更に高温においての使用が考慮され
たものではない。例えば、700℃での降伏強度は、常
温規格降伏強度の1/3程度に過ぎない。
However, these steel materials mainly guarantee the safety at 600 ° C. (fire resistance: yield strength at 600 ° C. that is 2/3 or more of the normal temperature standard yield strength). Use at higher temperatures is not considered. For example, the yield strength at 700 ° C. is only about 1/3 of the normal temperature standard yield strength.

【0007】また、高温強度を確保するために多量の合
金元素を添加すると、常温強度が高くなりすぎて、SN
材のJIS規格強度を超えてしまい、JIS規格を外れ
たものとなる。また、さらに高合金化すると、溶接性や
靭性の劣化を招くという問題点もある。
If a large amount of alloying element is added to secure high temperature strength, the room temperature strength becomes too high and SN
It exceeds the JIS standard strength of the material, and it is out of the JIS standard. Further, there is a problem that if the alloying is further increased, weldability and toughness are deteriorated.

【0008】本発明は、以上のような点を鑑みてなされ
たものであり、その目的は、JISに規定されたSN4
00またはSN490の規格強度を満足し、さらに65
0℃YS/常温YS≧0.5、700℃YS/常温YS
≧0.4の関係を満たす高温強度を確保し、且つ優れた
溶接性(Y割れ停止温度0℃以下)を満足する生産原価
の低い鋼およびその製造方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is SN4 defined in JIS.
00 or SN490 standard strength, 65
0 ° C YS / normal temperature YS ≧ 0.5, 700 ° C YS / normal temperature YS
It is an object of the present invention to provide a steel having a low production cost that secures a high temperature strength that satisfies the relationship of ≧ 0.4 and that has excellent weldability (Y crack stop temperature of 0 ° C. or less), and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】本発明者らは鋼材の高温
強度に及ぼす成分組成について詳細に検討を行った。そ
の結果、高温耐火時にMo,Nbの微細な複合炭化物を
析出させることにより、高温強度を格段に向上できるこ
とを見出した。さらに、Mn含有量を0.01〜0.5
%と低くすることで、低降伏比を損なわずに700℃で
の高温強度が向上し、且つ優れた溶接性が得られること
を見出した。
[Means for Solving the Problems] The present inventors have made detailed investigations on the composition of components that affect the high temperature strength of steel. As a result, they have found that high temperature strength can be significantly improved by precipitating fine composite carbides of Mo and Nb during high temperature fire resistance. Furthermore, the Mn content is 0.01 to 0.5.
It has been found that by making the content as low as 10%, the high temperature strength at 700 ° C. is improved and excellent weldability is obtained without impairing the low yield ratio.

【0010】すなわち、本発明は、具体的な指針として
常温強度、高温強度の両者に寄与する(Mo+Nb)を
高め、常温強度にのみ寄与するMn量を低減し、(Mo
+Nb)/Mn比を高くし、高温強度/常温強度比を高
くすることを得てなされたものであり、以下に示す手段
を用いている。
That is, as a concrete guide, the present invention increases (Mo + Nb) which contributes to both room temperature strength and high temperature strength and reduces the amount of Mn which contributes only to room temperature strength.
+ Nb) / Mn ratio was made high and high temperature strength / normal temperature strength ratio was made high, and the means shown below is used.

【0011】本発明の建築用耐火鋼材は、質量%で、
C:0.01〜0.13%、Si:0.01〜0.5
%、Mn:0.01〜0.5%、Mo:0.3〜1.3
%、Nb:0.02〜0.1%、sol.Al:0.0
03〜0.05%、N:0.01%以下を含有し、残部
がFeおよび不可避的不純物からなることを特徴とす
る。
The refractory steel material for construction according to the present invention has a mass% of
C: 0.01 to 0.13%, Si: 0.01 to 0.5
%, Mn: 0.01 to 0.5%, Mo: 0.3 to 1.3
%, Nb: 0.02 to 0.1%, sol. Al: 0.0
It is characterized by containing 03 to 0.05% and N: 0.01% or less, and the balance being Fe and inevitable impurities.

【0012】また、Mo、NbおよびMnの含有量が、
質量%で、(Mo+Nb)/Mn≧1を満足することが
好ましい。
Further, the contents of Mo, Nb and Mn are
It is preferable to satisfy (Mo + Nb) / Mn ≧ 1 in mass%.

【0013】さらに、鋼成分として、質量%で、V:
0.01〜0.10%、Ti:0.005〜0.10
%、Cr:0.03〜0.5%、Cu:0.03〜0.
5%、Ni:0.03〜0.5%、Ca:0.0005
〜0.005%、Mg:0.0005〜0.005%、
REM:0.0005〜0.02%からなる群より選択
される1種または2種以上をさらに含有することが好ま
しい。
Further, as a steel component, in mass%, V:
0.01-0.10%, Ti: 0.005-0.10
%, Cr: 0.03 to 0.5%, Cu: 0.03 to 0.
5%, Ni: 0.03-0.5%, Ca: 0.0005
~ 0.005%, Mg: 0.0005 to 0.005%,
REM: It is preferable to further contain one or more selected from the group consisting of 0.0005 to 0.02%.

【0014】また、650℃から700℃の温度範囲に
10分から30分加熱保持した後に室温まで冷却したと
きの硬さが、ビッカース硬度Hv10で、加熱前よりも
10以上高いことが好ましい。
Further, it is preferable that the hardness when heated and held in the temperature range of 650 ° C. to 700 ° C. for 10 minutes to 30 minutes and then cooled to room temperature is Vickers hardness Hv10 which is 10 or more higher than that before heating.

【0015】さらに、650℃から700℃の温度範囲
に10分から30分加熱保持したときに析出するNb−
Mo系炭化物の析出量が、下記(1)式で定義される炭
化物炭素当量値で70ppm以上であることが好まし
い。
Further, Nb-- which precipitates when heated and held in the temperature range of 650 ° C. to 700 ° C. for 10 minutes to 30 minutes
It is preferable that the amount of precipitation of Mo-based carbide is 70 ppm or more in terms of the carbon equivalent value of carbide defined by the following formula (1).

【0016】 Δ[CasNbC]+Δ[CasMoC]+Δ[CasTiC]+Δ[CasVC ]…(1) ここで、 Δ[CasNbC]=12/93×{(高温保持後のN
b析出量)−(高温保持前のNb析出量)} Δ[CasMoC]=12/96×{(高温保持後のM
o析出量)−(高温保持前のMo析出量)} Δ[CasTiC]=12/48×{(高温保持後のT
i析出量)−(高温保持前のTi析出量)} Δ[CasVC]=12/51×{(高温保持後のV析
出量)−(高温保持前のV析出量)} 但し、Ti無添加の場合は、Δ[CasTiC]=0、V
無添加の場合は、Δ[CasVC]=0。
Δ [CasNbC] + Δ [CasMoC] + Δ [CasTiC] + Δ [CasVC] (1) where Δ [CasNbC] = 12/93 × {(N after high temperature holding)
b precipitation amount)-(Nb precipitation amount before holding at high temperature)} [CasMoC] = 12/96 x {(M after holding at high temperature)
o Precipitation amount)-(Mo precipitation amount before high temperature retention)} [CasTiC] = 12/48 x {(T after high temperature retention)
i precipitation amount)-(Ti precipitation amount before high temperature holding)} [CasVC] = 12/51 x {(V precipitation amount after high temperature holding)-(V precipitation amount before high temperature holding)} However, no Ti addition In the case of, Δ [CasTiC] = 0, V
In the case of no addition, Δ [CasVC] = 0.

【0017】本発明の建築用耐火鋼材の製造方法は、前
記組成を有する鋼を1000℃以上に加熱した後、圧延
終了温度を800℃から1000℃までの範囲とする熱
間圧延を行うことを特徴とする。
In the method for manufacturing a refractory steel material for construction according to the present invention, after heating the steel having the above composition to 1000 ° C. or higher, hot rolling is performed so that the rolling end temperature is in the range of 800 ° C. to 1000 ° C. Characterize.

【0018】[0018]

【発明の実施の形態】本発明での成分組成及び製造条件
の限定理由について詳細に説明する。以下の説明におい
て「%」で示す単位は全て質量%である。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the component composition and manufacturing conditions in the present invention will be described in detail. In the following description, all units indicated by "%" are% by mass.

【0019】(成分組成) (1)C:0.01〜0.13% Cは、常温強度と共に、600℃以上で、Nb等との微
細複合炭化物を析出して高温降伏強度を向上させるた
め、0.01%以上添加する。一方、0.13%を超え
て添加すると、構造用鋼としての延靭性や溶接性が劣化
する。従って、C含有量は0.01〜0.13%の範囲
とする。
(Component composition) (1) C: 0.01 to 0.13% C improves the high temperature yield strength by precipitating fine composite carbide with Nb and the like at room temperature strength and 600 ° C. or higher. , 0.01% or more is added. On the other hand, if added in excess of 0.13%, the ductility and weldability as structural steel deteriorate. Therefore, the C content is set to the range of 0.01 to 0.13%.

【0020】(2)Si:0.01〜0.5% Siは、脱酸および固溶強化に寄与するため、0.01
%以上添加する。一方、0.5%を超えて添加すると延
靭性が低下し、常温強度が過剰となる。従って、Si含
有量は0.01〜0.5%の範囲とする。
(2) Si: 0.01 to 0.5% Si contributes to deoxidation and solid solution strengthening, so 0.01
% Or more. On the other hand, if added in excess of 0.5%, the ductility and toughness deteriorate and the room temperature strength becomes excessive. Therefore, the Si content is set to the range of 0.01 to 0.5%.

【0021】(3)Mn:0.01〜0.5% Mnは、本発明において重要な元素である。高温強度/
常温強度比を高くするために、常温強度にのみ寄与する
Mn量を低減する。Mnは、JISで規定するSN40
0またはSN490材としての常温強度を確保するため
に、0.01%以上添加する。一方、0.5%を超えて
添加すると、常温強度が高くなり高温強度/常温強度比
が低下するとともに、SN490材としての常温強度の
規格を超える場合がある。また、溶接性も劣化する。従
って、Mn含有量は0.01〜0.5%の範囲とする。
(3) Mn: 0.01 to 0.5% Mn is an important element in the present invention. High temperature strength /
In order to increase the room temperature strength ratio, the amount of Mn contributing only to room temperature strength is reduced. Mn is SN40 specified by JIS
0 or 0.01% or more in order to secure the room temperature strength as the SN490 material. On the other hand, if added in excess of 0.5%, the room temperature strength increases and the high temperature strength / room temperature strength ratio decreases, and the room temperature strength of the SN490 material may exceed the standard. In addition, the weldability also deteriorates. Therefore, the Mn content is set to the range of 0.01 to 0.5%.

【0022】(4)Mo:0.3〜1.3% Moは、焼入れ性の向上、析出強化に寄与して常温強度
を向上させる。また、Nbとの複合添加により後述する
Nb−Mo系炭化物を形成して高温強度を向上させるた
め、0.3%以上添加する。一方、1.3%を超えて添
加すると、常温強度が高くなり過ぎてJISで規定する
SN490材の規格を超えるとともに、溶接性および靭
性が劣化する。従って、Mo含有量は0.3〜1.3%
の範囲とする。
(4) Mo: 0.3 to 1.3% Mo contributes to improvement of hardenability and precipitation strengthening, and improves room temperature strength. Further, 0.3% or more is added in order to form a Nb-Mo-based carbide described later by composite addition with Nb and improve high temperature strength. On the other hand, if added over 1.3%, the room temperature strength becomes too high and exceeds the standard of SN490 material specified by JIS, and the weldability and toughness deteriorate. Therefore, the Mo content is 0.3 to 1.3%
The range is.

【0023】(5)Nb:0.02〜0.1% Nbは、Moとの複合添加によりNb−Mo系炭化物を
形成して高温強度を向上させるため、0.02%以上添
加する必要がある。安定して高温強度を確保するために
は、0.04%以上添加することがさらに好ましい。一
方、0.1%を超えて添加すると、溶接性および靭性が
劣化する。従って、Nb含有量は0.02〜0.1%の
範囲とする。
(5) Nb: 0.02 to 0.1% Nb must be added in an amount of 0.02% or more in order to form Nb-Mo type carbides by composite addition with Mo to improve high temperature strength. is there. In order to stably secure high temperature strength, it is more preferable to add 0.04% or more. On the other hand, if added in excess of 0.1%, the weldability and toughness deteriorate. Therefore, the Nb content is set to the range of 0.02 to 0.1%.

【0024】(6)(Mo+Nb)/Mn≧1 高温強度/常温強度比を高くするため、常温強度にのみ
寄与するMn量を低減して(Mo+Nb)/Mnを1以
上とすることが好ましく、さらに1.5以上とすること
がより好ましい。但し、元素記号は鋼材中の各元素の含
有量(質量%)を表す。この値が1未満では、目標とす
るYS比(650℃YS/常温YS≧0.5、700℃
YS/常温YS≧0.4)が得られないか、あるいは常
温強度が高くなり、SN490材の規格強度を超えてJ
IS規格から外れる恐れがある。
(6) (Mo + Nb) / Mn ≧ 1 In order to increase the high temperature strength / normal temperature strength ratio, it is preferable to reduce the amount of Mn contributing only to the normal temperature strength so that (Mo + Nb) / Mn is 1 or more, It is more preferable to set it to 1.5 or more. However, the element symbol represents the content (mass%) of each element in the steel material. If this value is less than 1, the target YS ratio (650 ° C YS / normal temperature YS ≧ 0.5, 700 ° C
YS / normal temperature YS ≧ 0.4) cannot be obtained, or the normal temperature strength becomes high and exceeds the standard strength of SN490 material, and J
There is a risk of deviating from the IS standard.

【0025】(7)P,S:0.03%以下 P,Sは不可避的不純物であり、延靭性、加工性及び溶
接性を低下させるため、その含有量は、夫々0.03%
以下とする。下限は構造用鋼としての生産原価を満足す
る範囲で低減させることが望ましいが、特に限定しな
い。
(7) P, S: 0.03% or less P and S are unavoidable impurities and deteriorate the ductility, workability and weldability, so their contents are 0.03% respectively.
Below. The lower limit is preferably reduced within a range satisfying the production cost of structural steel, but is not particularly limited.

【0026】(8)sol.Al:0.003〜0.0
5% Alは脱酸のため、また、sol.AlはAlNとして
鋼中に析出し、結晶粒の微細化に有効なため、0.00
3%以上添加する。一方、0.05%を超えて過剰に添
加すると介在物が多くなり、延靭性が低下する。従っ
て、sol.Alの含有量は0.003〜0.05%の
範囲とする。
(8) Sol. Al: 0.003 to 0.0
Since 5% Al is deoxidized, sol. Al precipitates as AlN in the steel and is effective in refining the crystal grains, so 0.00
Add 3% or more. On the other hand, if added in excess of 0.05%, the amount of inclusions increases and the ductility decreases. Therefore, sol. The content of Al is set to the range of 0.003 to 0.05%.

【0027】(9)N:0.01%以下 Nは、AlNとして析出し結晶粒を微細化するが、0.
01%を超えて添加すると溶接部靭性が低下する。従っ
て、N含有量は0.01%以下、好ましくは0.006
%以下とする。
(9) N: 0.01% or less N precipitates as AlN and makes the crystal grains finer, but N.
If added in excess of 01%, the toughness of the weld zone will decrease. Therefore, the N content is 0.01% or less, preferably 0.006.
% Or less.

【0028】以上が本発明の基本成分組成であり、基本
成分が上記組成範囲内であれば目的とする性能は十分に
得られるが、更にその特性を向上させるため、V,T
i、Cr,Cu,Ni,Ca,Mg,REMのうちの1
種または2種以上を添加することが可能である。
The above is the basic component composition of the present invention. If the basic component is within the above composition range, the desired performance can be sufficiently obtained, but in order to further improve the characteristics, V, T
1 of i, Cr, Cu, Ni, Ca, Mg, REM
It is possible to add one species or two or more species.

【0029】(10)V:0.01〜0.10% Vは、析出強化に寄与して常温強度、高温強度を上昇さ
せるため、0.01%以上添加する。特に、Mo,T
i,Nbとの複合添加により、Nb−Mo−V系複合炭
化物またはNb−Mo−Ti−V系複合炭化物が微細析
出し、顕著な効果が得られる。一方、0.10%を超え
て添加すると硬化し、更に溶接性が劣化する。従って、
Vを添加する場合、その含有量は0.01〜0.10%
の範囲とする。
(10) V: 0.01 to 0.10% V contributes to precipitation strengthening and increases room temperature strength and high temperature strength, so 0.01% or more is added. Especially, Mo, T
By the combined addition of i and Nb, Nb-Mo-V based composite carbide or Nb-Mo-Ti-V based composite carbide is finely precipitated, and a remarkable effect is obtained. On the other hand, if added in excess of 0.10%, it hardens and the weldability deteriorates. Therefore,
When V is added, its content is 0.01 to 0.10%
The range is.

【0030】(11)Ti:0.005〜0.10% Tiは、析出強化に寄与して常温強度、高温強度を上昇
させるため、0.005%以上添加する。特に、Mo,
Nb,Vとの複合添加により、Nb−Mo−Ti系複合
炭化物またはNb−Mo−Ti−V系複合炭化物が微細
に析出し、顕著な効果が得られる。一方、0.10%を
超えて添加すると硬化し、更に溶接性が劣化する。従っ
て、Tiを添加する場合、その含有量は0.005〜
0.10%の範囲とする。
(11) Ti: 0.005 to 0.10% Ti contributes to precipitation strengthening and increases room temperature strength and high temperature strength, so 0.005% or more is added. In particular, Mo,
By the combined addition with Nb and V, Nb-Mo-Ti based composite carbide or Nb-Mo-Ti-V based composite carbide is finely precipitated, and a remarkable effect is obtained. On the other hand, if added in excess of 0.10%, it hardens and the weldability deteriorates. Therefore, when Ti is added, its content is 0.005 to
The range is 0.10%.

【0031】(12)Cr:0.03〜0.5% Crは、固溶強化に寄与して常温強度、高温強度を上昇
させるため、0.03%以上添加する。特に、Mo,T
i,Nbとの複合添加により、複合炭化物が微細析出
し、顕著な効果が得られる。一方、0.5%を超えて添
加すると硬化し、更に溶接性が劣化する。従って、Cr
を添加する場合、その含有量は0.03〜0.5%の範
囲とする。
(12) Cr: 0.03 to 0.5% Since Cr contributes to solid solution strengthening and increases room temperature strength and high temperature strength, 0.03% or more is added. Especially, Mo, T
By the combined addition of i and Nb, the composite carbide is finely precipitated and a remarkable effect is obtained. On the other hand, if added in excess of 0.5%, it hardens and the weldability deteriorates. Therefore, Cr
When added, the content is in the range of 0.03 to 0.5%.

【0032】(13)Cu:0.03〜0.5% Cuは、固溶強化に寄与して常温強度を上昇させるた
め、0.03%以上添加する。一方、0.5%を超えて
添加すると硬化し、鋼板表面疵を生じる。従って、Cu
を添加する場合、その含有量は0.03〜0.5%の範
囲とする。
(13) Cu: 0.03 to 0.5% Cu contributes to solid solution strengthening and raises room temperature strength, so 0.03% or more is added. On the other hand, if added in excess of 0.5%, it hardens and causes steel plate surface flaws. Therefore, Cu
When added, the content is in the range of 0.03 to 0.5%.

【0033】(14)Ni:0.03〜0.5% Niは、低温靭性、強度を向上させるため、0.03%
以上添加する。一方、0.5%を超えて添加すると硬化
し、生産原価を上昇させる。従って、Niを添加する場
合、その含有量は0.03〜0.5%の範囲とする。
(14) Ni: 0.03 to 0.5% Ni is 0.03% in order to improve low temperature toughness and strength.
The above is added. On the other hand, if added in excess of 0.5%, it hardens and raises the production cost. Therefore, when Ni is added, its content is in the range of 0.03 to 0.5%.

【0034】(15)Ca,Mg,REM Ca,Mg,REMの元素は、介在物の形態制御やS等
の不純物元素の固定により靭性を向上させる。添加する
場合は、その含有量をCa:0.0005〜0.005
%、Mg:0.0005〜0.005%、REM:0.
0005〜0.02%の範囲とする。
(15) Ca, Mg, REM Ca, Mg, REM elements improve the toughness by controlling the morphology of inclusions and fixing impurity elements such as S. When adding, the content is Ca: 0.0005 to 0.005
%, Mg: 0.0005 to 0.005%, REM: 0.
The range is 0005 to 0.02%.

【0035】(16)高温耐火時の析出物 本発明鋼を600〜700℃の高温に加熱すると、微細
なNb−Mo系炭化物が析出して高い高温強度を示す。
これらの析出物は高温耐火時に多量に析出するため、結
果的に、高い高温強度/常温強度比となる。ここで、N
b−Mo系炭化物には、Ti添加時には、Nb−Mo−
Ti系炭化物、V添加時には、Nb−Mo−V系炭化物
およびTi,V添加時には、Nb−Mo−Ti−V系炭
化物が含まれる。
(16) Precipitates during high temperature refractory When the steel of the present invention is heated to a high temperature of 600 to 700 ° C., fine Nb-Mo type carbides are precipitated and exhibit high high temperature strength.
A large amount of these precipitates are deposited during high temperature fire resistance, resulting in a high high temperature strength / normal temperature strength ratio. Where N
When Ti is added to the b-Mo-based carbide, Nb-Mo-
Ti-based carbide, Nb-Mo-V-based carbide when V is added, and Nb-Mo-Ti-V-based carbide when Ti and V are added.

【0036】(i)ビッカース硬度Hv10 本発明の目的である650℃YS/常温YS≧0.5、
700℃YS/常温YS≧0.4を満足するためには、
高温加熱時に一定量以上のNb−Mo系炭化物を析出さ
せる必要がある。
(I) Vickers hardness Hv10 The object of the present invention is 650 ° C. YS / normal temperature YS ≧ 0.5,
In order to satisfy 700 ° C. YS / normal temperature YS ≧ 0.4,
It is necessary to precipitate a certain amount or more of Nb-Mo-based carbide during high temperature heating.

【0037】このためには、650℃から700℃の温
度範囲に10分から30分加熱保持した後、室温まで冷
却したときの硬さを、ビッカース硬度Hv10で、加熱
前より10以上高くする。Hv10の差が10未満であ
る場合、高温加熱時に析出するNb−Mo系炭化物の量
が不足し、上記特性が得られない恐れがある。ここで、
ビッカース硬度Hv10とは、圧子の荷重条件を10k
gとして測定したときの硬さ指数をいう。なお、硬さの
差は、同一鋼板の加熱前後にける板厚方向1/4tの位
置における常温硬度の値の差とする。
For this purpose, the hardness when heated to 650 ° C. to 700 ° C. for 10 to 30 minutes and then cooled to room temperature has a Vickers hardness Hv10 of 10 or more higher than that before heating. If the difference in Hv10 is less than 10, the amount of Nb-Mo-based carbides that precipitate during high temperature heating may be insufficient, and the above properties may not be obtained. here,
With Vickers hardness Hv10, the load condition of the indenter is 10k
Hardness index when measured as g. The difference in hardness is the difference in the value of room temperature hardness at the position of 1/4 t in the plate thickness direction before and after heating the same steel plate.

【0038】(ii)Δ[CasNbC]+Δ[CasM
oC] Δ[CasNbC]+Δ[CasMoC]+Δ[Cas
TiC]+Δ[CasVC] 高温加熱時に析出するNb−Mo系炭化物は下記の組
成、析出量を有することが望ましい。
(Ii) Δ [CasNbC] + Δ [CasM
oC] Δ [CasNbC] + Δ [CasMoC] + Δ [Cas
TiC] + Δ [CasVC] It is desirable that the Nb-Mo-based carbide precipitated during high temperature heating has the following composition and precipitation amount.

【0039】650℃から700℃の温度範囲に10分
から30分加熱保持した場合に、新たに析出する析出物
は(Nb−Mo)Cの複合炭化物であり、その析出量
は、下記(1)’式で表される炭化物炭素当量値で、7
0ppm以上であることが好ましい。Moは通常Mo2
Cとして析出するが、透過型電子顕微鏡による観察と抽
出浅さの分析結果から、本発明鋼では(Nb−Mo)C
として析出し、この複合炭化物が高温強度向上に寄与す
ることが判明した。析出量が炭化物炭素当量値で70p
pm未満の場合、所望の高温強度が得られない恐れがあ
る。なお、炭化物炭素当量値の上限値は、溶接性および
靭性を劣化させない観点から300ppmとする。 Δ[CasNbC]+Δ[CasMoC]…(1)’。
When heated and held in the temperature range of 650 ° C. to 700 ° C. for 10 minutes to 30 minutes, the newly deposited precipitate is a (Nb-Mo) C composite carbide, and the amount of precipitation is as follows (1). 'Carbide carbon equivalent value represented by the formula, 7
It is preferably 0 ppm or more. Mo is usually Mo 2
Although it precipitates as C, from the observation by the transmission electron microscope and the analysis result of the extraction depth, in the steel of the present invention, (Nb-Mo) C
It was found that this composite carbide contributes to the improvement of high temperature strength. The amount of precipitation is 70p in terms of carbon equivalent value of carbide
If it is less than pm, the desired high temperature strength may not be obtained. Note that the upper limit of the carbon equivalent value of the carbide is 300 ppm from the viewpoint of not deteriorating the weldability and toughness. Δ [CasNbC] + Δ [CasMoC] ... (1) ′.

【0040】なお、TiやVを添加した場合には、(N
b−Mo−Ti)C、(Nb−Mo−V)Cまたは(N
b−Mo−Ti−V)Cの複合炭化物が形成され、さら
に高温強度は向上する。この場合、その析出量は、下記
(1)式で表される炭化物炭素当量値で、70ppm以
上であることが好ましい。 Δ[CasNbC]+Δ[CasMoC]+Δ[CasTiC]+Δ[Cas VC]…(1)。
When Ti or V is added, (N
b-Mo-Ti) C, (Nb-Mo-V) C or (N
A b-Mo-Ti-V) C composite carbide is formed, and the high temperature strength is further improved. In this case, the amount of precipitation is preferably 70 ppm or more in terms of the carbon equivalent value of carbide represented by the following formula (1). Δ [CasNbC] + Δ [CasMoC] + Δ [CasTiC] + Δ [CasVC] ... (1).

【0041】但し、Ti無添加の場合は、Δ[CasT
iC]=0、V無添加の場合は、Δ[CasVC]=0
とする。
However, when Ti is not added, Δ [CasT
iC] = 0, when V is not added, Δ [CasVC] = 0
And

【0042】ここで、上記Δ[CasNbC]、Δ[C
asMoC]、Δ[CasTiC]、Δ[CasVC]
は、それぞれ以下のように求められる。 Δ[CasNbC]=12/93×{(高温保持後のN
b析出量)−(高温保持前のNb析出量)} Δ[CasMoC]=12/96×{(高温保持後のM
o析出量)−(高温保持前のMo析出量)} Δ[CasTiC]=12/48×{(高温保持後のT
i析出量)−(高温保持前のTi析出量)} Δ[CasVC]=12/51×{(高温保持後のV析
出量)−(高温保持前のV析出量)} 但し、Δ[CasNbC]、Δ[CasMoC]、Δ
[CasTiC]、Δ[CasVC]は、高温保持した
時に、それぞれNb炭化物、Mo炭化物、Ti炭化物、
V炭化物が組織中に新たに析出する際に消費される炭素
量を示す。なお、各金属元素の析出量は、10%アセチ
ルアセトン−メタノール電解抽出により鋼中から抽出し
た残渣をICP発光分析法により求める。
Here, the above Δ [CasNbC], Δ [C
asMoC], Δ [CasTiC], Δ [CasVC]
Are respectively calculated as follows. Δ [CasNbC] = 12/93 × {(N after holding at high temperature
b precipitation amount)-(Nb precipitation amount before holding at high temperature)} [CasMoC] = 12/96 x {(M after holding at high temperature)
o Precipitation amount)-(Mo precipitation amount before high temperature retention)} [CasTiC] = 12/48 x {(T after high temperature retention)
i precipitation amount)-(Ti precipitation amount before high temperature holding)} Δ [CasVC] = 12/51 × {(V precipitation amount after high temperature holding)-(V precipitation amount before high temperature holding)} where Δ [CasNbC ], Δ [CasMoC], Δ
[CasTiC] and Δ [CasVC] are Nb carbide, Mo carbide, Ti carbide, and
The amount of carbon consumed when V carbide newly deposits in the structure is shown. The amount of each metal element deposited is determined by ICP emission spectrometry of the residue extracted from the steel by 10% acetylacetone-methanol electrolytic extraction.

【0043】(製造方法) (17)スラブ加熱温度:1000℃以上 スラブ加熱温度は、Ti,Nb,Vを固溶させ、特に、
Mo,Nbの複合添加による高温強度向上効果を得るた
め、JISに規定されているSN490材の規格強度を
満足するためには1000℃以上とする。
(Manufacturing method) (17) Slab heating temperature: 1000 ° C. or higher The slab heating temperature is such that Ti, Nb, and V are solid-dissolved.
In order to obtain the effect of improving the high temperature strength by the combined addition of Mo and Nb, in order to satisfy the standard strength of the SN490 material specified in JIS, the temperature is 1000 ° C or higher.

【0044】(18)圧延終了温度:800〜1000
℃ 圧延終了温度は、800℃未満では高温強度が低下し、
1000℃を超えると、結晶粒が粗大化して焼入れ性が
向上して常温強度が高くなりすぎるため、JISに規定
されているSN490材の規格強度を満足するためには
800〜1000℃の温度範囲とする。
(18) Rolling end temperature: 800 to 1000
℃ Rolling end temperature is less than 800 ℃, high temperature strength decreases,
If the temperature exceeds 1000 ° C, the crystal grains become coarse, the hardenability is improved, and the room temperature strength becomes too high. Therefore, in order to satisfy the standard strength of SN490 material specified in JIS, the temperature range of 800 to 1000 ° C is required. And

【0045】[0045]

【実施例】供試鋼A〜Xを用いて、種々の製造条件によ
り鋼板を製造した。表1に、用いた供試鋼A〜Xの化学
成分を示す。鋼A〜NおよびXは本発明範囲内の成分組
成を有する発明鋼であり、鋼O〜Wは本発明範囲外の成
分組成を有する比較鋼である。但し、鋼Tは欠番であ
る。
EXAMPLES Steel sheets were produced under various production conditions using the test steels A to X. Table 1 shows the chemical components of the test steels A to X used. Steels A to N and X are invention steels having a composition within the scope of the present invention, and steels OW are comparative steels having a composition outside the scope of the present invention. However, steel T is a missing number.

【0046】また、表2に、製造条件として、供試鋼の
鋼種、鋼板の板厚(mm)、発明製造プロセス、製造プ
ロセス、圧延時の加熱温度(℃)、圧延終了温度(℃)
および冷却条件を示す。なお、発明製造プロセスの表示
は請求項6記載の方法に従った場合には、○とし、それ
以外の場合には、×と示した。
Further, Table 2 shows, as manufacturing conditions, the steel type of the sample steel, the plate thickness (mm) of the steel plate, the invention manufacturing process, the manufacturing process, the heating temperature during rolling (° C), and the rolling end temperature (° C).
And cooling conditions are shown. The indication of the invention manufacturing process is indicated by ◯ when the method according to claim 6 is followed, and is indicated by x otherwise.

【0047】得られた鋼板について、常温引張試験およ
び高温引張試験をそれぞれ行った。常温引張特性とし
て、降伏強度YS(N/mm2)、引張強度TS(N/
mm2)および降伏比YR(%)を求め、高温引張特性
として、試験温度600℃、650℃、700℃での降
伏強度YS(N/mm2)を求めた。また、各試験温度
での高温YSと常温YSの比(高温YS/常温YS)を
YS比(%)として求めた。これらの結果を表2に併記
する。なお、常温引張試験はJIS Z 2241、高
温引張試験はJIS G 0567に準じて行った。
The steel sheet thus obtained was subjected to a room temperature tensile test and a high temperature tensile test, respectively. Yield strength YS (N / mm 2 ) and tensile strength TS (N /
mm 2 ) and the yield ratio YR (%) were obtained, and the yield strength YS (N / mm 2 ) at the test temperatures of 600 ° C., 650 ° C. and 700 ° C. was obtained as the high temperature tensile properties. Further, the ratio of the high temperature YS and the normal temperature YS at each test temperature (high temperature YS / normal temperature YS) was determined as the YS ratio (%). The results are also shown in Table 2. The room temperature tensile test was carried out according to JIS Z 2241, and the high temperature tensile test was carried out according to JIS G 0567.

【0048】ここで、常温強度はJIS G 3136
に規定されているように、YS:235〜355N/m
2(板厚50mmの鋼板については215〜335N
/mm2)、TS:400〜510N/mm2を満足する
ものをSN400材とし、YS:325〜445N/m
2(板厚50mmの鋼板については295〜415N
/mm2)、TS:490〜610N/mm2を満足する
ものをSN490材として、これらの規格強度範囲を満
たしていないものを本発明範囲外とした。
Here, the room temperature strength is JIS G 3136.
, YS: 235-355N / m
m 2 (215 to 335 N for a steel plate with a thickness of 50 mm
/ Mm 2 ), TS: 400 to 510 N / mm 2 that satisfies SN400 material, YS: 325 to 445 N / m
m 2 (295 to 415 N for a steel plate with a thickness of 50 mm
/ Mm 2 ), TS: 490 to 610 N / mm 2 satisfying the requirements for SN490 material, and those not satisfying the specified strength range were outside the scope of the present invention.

【0049】高温強度は、SN400材としては、60
0℃でYS≧157N/mm2(板厚50mmの鋼板に
ついては143N/mm2)(SN400の常温YS規
格下限の2/3)、650℃でYS≧138N/mm2
(板厚50mmの鋼板については126N/mm2)、
700℃でYS≧118N/mm2(板厚50mmの鋼
板については108N/mm2)(SN400の常温Y
S規格下限の1/2)を基準値とし、SN490材とし
ては、600℃でYS≧217N/mm2(板厚50m
mの鋼板については197N/mm2)(SN490の
常温YS規格下限の2/3)、650℃でYS≧190
N/mm2(板厚50mmの鋼板については173N/
mm2)、700℃でYS≧163N/mm2(板厚50
mmの鋼板については148N/mm2)(SN490
の常温YS規格下限の1/2)を基準値として、これを
満たしていないものを本発明範囲外とした。
The high temperature strength is 60 for SN400 material.
0 ℃ YS ≧ 157N / mm 2 (143N / mm 2 for steel sheet having a thickness of 50 mm) (room temperature YS 2/3 standard lower limit SN400) in, YS ≧ 138N / mm 2 at 650 ° C.
(126 N / mm 2 for a steel plate with a plate thickness of 50 mm),
YS ≧ 118N / mm 2 at 700 ° C. (for the steel sheet having a thickness of 50mm 108N / mm 2) (SN400 cold Y
The standard value is 1/2 of the S standard lower limit, and for SN490 material, YS ≧ 217 N / mm 2 (plate thickness 50 m at 600 ° C.
197 N / mm 2 ) for steel sheet of m (2/3 of lower limit of room temperature YS standard of SN490), YS ≧ 190 at 650 ° C.
N / mm 2 (173 N / for steel plates with a plate thickness of 50 mm
mm 2 ), YS ≧ 163 N / mm 2 at 700 ° C. (plate thickness 50
mm steel plate: 148 N / mm 2 ) (SN490
The lower limit of the room temperature YS standard of 1) was used as a reference value, and those which did not meet this standard were outside the scope of the present invention.

【0050】なお、発明製造プロセスが本発明範囲から
外れる比較例1〜3の鋼板については、SN490材と
して基準値を設けた。
For the steel sheets of Comparative Examples 1 to 3 whose invention manufacturing process is out of the scope of the present invention, the standard value was set as the SN490 material.

【0051】さらに、溶接性および靭性の評価を行っ
た。溶接性の評価としては、Y割れ試験を行い、靭性の
評価としては、0℃におけるシャルピー吸収エネルギー
を測定した。これらの結果も表2に併記する。ここで、
溶接性は、JISで規定されたY割れ試験の割れ防止予
熱温度(Y割れ停止温度)が0℃を超えるものを本発明
範囲外とし、靭性は、シャルピー吸収エネルギーvE0
≧100Jを基準値として、これを満たしていないもの
を本発明範囲外とした。
Further, the weldability and toughness were evaluated. A Y crack test was conducted to evaluate the weldability, and a Charpy absorbed energy at 0 ° C. was measured to evaluate the toughness. These results are also shown in Table 2. here,
Weldability is out of the scope of the present invention when the crack prevention preheating temperature (Y crack stop temperature) of the Y crack test specified by JIS exceeds 0 ° C, and the toughness is Charpy absorbed energy vE0.
≧ 100 J was set as the standard value, and those which did not satisfy this were regarded as outside the scope of the present invention.

【0052】また、実施例1,5,8,9および比較例
3の鋼板については、700℃加熱保持前後の硬さの評
価と析出物の形態分析を行った。硬さの評価としては、
700℃に加熱する前の試験片と、700℃に加熱し、
約30分間加熱保持した後、常温まで冷却した試験片と
を用い、これら試験片につき荷重10kgのビッカース
硬度を測定し、加熱前後におけるビッカース硬度差(加
熱保持後硬度−加熱保持前硬度)を求めた。
With respect to the steel sheets of Examples 1, 5, 8, 9 and Comparative Example 3, the hardness before and after heating at 700 ° C. was evaluated and the morphology of the precipitate was analyzed. As an evaluation of hardness,
The test piece before heating to 700 ° C and the heating to 700 ° C,
A Vickers hardness with a load of 10 kg was measured for each test piece after heating and holding for about 30 minutes and then cooling to room temperature, and a Vickers hardness difference before and after heating (hardness after heating-hardness before heating) was determined. It was

【0053】また、析出物の形態分析としては、700
℃加熱保持前後の試験片のNb,Mo,Ti,V析出量
(抽出金属量)を測定し、前述した式を用いてΔ[Ca
sNbC]、Δ[CasMoC]、Δ[CasTi
C]、Δ[CasVC]を求めた。この結果から析出物
の炭化物炭素当量値を求めた。なお、各金属元素の析出
量は、10%アセチルアセトン−メタノール電解抽出に
より鋼中から残渣を抽出し、抽出残渣を用いてICP発
光分析法により抽出金属量として定量した。これらの結
果を表3に示す。
The morphological analysis of the precipitate is 700
The Nb, Mo, Ti, and V precipitation amount (extracted metal amount) of the test piece before and after heating at ℃ were measured, and Δ [Ca
sNbC], Δ [CasMoC], Δ [CasTi
C] and Δ [CasVC] were calculated. From this result, the carbon equivalent carbon value of the precipitate was obtained. The amount of each metal element deposited was determined by extracting the residue from the steel by 10% acetylacetone-methanol electroextraction and using the extraction residue as the amount of extracted metal by ICP emission spectrometry. The results are shown in Table 3.

【0054】表2に示すように、本発明鋼A〜N,Xを
用い、本発明に従って製造した実施例1〜19の鋼板
は、常温強度がJISで規定するSN490の規格を満
たし、600℃、650℃および700℃でのYSがす
べて基準値を満足した。また、600℃でのYS比≧6
1%、650℃でのYS比≧55%、700℃でのYS
比≧46%と優れた値が得られた。さらに、Y割れ防止
温度は0℃以下、0℃におけるシャルピー吸収エネルギ
ーは100J以上と優れた値が得られた。
As shown in Table 2, the steel sheets of Examples 1 to 19 produced using the steels A to N and X of the present invention according to the present invention have room temperature strength of 600 ° C. which satisfies the SN490 standard defined by JIS. , YS at 650 ° C. and 700 ° C. all satisfied the standard values. Also, the YS ratio at 600 ° C. ≧ 6
1%, YS ratio at 650 ° C ≧ 55%, YS at 700 ° C
An excellent value of ratio ≧ 46% was obtained. Further, the Y crack preventing temperature was 0 ° C. or lower, and the Charpy absorbed energy at 0 ° C. was 100 J or more, which were excellent values.

【0055】一方、本発明鋼Aを用いたが、スラブ加熱
温度が1000℃未満と本発明範囲を外れて低かった比
較例1の鋼板は、SN490材として、常温強度がJI
S規格よりも低く、高温強度YSも低かった。なお、S
N400材としては、JISに規定されている常温強度
の規格を満足し、また、高温強度YSの基準値も満たし
ていた。
On the other hand, the steel sheet of Comparative Example 1 in which the steel A of the present invention was used, but the slab heating temperature was less than 1000 ° C., which was outside the range of the present invention, was low, was SN490 material and had a room temperature strength of
It was lower than the S standard and the high temperature strength YS was also low. In addition, S
The N400 material satisfied the room temperature strength standard stipulated in JIS, and also satisfied the high temperature strength YS reference value.

【0056】同様に、本発明鋼Aを用いたが、圧延終了
温度が1000℃を超えて高かった比較例2の鋼板は、
SN490材として、常温強度がJIS規格を超えてい
た。
Similarly, using the steel A of the present invention, the steel sheet of Comparative Example 2 in which the rolling end temperature was higher than 1000 ° C. was high,
The room temperature strength of the SN490 material exceeded the JIS standard.

【0057】同様に、本発明鋼Aを用いたが、圧延終了
温度が800℃未満と本発明範囲を外れて低かった比較
例3の鋼板は、SN490材として、高温強度YSが低
かった。
Similarly, the steel A of the present invention was used, but the steel sheet of Comparative Example 3 in which the rolling end temperature was less than 800 ° C., which was outside the range of the present invention, was low, and the high temperature strength YS was low as SN490 material.

【0058】Mn量が0.5%を超えて高く、Nb無添
加で、(Mo+Nb)/Mnが1未満のO鋼を用いた比
較例4〜7の鋼板はいずれの条件においても、SN49
0材として、高温強度が低く、また、Y割れ防止温度も
25℃と高かった。
The steel sheets of Comparative Examples 4 to 7 in which the Mn content was higher than 0.5%, the Nb was not added, and the (Mo + Nb) / Mn was less than 1 were used for the steel sheets of Comparative Examples 4 to 7 under any conditions.
As the 0 material, the high temperature strength was low, and the Y crack preventing temperature was as high as 25 ° C.

【0059】Mn量が0.5%を超えて高く、(Mo+
Nb)/Mnが1未満のP鋼,Q鋼,R鋼を用いた比較
例8〜10の鋼板は、常温強度がJISで規定されてい
るSN490材の規格を超え、Y割れ防止温度も高かっ
た。
When the amount of Mn is more than 0.5% and high, (Mo +
The steel sheets of Comparative Examples 8 to 10 using P steel, Q steel, and R steel with Nb) / Mn less than 1 have room temperature strengths higher than the SN490 standard specified by JIS, and the Y crack prevention temperature is also high. It was

【0060】Mo量が0.3%未満と低く、(Mo+N
b)/Mnが1未満のS鋼を用いた比較例11の鋼板
は、常温強度はJISで規定されているSN400材お
よび490材の規格をともに満たすが、高温強度はSN
400材として見ても低かった。
The Mo content is as low as less than 0.3%, and (Mo + N
The steel sheet of Comparative Example 11 using S steel having b) / Mn of less than 1 satisfies both room temperature strength of SN400 and 490 specified by JIS, but high temperature strength of SN.
It was low even when viewed as 400 materials.

【0061】Nb量が0.02%未満と低いU鋼を用い
た比較例12の鋼板は、SN490材の製造プロセスを
用いたにもかかわらず、SN400材の常温強度止まり
であった。さらに、高温強度はSN400材の基準値を
も下回っていた。
The steel sheet of Comparative Example 12 using U steel having a low Nb content of less than 0.02% had the normal temperature strength of SN400 material even though the manufacturing process of SN490 material was used. Further, the high temperature strength was lower than the standard value of SN400 material.

【0062】Nb量が0.1%を超えて高いV鋼を用い
た比較例13の鋼板は、SN490材として、常温強度
YSがJIS規格を超え、高温強度YS比が低かった。
また、Y割れ防止温度が50℃と高く、さらに靭性が劣
化していた。
The steel sheet of Comparative Example 13 using V steel having a high Nb content of more than 0.1% had a room temperature strength YS exceeding JIS standard and a high temperature strength YS ratio as SN490 material.
Further, the Y crack preventing temperature was as high as 50 ° C., and the toughness was further deteriorated.

【0063】C量が0.13%を超えて高いW鋼を用い
た比較例14の鋼板は、SN490材として、高温強度
YS比が低く、Y割れ防止温度が50℃と高かった。
The steel sheet of Comparative Example 14 using W steel having a high C content exceeding 0.13% had a low high temperature strength YS ratio and a high Y crack prevention temperature of 50 ° C. as SN490 material.

【0064】また、表3に示されるように、本発明鋼
A,D,E鋼を用い、本発明範囲内にある製造条件で製
造した実施例1,5,8,9の鋼板は、700℃加熱保
持後の硬度が、ビッカース硬度Hv10で、加熱前より
も10以上上昇していた。また、Nb−Mo系複合炭化
物の析出量も炭化物炭素当量値換算で70ppm以上で
あった。この結果、表2に示すように高温強度に優れて
いた。
Further, as shown in Table 3, the steel sheets of Examples 1, 5, 8 and 9 produced using the steels A, D and E of the present invention under the production conditions within the scope of the present invention were 700 The hardness after heating and holding at 0 ° C. was Vickers hardness Hv10, which was 10 or more higher than that before heating. Moreover, the amount of precipitation of the Nb-Mo-based composite carbide was 70 ppm or more in terms of the carbon equivalent value of the carbide. As a result, as shown in Table 2, the high temperature strength was excellent.

【0065】一方、本発明鋼Aを用いたが、圧延終了温
度が低かった比較例3の鋼板は、硬度差がビッカース硬
度Hv10で10未満と低く、析出物の量も70ppm
未満と少なかった。この結果、表2に示すように高温強
度が劣っていた。
On the other hand, in the steel sheet of Comparative Example 3 in which the steel A of the present invention was used but the rolling end temperature was low, the hardness difference was as low as less than 10 in Vickers hardness Hv10 and the amount of precipitate was 70 ppm.
It was less than less. As a result, the high temperature strength was poor as shown in Table 2.

【0066】このように、本発明範囲内の成分組成を有
し、本発明に従って製造された鋼板は、高温強度に優れ
ている。
As described above, the steel sheet having the composition within the scope of the present invention and manufactured according to the present invention is excellent in high temperature strength.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【表2−1】 [Table 2-1]

【0069】[0069]

【表2−2】 [Table 2-2]

【表3】 [Table 3]

【0070】[0070]

【発明の効果】以上詳述したように本発明によれば、J
ISに規定されたSN400またはSN490の規格強
度を満足し、さらに650℃YS/常温YS≧0.5、
700℃YS/常温YS≧0.4の関係を満たす高温強
度を確保し、且つ優れた溶接性(Y割れ停止温度0℃以
下)を満足する生産原価の低い鋼およびその製造方法を
提供することができ、産業上極めて有用である。
As described above in detail, according to the present invention, J
Satisfies the standard strength of SN400 or SN490 specified by IS, and further 650 ° C YS / room temperature YS ≧ 0.5,
To provide a steel with a low production cost that secures high-temperature strength that satisfies the relationship of 700 ° C YS / normal temperature YS ≧ 0.4 and that has excellent weldability (Y crack stop temperature 0 ° C or less), and a manufacturing method thereof. And is extremely useful industrially.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲道 俊郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 阿部 隆 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 高橋 和秀 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 佐藤 馨 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 谷 三郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 豊永 正敏 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K032 AA01 AA04 AA05 AA08 AA11 AA14 AA16 AA19 AA20 AA21 AA22 AA23 AA31 AA35 AA36 AA40 CA02 CA03 CC03 CC04   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshiro Nakamichi             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Takashi Abe             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Kazuhide Takahashi             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Kaoru Sato             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Saburo Tani             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. (72) Inventor Masatoshi Toyonaga             1-2-1, Marunouchi, Chiyoda-ku, Tokyo             Main Steel Pipe Co., Ltd. F-term (reference) 4K032 AA01 AA04 AA05 AA08 AA11                       AA14 AA16 AA19 AA20 AA21                       AA22 AA23 AA31 AA35 AA36                       AA40 CA02 CA03 CC03 CC04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.01〜0.13%、
Si:0.01〜0.5%、Mn:0.01〜0.5
%、Mo:0.3〜1.3%、Nb:0.02〜0.1
%、sol.Al:0.003〜0.05%、N:0.
01%以下を含有し、残部がFeおよび不可避的不純物
からなることを特徴とする高温耐火特性および溶接性に
優れた建築用耐火鋼材。
1. C: 0.01 to 0.13% by mass%,
Si: 0.01 to 0.5%, Mn: 0.01 to 0.5
%, Mo: 0.3 to 1.3%, Nb: 0.02 to 0.1
%, Sol. Al: 0.003-0.05%, N: 0.
A refractory steel material for construction which is excellent in high-temperature fire resistance characteristics and weldability, and is characterized by containing 0.1% or less, and the balance being Fe and inevitable impurities.
【請求項2】 Mo、NbおよびMnの含有量が、質量
%で、(Mo+Nb)/Mn≧1を満足することを特徴
とする請求項1記載の建築用耐火鋼材。
2. The refractory steel material for construction according to claim 1, wherein the contents of Mo, Nb and Mn satisfy (Mo + Nb) / Mn ≧ 1 in mass%.
【請求項3】 鋼成分として、質量%で、V:0.01
〜0.10%、Ti:0.005〜0.10%、Cr:
0.03〜0.5%、Cu:0.03〜0.5%、N
i:0.03〜0.5%、Ca:0.0005〜0.0
05%、Mg:0.0005〜0.005%、REM:
0.0005〜0.02%からなる群より選択される1
種または2種以上をさらに含有することを特徴とする請
求項1または2のいずれか一方に記載の建築用耐火鋼
材。
3. As a steel component, in mass%, V: 0.01
~ 0.10%, Ti: 0.005 to 0.10%, Cr:
0.03-0.5%, Cu: 0.03-0.5%, N
i: 0.03-0.5%, Ca: 0.0005-0.0
05%, Mg: 0.0005 to 0.005%, REM:
1 selected from the group consisting of 0.0005 to 0.02%
The fire-resistant steel material for construction according to any one of claims 1 and 2, further containing one or more kinds.
【請求項4】 650℃から700℃の温度範囲に10
分から30分加熱保持した後に室温まで冷却したときの
硬さが、ビッカース硬度Hv10で、加熱前よりも10
以上高いことを特徴とする請求項1ないし3のうちのい
ずれか1項に記載の建築用耐火鋼材。
4. The temperature range from 650 ° C. to 700 ° C. is 10
After heating and holding for 30 minutes to 30 minutes, the hardness when cooled to room temperature is Vickers hardness Hv10, which is 10% higher than that before heating.
The fire resistant steel material for construction according to any one of claims 1 to 3, which is higher than the above.
【請求項5】 650℃から700℃の温度範囲に10
分から30分加熱保持したときに析出するNb−Mo系
炭化物の析出量が、下記(1)式で定義される炭化物炭
素当量値で70ppm以上であることを特徴とする請求
項1ないし4のうちのいずれか1項に記載の建築用耐火
鋼材。 Δ[CasNbC]+Δ[CasMoC]+Δ[CasTiC]+Δ[CasVC ]…(1) ここで、 Δ[CasNbC]=12/93×{(高温保持後のN
b析出量)−(高温保持前のNb析出量)} Δ[CasMoC]=12/96×{(高温保持後のM
o析出量)−(高温保持前のMo析出量)} Δ[CasTiC]=12/48×{(高温保持後のT
i析出量)−(高温保持前のTi析出量)} Δ[CasVC]=12/51×{(高温保持後のV析
出量)−(高温保持前のV析出量)} 但し、Ti無添加の場合は、Δ[CasTiC]=0、 V無添加の場合は、Δ[CasVC]=0
5. A temperature range from 650 ° C. to 700 ° C. of 10
5. The precipitation amount of Nb-Mo-based carbide that precipitates when heated for 30 minutes to 30 minutes is 70 ppm or more in terms of the carbon equivalent value of the carbide defined by the following formula (1). The fireproof steel material for construction according to any one of 1. Δ [CasNbC] + Δ [CasMoC] + Δ [CasTiC] + Δ [CasVC] (1) where Δ [CasNbC] = 12/93 × {(N after high temperature holding)
b precipitation amount)-(Nb precipitation amount before holding at high temperature)} [CasMoC] = 12/96 x {(M after holding at high temperature)
o Precipitation amount)-(Mo precipitation amount before high temperature retention)} [CasTiC] = 12/48 x {(T after high temperature retention)
i precipitation amount)-(Ti precipitation amount before high temperature holding)} [CasVC] = 12/51 x {(V precipitation amount after high temperature holding)-(V precipitation amount before high temperature holding)} However, no Ti addition In the case of, Δ [CasTiC] = 0, and in the case of no V addition, Δ [CasVC] = 0
【請求項6】 請求項1ないし3のうちのいずれか1項
に記載の組成を有する鋼を1000℃以上に加熱した
後、圧延終了温度を800℃から1000℃までの範囲
とする熱間圧延を行うことを特徴とする高温耐火特性お
よび溶接性に優れた490N/mm2級建築用耐火鋼材
の製造方法。
6. A hot rolling process in which the steel having the composition according to any one of claims 1 to 3 is heated to 1000 ° C. or higher, and then the rolling end temperature is set in the range of 800 ° C. to 1000 ° C. A method for producing a 490 N / mm 2 class refractory steel material for construction, which is excellent in high temperature fire resistance characteristics and weldability.
JP2002342733A 2001-11-26 2002-11-26 Refractory steel product for construction and its manufacturing process Pending JP2003221642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342733A JP2003221642A (en) 2001-11-26 2002-11-26 Refractory steel product for construction and its manufacturing process

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-359749 2001-11-26
JP2001359749 2001-11-26
JP2002342733A JP2003221642A (en) 2001-11-26 2002-11-26 Refractory steel product for construction and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2003221642A true JP2003221642A (en) 2003-08-08

Family

ID=27759285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342733A Pending JP2003221642A (en) 2001-11-26 2002-11-26 Refractory steel product for construction and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2003221642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564458A (en) * 2021-06-28 2021-10-29 唐山钢铁集团有限责任公司 Low-yield-strength fire-resistant anti-seismic building steel and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564458A (en) * 2021-06-28 2021-10-29 唐山钢铁集团有限责任公司 Low-yield-strength fire-resistant anti-seismic building steel and production method thereof
CN113564458B (en) * 2021-06-28 2022-08-09 唐山钢铁集团有限责任公司 Low-yield-strength fire-resistant anti-seismic building steel and production method thereof

Similar Documents

Publication Publication Date Title
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
EP0733715B1 (en) Hot-rolled steel sheet and method for forming hot-rolled steel sheet having low yield ratio, high strength and excellent toughness
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP4379550B2 (en) Low alloy steel with excellent resistance to sulfide stress cracking and toughness
RU2442839C2 (en) Steel with high expanding endurance and acceptable resistance against delayed fracture and method for its production
JP6128291B2 (en) Martensitic stainless steel
CN111971407A (en) Wear-resistant steel and method for producing same
JP2021509446A (en) Steel materials for pressure vessels and their manufacturing methods
JP6226111B1 (en) Martensitic stainless steel sheet
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
JP3732424B2 (en) Manufacturing method of hot-rolled steel sheet with high weather resistance and high workability
JP2008266780A (en) High tensile strength product excellent in resistance to delayed fracture and process for production of the same
WO2021054015A1 (en) Wear-resistant steel sheet and method for producing same
WO2004106571A1 (en) High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet
KR20100046068A (en) Heat-resistant steel product and method for production thereof
JP2003171730A (en) Wear resistant steel having delayed fracture resistance, and production method therefor
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
KR100205536B1 (en) Method of line-pipe type steel with tensile strength 65kg
JP2003221642A (en) Refractory steel product for construction and its manufacturing process
JP2000054064A (en) High tensile strength steel plate excellent in weldability and toughness, and its production
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
JP2003221645A (en) Refractory steel product for construction and its manufacturing process
JP4093071B2 (en) Method for producing welded structural steel with excellent high temperature fire resistance at 700 ° C
JP4743198B2 (en) Refractory steel for construction and method for producing the same
CN115003842B (en) High-tensile steel sheet excellent in base material toughness and joint toughness, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626