WO2004106571A1 - High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet - Google Patents

High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet Download PDF

Info

Publication number
WO2004106571A1
WO2004106571A1 PCT/JP2003/006617 JP0306617W WO2004106571A1 WO 2004106571 A1 WO2004106571 A1 WO 2004106571A1 JP 0306617 W JP0306617 W JP 0306617W WO 2004106571 A1 WO2004106571 A1 WO 2004106571A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
thin steel
delayed fracture
strength thin
strength
Prior art date
Application number
PCT/JP2003/006617
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiki Nonaka
Nobuhiro Fujita
Hirokazu Taniguchi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US10/558,579 priority Critical patent/US20070006948A1/en
Priority to AU2003235443A priority patent/AU2003235443A1/en
Priority to PCT/JP2003/006617 priority patent/WO2004106571A1/en
Priority to DE60333400T priority patent/DE60333400D1/en
Priority to EP03817075A priority patent/EP1637618B1/en
Publication of WO2004106571A1 publication Critical patent/WO2004106571A1/en
Priority to US12/928,310 priority patent/US20110120598A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a high-strength thin steel sheet in which placing cracks and delayed fracture, which are particularly problematic in a high-strength thin steel sheet, are suppressed, a method of manufacturing the same, and a strength part for automobiles manufactured by using the same.
  • high-strength steel is often used for applications such as ports, PC steel wires, and line pipes.However, when the strength exceeds 78 OMPa, delayed blasting occurs due to the penetration of hydrogen into the steel. It is known to occur.
  • ultrahigh-strength steel sheets of 780 MPa or more are press-formed into reinforcing materials such as pumper-packed beam beams and sheet trails.
  • the number of cases where pipe forming, bending, end face processing, or hole expansion processing is provided is increasing rapidly. Therefore, there is an urgent need to develop ultra-high strength thin steel sheets with delayed fracture resistance.
  • Japanese Patent Application Laid-Open No. 11-293383 discloses that an oxide mainly composed of Ti and Mg is effective in preventing generation of hydrogen defects.
  • delayed rupture of thin steel sheets it has been reported that delayed rupture was promoted due to the addition-induced transformation of the amount of retained austenite (for example, Yamazaki et al., CAMP—ISIJ vol. 5 p1839) ⁇ 1842 (1992), see).
  • the above report relates to a high-strength thin steel sheet with a specific structure, and cannot be said to be a fundamental measure for improving delayed rupture resistance.
  • the present inventors have come to find a method for fundamentally improving delayed fracture resistance by sufficiently considering the use environment of thin steel sheets and the production method using existing facilities.
  • the delayed fracture resistance after forming can be improved without deteriorating the formability of the high-strength steel sheet. I found that it could be improved.
  • the balance consists of iron and unavoidable impurities.
  • the volume fraction of retained austenite in the structure of the steel sheet is 7% or less.
  • At least one of Mg oxides, sulfides, complex precipitates and complex precipitates is at least one of Mg oxides, sulfides, complex precipitates and complex precipitates
  • Average particle size d 0.01 to 5.0 // m
  • Density (0: 100 to 100,000 per square mm, and distribution: the ratio of standard deviation ⁇ from average particle diameter to average particle diameter d ⁇ 1.0 is satisfied, and
  • a high-strength thin steel sheet with excellent delayed fracture resistance after forming characterized in that the volume fraction V V (%) of residual austenite and the tensile strength T S (MP a) satisfy formula (A).
  • V y Volume ratio of residual austenite (%)
  • V 0.05 to 1%
  • a high-strength thin steel sheet excellent in delayed fracture resistance after forming as described in (1) characterized by containing one or more of the following.
  • N i 0.005 to 2.0%
  • C o 0.05 to 2.0%
  • the high-strength thin steel sheet having excellent delayed fracture resistance according to the above (1) to (7) is a hot-rolled steel sheet or a cold-rolled steel sheet. High strength thin steel sheet with excellent delayed fracture.
  • a high-strength thin steel sheet having excellent delayed fracture resistance according to the above (1) to (7), wherein the steel sheet has been subjected to a surface treatment with zinc plating. High strength thin steel sheet with excellent delayed fracture resistance.
  • a composition comprising the composition according to any one of (1) to (7).
  • a piece is manufactured, hot-rolled at a finishing temperature of 3 points or more of Ar, wound up at 500 to 800 ° C, then pickled, and then cooled at a rolling reduction of 30 to 8 °%. Rolling, then soaking at a temperature of 600 ° C. or more to 950 ° C. or less, recrystallization annealing, and then temper rolling are performed.
  • the steel sheet may have a temperature of 200 to 700 ° C after annealing.
  • a high-strength component for automobiles which is made of a high-strength thin steel sheet having excellent delayed fracture resistance after the forming process according to (1) to (7).
  • Figure 1 is a diagram showing the relationship between equation (A) and delayed rupture time.
  • FIG. 2 is a diagram showing the relationship between equation (A) and residual austenite.
  • FIG. 3 is a diagram showing the relationship between the formula (A) and the amount of Mg.
  • FIG. 4 is a diagram showing the relationship between the equation (A) and the density.
  • delayed blasting is thought to be caused by the accumulation of hydrogen at the former austenite grain boundaries and the like, and voids and the like originate from that portion.
  • the hydrogen trap site is evenly and finely dispersed and hydrogen is trapped in that part, the diffusible hydrogen concentration decreases, and the sensitivity to delayed fracture decreases.
  • the present inventors have developed various types of crystallization and precipitation to ensure or improve the use environment of thin steel sheets, that is, delayed rupture resistance even after forming.
  • the effects of the materials were examined.
  • the oxide or sulfide containing Mg in (i) and the compound crystallized or precipitated with them are present in the grains (excluding the phase interface of the microstructure such as the former austenite grain boundary). This is more effective for improving delayed blasting properties.
  • the production conditions are specified, and oxides, nitrides, sulfides, and other crystallized or precipitated substances of various elements are trapped in hydrogen. It is also effective to control the form that can be a site.
  • the delayed fracture resistance of the high-strength thin steel sheet can be sufficiently ensured even after the forming.
  • Residual austenite amount Since the residual austenite increases the delayed fracture susceptibility when it becomes martensite due to work-induced transformation, the upper limit is set to 7% by volume.
  • Average particle size The average particle size was limited to 0.5 ⁇ to 0.5 ⁇ . A certain size is required as a hydrogen trap site, and the presence of a large amount of fine particles is not preferable in terms of ensuring the ductility of a thin steel sheet, and makes production difficult.
  • the lower limit of the average particle diameter was set to 0.1 ⁇ .
  • coarse particles do not act as a trap site and can be a starting point for destruction. Therefore, 5.0 ⁇ was set as the upper limit of the average particle diameter.
  • Density The particle density was set to 100 to: L 0000 particles mm 2 .
  • the low particle density means that the number of trap sites is small, and the delayed fracture resistance after processing cannot be ensured. Therefore, the lower limit was set to 100 particles / mm 2 .
  • the ratio of the standard deviation ⁇ from the average particle diameter to the average particle diameter d satisfies the equation ⁇ / d ⁇ 1.0.
  • ⁇ ⁇ (1> 1.0) means that the particle distribution is wide-ranging, and the effect of improving delayed blasting is smaller than that of the same average particle size. Therefore, the upper limit of a Z d is set to 1.0.
  • particle measurement use a thin film or extracted replica sample and observe it with a scanning or transmission electron microscope at a magnification of 50,000 to 100,000, and a minimum of 30 fields of view. Is the value obtained by measuring.
  • the particle diameter is evaluated by the circle equivalent diameter by image analysis. When determining the density, multiple precipitates or crystals are counted as one.
  • composition analysis was performed using EDX and EELS, and the structural analysis was performed by analyzing the diffraction pattern.
  • Each composite compound is composed of a compound (Carbide, Nitride, Oxide or Sulfide) containing an alloying element (for example, Ti, Nb, V, Cr, Mo, REM, Ca, etc.) in addition to Mg. Things).
  • an alloying element for example, Ti, Nb, V, Cr, Mo, REM, Ca, etc.
  • the present invention relates to a high-strength thin steel plate, and mainly relates to a steel plate having a tensile strength of 780 MPa or more and a thickness of 0.5 mm to 4.0 mm. Things.
  • equation (A) Based on the assumption that the volume fraction of residual austenite, the average particle size, the density, the amount of Mg, and the tensile strength can be cited as factors of delayed rupture resistance, FIG. ) It was set.
  • V y Volume ratio of residual austenite (%)
  • FIG. 2 is a diagram showing a correlation between f (V y) and the volume ratio V of retained austenite.
  • the preconditions are as follows: Mg: 30 ppm, average particle diameter: 0.4 ⁇ m, density: 1500 pieces Zmm 2 , tensile strength: 1480 MPa.
  • V ⁇ is high, the delayed fracture resistance deteriorates, but the invention steel with a high f (Vy) value shows good delayed fracture resistance when V0 is 7% or less.
  • the comparative steel of X has f (V7) ⁇ 10 because Mg, particle size, and density are out of the ranges defined by the present invention, and the delayed fracture resistance is deteriorated. It is.
  • FIG. 3 is a diagram showing a correlation between f (M g) and the amount of Mg added.
  • the prerequisites are as follows: volume ratio of residual austenite: 3.0%, average particle diameter: 0.4 ⁇ m, density: 1500 / mm 2 , tensile strength: 148 MP .
  • the Mg is in the range of 20 to 70 ppm, particularly, where the delayed blasting resistance is good.
  • the residual austenite, particle size, and density are out of the range defined by the present invention. Is worse.
  • FIG. 4 is a diagram showing the correlation between f ( P ) and the density of crystallized substances and precipitates.
  • the preconditions are as follows: volume fraction of residual austenite: 3.0%, Mg: 30 ppm, tensile strength: 138 MPa. If the density is low, it can be said that delayed crushing resistance is poor.
  • the density p is within the range defined by the present invention, that of X is the range where the residual austenite, Mg, and particle size are limited by the present invention. Since it was out of the surrounding area, it was f (p)-10 and the delayed rupture resistance was poor.
  • C is an element that can increase the strength of a steel sheet.
  • it produces a hard phase such as martensite-austenite and is an essential element for high strength.
  • 0.055% or more is necessary, but conversely, if it is contained too much, the cementite, which is the starting point of brittle fracture, will increase, and hydrogen embrittlement will occur. Is likely to occur. Therefore, the upper limit was set to 0.3%.
  • Si is a substitutional solid solution strengthening element that greatly hardens the material, is effective in increasing the strength of the steel sheet, and is an element that suppresses cementite precipitation.
  • the upper limit is 3.0%.
  • Mn is an element effective for increasing the strength of a steel sheet.
  • the lower limit was set to 0.01%.
  • the upper limit is 3.0%.
  • P is an element that promotes grain boundary destruction due to grain boundary segregation, and it is preferable that P be low. However, extreme reduction is not preferable in terms of manufacturing cost.
  • the upper limit is set to 0.02%.
  • S is an element that promotes the absorption of hydrogen in a corrosive environment. It is desirable that S be low, but extremely reducing it is not preferable in terms of manufacturing cost. Particularly, in order to enhance the workability, the lower the better, the upper limit is set to 0.02%.
  • A1 is added in an amount of 0.01% or more for deoxidation.However, if the addition amount increases, inclusions such as alumina increase, thereby deteriorating the workability and the weldability.
  • the upper limit is 0%.
  • the addition of 0.2% or more has an effect of suppressing the generation of residual austenite, and is therefore preferable.
  • N contributes to the deterioration of workability and the occurrence of blowholes during welding, a smaller N is better. If the content exceeds 0.01%, the workability deteriorates. Therefore, the upper limit is set to 0.01%.
  • Mg is not only effective in improving the delayed fracture resistance of the compound itself, but also forms complex precipitates or crystallized substances with other elements, and changes their morphology to delayed fracture resistance. Since it is an element necessary for controlling to contribute to improvement, it is added in an amount of 0.0002% or more.
  • V, T i, N b, and Z r are strong carbide forming elements, which are elements necessary for forming precipitates and inclusions and improving strength and delayed fracture resistance.
  • V is an element effective for increasing the strength of the steel sheet and reducing the grain size.
  • the lower limit is set to 0.005%.
  • the upper limit was set to 1%.
  • Ti is an element effective for increasing the strength of the steel sheet and reducing the grain size.
  • the lower limit is set to 0.02%.
  • the upper limit was set at 1%.
  • Nb is an element effective for increasing the strength and refining the steel sheet.
  • these effects cannot be obtained at less than 0.002%, so the lower limit was made 0.002%.
  • the content exceeds 1%, the precipitation of carbonitrides increases and the workability and delayed fracture resistance deteriorate, so the upper limit was made 1%.
  • Zr is an element effective for increasing the strength and reducing the grain size of the steel sheet.
  • the content is less than 0.02%, the number of precipitates decreases, so the lower limit was made 0.02%.
  • the upper limit was set to 1%.
  • Cr, Mo, and W are carbide forming elements and temper softening resistance elements, and are elements necessary for improving strength and delayed rupture resistance.
  • Cr is an element effective for increasing the strength of the steel sheet.
  • the lower limit was made 0.05%.
  • the upper limit was set to 5%.
  • Mo is not only an effective element for improving the hardenability of steel sheets and stably obtaining martensite in continuous annealing equipment, but also has the effect of strengthening grain boundaries and suppressing the occurrence of hydrogen embrittlement. It is an element that plays. However, these effects cannot be obtained at less than 0.005%, so the lower limit was made 0.05%. Also, if it exceeds 5%, these effects will saturate, The upper limit is set at 5%.
  • W is an element effective for increasing the strength of the steel sheet.
  • this effect cannot be obtained at less than 0.05%, so the lower limit was made 0.05%.
  • the upper limit was set to 5%.
  • Ni and Co are strengthening elements that enhance hardenability.
  • Ni is an element that forms Ni sulfide to suppress hydrogen intrusion and improve delayed blasting properties, and to enhance the hardenability of the steel sheet to ensure the strength of the steel sheet.
  • Co is effective for strengthening, it was added in an amount of 0.05% or more.
  • the upper limit is set to 2.0%.
  • B is an element effective in increasing the strength of the steel sheet.
  • the lower limit is set to 0.0002%.
  • the upper limit was made 0.1%.
  • REM, Ca, and Y are effective for controlling the morphology of inclusions and contribute to delayed rupture resistance, so they were added in an amount of 0.0005% or more. On the other hand, 'excessive addition degrades hot workability, so the addition was made 0.01% or less. Next, the manufacturing method will be described.
  • Finish rolling is performed at Ar 3 or more.
  • the finish rolling temperature is desirably 940 ° C or lower.
  • the higher the temperature the more recrystallization and grain growth are promoted, and workability can be expected to be improved.
  • scale formation that occurs during hot rolling is promoted, and pickling properties are reduced. It should be below 0 ° C.
  • the winding temperature is set to 500 ° C. or higher.
  • the lower limit of the draft is set to 30%. Further, if rolling is performed at a rolling reduction exceeding 80%, cracks will occur at the edges of the steel sheet and shape irregularities will occur, so the upper limit is set to 80%.
  • the continuous annealing temperature is too low, it will be in an unrecrystallized state and the steel structure will be hardened.On the other hand, if it is too high, the crystal grains may become coarse and the surface may be roughened during pressing. Not less than 950 ° C. Annealing is performed using continuous annealing equipment or box annealing equipment.
  • the temperature may be maintained in a temperature range of 200 to 700 ° C. for 1 minute to 10 hours, and then cooled.
  • alloy carbides or nitrides for example, carbonitrides containing V, Cr, Mo, W
  • the production speed of the piece is preferably 0.05 to 20.OmZ. Furthermore, in order to stably utilize the delayed rupture property improving effect of the Mg compound, the content of 1.0 to 3.0 OmZ is preferable.
  • the steel sheet of the present invention may be any of a hot-rolled steel sheet, a cold-rolled steel sheet, and a plated steel sheet. Further, the plating may be any of normal zinc plating and aluminum plating. The plating may be hot dip plating or electroplating, and may be subjected to an alloying heat treatment after plating, or may be multi-layer plating.
  • a steel sheet that is not plated or a steel sheet that has been subjected to a film lamination treatment on a plated steel sheet does not depart from the scope of the present invention.
  • a high-strength component for an automobile for example, a reinforcing member such as a bumper or a door impact beam
  • a high-strength thin steel sheet for example, a steel sheet of 780 MPa or more
  • cold rolling was performed after pickling, followed by recrystallization annealing, and then temper rolling of 0.4% to obtain a cold-rolled steel sheet.
  • reference numeral I, J are basis weight and alloyed molten zinc plated steel sheet of single-sided 5 0 gZrn 2, for J, was further subjected to film lamination.
  • Table 2 shows the steel sheet manufacturing methods and material properties.
  • Table 3 shows the evaluation of the delayed fracture resistance of the steel sheet.
  • the evaluation method was to bend a strip test of 80 mm x 30 mm, attach a water-resistant strain gauge to the surface, immerse it in 0.5 mo 1 Z1 sulfuric acid, and electrolyze by electric current. This is a method for invading hydrogen.
  • the bending radii were 5 mm, 10 mm, and 15 mm, and the applied stress was 60 MPa and 90 MPa, respectively.
  • reference numerals 1, 2, 3, 5, and 7 to 12 which are examples of the present invention, show sufficient tensile strength and ductility to be applied to reinforcing parts of automobiles. Also, the time until crack generation is long, and it is excellent in delayed rupture resistance.
  • Symbols 4 and 6 indicate that the value of the formula (A) deviates from the range of the present invention, and that the time until crack generation is short.
  • Reference numerals 13 to 15 deviate from the component range of the present invention, and the number of crystallized substances and precipitates serving as hydrogen trap sites is small, or conversely, cracks occur because hydrogen is trapped too much. Occur And the difference from the delayed fracture resistance obtained in the present invention is apparent.
  • the Mg compound or the composite crystallization / precipitate which is a hydrogen trap site, is effectively dispersed, and the ductility and the delayed fracture resistance after the forming process are reduced. It is possible to balance soil properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A thin steel sheet which contains 7 vol % or less of retained austenite and 100 to 100,000 pieces per 1 square millimeter of crystallized products and/or precipitates having a particle diameter of 0.01 to 5.0 μm, and has a chemical composition in mass %: C: 0.05 to 0.3 %, Si: 3.0 % or less, Mn: 0.01 to 3.0 %, P: 0.02 % or less, S: 0.02 % or less, Al: 0.01 to 3.0 %, N: 0.01 % or less, Mg: 0.0002 to 0.01 %, and the balance: Fe and inevitable impurities.

Description

明 細 書 成形加工後の耐遅れ破壊性に優れた高強度薄鋼板およびその製造方 法、 並びに、 高強度薄鋼板によ り作製された自 l車用強度部品  Description High-strength thin steel sheet with excellent delayed fracture resistance after forming and its manufacturing method, and high-strength automotive parts made from high-strength thin steel sheet
〔技術分野〕 〔Technical field〕
本発明は、 特に高強度薄鋼板において問題となる置き割れや遅れ 破壊を抑制した高強度薄鋼板およびその製造方法、 並びに、 それら によ り作製された自動車用強度部品に関するものである。  The present invention relates to a high-strength thin steel sheet in which placing cracks and delayed fracture, which are particularly problematic in a high-strength thin steel sheet, are suppressed, a method of manufacturing the same, and a strength part for automobiles manufactured by using the same.
〔背景技術〕 (Background technology)
従来、 ポル ト、 P C鋼線やラインパイプといった用途には高強度 鋼が多く使われているが、 7 8 O M P a以上の強度になると、 鋼中 への水素の侵入によ り遅れ破壌が発生することが知られている。  Conventionally, high-strength steel is often used for applications such as ports, PC steel wires, and line pipes.However, when the strength exceeds 78 OMPa, delayed blasting occurs due to the penetration of hydrogen into the steel. It is known to occur.
これに対し、 薄鋼板においては、 ( i ) 板厚が薄いため水素が侵 入しても短時間で放出されること、 (i i) 加工性の点で、 7 8 0 M P a以上の鋼板の利用がほとんどなかったことなどから、 遅れ破壌 に対する問題意識は低かったといえる。  On the other hand, in the case of thin steel sheets, (i) hydrogen is released in a short time even if hydrogen enters because of the small thickness, and (ii) steel sheets with a workability of more than 780 MPa Since there was almost no use, it can be said that the awareness of problems with delayed blasting was low.
しかし、 最近では、 自動車の軽量化や衝突安全性の向上の必要性 から、 パンパーゃィンパク トビーム等の補強材ゃシ一トレール等に 、 7 8 0 M P a以上の超高強度鋼板を、 プレス成形、 パイプ成形、 曲げ加工、 端面加工、 または、 穴拡げ加工して供する場合が急速に 増えてきている。 したがって、 耐遅れ破壊性を備えた超高強度薄鋼 板の開発が急務である。  However, recently, due to the necessity of reducing the weight of automobiles and improving collision safety, ultrahigh-strength steel sheets of 780 MPa or more are press-formed into reinforcing materials such as pumper-packed beam beams and sheet trails. The number of cases where pipe forming, bending, end face processing, or hole expansion processing is provided is increasing rapidly. Therefore, there is an urgent need to develop ultra-high strength thin steel sheets with delayed fracture resistance.
これまで、 耐遅れ破壊を向上させる技術は、 ほとんどが、 ポルト 、 条鋼、 厚板のような、 製品のままでかつ耐力または降伏応力以下 で使用されることの多い鋼材において開発されてきた。 例えば、 条鋼ゃボルト用鋼においては、 焼き戻しマルテンサイ ト を中心に開発が行われ、 「遅れ破壊解明の新展開」 ( (社) 日本鉄 鋼協会 材料の組織と特性部会 高強度鋼の遅れ破壊研究会 平成To date, most techniques for improving delayed fracture resistance have been developed for steels that are often used as-is and below yield strength or yield stress, such as port, bar, and plate. For example, in the development of strip steel and bolt steel, the development of tempered martensite has been carried out, and a new development of elucidation of delayed fracture has been developed. (Japan) Iron and Steel Institute of Japan Study group Heisei
9年 1月) には、 C r、 M oや Vのよ うな焼き戻し軟化抵抗性を示 す添加元素が耐遅れ破壊性向上に有効であることが報告されている これは、 合金炭化物を析出させて、 これを水素の トラップサイ ト に活用することによ り、 遅れ破壊形態を粒界から粒内破壊へと移行 させる技術である。 , (January 1999) reported that an additive element exhibiting temper softening resistance, such as Cr, Mo or V, was effective in improving delayed fracture resistance. This technology shifts the delayed fracture mode from grain boundaries to intragranular fracture by precipitating and utilizing this as a hydrogen trap site. ,
しかし、 これらの鋼は、 C量が 0. 4 %以上で合金元素も多く含 むことから、 薄鋼板で要求される加工性や溶接性が劣悪で、 さらに 、 合金炭化物析出には数時間以上という析出熱処理が必要なため、 製造性にも問題がある。  However, since these steels have a C content of 0.4% or more and contain many alloying elements, the workability and weldability required for thin steel sheets are poor, and the precipitation of alloy carbides takes several hours or more. Therefore, there is a problem in manufacturability.
また、 特開平 1 1一 2 9 3 3 8 3号公報には、 T i 、 M gを主体 とする酸化物が水素性欠陥の発生防止に効果があることが開示され ている。 ,  In addition, Japanese Patent Application Laid-Open No. 11-293383 discloses that an oxide mainly composed of Ti and Mg is effective in preventing generation of hydrogen defects. ,
しかし、 これは対象が厚鋼板であり、 特に大入熱の溶接後の遅れ 破壊については考慮されているものの、 薄鋼板に要求される加工度 の高い成形加工を受けたり、 端面加工に伴うパリ発生等の遅れ破壊 現象に及ぼす影響については考慮されていない。  However, this is intended for thick steel plates.Despite the consideration of delayed fracture after welding with high heat input, it is subject to the high degree of forming required for thin steel plates and the paring accompanying edge processing. The effect on delayed fracture phenomena such as occurrence is not considered.
さらには、 薄鋼板の基本的特性である加工性についての考慮もさ れて無い。  Furthermore, no consideration is given to workability, which is a basic property of thin steel sheets.
一方、 薄鋼板の遅れ破壤に関しては、 残留オーステナイ ト量の加 ェ誘起変態に起因した遅れ破壌の助長について報告されている (例 えば、 山崎ら CAMP— I S I J v o l . 5 p 1 8 3 9 〜 1 8 4 2 ( 1 9 9 2 ) 、 参照) 。  On the other hand, regarding delayed rupture of thin steel sheets, it has been reported that delayed rupture was promoted due to the addition-induced transformation of the amount of retained austenite (for example, Yamazaki et al., CAMP—ISIJ vol. 5 p1839) ~ 1842 (1992), see).
これは、 薄鋼板の成型加工を考慮したものであるが、 耐遅れ破壊 性を劣化させない残留オーステナイ ト量の規制について報告してい る。 This takes into account the forming of thin steel sheets, It reports on regulations on the amount of residual austenite that does not degrade the performance.
すなわち、 上記報告は、 特定の組織を持つ高強度薄鋼板に関する ものであり、 根本的な耐遅れ破壌向上対策に関するものとは言えな レ、。  In other words, the above report relates to a high-strength thin steel sheet with a specific structure, and cannot be said to be a fundamental measure for improving delayed rupture resistance.
〔発明の開示〕 [Disclosure of the Invention]
上記のよ うに、 特に薄鋼板の使用環境や現状設備による製造性を 考慮し、 基本的特性である成形加工性を確保しつつ、 使用前の成形 加工等における遅れ破壊に対する対策を講じた開発事例はほとんど なレ、。  As mentioned above, a development example in which measures were taken to prevent delayed fracture in forming before use, while ensuring the formability, which is a basic characteristic, while taking into account the working environment of thin steel sheets and the manufacturability of existing equipment, in particular. Is almost.
本発明者らは、 以上のような背景から、 薄鋼板における使用環境 および現状設備での製造方法を十分に考慮して、 根本的に耐遅れ破 壊性を向上させる方法を見出すに至った。  In view of the above background, the present inventors have come to find a method for fundamentally improving delayed fracture resistance by sufficiently considering the use environment of thin steel sheets and the production method using existing facilities.
すなわち、 M gの化合物または複合化合物を形成させて、 これら の化合物の形態を制御することによ り、 高強度薄鋼板の成形加工性 を劣化させることなく、 成形加工後の耐遅れ破壊性を向上させ得る ことを見出した。  In other words, by forming a compound or composite compound of Mg and controlling the morphology of these compounds, the delayed fracture resistance after forming can be improved without deteriorating the formability of the high-strength steel sheet. I found that it could be improved.
かつ、 現状の製造設備 (熱間圧延、 連続焼鈍、 溶融亜鉛めつき、 電気めつき設備など) を用いた高強度薄鋼板の有効な製造方法を見 出した。 詳細は以下の通りである。  In addition, we have found an effective method for producing high-strength thin steel sheets using the current production facilities (hot rolling, continuous annealing, hot-dip galvanizing, electric plating, etc.). Details are as follows.
( 1 ) 質量%で、  (1) In mass%,
C : 0 . 0 5〜 0 . 3 %、  C: 0.05-0.3%,
S i : 3 . 0 %以下、  S i: 3.0% or less,
M n : 0 . 0 1〜 3 . 0 %、  Mn: 0.01 to 3.0%,
P : 0 . 0 2 %以下、  P: 0.02% or less,
S : 0 . 0 2 %以下、 A 1 : 0. 0 1〜 3. 0 %、 S: 0.02% or less, A1: 0.01 to 3.0%,
N : 0. 0 1 %以下、  N: 0.01% or less,
M g : 0. 0 0 0 2〜 0. 0 1 %  M g: 0.0 00 0 2 to 0.0 1%
を含有し、 残部が鉄および不可避的不純物からなり、 さらに、 鋼板の組織中の残留オーステナイ トの体積率なかで 7 %以下であり And the balance consists of iron and unavoidable impurities.The volume fraction of retained austenite in the structure of the steel sheet is 7% or less.
M gの酸化物、 硫化物、 複合晶出物および複合析出物のいずれか 1 種以上が、 At least one of Mg oxides, sulfides, complex precipitates and complex precipitates,
平均粒子径 d : 0. 0 1 〜 5. 0 // m  Average particle size d: 0.01 to 5.0 // m
密度(0 : 1平方 mmあたり 1 0 0〜 1 0 0 0 0 0個、 および、 分布 : 平均粒子径からの標準偏差 σ と平均粒子経 dの比 ≤ 1 . 0を満たし、 かつ、  Density (0: 100 to 100,000 per square mm, and distribution: the ratio of standard deviation σ from average particle diameter to average particle diameter d ≤ 1.0 is satisfied, and
残留オーステナイ トの体積率 V V (%) と引張強度 T S (MP a ) が式 (A) を満たすことを特徴とする成形加工後の耐遅れ破壊性に 優れた高強度薄鋼板。 A high-strength thin steel sheet with excellent delayed fracture resistance after forming, characterized in that the volume fraction V V (%) of residual austenite and the tensile strength T S (MP a) satisfy formula (A).
式 (A) : 1 0 0 0 ( V 7 - 0. 1 ) "5- 5 + α (M g - 4 0 ) 2 Formula (A): 1 0 0 0 (V 7 - 0. 1) "5 - 5 + α (M g - 4 0) 2
- 5 0 ( d— 0. 2 ) 2+ l . l l n p + 7 0 0 (T S - 6 8 0 ) -° 9≥ 1 0 -5 0 (d— 0.2) 2 + l. Llnp + 7 0 0 (TS-6 8 0)-° 9 ≥ 10
こ こで、 α =— 0. 0 0 5 (M g ≤ 4 0 ) 、 a = - 0. 0 0 2 (  Where α = — 0.05 (Mg ≤ 4 0), a =-0.02 (
M g > 4 0 )  (Mg> 40)
V y : 残留オーステナイ ト体積率 (%)  V y: Volume ratio of residual austenite (%)
M g : M g量 (質量 p p m)  M g: M g amount (mass p p m)
d : 径 ( μ m )  d: diameter (μm)
P 密度 (個ノ mm2 ) P density (number Roh mm 2)
T S : 引張強度 (MP a )  T S: Tensile strength (MPa)
であり、 更に、 And, furthermore,
( i ) 1 0 0 0 ( V - 0. 1 ) — 5' 5≥ 1 0の時は、 1 0 0 0 ( V - 0. 1 ) — 5.5= 1 0 (i) 1 0 0 0 (V-0.1) — When 5 ' 5 ≥ 10, 1 0 0 0 ( V - 0. 1) -. 5 5 = 1 0
(ii) 2≤M g≤ 1 0 0 p p m  (ii) 2≤M g≤1 0 0 p p m
(iii) 0. 0 1 ≤ d≤ 5. 0 /z m、 ( d - 0. 2 ) 2 ≤ 0. 2 の時は、 ( d— 0. 2 ) 2 = 0. 2 (iii) When 0.01 ≤ d ≤ 5.0 / zm and (d-0.2) 2 ≤ 0.2, then (d-0.2) 2 = 0.2
(iv) 1 0 0≤ p ≤ 1 0 0 0 0 0個/ mm2 (iv) 1 0 0 ≤ p ≤ 1 0 0 0 0 0 pcs / mm 2
( v ) 7 8 0 MP a ≤ T S  (v) 7 8 0 MP a ≤ T S
である。 It is.
( 2 ) 更に、 質量。/。で、  (2) In addition, mass. /. so,
V : 0. 0 0 5〜 1 %、  V: 0.05 to 1%,
T i : 0. 0 0 2〜 1 %、  T i: 0.02 to 1%,
N b : 0. 0 0 2〜 1 %、  Nb: 0.02 to 1%,
Z r : 0. 0 0 2〜 1 %  Zr: 0.02 to 1%
の 1種または 2種以上を含有することを特徴とする前記 ( 1 ) に記 載の成形加工後の耐遅れ破壊性に優れた高強度薄鋼板。 A high-strength thin steel sheet excellent in delayed fracture resistance after forming as described in (1), characterized by containing one or more of the following.
( 3 ) 更に、 質量%で、  (3) Further, in mass%,
C r : 0. 0 0 5〜 5 %、  Cr: 0.05-5%,
M o : 0. 0 0 5〜 5 %、 .  Mo: 0.05-5%,.
W : 0. 0 0 5〜 5 %  W: 0.05 to 5%
の 1種または 2種以上を含有するこ とを特徴とする前記 ( 1 ) また は ( 2 ) に記載の成形加工後の耐遅れ破壊性に優れた高強度薄鋼板 A high-strength thin steel sheet having excellent delayed fracture resistance after forming according to (1) or (2), characterized by containing one or more of the following:
( 4 ) 更に、 質量%で、 (4) Further, in mass%,
C u : 0. 0 0 5〜 2. 0 %  Cu: 0.05 to 2.0%
を含有することを特徴とする前記 ( 1 ) 〜 ( 3 ) のいずれかに記載 の成形加工後の耐遅れ破壊性に優れた高強度薄鋼板。 The high-strength thin steel sheet excellent in delayed fracture resistance after forming according to any one of the above (1) to (3), characterized by containing:
( 5 ) 更に、 質量%で、  (5) Furthermore, in mass%,
N i : 0. 0 0 5〜 2. 0 %、 C o : 0. 0 0 5〜 2. 0 % N i: 0.005 to 2.0%, C o: 0.05 to 2.0%
の 1種または 2種以上を含有することを特徴とする前記 ( 1 ) 〜 ( 4 ) のいずれかに記載の成形加工後の耐遅れ破壌性に優れた高強度 ^ 鋼 High-strength ^ steel excellent in delayed crushing resistance after forming according to any one of the above (1) to (4), characterized by containing one or more of the following:
( 6 ) 更に、 質量%で、  (6) Further, in mass%,
Β : 0. 0 0 0 2〜 0. 1 %  Β: 0.0 0 0 0 2 to 0.1%
を含有することを特徴とする前記 ( 1 ) 〜 ( 5 ) のいずれかに記載 の成形加工後の耐遅れ破壊性に優れた高強度薄鋼板。 The high-strength thin steel sheet excellent in delayed fracture resistance after forming according to any one of the above (1) to (5), characterized by containing:
( 7 ) 更に、 質量%で、  (7) Further, in mass%,
R EM : 0. 0 0 0 5〜 0. 0 1 %、  R EM: 0.0 0 0 0 5 to 0.0 1%,
C a : 0. 0 0 0 5〜 0. 0 1 %、  C a: 0.0 0 0 5 to 0.0 1%,
Y : 0. 0 0 0 5〜 0. 0 1 %  Y: 0.0 0 0 0 5 to 0.0 1%
の 1種または 2種以上を含有することを特徴とする前記 ( 1 ) 〜 ( 6 ) のいずれかに記載の成形加工後の耐遅れ破壌性に優れた高強度 薄鋼板。 The high-strength thin steel sheet having excellent delayed crushing resistance after forming according to any one of the above (1) to (6), characterized by containing one or more of the following.
( 8 ) 前記 ( 1 ) 〜 ( 7 ) に記載の成形加工後の耐遅れ破壊性に 優れた高強度薄鋼板が、 熱延鋼板または冷延鋼板であることを特徴 とする成形加工後の耐遅れ破壊性に優れた高強度薄鋼板。  (8) The high-strength thin steel sheet having excellent delayed fracture resistance according to the above (1) to (7) is a hot-rolled steel sheet or a cold-rolled steel sheet. High strength thin steel sheet with excellent delayed fracture.
( 9 ) 前記 ( 1 ) 〜 ( 7 ) に記載の成形加工後の耐遅れ破壊性に 優れた高強度薄鋼板において、 該鋼板に亜鉛めつきの表面処理を施 したことを特徴とする成形加工後の耐遅れ破壊性に優れた高強度薄 鋼板。  (9) A high-strength thin steel sheet having excellent delayed fracture resistance according to the above (1) to (7), wherein the steel sheet has been subjected to a surface treatment with zinc plating. High strength thin steel sheet with excellent delayed fracture resistance.
( 1 0 ) 前記 ( 8 ) または ( 9 ) に記した成形加工後の耐遅れ破 壊性に優れた高強度薄鋼板において、 更にフィルムラミネー ト処理 を施したことを特徴とする成形加工後の耐遅れ破壊性に優れた高強 度薄鋼板。  (10) A high-strength thin steel sheet having excellent delayed fracture resistance after the forming process described in the above (8) or (9), further comprising a film laminating process. High strength thin steel sheet with excellent delayed fracture resistance.
( 1 1 ) 前記 ( 1 ) 〜 ( 7 ) のいずれかに記載の組成からなる铸 片を製造し、 Ar3 点以上の仕上温度で熱間圧延を施し、 5 0 0〜 8 0 0 °Cで捲取り、 次いで、 酸洗した後、 圧下率 3 0〜 8 ◦ %で冷 間圧延を施し、 その後、 6 0 0 °C以上 9 5 0 °C以下に均熱して再結 晶焼鈍を施し、 次いで、 調質圧延を施すことを特徴とする成形加工 後の耐遅れ破壌性に優れた高強度薄鋼板の製造方法。 (11) A composition comprising the composition according to any one of (1) to (7). A piece is manufactured, hot-rolled at a finishing temperature of 3 points or more of Ar, wound up at 500 to 800 ° C, then pickled, and then cooled at a rolling reduction of 30 to 8 °%. Rolling, then soaking at a temperature of 600 ° C. or more to 950 ° C. or less, recrystallization annealing, and then temper rolling are performed. Method for producing high-strength thin steel sheet with excellent quality.
( 1 2 ) 前記 ( 1 1 ) に記載の成形加工後の耐遅れ破壌性に優れ た高強度薄鋼板の製造方法において、 焼鈍後、 2 0 0〜 7 0 0 °Cの 温度域で 1分から 1 0時間保持することを特徴とする成形加工後の 耐遅れ破壊性に優れた高強度薄鋼板の製造方法。  (12) In the method for producing a high-strength thin steel sheet having excellent delayed rupture resistance after forming described in (11) above, the steel sheet may have a temperature of 200 to 700 ° C after annealing. A method for producing a high-strength thin steel sheet having excellent delayed fracture resistance after forming, characterized in that the steel sheet is held for 10 to 10 hours.
( 1 3 ) 前記 ( 1 ) 〜 ( 7 ) に記載の成形加工後の耐遅れ破壊性 に優れた高強度薄鋼板により作製されたことを特徴とする自動車用 強度部品。  (13) A high-strength component for automobiles, which is made of a high-strength thin steel sheet having excellent delayed fracture resistance after the forming process according to (1) to (7).
〔図面の簡単な説明〕 [Brief description of drawings]
図 1 は、 式 (A) と遅れ破壌時間の関係を示す図である。  Figure 1 is a diagram showing the relationship between equation (A) and delayed rupture time.
図 2は、 式 (A) と残留オーステナイ トの関係を示す図である。 図 3は、 式 (A) と M g量の関係を示す図である。  FIG. 2 is a diagram showing the relationship between equation (A) and residual austenite. FIG. 3 is a diagram showing the relationship between the formula (A) and the amount of Mg.
図 4は、 式 (A) と密度の関係を示す図である。  FIG. 4 is a diagram showing the relationship between the equation (A) and the density.
〔発明を実施するための最良の形態〕 [Best mode for carrying out the invention]
焼き戻しマルテンサイ ト鋼において、 遅れ破壌は、 旧オーステナ ィ ト粒界等に水素が集積することによ りボイ ド等が発生し、 その部 分が起点となって生じると考えられている。  In tempered martensite steel, delayed blasting is thought to be caused by the accumulation of hydrogen at the former austenite grain boundaries and the like, and voids and the like originate from that portion.
そこで、 水素の トラップサイ トを均等かつ微細に分散させて、 そ の部分に水素をトラップさせると、 拡散性水素濃度が下がり、 遅れ 破壊の感受性が低下する。  Therefore, if the hydrogen trap site is evenly and finely dispersed and hydrogen is trapped in that part, the diffusible hydrogen concentration decreases, and the sensitivity to delayed fracture decreases.
前出の特開平 1 1一 2 9 3 3 8 3号公報に開示されているように 、 M gおよび T i を複合添加した厚鋼板においては、 酸化物の分散 形態を制御することで、 水素起因の耐遅れ破壊性が向上することが 分かっている。 As disclosed in the aforementioned Japanese Patent Application Laid-Open No. It has been found that in thick steel sheets with a combined addition of Mg, Mg and Ti, controlling the oxide morphology improves the resistance to delayed fracture caused by hydrogen.
しかし、 薄鋼板のように、 成形加工を受けて高い残留応力が発生 したり、 加工端面にパリ等が残ったりすると、 必然的に耐遅れ破壌 性も劣化するので、 これに伴う遅れ破壌特性の劣化を補足できない このよ う に、 薄鋼板の使用形態を考慮した遅れ破壊特性に関する 研究は少なく、 薄鋼板における遅れ破壊特性の劣化の問題は、 M g や T i の酸化物の形態制御のみでは解決できない。 また、 トラップ サイ トの微細分散は、 薄鋼板の基本特性である延性を劣化させる懸 念もある。  However, if high residual stress is generated by the forming process as in the case of a thin steel sheet, or if paris etc. remains on the machined end face, the delayed rupture resistance is inevitably deteriorated. As described above, there are few studies on delayed fracture characteristics taking into account the usage of thin steel sheets, and the problem of delayed fracture characteristics in thin steel sheets is the problem of controlling the oxide form of Mg and Ti. It cannot be solved only by. There is also concern that the fine dispersion of the trap sites may degrade the ductility, a basic property of thin steel sheets.
本発明者らは、 上述の背景を踏まえて、 薄鋼板の使用環境、 すな わち、 成形加工後においても耐遅れ破壌性を確保しまたは向上させ るため、 種々の晶出物、 析出物の影響に加えて、 鋼板の強度や組織 の影響をそれぞれ検討した。  In view of the above-described background, the present inventors have developed various types of crystallization and precipitation to ensure or improve the use environment of thin steel sheets, that is, delayed rupture resistance even after forming. In addition to the effects of the materials, the effects of the strength and structure of the steel sheet were examined.
その結果、 薄鋼板の使用環境下で、 高い残留応力下や端面のパリ 発生があっても、 耐遅れ破壊性を向上もしくは確保するための技術 を見出した。 すなわち、  As a result, we found a technique to improve or ensure delayed fracture resistance even under high residual stress and occurrence of edge crevices in the use environment of thin steel sheets. That is,
( i ) M gを含む酸化物または硫化物と、 それらと複合晶出ま たは析出した化合物の分散形態制御、  (i) Control of the dispersion morphology of the oxide or sulfide containing Mg and the compound crystallized or precipitated with them.
( i i ) 鋼板のミク ロ組織中の残留オーステナイ ト量、 および、 (ii) the amount of retained austenite in the microstructure of the steel sheet, and
( i i i ) 鋼板の強度、 (i i i) strength of steel sheet,
をそれぞれ制御することで、 水素の トラップサイ トであ S M gの化 合物または複合晶出 ·析出物を効果的に分散させ、 延性、 および、 成形加工後の耐遅れ破壊性を両立させることができる。 Respectively, to effectively disperse the SM g compound or compound crystallization / precipitate at the hydrogen trap site, and to achieve both ductility and delayed fracture resistance after forming. Can be.
そして、 これを満たすための条件と して、 式 (A ) を規定した ( 式 (A) については、 後で詳述する。 ) 。 Then, as a condition for satisfying this, the formula (A) is defined as ( Equation (A) will be described in detail later. ).
なお、 ( i ) の M gを含む酸化物または硫化物と、 それらと複合 晶出または析出した化合物が、 粒内 (旧オーステナイ ト粒界等のミ クロ組織の相界面を除く) にあると、 遅れ破壌特性向上によ り有効 である。  In addition, if the oxide or sulfide containing Mg in (i) and the compound crystallized or precipitated with them are present in the grains (excluding the phase interface of the microstructure such as the former austenite grain boundary). This is more effective for improving delayed blasting properties.
上記の ( i ) 、 (ii) および (iii)を制御するには、 製造条件を 特定して、 種々の元素の酸化物、 窒化物、 硫化物等の晶出物や析出 物が水素のトラップサイ トになり得る形態を制御することも有効で める。  In order to control the above (i), (ii) and (iii), the production conditions are specified, and oxides, nitrides, sulfides, and other crystallized or precipitated substances of various elements are trapped in hydrogen. It is also effective to control the form that can be a site.
本発明においては、 式 (A) を満たすことで、 高強度薄鋼板の耐 遅れ破壊性を、 成形加工後においても十分に確保できる。  In the present invention, by satisfying the expression (A), the delayed fracture resistance of the high-strength thin steel sheet can be sufficiently ensured even after the forming.
これは、 薄鋼板の成形加工によ り導入される転位や残留応力場と 、 トラップサイ トとなる粒子の相互作用が、 厚鋼板の熱間圧延や溶 接後冷却時に導入される転位や残留応力場と、 トラップサイ ト とな る粒子の相互作用とは異なることや、 薄鋼板と厚鋼板の熱処理方法 の違いに起因すると考えられる。  This is because the interaction between the dislocations and residual stress fields introduced by the forming process of the thin steel sheet and the particles that become the trap sites is caused by the dislocations and residual stresses introduced during hot rolling and cooling after welding of the thick steel sheet. This is thought to be due to the difference between the interaction between the stress field and the particles that serve as trap sites, and the difference in the heat treatment methods for thin and thick steel plates.
上記 ( i ) および (ii) については、 以下のように限定する。 残留オーステナイ ト量 : 残留オーステナイ トは、 加工誘起変態に よりマルテンサイ トになると遅れ破壊感受性を大きく してしまうた め、 上限を体積率で 7 %と した。  The above (i) and (ii) are limited as follows. Residual austenite amount: Since the residual austenite increases the delayed fracture susceptibility when it becomes martensite due to work-induced transformation, the upper limit is set to 7% by volume.
平均粒子径 : 平均粒子径は 0. Ο ΐ μ ηιから 5. Ο μ πιに限定し た。 水素の トラップサイ ト と してはある程度の大きさが必要であり 、 かつ、 微細な粒子が多量にあることは薄鋼板の延性を確保する上 でも好ましいものではなく、 製造も困難となる。  Average particle size: The average particle size was limited to 0.5Ομπι to 0.5ΐμπι. A certain size is required as a hydrogen trap site, and the presence of a large amount of fine particles is not preferable in terms of ensuring the ductility of a thin steel sheet, and makes production difficult.
したがって、 平均粒子径の下限を 0. Ο ΐ μ πιと した。 また、 粗 大粒子はトラップサイ ト と しての作用がないうえ、 破壊の起点とな り得るので、 5. 0 μ πιを、 平均粒子径の上限と した。 密度 : 粒子密度は 1 0 0〜: L 0 0 0 0 0個 mm2 と した。 粒子 密度が低いことは、 トラップサイ ト数が少ないことを意味し、 加工 後の耐遅れ破壊性を確保できないため、 下限を 1 0 0個/ mm2 と した。 Therefore, the lower limit of the average particle diameter was set to 0.1Ομππι. In addition, coarse particles do not act as a trap site and can be a starting point for destruction. Therefore, 5.0 μππ was set as the upper limit of the average particle diameter. Density: The particle density was set to 100 to: L 0000 particles mm 2 . The low particle density means that the number of trap sites is small, and the delayed fracture resistance after processing cannot be ensured. Therefore, the lower limit was set to 100 particles / mm 2 .
また、 粒子密度が高密度の場合には、 延性や成形加工性が劣化す ること、 および、 耐遅れ破壊性向上効果も飽和することから、 1 0 0 0 0 0個 Zmm2 を上限と した。 Further, when the particle density is high density, Rukoto to deteriorate the ductility and formability, and, since the resistance to delayed fracture improving effect saturates, and the 1 0 0 0 0 0 ZMM 2 as the upper limit .
分布 : 粒子の分布については、 平均粒子径からの標準偏差 σ と平 均粒子経 dの比が、 式 σ / d ≤ 1 . 0を満たすこと と した。 σ Ζ (1 > 1 . 0であることは、 粒子分布が広範囲にわたることを意味し、 耐遅れ破壌向上効果が同じ平均粒径に比べて小さくなり、 延性劣化 や破壊の起点数の増加にもつながる。 それ故、 a Z dの上限を 1 . 0 と した。  Distribution: Regarding the distribution of particles, the ratio of the standard deviation σ from the average particle diameter to the average particle diameter d satisfies the equation σ / d ≤ 1.0. σ Ζ (1> 1.0) means that the particle distribution is wide-ranging, and the effect of improving delayed blasting is smaller than that of the same average particle size. Therefore, the upper limit of a Z d is set to 1.0.
ここで、 M g化合物を含む粒子の測定について述べる。 粒子の測 定は、 薄膜または抽出レプリ カのサンプルを用いて、 走査型または 透過型電子顕微鏡にて、 5 0 0 0〜 1 0 0 0 0 0倍の倍率で観察を 行い、 最低 3 0視野を測定するこ とで得られる値とする。  Here, measurement of particles containing the Mg compound will be described. For particle measurement, use a thin film or extracted replica sample and observe it with a scanning or transmission electron microscope at a magnification of 50,000 to 100,000, and a minimum of 30 fields of view. Is the value obtained by measuring.
粒子径は、 画像解析による円相当径にて評価する。 また、 密度を 求める際には、 複合析出または晶出物は 1個として数える。  The particle diameter is evaluated by the circle equivalent diameter by image analysis. When determining the density, multiple precipitates or crystals are counted as one.
組成分析は、 E D Xおよび E E L Sを用い、 構造解析は Diffract ion pattern を解析することで行った。  The composition analysis was performed using EDX and EELS, and the structural analysis was performed by analyzing the diffraction pattern.
各複合化合物は、 M gの他、 合金添加元素 (例えば T i 、 N b、 V、 C r、 M o、 R EM, C aなど) を含有した化合物 (炭化物、 窒化物、 酸化物や硫化物など) である。  Each composite compound is composed of a compound (Carbide, Nitride, Oxide or Sulfide) containing an alloying element (for example, Ti, Nb, V, Cr, Mo, REM, Ca, etc.) in addition to Mg. Things).
以下に、 本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明は、 高強度薄鋼板に関するものであるが、 主に、 引張強度 で 7 8 0 M P a以上、 板厚は 0. 5 m m〜 4. 0 mmの鋼板に関す るものである。 The present invention relates to a high-strength thin steel plate, and mainly relates to a steel plate having a tensile strength of 780 MPa or more and a thickness of 0.5 mm to 4.0 mm. Things.
次に、 式 (A) について説明する。 残留オーステナイ トの体積率 、 平均粒子径、 密度、 M g量、 および、 引張強度が、 耐遅れ破壌性 の要因と してあげられることを前提にして、 図 1 よ り、 下記式 (A ) を設定した。  Next, equation (A) will be described. Based on the assumption that the volume fraction of residual austenite, the average particle size, the density, the amount of Mg, and the tensile strength can be cited as factors of delayed rupture resistance, FIG. ) It was set.
式 (A) : 1 0 0 0 ( V 7 - 0 . 1 ) — 5' 5 + ひ (M g - 4 0 ) 2 Formula (A): 1 0 0 0 (V 7-0.1) — 5 ' 5 + H (M g-40) 2
- 5 0 ( d — 0 . 2 ) 2 + 1 . 1 1 n p + 7 0 0 ( T S - 6 8 0 ) -°· 9≥ 1 0 -5 0 (d — 0.2) 2 + 1.1 .1 np + 7 0 0 (TS-680)-° 9 ≥ 10
ここで、 o; =— 0 . 0 0 5 (Μ g ≤ 4 0 ) 、 a = - 0 . 0 0 2 (  Where, o; = — 0.05 (Μ g ≤ 4 0), a =-0.02 (
M g > 4 0 )  (Mg> 40)
V y : 残留オーステナイ ト体積率 (%)  V y: Volume ratio of residual austenite (%)
M g : M g量 (質量 p p m)  M g: M g amount (mass p p m)
d : 粒径 ( μ m)  d: Particle size (μm)
p 密度 (個 Zmm2 ) p density (pcs Zmm 2 )
T S 引張強度 (M P a )  T S tensile strength (M P a)
であり、 更に、 And, furthermore,
( i ) 1 0 0 0 (V— 0 . 1 ) —5· 5≥ 1 0の時は、 0 0 0 ( V— 0 . 1 ) "5- 5 = 1 0 (I) 1 0 0 0 ( V- 0 1.) - When the 5 · 5 ≥ 1 0 is, 0 0 0 (V- 0 1 .) "5 - 5 = 1 0
(ii) 2 ≤ M g ≤ 1 0 0 p p m  (ii) 2 ≤ Mg ≤ 1 0 0 p p m
(iii) O . 0 1 ≤ d ≤ 5 . 0 / m、 ( d - 0 2 ) ≤ 0 . 2 の時は、 ( d _ 0 . 2 ) 2 = 0 . 2 (iii) When O. 0 1 ≤ d ≤ 5.0 / m and (d-0 2) ≤ 0.2, (d _ 0.2) 2 = 0.2
(iv) 1 0 0 ≤ p ≤ 1 0 0 0 0 0個ノ m m2 (iv) 1 0 0 ≤ p ≤ 1 0 0 0 0 0 pieces mm 2
( v ) 7 8 0 M P a ≤ T S  (v) 7 8 0 M P a ≤ T S
である。 It is.
式 (A) の左辺を関数 f (ν γ 、 M g 、 d、 p T S ) とおく と 、 f ( V , M g、 d 、 p、 T S ) の値が 1 0以上で著しく耐遅れ 破壊性が向上する。 さ らに、 各変数の耐遅れ破壊性に対する影響を図 2〜 4に示す。 図中の〇は耐遅れ破壊性が良好であることを示し、 Xは不良である ことを示す。 Left function f of formula (A) (ν γ, M g, d, p TS) putting a, f (V, M g, d, p, TS) significantly delayed fracture resistance value is 1 0 or more Is improved. Figures 2 to 4 show the effect of each variable on delayed fracture resistance. In the figure, 示 し indicates that the delayed fracture resistance is good, and X indicates that it is poor.
図 2は、 f (V y ) と残留オーステナイ ト体積率 V の相関を示 す図である。 前提条件は、 M g : 3 0 p p m、 平均粒子径 : 0. 4 μ m, 密度 : 1 5 0 0個 Zmm2 、 引張強度 : 1 4 8 0 MP aであ る。 FIG. 2 is a diagram showing a correlation between f (V y) and the volume ratio V of retained austenite. The preconditions are as follows: Mg: 30 ppm, average particle diameter: 0.4 μm, density: 1500 pieces Zmm 2 , tensile strength: 1480 MPa.
V γが高いと耐遅れ破壊性が劣化するが、 f (V y ) 値が高い発 明鋼は、 V 0 が 7 %以下で良好な耐遅れ破壌性を示す。  If Vγ is high, the delayed fracture resistance deteriorates, but the invention steel with a high f (Vy) value shows good delayed fracture resistance when V0 is 7% or less.
また、 が 7 %以下でも、 Xの比較鋼は、 M g、 粒径、 密度が 本発明で限定する範囲外のため、 f ( V 7 ) く 1 0 となり、 耐遅れ 破壊性が悪化したものである。  In addition, even when is 7% or less, the comparative steel of X has f (V7) <10 because Mg, particle size, and density are out of the ranges defined by the present invention, and the delayed fracture resistance is deteriorated. It is.
図 3は、 f (M g ) と M g添加量の相関を示す図である。 前提条 件は、 残留オーステナイ トの体積率 : 3. 0 %、 平均粒子径 : 0. 4 μ m, 密度 : 1 5 0 0個/ mm2 、 引張強度 : 1 4 8 0 MP &で める。 FIG. 3 is a diagram showing a correlation between f (M g) and the amount of Mg added. The prerequisites are as follows: volume ratio of residual austenite: 3.0%, average particle diameter: 0.4 μm, density: 1500 / mm 2 , tensile strength: 148 MP .
M gが 2 0〜 7 0 p p mのところに、 特に、 耐遅れ破壌性が良好 な領域がある。 また、 M gが l O O p p m以下で Xのものは、 残留 オーステナイ ト、 粒径、 および、 密度が本発明で限定する範囲外の ため、 ί (M g ) く 1 0 となり、 耐遅れ破壊性が悪化したものであ る。  There is a region where the Mg is in the range of 20 to 70 ppm, particularly, where the delayed blasting resistance is good. In the case of X with Mg of less than 100 ppm, the residual austenite, particle size, and density are out of the range defined by the present invention. Is worse.
図 4は、 f ( P ) と晶出物および析出物の密度の相関を示す図で ある。 前提条件は、 残留オーステナイ トの体積率 : 3. 0 %、 M g : 3 0 p p m、 引張強度 : 1 3 8 0 MP aである。 密度が低いと耐 遅れ破壌性が悪いと言える。 FIG. 4 is a diagram showing the correlation between f ( P ) and the density of crystallized substances and precipitates. The preconditions are as follows: volume fraction of residual austenite: 3.0%, Mg: 30 ppm, tensile strength: 138 MPa. If the density is low, it can be said that delayed crushing resistance is poor.
また、 密度 p力 本発明で限定する範囲内ではあるが Xのものは 、 残留オーステナイ ト、 M g、 および、 粒径が本発明で限定する範 囲外のため、 f ( p ) く 1 0 となり、 耐遅れ破壌性が悪化したもの である。 In addition, although the density p is within the range defined by the present invention, that of X is the range where the residual austenite, Mg, and particle size are limited by the present invention. Since it was out of the surrounding area, it was f (p)-10 and the delayed rupture resistance was poor.
以上によ り、 上記要件が式 (Α) を満たせば耐遅れ破壌性に優れ ると した。  Based on the above, it was concluded that if the above requirements satisfied expression (II), the delayed blasting resistance was excellent.
次に、 本発明における鋼の化学成分の限定理由について説明する  Next, the reasons for limiting the chemical components of steel in the present invention will be described.
Cは、 鋼板の強度を上昇できる元素である。 特に、 マルテンサイ トゃオーステナイ トなどの硬質相を生成し、 高強度化には必須の元 素である。 7 8 O MP a以上の強度を得るためには、 0. 0 5 %以 上が必要であるが、 逆に、 多く含有すると、 脆性破壊の起点となる セメ ンタイ トを増加させて、 水素脆性を生じ易くする。 従って、 上 限を 0. 3 %と した。 C is an element that can increase the strength of a steel sheet. In particular, it produces a hard phase such as martensite-austenite and is an essential element for high strength. To obtain a strength of 7 8 OMPa or more, 0.055% or more is necessary, but conversely, if it is contained too much, the cementite, which is the starting point of brittle fracture, will increase, and hydrogen embrittlement will occur. Is likely to occur. Therefore, the upper limit was set to 0.3%.
S i は、 材質を大きく硬質化する置換型固溶体強化元素であり、 鋼板の強度を上昇させることに有効なうえ、 セメ ンタイ ト析出を抑 制する元素であるが、 3. 0 %を超えると、 熱間圧延でのスケール 除去にコス トがかかり経済的に不利になるため、 3. 0 %を上限と する。  Si is a substitutional solid solution strengthening element that greatly hardens the material, is effective in increasing the strength of the steel sheet, and is an element that suppresses cementite precipitation. However, removing scale in hot rolling is costly and disadvantageous economically, so the upper limit is 3.0%.
なお、 添加量が多いとめつき性が劣化するので、 めっき性の向上 を図るには、 0. 6 %以下が望ましい。  In addition, if the addition amount is large, the plating property is deteriorated. Therefore, in order to improve the plating property, 0.6% or less is desirable.
Mnは、 鋼板の強度上昇に有効な元素である。 しかし、 0. 0 1 %未満ではこの効果が得られないので、 下限を 0. 0 1 %と した。 逆に、 添加量が多いと、 P、 S との共偏析が助長されるだけでなく 、 加工性が劣化する場合があるので、 3. 0 %を上限とする。  Mn is an element effective for increasing the strength of a steel sheet. However, since this effect cannot be obtained at less than 0.01%, the lower limit was set to 0.01%. Conversely, if the addition amount is large, not only co-segregation with P and S is promoted, but also the workability may be deteriorated, so the upper limit is 3.0%.
Pは、 粒界偏析による粒界破壊の助長をする元素であり、 低い方 が望ましいが、 極端に低減することは、 製造コス ト上好ましくない 。 また、 Pは、 耐食性を劣化させる元素であるので、 上限を 0. 0 2 %とする。 Sは、 腐食環境下での水素吸収を助長する元素であり、 低い方が 望ましいが、 極端に低減することは、 製造コス ト上好ましくない。 特に、 加工性を高めるためには、 低い方が望ましいので、 上限を 0 . 0 2 %とする。 P is an element that promotes grain boundary destruction due to grain boundary segregation, and it is preferable that P be low. However, extreme reduction is not preferable in terms of manufacturing cost. In addition, since P is an element that deteriorates corrosion resistance, the upper limit is set to 0.02%. S is an element that promotes the absorption of hydrogen in a corrosive environment. It is desirable that S be low, but extremely reducing it is not preferable in terms of manufacturing cost. Particularly, in order to enhance the workability, the lower the better, the upper limit is set to 0.02%.
A 1 は、 脱酸のため 0 . 0 1 %以上を添加するが、 添加量が増加 するとアルミナ等の介在物が増加し、 加工性が劣化するし、 また、 溶接性も劣化するので、 3 . 0 %を上限とする。 なお、 0 . 2 %以 上の添加は、 残留オーステナイ トの生成を抑制する効果があり、 望 ましい。  A1 is added in an amount of 0.01% or more for deoxidation.However, if the addition amount increases, inclusions such as alumina increase, thereby deteriorating the workability and the weldability. The upper limit is 0%. The addition of 0.2% or more has an effect of suppressing the generation of residual austenite, and is therefore preferable.
Nは、 加工性劣化や溶接時のブローホール発生にも寄与するため 少ない方がよい。 0 . 0 1 %を越えると加工性が劣化するので、 0 . 0 1 %を上限とする。  Since N contributes to the deterioration of workability and the occurrence of blowholes during welding, a smaller N is better. If the content exceeds 0.01%, the workability deteriorates. Therefore, the upper limit is set to 0.01%.
M gは、 M g 自身の化合物が耐遅れ破壊性向上に効果的なだけで なく、 他元素との複合析出物または複合晶出物を生成させ、 かつ、 それらの形態を、 耐遅れ破壊性向上に寄与するよう制御するのに必 要な元素であることから、 0 . 0 0 0 2 %以上添加する。  Mg is not only effective in improving the delayed fracture resistance of the compound itself, but also forms complex precipitates or crystallized substances with other elements, and changes their morphology to delayed fracture resistance. Since it is an element necessary for controlling to contribute to improvement, it is added in an amount of 0.0002% or more.
しかし、 0 . 0 1 %超では、 粗大酸化物および硫化物を生成して 、 形態制御に効果的でなくなる うえ、 薄鋼板の基本的要求特性であ る成形加工性を低下させるので、 上限を 0 . 0 1 %と した。  However, if the content exceeds 0.01%, coarse oxides and sulfides are generated, which is not effective for shape control, and also lowers the formability, which is a basic characteristic required for thin steel sheets. 0.01%.
次に、 V、 T i 、 N b、 Z r は強炭化物生成元素であり、 析出物 や介在物を生成して、 強度および耐遅れ破壊性を改善するのに必要 な元素である。  Next, V, T i, N b, and Z r are strong carbide forming elements, which are elements necessary for forming precipitates and inclusions and improving strength and delayed fracture resistance.
更に、 Vは、 鋼板の強度上昇および粒径の微細化に有効な元素で ある。  Further, V is an element effective for increasing the strength of the steel sheet and reducing the grain size.
しかし、 0 . 0 0 5 %未満ではこの効果が得られないので、 下限 を 0 . 0 0 5 %と した。 逆に、 1 %超含有すると炭窒化物の析出が 顕著になり、 延性低下が著しい。 このため上限を 1 %とした。 更に、 T i は、 鋼板の強度上昇および粒径の微細化に有効な元素 である。 しかし、 0 . 0 0 2 %未満では析出物の個数が低下するの で、 下限を 0 . 0 0 2 %と した。 逆に、 1 %超では粗大析出または 晶出物が生成して、 加工性および耐遅れ破壌性が低下する。 このた め、 上限を 1 %と した。 However, since this effect cannot be obtained if the content is less than 0.005%, the lower limit is set to 0.005%. Conversely, when the content exceeds 1%, precipitation of carbonitride becomes remarkable, and ductility decreases remarkably. Therefore, the upper limit was set to 1%. Further, Ti is an element effective for increasing the strength of the steel sheet and reducing the grain size. However, if the content is less than 0.02%, the number of precipitates decreases, so the lower limit is set to 0.02%. Conversely, if it exceeds 1%, coarse precipitates or crystallized substances are formed, and workability and delayed crushing resistance are reduced. For this reason, the upper limit was set at 1%.
更に、 N bは、 鋼板の強度上昇および細粒化に有効な元素である 。 しかし、 0 . 0 0 2 %未満ではこれらの効果が得られないので、 下限を 0 . 0 0 2 %と した。 逆に、 1 %超含有すると、 炭窒化物の 析出が多くなり加工性および耐遅れ破壊性が低下するので、 上限を 1 %とした。  Further, Nb is an element effective for increasing the strength and refining the steel sheet. However, these effects cannot be obtained at less than 0.002%, so the lower limit was made 0.002%. Conversely, if the content exceeds 1%, the precipitation of carbonitrides increases and the workability and delayed fracture resistance deteriorate, so the upper limit was made 1%.
更に、 Z r は、 鋼板の強度上昇および細粒化に有効な元素である 。 しかし、 0 . 0 0 2 %未満では析出物の個数が低下するので、 下 限を 0 . 0 0 2 %と した。 逆に、 1 %超では粗大析出物または晶出 物が生成して、 加工性および耐遅れ破壌性が低下する。 このため、 上限を 1 %と した。  Further, Zr is an element effective for increasing the strength and reducing the grain size of the steel sheet. However, if the content is less than 0.02%, the number of precipitates decreases, so the lower limit was made 0.02%. Conversely, if it exceeds 1%, coarse precipitates or crystallized substances are formed, and workability and delayed crushing resistance are reduced. Therefore, the upper limit was set to 1%.
次に、 C r 、 M o、 Wは、 炭化物形成元素および焼戻軟化抵抗元 素であり、 強度および耐遅れ破壌性を改善するのに必要な元素であ る。  Next, Cr, Mo, and W are carbide forming elements and temper softening resistance elements, and are elements necessary for improving strength and delayed rupture resistance.
更に、 C r は、 鋼板の強度上昇に有効な元素である。 しかし、 0 . 0 0 5 %未満ではこれらの効果が得られないので、 下限を 0 . 0 0 5 %と した。 逆に、 5 %超含有すると加工性低下が生じるので、 上限を 5 %と した。  Further, Cr is an element effective for increasing the strength of the steel sheet. However, these effects cannot be obtained at less than 0.005%, so the lower limit was made 0.05%. Conversely, if the content exceeds 5%, the workability decreases, so the upper limit was set to 5%.
更に、 M oは、 鋼板の焼入れ性を高め連続焼鈍設備で安定してマ ルテンサイ トを得るのに有効な元素であるだけでなく、 粒界を強化 して水素脆性の発生を抑制する効果を奏する元素である。 しかし、 0 . 0 0 5 %未満ではこれらの効果が得られないので、 下限を 0 . 0 0 5 %と した。 また、 5 %超ではこれらの効果が飽和するので、 上限を 5 %と した。 In addition, Mo is not only an effective element for improving the hardenability of steel sheets and stably obtaining martensite in continuous annealing equipment, but also has the effect of strengthening grain boundaries and suppressing the occurrence of hydrogen embrittlement. It is an element that plays. However, these effects cannot be obtained at less than 0.005%, so the lower limit was made 0.05%. Also, if it exceeds 5%, these effects will saturate, The upper limit is set at 5%.
更に、 Wは、 鋼板の強度上昇に有効な元素である。 しかし、 0. 0 0 5 %未満ではこの効果が得られないので、 下限を 0. 0 0 5 % とした。 逆に、 5 %超含有すると加工性低下が生じるので、 上限を 5 %とした。  Further, W is an element effective for increasing the strength of the steel sheet. However, this effect cannot be obtained at less than 0.05%, so the lower limit was made 0.05%. Conversely, if the content exceeds 5%, the workability decreases, so the upper limit was set to 5%.
次に、 C uは、 強化に有効である うえ、 C u 自身の微細析出が遅 れ破壊の向上にも寄与するので、 0. 0 0 5 %以上の添加とした。 一方、 過剰添加は、 加工性の劣化を招くので、 上限を 2. 0 %と し た。  Next, Cu is effective for strengthening, and the fine precipitation of Cu itself delays and contributes to the improvement of fracture. Therefore, the addition of 0.05% or more was made. On the other hand, excessive addition causes deterioration of workability, so the upper limit was set to 2.0%.
次に、 N i 、 C oは、 焼入れ性を高める強化元素である。  Next, Ni and Co are strengthening elements that enhance hardenability.
更に、 N i は、 N i硫化物を形成して水素侵入を抑制し遅れ破壌 特性を向上させる効果や、 鋼板の焼入れ性を高めて鋼板の強度を確 保する効果を奏する元素である。  In addition, Ni is an element that forms Ni sulfide to suppress hydrogen intrusion and improve delayed blasting properties, and to enhance the hardenability of the steel sheet to ensure the strength of the steel sheet.
しかし、 0. 0 0 5 %未満ではこれらの効果が得られないので、 下限を 0. 0 0 5 %とした。 逆に、 2 %超では加工性が悪くなるの で、 上限を 2 %と した。 '  However, these effects cannot be obtained if the content is less than 0.05%, so the lower limit is set to 0.005%. Conversely, if the content exceeds 2%, workability deteriorates, so the upper limit was set to 2%. '
更に、 C oは、 強化に有効であるため、 0. 0 0 5 %以上の添加 とした。 また、 過剰添加は加工性の劣化を招くので、 上限を 2. 0 %と した。  Further, since Co is effective for strengthening, it was added in an amount of 0.05% or more. In addition, since excessive addition causes deterioration of workability, the upper limit is set to 2.0%.
次に、 Bは、 鋼板の強度上昇に有効な元素である。 しかし、 0. 0 0 0 2 %未満では、 この効果が得られないので、 下限を 0. 0 0 0 2 %と した。 逆に、 0. 1 %超含有すると熱間加工性が劣化する ので、 上限を 0. 1.%とした。  Next, B is an element effective in increasing the strength of the steel sheet. However, if the content is less than 0.002%, this effect cannot be obtained, so the lower limit is set to 0.0002%. Conversely, if the content exceeds 0.1%, the hot workability deteriorates, so the upper limit was made 0.1%.
次に、 R EM、 C a、 Yは、 介在物の形態制御に有効で、 耐遅れ 破壌性に寄与するので、 0. 0 0 0 5 %以上の添加と した。 一方、 '過剰添加は熱間加工性を劣化させるので、 0. 0 1 %以下の添加と した。 次に、 製造方法について説明する。 Next, REM, Ca, and Y are effective for controlling the morphology of inclusions and contribute to delayed rupture resistance, so they were added in an amount of 0.0005% or more. On the other hand, 'excessive addition degrades hot workability, so the addition was made 0.01% or less. Next, the manufacturing method will be described.
まず、 規定した成分を有する铸片を熱間圧延する。 この際、 フエ ライ ト粒にひずみが過度に加わり加工性が低下するのを防ぐために First, a piece having the specified components is hot-rolled. At this time, in order to prevent the strain from being excessively applied to the ferrite grains and to reduce the workability,
、 A r 3以上で仕上圧延を実施する。 Finish rolling is performed at Ar 3 or more.
仕上圧延温度が高温すぎると、 焼鈍後の再結晶粒径および M gの 複合析出物または晶出物が必要以上に粗大化するので、 仕上圧延温 度は、 9 4 0 °C以下が望ましい。  If the finish rolling temperature is too high, the composite precipitate or crystal having a recrystallized grain size and Mg after annealing becomes coarser than necessary, so the finish rolling temperature is desirably 940 ° C or lower.
卷き取り温度については、 高温程、 再結晶や粒成長が促進され、 加工性の向上が期待できるが、 熱間圧延時に発生するスケール生成 も促進されて、 酸洗性が低下するので、 8 0 0 °C以下とする。  Regarding the coiling temperature, the higher the temperature, the more recrystallization and grain growth are promoted, and workability can be expected to be improved. However, scale formation that occurs during hot rolling is promoted, and pickling properties are reduced. It should be below 0 ° C.
一方、 卷き取り温度が低温になりすぎると鋼板が硬化して、 冷間 圧延時での負荷が高くなる。 このため、 巻き取り温度は、 5 0 0 °C 以上とする。  On the other hand, if the coiling temperature is too low, the steel sheet hardens and the load during cold rolling increases. For this reason, the winding temperature is set to 500 ° C. or higher.
酸洗後の冷間圧延においては、 圧下率が低いと鋼板の形状矯正が 難しくなるので圧下率の下限を 3 0 %とする。 また、 8 0 %を超え る圧下率で圧延すると、 鋼板のエッジ部に割れが発生したり、 形状 の乱れが発生するので、 上限を 8 0 %とする。  In cold rolling after pickling, if the draft is low, it is difficult to correct the shape of the steel sheet, so the lower limit of the draft is set to 30%. Further, if rolling is performed at a rolling reduction exceeding 80%, cracks will occur at the edges of the steel sheet and shape irregularities will occur, so the upper limit is set to 80%.
連続焼鈍温度は、 低すぎると、 未再結晶の状態になり鋼組織が硬 質化し、 逆に高すぎると、 結晶粒が粗大化しプレス時に肌荒れを起 こす場合があるので、 6 0 0 °C以上 9 5 0 °C以下とする。 焼鈍は、 連続焼鈍設備または箱焼鈍設備を用いて行う。  If the continuous annealing temperature is too low, it will be in an unrecrystallized state and the steel structure will be hardened.On the other hand, if it is too high, the crystal grains may become coarse and the surface may be roughened during pressing. Not less than 950 ° C. Annealing is performed using continuous annealing equipment or box annealing equipment.
また、 必要に応じて、 焼鈍後、 2 0 0〜 7 0 0 °Cの温度域で 1分 から 1 0時間保持して、 その後冷却しても良い。 この熱処理によ り 、 合金炭化物または窒化物 (例えば、 V、 C r 、 M o、 W含有の炭 窒化物) を析出させる。  If necessary, after annealing, the temperature may be maintained in a temperature range of 200 to 700 ° C. for 1 minute to 10 hours, and then cooled. By this heat treatment, alloy carbides or nitrides (for example, carbonitrides containing V, Cr, Mo, W) are precipitated.
これら析出物が、 新たな水素の トラップサイ ト と して働き、 耐遅 れ破壊性がよ り向上する。 温度時間条件が、 低温短時間になると十 分な析出が起こ らず、 高温長時間になると析出物が粗大化して トラ ップサイ トと して機能しなくなることから、 上記温度範囲と した。 前記の铸片は、 铸造速度が早いと M g化合物が過度に微細化し、 铸造速度が遅いと M g化合物が粗大化し、 かつ、 粒子数も少なくな り、 M g化合物の遅れ破壊制御が、 十分にその効果を発揮できない 場合が有る。 These precipitates act as new hydrogen trap sites, and the delayed fracture resistance is further improved. If the temperature and time conditions are low and short, The above temperature range was used because precipitation did not occur, and the precipitates became coarse and did not function as a trap site at high temperatures for long periods of time. In the above-mentioned piece, when the production speed is high, the Mg compound becomes excessively fine, and when the production speed is low, the Mg compound becomes coarse, and the number of particles is reduced. In some cases, the effect cannot be fully exhibited.
铸片の錶造速度と しては、 0 . 0 5〜 2 0 . O m Z分が望ましい 。 更に、 M g化合物の遅れ破壌性向上効果を安定的に利用するには 、 1 . 0〜 3 . O m Z分が好ましい。  The production speed of the piece is preferably 0.05 to 20.OmZ. Furthermore, in order to stably utilize the delayed rupture property improving effect of the Mg compound, the content of 1.0 to 3.0 OmZ is preferable.
なお、 本発明の鋼板は、 熱延鋼板、 冷延鋼板、 めっき鋼板のいず れでもかまわない。 更に、 めっきは、 通常の亜鉛めつき、 アルミめ つき等のいずれでもかまわない。 めっきは、 溶融めつきまたは電気 めっきのいずれでもよく、 更に、 めっき後に、 合金化熱処理を施し てもかまわないし、 複層めっきでもかまわない。  The steel sheet of the present invention may be any of a hot-rolled steel sheet, a cold-rolled steel sheet, and a plated steel sheet. Further, the plating may be any of normal zinc plating and aluminum plating. The plating may be hot dip plating or electroplating, and may be subjected to an alloying heat treatment after plating, or may be multi-layer plating.
また、 めっきを施さない鋼板の上や、 めっき鋼板の上にフィルム ラミネー ト処理を施した鋼板も、 本発明の範囲を逸脱するものでは なレ、。  Also, a steel sheet that is not plated or a steel sheet that has been subjected to a film lamination treatment on a plated steel sheet does not depart from the scope of the present invention.
更に、 本発明の高強度薄鋼板 (例えば 7 8 0 M P a以上の鋼板) を形成加工した自動車用強度部品 (例えばバンパーやドアイ ンパク トビーム等の補強部材) においても、 優れた材質特性 (強度、 剛性 等) が維持され、 かつ、 衝撃吸収性ゃ耐遅れ破壊性も良好であった 実施例  Furthermore, in the case of a high-strength component for an automobile (for example, a reinforcing member such as a bumper or a door impact beam) formed from the high-strength thin steel sheet (for example, a steel sheet of 780 MPa or more) of the present invention, excellent material properties (strength, Rigidity etc.) were maintained, and shock absorption and delayed fracture resistance were also good.
次に、 本発明を実施例に基づいて説明する .  Next, the present invention will be described based on examples.
表 1に示す成分の鋼を溶製し、 常法に従い、 連続铸造でスラブと した。 符号 A〜 J が本発明に従った成分の鋼で、 符号 K〜Mは成分 が、 本発明の範囲を逸脱するものである。 これらの鋼を、 加熱炉中で 1 1 6 0〜 1 2 5 0 °Cの温度で加熱し 、 8 7 0〜 9 0 0 °Cの仕上げ温度で熱間圧延を行い、 6 5 0〜 7 5 0 °Cにて卷き取った。 Steels with the components shown in Table 1 were melted and made into slabs by continuous production in accordance with a conventional method. Symbols A to J are steels of the components according to the present invention, and symbols K to M are those whose components deviate from the scope of the present invention. These steels are heated in a heating furnace at a temperature of 116 to 125 ° C and hot rolled at a finishing temperature of 87 to 900 ° C, Winded at 50 ° C.
これに続いて、 符号 H以外は、 酸洗後に冷間圧延を行い、 次いで 再結晶焼鈍を行い、 その後、 0. 4 %の調質圧延を施して冷延鋼板 と した。  Subsequently, except for the symbol H, cold rolling was performed after pickling, followed by recrystallization annealing, and then temper rolling of 0.4% to obtain a cold-rolled steel sheet.
また、 符号 I、 J は、 目付量が片面 5 0 gZrn2 の合金化溶融亜 鉛めつき鋼板と し、 J については、 更に、 フィルムラミネート処理 を施した。 表 2に、 鋼板の製造方法と材質特性を示す。 Further, reference numeral I, J are basis weight and alloyed molten zinc plated steel sheet of single-sided 5 0 gZrn 2, for J, was further subjected to film lamination. Table 2 shows the steel sheet manufacturing methods and material properties.
表 3に、 鋼板の耐遅れ破壊性に係る評価を示す。 評価方法は、 8 0 mm X 3 0 m mの短冊試験 を曲げ加工し、 表面に耐水性の歪み ゲージを装着した後、 0. 5 m o 1 Z 1 の硫酸中に漬け、 電流によ つて電解して、 水素を侵入させる方法である。  Table 3 shows the evaluation of the delayed fracture resistance of the steel sheet. The evaluation method was to bend a strip test of 80 mm x 30 mm, attach a water-resistant strain gauge to the surface, immerse it in 0.5 mo 1 Z1 sulfuric acid, and electrolyze by electric current. This is a method for invading hydrogen.
その後、 割れの発生を評価した。 曲げ加工の半径は、 5 mm、 1 0 mm、 1 5 mmとし、 与える応力は、 それぞれ、 6 0 MP a と 9 0 M P a と した。  Thereafter, the occurrence of cracks was evaluated. The bending radii were 5 mm, 10 mm, and 15 mm, and the applied stress was 60 MPa and 90 MPa, respectively.
表 2および表 3に示すよ うに、 本発明例である符号 1 、 2、 3、 5、 7〜 1 2では、 自動車の補強部品に適用するのに充分な引張強 度と延性を示しており、 割れ発生までの時間も長く、 耐遅れ破壌性 に優れている。  As shown in Tables 2 and 3, reference numerals 1, 2, 3, 5, and 7 to 12, which are examples of the present invention, show sufficient tensile strength and ductility to be applied to reinforcing parts of automobiles. Also, the time until crack generation is long, and it is excellent in delayed rupture resistance.
これらに対して、 比較例である符号 4、 6、 1 3〜 1 5では、 成 分、 焼鈍温度のいずれかが、 本発明で限定する範囲から逸脱してい る。  On the other hand, in Comparative Examples 4, 6, and 13 to 15, any one of the components and the annealing temperature is out of the range limited by the present invention.
符号 4、 6は、 式 (A) の値が本発明の範囲から逸脱しており、 . 割れ発生までの時間が短い。 符号 1 3〜 1 5は、 本発明の成分範囲 を逸脱しており、 水素の トラップサイ ト となる晶出物や析出物の個 数が少ないか、 反対に、 水素を トラップしすぎるために割れ発生ま での時間が短くなり、 本発明で得られる耐遅れ破壊性との差は明ら かである。 Symbols 4 and 6 indicate that the value of the formula (A) deviates from the range of the present invention, and that the time until crack generation is short. Reference numerals 13 to 15 deviate from the component range of the present invention, and the number of crystallized substances and precipitates serving as hydrogen trap sites is small, or conversely, cracks occur because hydrogen is trapped too much. Occur And the difference from the delayed fracture resistance obtained in the present invention is apparent.
表 1 分類 C S i Mn P S Al N Mg T i Nb V Table 1 Classification C S i Mn P S Al N Mg T i Nb V
A 発明鋼 0. 15 0. 50 2. 50 0. 016 0. 006 0, 035 0. 006 0. 0042 A Invented steel 0.15 0. 50 2.50 0. 016 0. 006 0, 035 0. 006 0. 0042
Β 発明鋼 0. 12 0. 62 2. 60 0. 017 0. 006 0. 032 0. 005 0. 0038 0. 050  Β Invented steel 0.12 0.62 2.60 0.017 0.006 0. 032 0.005 0.0038 0. 050
C 発明鋼 0. 15 0. 50 2. 90 0. 015 0. 004 0. 035 0. 004 0. 0039 0. 050  C Inventive steel 0.15 0.50 2.90 0.015 0.004 0.035 0.004 0.0039 0.050
D 発明鋼 0. 14 0. 44 2. 60 0. 015 0. 005 0. 034 0. 006 0. 0052 0. 100 0. 042 D Invented steel 0.14 0.44 2.60 0.015 0.005 0.034 0.006 0.0052 0.100 0.042
E 発明鋼 0. 15 0. 50 2. 60 0, 007 0. 002 0. 030 0. 003 0. 0028 0, 050 0. 012 E Invented steel 0.15 0. 50 2.60 0, 007 0. 002 0. 030 0. 003 0. 0028 0, 050 0. 012
C  C
F 発明鋼 0. 16 丄. 03 2. 30 0. 011 0. 001 0. 054 0. 004 0, 0055 0. 054  F Inventive steel 0.16 丄. 03 2.30 0. 011 0. 001 0. 054 0. 004 0, 0055 0. 054
G 発明鋼 0. 16 1. 52 2. 33 0. 012 0. 003 0. 325 0. 005 0. 0033 0. 131  G Invention steel 0.16 1.52 2.33 0.012 0.003 0.325 0.005 0.0033 0.131
ロ 「  B "
H 発明ロ鋼 0. 21 0, 52 丄. 51 0. 011 0. 002 0. 312 , 0. 004 0. 0032 0. 011  H Invented steel 0.21 0, 52 丄. 51 0. 011 0. 002 0. 312, 0.004 0.0032 0. 011
1  1
丄 免 ^鋼 U . lb Z o. 101 U . UUo ϋ. 003 0. 7 l 0. UU1 ϋ . UU48 0. 055 0. 051 0. 051 免 Immunity ^ Steel U. Lb Z o. 101 U. UUo ϋ. 003 0. 7 l 0. UU1 ϋ. UU48 0.
J 発明鋼 0. 15 0. 01 2. 55 0. 009 0. 003 l . 2l l 0. 003 0. 0054 0. 088 0. 041J Invented steel 0.15 0.01 2.55 0.0.09 0.003 l.2l 0.003 0.0054 0.088 0.041
K 比較鋼 0. 15 0. 50 2. 50 0. 016 0. 006 0. 035 0. 006 0. 051 K Comparative steel 0.15 0.50 2.50 0.016 0.006 0.035 0.006 0.051
L 比較鋼 0. 12 0. 48 2. 33 0. 015 0. 005 0. 035 0. 005 0. 0012 1. 311 L Comparative steel 0.12 0.48 2.33 0.015 0.005 0.035 0.005 0.0012 1.311
M 比較鋼 0. 18 0. 52 2. 10 0. 011 0. 003 0. 035 0. 002 0. 008 M Comparative steel 0.18 0.52 2.10 0. 011 0.003 0. 035 0. 002 0.008
表 1 (続き) Table 1 (continued)
板厚  Board thickness
Cr Mo W Cu Ni Co B REM Ca Y ロロ f  Cr Mo W Cu Ni Co B REM Ca Y Lolo f
(. mm; \  (. mm; \
A 、ノ八 A, Nopachi
1. 2 冷延鋼板 1.2 Cold rolled steel sheet
B 1. 4 冷延鋼板 c 、/八 B 1.4 Cold rolled steel sheet c
0. 300 1. 2 冷延鋼板 0.300 1.2 Cold rolled steel sheet
D 、/八 D, / eight
0. 01 0. 01 1. 0 冷延鋼板 , (J. ΌΖ U. Ul U. U 0. 8 冷延鋼板 0. 01 0. 01 1.0 Cold rolled steel sheet, (J. ΌΖ U. Ul U. U 0.8 Cold rolled steel sheet
CO CO
r Ul U. 01 U. 0005广  r Ul U. 01 U. 0005
丄. 6 冷延鋼板 し U. Ubl U. 11 u. uuy U. UUU5 0, 0016 1. 4 冷延鋼板 I. 6 Cold rolled steel sheet U. Ubl U. 11 u. Uuy U. UUU5 0, 0016 1.4 Cold rolled steel sheet
H 3. 4 熱延鋼板H 3.4 Hot rolled steel sheet
I ϋ. zoo 1. ffifnめつさ鋼板I ϋ. Zoo 1. ffifn mesas steel plate
J 0. 02 0. 286 0. 013 0. 02 0. 0012 0. 0022 1. 8 亜鉛めつき鋼板J 0.02 0.286 0.013 0.02 0.0012 0.0022.1.8 Galvanized steel sheet
K 1. 2 冷延鋼板K 1.2 Cold rolled steel sheet
L 2. 12 0. 012 1. 4 冷延鋼板L 2.12 0. 012 1.4 Cold rolled steel sheet
M 0. 0011 0. 0015 1. 6 冷延鋼板 M 0.0011 0.0015 1.6 Cold rolled steel sheet
表 2Table 2
3 鋼 製 造 条 件 引張特性 番号 番号 分類 鐃造谏 t度. カロ執温度 仕上温度 捲 ΒΫ溫度 焼 iff 度 τς F T 3 Steel making conditions Tensile properties No. No. Classification Cylindrical structure t degree. Caro temperature Finishing temperature Winding degree iff degree τ T F T
( rn メ m i n ( °C ) ( °C ) ( °C ) ( °C ) (MPa) ( o/0 )(rn Me min (° C) (° C) (° C) (° C) (MPa) (o / 0 )
1 A 発明例 1. 5 1180 880 650 850 1410 81 A Invention example 1.5 1180 880 650 850 1410 8
2 B 発明例 1. 4 1190 870 700 820 1160 122 B Invention example 1.4 1190 870 700 820 1160 12
3 c 発明例 2. 1 1240 880 650 820 1380 83 c Inventive example 2.1 1240 880 650 820 1380 8
4 比較例 1. 7 1190 880 550 550 1610 24 Comparative example 1.7 1190 880 550 550 1610 2
5 D 発明例 1. 5 1230 900 600 840 1360 9 t 0 5 D Invention example 1.5 1230 900 600 840 1360 9 t 0
CO 6 比較例 1. 6 1210 870 550 97 1310 10  CO 6 Comparative example 1.6 1210 870 550 97 1310 10
7 E 発明例 1. 3 1200 880 600 820 1410 8 7 E Inventive example 1.3 1200 880 600 820 1410 8
8 F 発明例 1 5 1150 700 830 1480 s g G ¾明例 1. 8 1160 880 600 800 1420 78 F Invention example 1 5 1150 700 830 1480 sg G Explanation example 1.8 1160 880 600 800 1420 7
10 H 発明例 1. 7 1230 900 550 1400 810 H Invention example 1.7 1230 900 550 1400 8
11 I 発明例 1. 6 1200 900 650 810 1390 811 I Inventive example 1.6 1200 900 650 810 1390 8
12 J 発明例 1. 5 1220 880 600 820 1530 812 J Inventive example 1.5 5 1220 880 600 820 1530 8
13 K 比較例 1. 7 1180 890 600 840 1410 813 K Comparative example 1.7 1180 890 600 840 1410 8
14 L 比較例 1. 8 1190 890 600 850 1390 414 L Comparative example 1.8 1190 890 600 850 1390 4
15 M 比較例 1. 2 1220 890 600 830 1470 8 15 M Comparative example 1.2 2 1220 890 600 830 1470 8
表 3 Table 3
割れ発生までの時間(min)  Time to crack generation (min)
 One
分類 残留 0/率 径 式(A) 曲げ半径 15mm 曲げ半径 10mm 曲げ半径 5 mm 号 (%) ( μ m) (個 Zmm2) 応力 60 応力 90 応力 60 応力 90 応力 60 応力 90 kgf/ mm^ kgf/ mm kgf/ mm2 kgf / mm2 kgf/ mm2 kgf/ mm2 上 明例 2. b 0.2 1000 15.92 〇 〇 〇 〇 〇 〇Classification Residual 0 / Ratio Diameter (A) Bending radius 15mm Bending radius 10mm Bending radius 5mm No. (%) (Μm) (pcs.Zmm 2 ) Stress 60 Stress 90 Stress 60 Stress 90 Stress 60 Stress 90 kgf / mm ^ kgf / mm kgf / mm 2 kgf / mm 2 kgf / mm 2 kgf / mm 2 Example 2.b 0.2 1000 15.92 〇 〇 〇 〇 〇 〇
2 §明例 3.7 0.18 1550 11.62 〇 〇 〇 〇 〇 〇2 Examples 3.7 0.18 1550 11.62 〇 〇 〇 〇 〇 〇
3 明例 4.2 0.12 2500 10.63 〇 〇 〇 〇 〇 〇3 Example 4.2 0.12 2500 10.63 〇 〇 〇 〇 〇 〇
4 比車父例 3.0 0.45 1000 8.82 〇 X 〇 X X X4 Comparative car father 3.0 0.45 1000 8.82 〇 X 〇 X X X
"
5 発明例 2.7 1 0U0 17. 4 〇 〇 〇 〇 〇 〇 5 Invention 2.7 1 0U0 17.4 〇 〇 〇 〇 〇 〇
0 比較例 3.3 0.12 300 9.45 X X X X X X0 Comparative example 3.3 0.12 300 9.45 X X X X X X
7 明例 3.1 0.2 1600 11.63 〇 〇 〇 〇 〇 〇7 Example 3.1 0.2 1600 11.63 〇 63 〇 〇 〇 〇
8 明例 2.7 0.18 3400 15.61 ο ο リ u U 8 Example 2.7 0.18 3400 15.61 ο ο ri u U
y 先 ^ ί! ム、 (J. Ib o4UL) 丄. L6 〇 〇 〇 〇 〇 〇y destination ^ ί! m, (J. Ib o4UL) 丄. L6 〇 〇 〇 〇 〇 〇
10 発明例 2.8 0.14 2600 14.46 〇 〇 〇 〇 〇 〇10 Invention example 2.8 0.14 2600 14.46 〇 〇 〇 〇 〇 〇
11 発明例 3.1 0.13 2200 12.11 〇 〇 〇 〇 〇 〇11 Invention Example 3.1 0.13 2200 12.11 〇 〇 〇 〇 〇 〇
12 発明例 2.4 0.12 1200 19.02 〇 〇 〇 〇 〇 〇12 Invention example 2.4 0.12 1200 19.02 〇 〇 〇 〇 〇 〇
13 比較例 2.5 0.19 1000 9.55 〇 X X X X X13 Comparative Example 2.5 0.19 1000 9.55 〇 X X X X X
14 比較例 4.2 0.2 1200 6.21 X X X X X X14 Comparative Example 4.2 0.2 1200 6.21 X X X X X X
15 比較例 3.2 0.2 1000 3.31 X X X X X X 15 Comparative Example 3.2 0.2 1000 3.31 XXXXXX
〔産業上の利用可能性〕 [Industrial applicability]
以上説明した通り、 本発明による高強度薄鋼板では、 水素の トラ ップサイ トである M g化合物または複合晶出 · 析出物を効果的に分 散させ、 延性、 および、 成形加工後の耐遅れ破壌性を両立させるこ とができる。  As described above, in the high-strength thin steel sheet according to the present invention, the Mg compound or the composite crystallization / precipitate, which is a hydrogen trap site, is effectively dispersed, and the ductility and the delayed fracture resistance after the forming process are reduced. It is possible to balance soil properties.
本発明の高強度薄鋼板を形成加工した自動車用強度部品 (例えば パンパ一やドアイ ンパク ト ビーム等の補強部材) においても、 優れ た材質特性が維持され、 かつ、 衝撃吸収性ゃ耐遅れ破壊性も良好で めった。  Even in the automotive strength parts (for example, reinforcement members such as pampers and door impact beams) formed and processed from the high-strength thin steel sheet of the present invention, excellent material properties are maintained, and shock absorption and delayed fracture resistance are maintained. Was also good.

Claims

求 の 範 囲 Range of request
1. 質量%で、 1. In mass%,
C : 0 . 0 5 〜 0 . 3 %、  C: 0.05-0.3%,
S i : 3 . 0 %以下、  S i: 3.0% or less,
M n : 0 . 0 1〜 3 . 0 %、  Mn: 0.01 to 3.0%,
P : 0 . 0 2 %以下、  P: 0.02% or less,
S : 0 . 0 2 %以下、  S: 0.02% or less,
A 1 : 0 . 0 1 〜 3 . 0 %、  A1: 0.01 to 3.0%,
N : 0 . 0 1 %以下、  N: 0.01% or less,
M g : 0 . 0 0 0 2 〜 0 . 0 1 %  Mg: 0.0000 to 0.001%
を含有し、 残部が鉄および不可避的不純物からなり、 さ らに、 鋼板組織中の残留オーステナイ トの体積率 が 7 %以下であり、 M gの酸化物、 硫化物、 複合晶出物および複合析出物のいずれか 1 種以上が、 With the balance being iron and unavoidable impurities, with a volume fraction of residual austenite in the steel sheet structure of 7% or less, Mg oxides, sulfides, complex precipitates and composites. At least one of the precipitates is
平均粒子径 d : 0 . 0 1〜 5 . 0 ju m  Average particle diameter d: 0.01 ~ 5.0 jum
密度 J : 1平方 m mあたり 1 0 0〜 1 0 0 0 0 0個、 および、 分布 : 平均粒子径からの標準偏差 σ と平均粒子経 dの比 ≤  Density J: 100 to 100,000 pieces per square mm and distribution: Ratio of standard deviation σ from average particle diameter to average particle diameter d ≤
1 . 0  Ten
を満たし、 かつ、 Satisfy and
残留オーステナイ トの体積率 V γ (% ) と引張強度 T S (M P a ) が式 (A) を満たす The volume fraction V γ (%) of residual austenite and the tensile strength T S (M P a) satisfy equation (A).
ことを特徴とする成形加工後の耐遅れ破壊性に優れた高強度薄鋼板 式 (A) : 1 0 0 0 ( V y - 0 . 1 ) "5· 5 + α (M g - 4 0 ) 2 High strength thin steel sheet type which is excellent in delayed fracture resistance after molding, characterized in that (A): 1 0 0 0 (. V y - 0 1) "5 · 5 + α (M g - 4 0) Two
- 5 0 ( d — 0 . 2 ) 2 + l . l l n p + 7 0 0 ( T S — 6 8 0 ) "°· 9≥ 1 0 で、 0; =— 0. 0 0 5 (M g≤ 4 0 ) 、 a : — 0. 0 0 2 ( M g > 4 0 ) -5 0 (d — 0.2) 2 + l. Llnp + 7 0 0 (TS — 6 8 0) "° 9 ≥ 10 And 0; = —0.05 (Mg≤40), a: —0.02 (Mg> 40)
V y : 残留オーステナイ ト体積率 (%)  V y: Volume ratio of residual austenite (%)
M g M g量 (質量 p P m)  M g M g amount (mass p P m)
d 粒径 ( μ m)  d Particle size (μm)
P 密度 (個/ mm2 ) P density (pcs / mm 2 )
T S 引張強度 (MP a )  T S Tensile strength (MP a)
であり、 更に、 And, furthermore,
( i ) 1 0 0 0 ( V - 0. 1 ) - 5. 5 0の時は、 1 0 0 0 ( V - 0. 1 ) "5· 5 = 1 0 (I) 1 0 0 0 ( V - 0. 1) - 5. time of 5 0, 1 0 0 0 (V - 0. 1) "5 · 5 = 1 0
(ii) 2≤M g≤ 1 0 0 p p m  (ii) 2≤M g≤1 0 0 p p m
(iii) O . 0 1 ≤ d≤ 5. 0 μ m, ( d - 0 2 ) ≤ 0. 2 の時は、 ( d _ 0. 2 ) 2 = 0. 2 (iii) When O. 0 1 ≤ d ≤ 5.0 μm, (d-0 2) ≤ 0.2, then (d _ 0.2) 2 = 0.2
(iv) 1 0 0≤ p ≤ 1 0 0 0 0 0個/ mm2 (iv) 1 0 0 ≤ p ≤ 1 0 0 0 0 0 pcs / mm 2
( v ) 7 8 0 MP a≤ T S  (v) 7 8 0 MP a≤ T S
である。 It is.
2. 更に 質量%で、  2. Further mass%
V : 0 0 0 5〜 1 %、  V: 0 0 0 5 to 1%,
T i : 0 0 0 2〜 1 %、  T i: 0 0 0 2 to 1%,
N b : 0 0 0 2〜 1 %、  Nb: 0 0 0 2 to 1%,
Z r : 0 0 0 2〜: 1 %  Zr: 0 0 0 2 to: 1%
の 1種または 2種以上を含有することを特徴とする請求の範囲 1 に 記載の成形加工後の耐遅れ破壊性に優れた高強度薄鋼板。 2. The high-strength thin steel sheet having excellent delayed fracture resistance after forming according to claim 1, characterized by containing one or more of the following.
3. 更に、 質量%で、  3. Furthermore, in mass%,
C r : 0. 0 0 5〜 5 %、  C r: 0.05 to 5%,
M 0 : 0. 0 0 5〜 5 %、  M0: 0.05-5%,
W : 0. 0 0 5〜 5 % の 1種または 2種以上を含有することを特徴とする請求の範囲 1 ま たは 2に記載の成形加工後の耐遅れ破壊性に優れた高強度薄鋼板。 W: 0.05 to 5% 3. The high-strength thin steel sheet having excellent delayed fracture resistance after forming according to claim 1 or 2, characterized by containing one or more of the following.
4. 更に、 質量%で、  4. Furthermore, in mass%,
C u : 0. 0 0 5〜 2. 0 %  Cu: 0.05 to 2.0%
を含有することを特徴とする請求の範囲 1〜 3のいずれかに記載の 成形加工後の耐遅れ破壊性に優れた高強度薄鋼板。 A high-strength thin steel sheet having excellent delayed fracture resistance after forming according to any one of claims 1 to 3, wherein the steel sheet comprises:
5. 更に、 質量%で、  5. Furthermore, in mass%,
N i : 0. 0 0 5〜 2. 0 %、  N i: 0.005 to 2.0%,
C o : 0. 0 0 5〜 2. 0 %  C o: 0.05 to 2.0%
の 1種または 2種以上を含有することを特徴とする請求の範囲 1〜 4のいずれかに記載の成形加工後の耐遅れ破壌性に優れた高強度薄 。 The high-strength thin film having excellent delayed crushing resistance after molding according to any one of claims 1 to 4, characterized by containing one or more of the following.
6. 更に、 質量%で、  6. Furthermore, in mass%,
B : 0 , 0 0 0 2〜 0. 1 %  B: 0, 0 0 0 2 to 0.1%
を含有することを特徴とする請求の範囲 1〜 5のいずれかに記載の 成形加工後の耐遅れ破壌性に優れた高強度薄鋼板。 A high-strength thin steel sheet having excellent delayed rupture resistance after forming according to any one of claims 1 to 5, characterized by comprising:
7. 更に、 質量%で、  7. Furthermore, in mass%,
R EM : 0. 0 0 0 5〜 0. 0 1 %、  R EM: 0.0 0 0 0 5 to 0.0 1%,
C a : 0. 0 0 0 5〜 0. 0 1 %、  C a: 0.0 0 0 0 5 to 0.0 1%,
Y : 0. 0 0 0 5〜 0. 0 1 %  Y: 0.0 0 0 0 5 to 0.0 1%
の 1種または 2種以上を含有することを特徴とする請求の範囲 1〜 6のいずれかに記載の成形加工後の耐遅れ破壊性に優れた高強度薄 鋼板。 The high-strength thin steel sheet having excellent delayed fracture resistance after forming according to any one of claims 1 to 6, characterized by containing one or more of the following.
8. 請求の範囲 1〜 7に記載の成形加工後の耐遅れ破壊性に優れ た高強度薄鋼板が、 熱延鋼板または冷延鋼板であることを特徴とす る成形加工後の耐遅れ破壌性に優れた高強度薄鋼板。  8. The high-strength thin steel sheet excellent in delayed fracture resistance after forming according to claims 1 to 7 is a hot-rolled steel sheet or a cold-rolled steel sheet, characterized in that it has a delayed fracture resistance after forming processing. High-strength steel sheet with excellent loamy properties.
9. 請求の範囲 1〜 7に記載の成形加工後の耐遅れ破壊性に優れ た高強度薄鋼板において、 該鋼板に亜鉛めつきの表面処理を施した ことを特徴とする成形加工後の耐遅れ破壌性に優れた高強度薄鋼板 9. Excellent resistance to delayed fracture after forming as described in claims 1 to 7 A high-strength thin steel sheet having excellent delayed rupture resistance after forming, characterized in that the steel sheet is subjected to a surface treatment with zinc plating.
1 0 . 請求の範囲 8または 9に記載の成形加工後の耐遅れ破壊性 に優れた高強度薄鋼板において、 更にフィルムラミネー ト処理を施 したことを特徴とする成形加工後の耐遅れ破壤性に優れた高強度薄 鋼板。 10. The high-strength thin steel sheet having excellent delayed fracture resistance after forming according to claim 8 or 9, further comprising a film laminating treatment, wherein the delayed fracture resistance after forming is provided. High-strength thin steel sheet with excellent heat resistance.
1 1 . 請求の範囲 1〜 7のいずれかに記載の組成からなる铸片を 铸造し、 A r3 点以上の仕上温度で熱間圧延を施し、 5 0 0〜 8 0 0 °Cで捲取り、 次いで、 酸洗した後、 圧下率 3 0〜 8 0 %で冷間圧 延を施し、 その後、 6 0 0 °C以上 9 5 0 °C以下に均熱して再結晶焼 鈍を施し、 次いで、 調質圧延を施すことを特徴とする成形加工後の 耐遅れ破壊性に優れた高強度薄鋼板の製造方法。 1 1. A piece having the composition according to any one of claims 1 to 7 is manufactured, hot-rolled at a finishing temperature of Ar 3 or more, and rolled at 500 to 800 ° C. Then, after pickling, cold rolling is performed at a rolling reduction of 30 to 80%, and then, recrystallization annealing is performed by soaking at a temperature of 600 to 950 ° C. Next, a method for producing a high-strength thin steel sheet having excellent delayed fracture resistance after forming, characterized by subjecting to temper rolling.
1 2 . 請求の範囲 1 1に記載の成形加工後の耐遅れ破壊性に優れ た高強度薄鋼板の製造方法において、 焼鈍後、 2 0 0〜 7 0 0 °Cの 温度域で 1分から 1 0時間保持することを特徴とする成形加工後の 耐遅れ破壊性に優れた高強度薄鋼板の製造方法。  12. The method for producing a high-strength thin steel sheet having excellent delayed fracture resistance after forming according to claim 11, wherein after annealing, a temperature range of 1 minute to 1 minute in a temperature range of 200 to 700 ° C. A method for producing a high-strength thin steel sheet having excellent delayed fracture resistance after forming, characterized by holding for 0 hours.
1 3 . 請求の範囲 1〜 7に記載の成形加工後の耐遅れ破壊性に優 れた高強度薄鋼板により作製されたことを特徴とする自動車用強度 部 o  13. A strength part for automobiles characterized by being made of a high-strength thin steel sheet having excellent delayed fracture resistance after forming according to claims 1 to 7.
PCT/JP2003/006617 2003-05-27 2003-05-27 High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet WO2004106571A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/558,579 US20070006948A1 (en) 2003-05-27 2003-05-27 High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof , and automobile parts requiring strength manufactured from high strength thin steel sheet
AU2003235443A AU2003235443A1 (en) 2003-05-27 2003-05-27 High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet
PCT/JP2003/006617 WO2004106571A1 (en) 2003-05-27 2003-05-27 High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet
DE60333400T DE60333400D1 (en) 2003-05-27 2003-05-27 METHOD OF MANUFACTURING HIGHLY RESISTANT THIN STEEL PLATE WITH EXCELLENT RESISTANCE TO DELAYED BREAK AFTER FORMING
EP03817075A EP1637618B1 (en) 2003-05-27 2003-05-27 Method for manufacturing high strength steel sheets with excellent resistance to delayed fracture after forming
US12/928,310 US20110120598A1 (en) 2003-05-27 2010-12-07 High-strength steel sheets with excellent resistance to delayed fracture after forming, method for manufacturing the same, and high-strength automotive part manufactured of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/006617 WO2004106571A1 (en) 2003-05-27 2003-05-27 High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/928,310 Division US20110120598A1 (en) 2003-05-27 2010-12-07 High-strength steel sheets with excellent resistance to delayed fracture after forming, method for manufacturing the same, and high-strength automotive part manufactured of the same

Publications (1)

Publication Number Publication Date
WO2004106571A1 true WO2004106571A1 (en) 2004-12-09

Family

ID=33485770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006617 WO2004106571A1 (en) 2003-05-27 2003-05-27 High strength thin steel sheet excellent in resistance to delayed fracture after forming and method for preparation thereof, and automobile parts requiring strength manufactured from high strength thin steel sheet

Country Status (5)

Country Link
US (2) US20070006948A1 (en)
EP (1) EP1637618B1 (en)
AU (1) AU2003235443A1 (en)
DE (1) DE60333400D1 (en)
WO (1) WO2004106571A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441723C (en) * 2005-12-15 2008-12-10 株式会社神户制钢所 Steel having superior impact absorbency and toughness of parent material
CN109371329A (en) * 2018-12-24 2019-02-22 黄石华中模具材料研究所 A kind of high temperature resistant synthetic quartz molding die Steel material and preparation method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068676A1 (en) * 2004-01-14 2005-07-28 Nippon Steel Corporation Hot dip zinc plated high strength steel sheet excellent in plating adhesiveness and hole expanding characteristics
JP4510488B2 (en) * 2004-03-11 2010-07-21 新日本製鐵株式会社 Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same
JP5214905B2 (en) * 2007-04-17 2013-06-19 株式会社中山製鋼所 High strength hot rolled steel sheet and method for producing the same
EP2216422B1 (en) * 2007-11-22 2012-09-12 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet
CN102031457A (en) * 2010-12-23 2011-04-27 龙南龙钇重稀土科技股份有限公司 Yttrium-containing low-alloy steel plate hammer
US9127409B2 (en) * 2012-04-23 2015-09-08 Nippon Steel & Sumitomo Metal Corporation Rail
US20150203053A1 (en) * 2012-07-03 2015-07-23 Modul-System Hh Ab Shelf
WO2015185956A1 (en) * 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
DE102014017274A1 (en) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Highest strength air hardening multiphase steel with excellent processing properties and method of making a strip from this steel
EP3269836B1 (en) * 2015-03-13 2019-01-02 JFE Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing same
WO2016182098A1 (en) * 2015-05-12 2016-11-17 주식회사 포스코 Ultra-high strength hot-rolled steel sheet having excellent bending workability and method for manufacturing same
CN107690483A (en) * 2015-06-03 2018-02-13 德国沙士基达板材有限公司 The method that the strain hardening part made of galvanized steel, its production method and production are applied to the steel band of part distortion hardening
JP6610607B2 (en) * 2017-04-25 2019-11-27 Jfeスチール株式会社 Method for evaluating delayed fracture characteristics of high strength steel sheets
CN107541659B (en) * 2017-08-30 2019-05-24 宁波亿润汽车零部件有限公司 A kind of air admission fork pipe holder
KR102131537B1 (en) * 2018-11-30 2020-07-08 주식회사 포스코 Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171629A (en) 1997-08-29 1999-03-16 Nippon Steel Corp Thick steel plate for structural purpose excellent in strength and toughness
JP2001288531A (en) 2000-04-05 2001-10-19 Nippon Steel Corp Steel for machine structure in which coarsening of crystal grain is suppressed
JP2002173739A (en) * 2000-12-01 2002-06-21 Nippon Steel Corp High strength steel having excellent hydrogen embrittlement resistance
JP2003166035A (en) * 2001-11-28 2003-06-13 Nippon Steel Corp High-strength thin steel sheet superior in delayed fracture resistance after being formed, manufacturing method therefor, and high strength component for automobile made of the high-strength thin steel sheet

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481418B2 (en) * 1997-03-26 2003-12-22 新日本製鐵株式会社 Thick steel plate with excellent toughness of weld heat affected zone
JP4267126B2 (en) * 1998-05-01 2009-05-27 新日本製鐵株式会社 Steel material excellent in delayed fracture resistance and method for producing the same
DE60020522T2 (en) * 1999-10-12 2005-11-24 Nippon Steel Corp. STEEL FOR WELDED STRUCTURES, IN WHICH TOGGLE IS INDEPENDENT OF THE HEAT ENTRY, AND METHOD OF MANUFACTURING
US6866725B2 (en) * 2000-02-28 2005-03-15 Nippon Steel Corporation Steel pipe excellent in formability and method of producing the same
JP3958921B2 (en) * 2000-08-04 2007-08-15 新日本製鐵株式会社 Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
WO2002055751A1 (en) * 2000-12-29 2002-07-18 Nippon Steel Corporation High-strength molten-zinc-plated steel plate excellent in deposit adhesion and suitability for press forming and process for producing the same
BR0210265B1 (en) * 2001-06-06 2013-04-09 Hot-dip galvanized or galvanized steel sheet.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171629A (en) 1997-08-29 1999-03-16 Nippon Steel Corp Thick steel plate for structural purpose excellent in strength and toughness
JP2001288531A (en) 2000-04-05 2001-10-19 Nippon Steel Corp Steel for machine structure in which coarsening of crystal grain is suppressed
JP2002173739A (en) * 2000-12-01 2002-06-21 Nippon Steel Corp High strength steel having excellent hydrogen embrittlement resistance
JP2003166035A (en) * 2001-11-28 2003-06-13 Nippon Steel Corp High-strength thin steel sheet superior in delayed fracture resistance after being formed, manufacturing method therefor, and high strength component for automobile made of the high-strength thin steel sheet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Iron and Steel Institute of Japan, Ad-hoc Group on Structures and Characteristics of Materials, Study Group on Delayed Fracture of High-strength Steels", NEW DEVELOPMENTS IN ELUCIDATION OF DELAYED FRACTURE, January 1997 (1997-01-01)
See also references of EP1637618A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441723C (en) * 2005-12-15 2008-12-10 株式会社神户制钢所 Steel having superior impact absorbency and toughness of parent material
CN109371329A (en) * 2018-12-24 2019-02-22 黄石华中模具材料研究所 A kind of high temperature resistant synthetic quartz molding die Steel material and preparation method thereof

Also Published As

Publication number Publication date
EP1637618A1 (en) 2006-03-22
US20070006948A1 (en) 2007-01-11
AU2003235443A1 (en) 2005-01-21
DE60333400D1 (en) 2010-08-26
EP1637618A4 (en) 2006-10-18
EP1637618B1 (en) 2010-07-14
US20110120598A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5020572B2 (en) High strength thin steel sheet with excellent delayed fracture resistance after forming
EP3124635B1 (en) Rolled ferritic stainless steel sheet, method for producing the same, and flange part
KR101313957B1 (en) High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
KR102407357B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR101766567B1 (en) Hot-rolled steel sheet and method for manufacturing same
JP4659134B2 (en) High-strength steel sheet and galvanized steel sheet with excellent balance between hole expansibility and ductility and excellent fatigue durability, and methods for producing these steel sheets
EP2554705B1 (en) Hot-dip galvanized steel sheet with high tensile strength and superior processability and method for producing same
TWI390047B (en) Galvanized high strength steel sheet
KR101424859B1 (en) High-strength steel sheet and manufacturing method therefor
JP3924159B2 (en) High-strength thin steel sheet with excellent delayed fracture resistance after forming, its manufacturing method, and automotive strength parts made from high-strength thin steel sheet
JP5114747B2 (en) Manufacturing method of high-strength steel sheet with extremely good balance between hole expansibility and ductility and manufacturing method of galvanized steel sheet
JP4167587B2 (en) High-strength steel sheet excellent in hydrogen embrittlement resistance and method for producing the same
US20110120598A1 (en) High-strength steel sheets with excellent resistance to delayed fracture after forming, method for manufacturing the same, and high-strength automotive part manufactured of the same
CN112639146A (en) High-strength steel sheet and method for producing same
JP6485549B2 (en) High strength hot rolled steel sheet
CN113637923A (en) Steel sheet and plated steel sheet
US10640855B2 (en) High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
EP2653582A1 (en) Hot-dip zinc-plated steel sheet and process for production thereof
JP2011132602A (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet
US20180044759A1 (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
US20190316222A1 (en) Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
US20230065607A1 (en) Steel sheet and producing method therefor
JP4317491B2 (en) Steel sheet for hot press
US20140295210A1 (en) High strength hot rolled steel sheet and method for producing the same
KR101639914B1 (en) High strength cold steel sheet with good phosphating property and method for manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003817075

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007006948

Country of ref document: US

Ref document number: 10558579

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003817075

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10558579

Country of ref document: US