JP2003218222A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JP2003218222A
JP2003218222A JP2002014057A JP2002014057A JP2003218222A JP 2003218222 A JP2003218222 A JP 2003218222A JP 2002014057 A JP2002014057 A JP 2002014057A JP 2002014057 A JP2002014057 A JP 2002014057A JP 2003218222 A JP2003218222 A JP 2003218222A
Authority
JP
Japan
Prior art keywords
resistor
capacitor
integrated circuit
semiconductor substrate
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002014057A
Other languages
Japanese (ja)
Inventor
Mitsufusa Narita
光房 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2002014057A priority Critical patent/JP2003218222A/en
Publication of JP2003218222A publication Critical patent/JP2003218222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit which can prevent leakage out of ripple component contained in electric source to resistors and capacitors and which can stabilize output voltage. <P>SOLUTION: In this circuit, an occurrence of a parasitic capacity among a n-type semiconductor substrate 40, a resistor R1, and a capacitor C1 can be prevented by forming a p-type well at the position which forms at least one of the resistor R1 and the capacitor C1 on the n-type semiconductor substrate 40 and connecting p-type wells 41, 48 to a specified electric potential of low impedance condition, so that it is possible to prevent leakage out of ripple component contained in electric source to the resistor R1 and the capacitor C1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体集積回路に関
し、特に、n型半導体基板に形成される半導体集積回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit, and more particularly to a semiconductor integrated circuit formed on an n-type semiconductor substrate.

【0002】[0002]

【従来の技術】図4は、半導体集積回路の一例である定
電圧電源回路の回路構成図を示す。この半導体集積回路
は、直流電圧を安定化して出力する定電圧電源回路であ
る。
2. Description of the Related Art FIG. 4 shows a circuit configuration of a constant voltage power supply circuit which is an example of a semiconductor integrated circuit. This semiconductor integrated circuit is a constant voltage power supply circuit that stabilizes and outputs a DC voltage.

【0003】同図中、入力端子10には外部から直流の
電源Vccが供給される。入力端子10にはデプリーシ
ョン型nチャネルFET(電界効果トランジスタ)M1
のソースが接続され、FETM1のゲート及びドレイン
はデプリーション型nチャネルFETM2のソースに接
続されている。FETM2のゲート及びドレインはエン
ハンスメント型nチャネルFETM3のゲート及びドレ
インに接続され、FETM3のソースは接地されて基準
電圧源を構成している。このFETM3のドレインに発
生した基準電圧Vrefはエラーアンプ14の反転入力
端子に供給される。
In the figure, a DC power supply Vcc is externally supplied to the input terminal 10. The input terminal 10 has a depletion type n-channel FET (field effect transistor) M1.
Of the depletion type n-channel FET M2 is connected to the source and the source of the FET M1. The gate and drain of the FET M2 are connected to the gate and drain of the enhancement type n-channel FET M3, and the source of the FET M3 is grounded to form a reference voltage source. The reference voltage Vref generated at the drain of the FET M3 is supplied to the inverting input terminal of the error amplifier 14.

【0004】また、入力端子10には出力トランジスタ
としてのpチャネルFETM4のソース及びバックゲー
トが接続され、FETM4はゲートをエラーアンプ14
の出力端子に接続されてエラー電圧を供給されており、
ドレインを出力端子16に接続されている。出力端子1
6は直列接続されたブリーダ抵抗R1,R2を介して接
地されており、抵抗R1,R2の接続点はエラーアンプ
14の非反転入力端子に接続されている。ブリーダ抵抗
R1,R2の接続点と出力端子16の間に位相補償用の
コンデンサC1が接続されている。
The input terminal 10 is connected to the source and back gate of a p-channel FET M4 as an output transistor. The FET M4 has its gate connected to the error amplifier 14
Is connected to the output terminal of the
The drain is connected to the output terminal 16. Output terminal 1
6 is grounded via bleeder resistors R1 and R2 connected in series, and the connection point of the resistors R1 and R2 is connected to the non-inverting input terminal of the error amplifier 14. A capacitor C1 for phase compensation is connected between the connection point of the bleeder resistors R1 and R2 and the output terminal 16.

【0005】エラーアンプ14は出力電圧Voをブリー
ダ抵抗R1,R2で分圧した電圧と基準電圧Vrefと
を差動増幅してエラー電圧を生成する。このエラー電圧
はFETM4のゲートに供給され、出力電圧Voが一定
となるようにFETM4が駆動制御される。
The error amplifier 14 differentially amplifies a voltage obtained by dividing the output voltage Vo by the bleeder resistors R1 and R2 and a reference voltage Vref to generate an error voltage. This error voltage is supplied to the gate of the FET M4, and the FET M4 is drive-controlled so that the output voltage Vo becomes constant.

【0006】図4に示す半導体集積回路において、ブリ
ーダ抵抗R1,R2及びコンデンサC1は、例えばポリ
シリコン抵抗で形成される。この半導体集積回路をn型
半導体基板に形成する場合の上記ブリーダ抵抗R1部分
とコンデンサC1部分の断面構造図を図5(A),
(B)に示す。
In the semiconductor integrated circuit shown in FIG. 4, the bleeder resistors R1 and R2 and the capacitor C1 are formed of, for example, polysilicon resistors. FIG. 5 (A) is a cross-sectional structural diagram of the bleeder resistor R1 portion and the capacitor C1 portion when this semiconductor integrated circuit is formed on an n-type semiconductor substrate.
It shows in (B).

【0007】図5(A)において、n型半導体基板20
の表面にSiO等の絶縁膜21が形成され、絶縁膜2
1上にポリシリコン抵抗22が形成される。ポリシリコ
ン抵抗22はSiO等の絶縁膜23で絶縁され、ポリ
シリコン抵抗22の両端は金属配線24,25によって
出力端子16,ブリーダ抵抗R2の一端それぞれに接続
される。
In FIG. 5A, an n-type semiconductor substrate 20
An insulating film 21 such as SiO 2 is formed on the surface of the insulating film 2
A polysilicon resistor 22 is formed on top of the first resistor. The polysilicon resistor 22 is insulated by an insulating film 23 such as SiO 2 , and both ends of the polysilicon resistor 22 are connected to the output terminal 16 and one end of the bleeder resistor R2 by metal wirings 24 and 25, respectively.

【0008】図5(B)において、n型半導体基板20
の表面にSiO等の絶縁膜21が形成され、絶縁膜2
1上に低抵抗のポリシリコン層24が形成される。ポリ
シリコン層24はSiO等の絶縁膜25で絶縁され、
絶縁膜25上に低抵抗のポリシリコン層26が形成され
絶縁膜27で絶縁される。ポリシリコン層24,26そ
れぞれは金属配線28,29によって出力端子16,ブ
リーダ抵抗R2の一端それぞれに接続され、絶縁膜25
を誘電体とするコンデンサC1が形成される。
In FIG. 5B, an n-type semiconductor substrate 20
An insulating film 21 such as SiO 2 is formed on the surface of the insulating film 2
A low-resistance polysilicon layer 24 is formed on the surface 1. The polysilicon layer 24 is insulated by an insulating film 25 such as SiO 2 .
A low resistance polysilicon layer 26 is formed on the insulating film 25 and is insulated by the insulating film 27. The polysilicon layers 24 and 26 are connected to the output terminal 16 and one end of the bleeder resistor R2 by metal wirings 28 and 29, respectively, and the insulating film 25 is formed.
A capacitor C1 having a dielectric is formed.

【0009】[0009]

【発明が解決しようとする課題】図5(A),(B)に
示すようにn型半導体基板20上に半導体集積回路を形
成した場合、n型半導体基板20は電源Vccに接続さ
れる。この場合、絶縁膜21を介してn型半導体基板2
0とポリシリコン抵抗22の間に寄生容量Cp0が発生
し、また、n型半導体基板20とポリシリコン層24の
間に寄生容量Cp1が発生する。
When a semiconductor integrated circuit is formed on the n-type semiconductor substrate 20 as shown in FIGS. 5A and 5B, the n-type semiconductor substrate 20 is connected to the power supply Vcc. In this case, the n-type semiconductor substrate 2 is interposed via the insulating film 21.
A parasitic capacitance Cp0 is generated between 0 and the polysilicon resistor 22, and a parasitic capacitance Cp1 is generated between the n-type semiconductor substrate 20 and the polysilicon layer 24.

【0010】電源Vccにリップル成分が含まれる場
合、n型半導体基板20の電位がリップル成分により変
動し、リップル成分が寄生容量Cp0を介してエラーア
ンプ12に入力され増幅されるために出力電圧Voが変
動するという問題があった。また、n型半導体基板20
の電位がリップル成分により変動し、リップル成分が寄
生容量Cp1を介して出力端子16に漏れ出して出力電
圧Voが変動するという問題があった。
When the power supply Vcc includes a ripple component, the potential of the n-type semiconductor substrate 20 changes due to the ripple component, and the ripple component is input to the error amplifier 12 via the parasitic capacitance Cp0 and amplified, so that the output voltage Vo is output. There was a problem that fluctuated. In addition, the n-type semiconductor substrate 20
There is a problem in that the potential of V fluctuates due to the ripple component, the ripple component leaks to the output terminal 16 through the parasitic capacitance Cp1, and the output voltage Vo fluctuates.

【0011】本発明は、上記の点に鑑みなされたもの
で、電源に含まれるリップル成分が抵抗及びコンデンサ
に漏れ出すことを防止でき、出力電圧を安定化すること
ができる半導体集積回路を提供することを目的とする。
The present invention has been made in view of the above points, and provides a semiconductor integrated circuit capable of preventing a ripple component contained in a power source from leaking out to a resistor and a capacitor and stabilizing an output voltage. The purpose is to

【0012】[0012]

【課題を解決するための手段】請求項1に記載の発明
は、n型半導体基板(40)に形成される半導体集積回
路において、前記n型半導体基板(40)における抵抗
(R1)及びコンデンサ(C1)の少なくとも一方を形
成する位置にp型ウエルを形成し、前記p型ウエル(4
1,48)を低インピーダンス状態の所定電位に接続す
ることにより、n型半導体基板(40)と抵抗(R1)
及びコンデンサ(C1)との間に寄生容量が発生するこ
とを防止でき、電源に含まれるリップル成分が抵抗(R
1)及びコンデンサ(C1)に漏れ出すことを防止でき
る。
According to a first aspect of the invention, in a semiconductor integrated circuit formed on an n-type semiconductor substrate (40), a resistor (R1) and a capacitor ( A p-type well is formed at a position where at least one of C1) is formed, and the p-type well (4
1, 48) to a predetermined potential in a low impedance state to connect the n-type semiconductor substrate (40) and the resistor (R1).
It is possible to prevent a parasitic capacitance from being generated between the capacitor and the capacitor (C1), and the ripple component included in the power source is a resistor (R
1) and the capacitor (C1) can be prevented from leaking out.

【0013】請求項2に記載の発明は、請求項1記載の
半導体集積回路において、前記抵抗(R1)は、出力端
子(16)の電圧を一定とするよう制御する定電圧電源
回路で前記出力端子の電圧を分圧するブリーダ抵抗であ
ることにより、n型半導体基板(40)と抵抗(R1)
との間に寄生容量が発生することを防止でき、電源に含
まれるリップル成分が抵抗(R1)に漏れ出し出力端子
(16)の電圧が変動することを防止できる。
According to a second aspect of the present invention, in the semiconductor integrated circuit of the first aspect, the resistor (R1) is a constant voltage power supply circuit for controlling the voltage of the output terminal (16) to be constant. Since it is a bleeder resistor that divides the voltage of the terminal, the n-type semiconductor substrate (40) and the resistor (R1)
It is possible to prevent a parasitic capacitance from being generated between the input terminal and the output terminal, and it is possible to prevent the ripple component included in the power source from leaking to the resistor (R1) and changing the voltage of the output terminal (16).

【0014】請求項3に記載の発明は、請求項2記載の
半導体集積回路において、前記コンデンサ(C1)は、
前記ブリーダ抵抗に並列接続された位相補償用のコンデ
ンサであるにより、n型半導体基板(40)とコンデン
サ(C1)との間に寄生容量が発生することを防止で
き、電源に含まれるリップル成分がコンデンサ(C1)
に漏れ出し出力端子の電圧が変動することを防止でき
る。
According to a third aspect of the present invention, in the semiconductor integrated circuit according to the second aspect, the capacitor (C1) is
With the phase compensation capacitor connected in parallel with the bleeder resistor, it is possible to prevent parasitic capacitance from occurring between the n-type semiconductor substrate (40) and the capacitor (C1), and to prevent ripple components contained in the power supply. Capacitor (C1)
It is possible to prevent the output terminal voltage from leaking out and fluctuating.

【0015】なお、上記括弧内の参照符号は、理解を容
易にするために付したものであり、一例にすぎず、図示
の態様に限定されるものではない。
It should be noted that the reference numerals in the above parentheses are given for easy understanding and are merely examples, and the present invention is not limited to the illustrated modes.

【0016】[0016]

【発明の実施の形態】図1(A),(B)は、本発明の
半導体集積回路の一実施例の断面構造図を示す。同図
(A)は図4のブリーダ抵抗R1部分の断面構造図であ
り、同図(B)は図4のコンデンサC1部分の断面構造
図である。
1A and 1B are cross-sectional structural views of an embodiment of a semiconductor integrated circuit of the present invention. 4A is a sectional structural view of the bleeder resistor R1 portion in FIG. 4, and FIG. 4B is a sectional structural view of a capacitor C1 portion in FIG.

【0017】図1(A)において、n型半導体基板40
にはp型不純物の拡散等によりp型ウエル41が形成さ
れている。p型ウエル41は、図4のnチャネルFET
M1〜M3のp型ウエルを形成する工程で同時に形成さ
れる。
In FIG. 1A, an n-type semiconductor substrate 40
A p-type well 41 is formed by diffusion of p-type impurities. The p-type well 41 is an n-channel FET of FIG.
They are simultaneously formed in the step of forming the p-type wells of M1 to M3.

【0018】p型ウエル41を含むn型半導体基板40
の表面にSiO等の絶縁膜42が形成され、絶縁膜4
2上にポリシリコン抵抗43が形成される。ポリシリコ
ン抵抗43はSiO等の絶縁膜44で絶縁され、ポリ
シリコン抵抗44の両端は金属配線45,46によって
出力端子16,ブリーダ抵抗R2の一端それぞれに接続
される。
N-type semiconductor substrate 40 including p-type well 41
An insulating film 42 such as SiO 2 is formed on the surface of the
A polysilicon resistor 43 is formed on the surface 2. The polysilicon resistor 43 is insulated by an insulating film 44 such as SiO 2 , and both ends of the polysilicon resistor 44 are connected to the output terminal 16 and one end of the bleeder resistor R2 by metal wirings 45 and 46, respectively.

【0019】また、p型ウエル41には金属配線47の
一端が接続され、この金属配線47の他端は接地され
る。なお、金属配線47は接地レベルに限らず低インピ
ーダンスの所定電位であればよい。また、n型半導体基
板40は電源Vccに接続される。
Further, one end of a metal wiring 47 is connected to the p-type well 41, and the other end of the metal wiring 47 is grounded. The metal wiring 47 is not limited to the ground level and may have a predetermined potential with low impedance. Further, the n-type semiconductor substrate 40 is connected to the power supply Vcc.

【0020】このように、n型半導体基板40とポリシ
リコン抵抗44との間に接地されたp型ウエル41が介
在するために、n型半導体基板40とポリシリコン抵抗
44の間に寄生容量が発生することを防止でき、電源V
ccにリップル成分が含まれる場合にn型半導体基板4
0の電位がリップル成分により変動したとしても、リッ
プル成分がエラーアンプ12に入力されて増幅されて出
力電圧Voが変動することを防止できる。
As described above, since the grounded p-type well 41 is interposed between the n-type semiconductor substrate 40 and the polysilicon resistor 44, a parasitic capacitance is generated between the n-type semiconductor substrate 40 and the polysilicon resistor 44. Power source V
When cc includes a ripple component, the n-type semiconductor substrate 4
Even if the potential of 0 fluctuates due to the ripple component, the fluctuation of the output voltage Vo due to the ripple component being input to the error amplifier 12 and being amplified can be prevented.

【0021】図1(B)において、n型半導体基板40
にはp型不純物の拡散等によりp型ウエル48が形成さ
れている。p型ウエル48は、図4のnチャネルFET
M1〜M3のp型ウエルを形成する工程で同時に形成さ
れる。
In FIG. 1B, an n-type semiconductor substrate 40
A p-type well 48 is formed by diffusion of p-type impurities. The p-type well 48 is an n-channel FET of FIG.
They are simultaneously formed in the step of forming the p-type wells of M1 to M3.

【0022】p型ウエル48を含むn型半導体基板40
の表面にSiO等の絶縁膜42が形成され、絶縁膜4
2上に低抵抗のポリシリコン層49が形成される。ポリ
シリコン層49はSiO等の絶縁膜50で絶縁され、
絶縁膜50上に低抵抗のポリシリコン層51が形成され
絶縁膜52で絶縁される。ポリシリコン層49,51そ
れぞれは金属配線53,54によって出力端子16,ブ
リーダ抵抗R2の一端それぞれに接続され、絶縁膜50
を誘電体とするコンデンサC1が形成される。
N-type semiconductor substrate 40 including p-type well 48
An insulating film 42 such as SiO 2 is formed on the surface of the
A low-resistance polysilicon layer 49 is formed on the surface 2. The polysilicon layer 49 is insulated by an insulating film 50 such as SiO 2 .
A low resistance polysilicon layer 51 is formed on the insulating film 50 and is insulated by the insulating film 52. The polysilicon layers 49 and 51 are connected to the output terminal 16 and one end of the bleeder resistor R2 by metal wirings 53 and 54, respectively, and the insulating film 50 is formed.
A capacitor C1 having a dielectric is formed.

【0023】また、p型ウエル41には金属配線55の
一端が接続され、この金属配線55の他端は接地され
る。また、n型半導体基板40は電源Vccに接続され
る。このように、n型半導体基板40とポリシリコン層
49との間に接地されたp型ウエル48が介在するため
に、n型半導体基板40とポリシリコン層49の間に寄
生容量が発生することを防止でき、電源Vccにリップ
ル成分が含まれる場合にn型半導体基板40の電位がリ
ップル成分により変動したとしても、リップル成分が出
力端子16に漏れ出して出力電圧Voが変動することを
防止できる。
Further, one end of the metal wiring 55 is connected to the p-type well 41, and the other end of the metal wiring 55 is grounded. Further, the n-type semiconductor substrate 40 is connected to the power supply Vcc. As described above, since the grounded p-type well 48 is interposed between the n-type semiconductor substrate 40 and the polysilicon layer 49, parasitic capacitance is generated between the n-type semiconductor substrate 40 and the polysilicon layer 49. When the power supply Vcc includes a ripple component, even if the potential of the n-type semiconductor substrate 40 varies due to the ripple component, the ripple component can be prevented from leaking to the output terminal 16 and varying the output voltage Vo. .

【0024】このため、図4の定電圧電源回路の周波数
・リップルリジェクション特性は、従来の半導体集積回
路では図2の破線に示すように低い周波数から劣化して
いるのに対し、本発明の半導体集積回路の周波数・リッ
プルリジェクション特性は実線破線に示すように高周波
数域まで劣化を生じない。
Therefore, the frequency / ripple rejection characteristic of the constant voltage power supply circuit of FIG. 4 deteriorates from a low frequency in the conventional semiconductor integrated circuit as shown by the broken line of FIG. The frequency / ripple rejection characteristic of the semiconductor integrated circuit does not deteriorate up to the high frequency range as shown by the solid line and broken line.

【0025】ところで、本発明は定電圧電源回路に限ら
ず図3に示すような増幅回路やコンパレータ等に適用し
てもよい。図3においては、演算増幅器60と抵抗R1
0,R11とコンデンサC10で反転増幅回路を構成し
ている。なお、コンデンサC10は必ずしも設けなくと
も良い。
By the way, the present invention is not limited to the constant voltage power supply circuit, and may be applied to an amplifier circuit, a comparator and the like as shown in FIG. In FIG. 3, the operational amplifier 60 and the resistor R1
0, R11 and the capacitor C10 constitute an inverting amplifier circuit. The capacitor C10 does not necessarily have to be provided.

【0026】ここで、抵抗R10,R11は、図1
(A)のブリーダ抵抗R1と同様に、n型半導体基板4
0にp型ウエル41を形成し、その上部に絶縁膜を介し
て形成されたポリシリコン抵抗にて構成する。また、コ
ンデンサC10は図1(B)のコンデンサC1と同様に
構成する。
Here, the resistors R10 and R11 are as shown in FIG.
Similar to the bleeder resistor R1 in (A), the n-type semiconductor substrate 4
0, a p-type well 41 is formed, and a polysilicon resistor is formed on the p-type well 41 via an insulating film. Further, the capacitor C10 is configured similarly to the capacitor C1 in FIG.

【0027】[0027]

【発明の効果】上述の如く、請求項1に記載の発明は、
n型半導体基板における抵抗(R1)及びコンデンサの
少なくとも一方を形成する位置にp型ウエルを形成し、
p型ウエルを低インピーダンス状態の所定電位に接続す
ることにより、n型半導体基板と抵抗及びコンデンサと
の間に寄生容量が発生することを防止でき、電源に含ま
れるリップル成分が抵抗及びコンデンサに漏れ出すこと
を防止できる。
As described above, the invention according to claim 1 is
A p-type well is formed at a position where at least one of a resistor (R1) and a capacitor is formed on the n-type semiconductor substrate,
By connecting the p-type well to a predetermined potential in the low impedance state, it is possible to prevent parasitic capacitance from occurring between the n-type semiconductor substrate and the resistor and capacitor, and the ripple component contained in the power supply leaks to the resistor and capacitor. You can prevent it.

【0028】請求項2に記載の発明では、抵抗は、出力
端子の電圧を一定とするよう制御する定電圧電源回路で
出力端子の電圧を分圧するブリーダ抵抗であることによ
り、n型半導体基板と抵抗との間に寄生容量が発生する
ことを防止でき、電源に含まれるリップル成分が抵抗に
漏れ出し出力端子の電圧が変動することを防止できる。
According to the second aspect of the present invention, the resistor is a bleeder resistor that divides the voltage of the output terminal by a constant voltage power supply circuit that controls the voltage of the output terminal to be constant. It is possible to prevent generation of parasitic capacitance between the resistor and the resistor, and it is possible to prevent ripple components contained in the power supply from leaking to the resistor and varying the voltage of the output terminal.

【0029】請求項3に記載の発明では、コンデンサ
は、ブリーダ抵抗に並列接続された位相補償用のコンデ
ンサであるにより、n型半導体基板とコンデンサとの間
に寄生容量が発生することを防止でき、電源に含まれる
リップル成分がコンデンサに漏れ出し出力端子の電圧が
変動することを防止できる。
According to the third aspect of the invention, the capacitor is a capacitor for phase compensation which is connected in parallel with the bleeder resistor, so that parasitic capacitance can be prevented from occurring between the n-type semiconductor substrate and the capacitor. It is possible to prevent the ripple component contained in the power supply from leaking to the capacitor and fluctuating the voltage at the output terminal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体集積回路の要部の一実施例の断
面構造図である。
FIG. 1 is a sectional structural view of an embodiment of a main part of a semiconductor integrated circuit of the present invention.

【図2】本発明の半導体集積回路の周波数・リップルリ
ジェクション特性を示す図である。
FIG. 2 is a diagram showing frequency / ripple rejection characteristics of the semiconductor integrated circuit of the present invention.

【図3】半導体集積回路の他の一例である増幅回路の回
路構成図である。
FIG. 3 is a circuit configuration diagram of an amplifier circuit which is another example of a semiconductor integrated circuit.

【図4】半導体集積回路の一例である定電圧電源回路の
回路構成図である。
FIG. 4 is a circuit configuration diagram of a constant voltage power supply circuit which is an example of a semiconductor integrated circuit.

【図5】従来の半導体集積回路の一部の断面構造図であ
る。
FIG. 5 is a partial cross-sectional structural diagram of a conventional semiconductor integrated circuit.

【符号の説明】[Explanation of symbols]

40 n型半導体基板 41,48 p型ウエル 42,44,50,52 絶縁膜 43 ポリシリコン抵抗 45,46,47,53,54,55 金属配線 49,51 ポリシリコン層 C1,C10 コンデンサ M1〜M4 FET(電界効果トランジスタ) R1,R2 ブリーダ抵抗 R10,R11 抵抗 40 n-type semiconductor substrate 41,48 p-type well 42,44,50,52 Insulating film 43 Polysilicon resistor 45, 46, 47, 53, 54, 55 Metal wiring 49,51 Polysilicon layer C1, C10 capacitors M1 to M4 FET (field effect transistor) R1, R2 bleeder resistance R10, R11 resistance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 n型半導体基板に形成される半導体集積
回路において、 前記n型半導体基板における抵抗及びコンデンサの少な
くとも一方を形成する位置にp型ウエルを形成し、 前記p型ウエルを低インピーダンス状態の所定電位に接
続することを特徴とする半導体集積回路。
1. A semiconductor integrated circuit formed on an n-type semiconductor substrate, wherein a p-type well is formed at a position where at least one of a resistor and a capacitor is formed on the n-type semiconductor substrate, and the p-type well is in a low impedance state. A semiconductor integrated circuit characterized by being connected to a predetermined potential of
【請求項2】 請求項1記載の半導体集積回路におい
て、 前記抵抗は、出力端子の電圧を一定とするよう制御する
定電圧電源回路で前記出力端子の電圧を分圧するブリー
ダ抵抗であることを特徴とする半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein the resistor is a bleeder resistor that divides the voltage of the output terminal with a constant voltage power supply circuit that controls the voltage of the output terminal to be constant. Semiconductor integrated circuit.
【請求項3】 請求項2記載の半導体集積回路におい
て、 前記コンデンサは、前記ブリーダ抵抗に並列接続された
位相補償用のコンデンサであることを特徴とする半導体
集積回路。
3. The semiconductor integrated circuit according to claim 2, wherein the capacitor is a phase compensation capacitor connected in parallel to the bleeder resistor.
JP2002014057A 2002-01-23 2002-01-23 Semiconductor integrated circuit Pending JP2003218222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014057A JP2003218222A (en) 2002-01-23 2002-01-23 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014057A JP2003218222A (en) 2002-01-23 2002-01-23 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JP2003218222A true JP2003218222A (en) 2003-07-31

Family

ID=27650845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014057A Pending JP2003218222A (en) 2002-01-23 2002-01-23 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2003218222A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1523093A1 (en) * 2003-10-07 2005-04-13 Exar Corporation Frequency compensation of a wide-band operational amplifier
JP2010021280A (en) * 2008-07-09 2010-01-28 Mitsumi Electric Co Ltd Semiconductor integrated circuit device
CN104142591A (en) * 2014-07-11 2014-11-12 合肥鑫晟光电科技有限公司 Array substrate, manufacturing method and display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1523093A1 (en) * 2003-10-07 2005-04-13 Exar Corporation Frequency compensation of a wide-band operational amplifier
US6906593B2 (en) 2003-10-07 2005-06-14 Exar Corporation Frequency compensation of wide-band resistive gain amplifier
JP2010021280A (en) * 2008-07-09 2010-01-28 Mitsumi Electric Co Ltd Semiconductor integrated circuit device
CN104142591A (en) * 2014-07-11 2014-11-12 合肥鑫晟光电科技有限公司 Array substrate, manufacturing method and display device
US10048555B2 (en) 2014-07-11 2018-08-14 Boe Technology Group Co., Ltd. Array substrate, manufacturing method thereof and display device

Similar Documents

Publication Publication Date Title
TWI259346B (en) Voltage regulator
US6040744A (en) Temperature-compensated crystal oscillator
US7064601B2 (en) Reference voltage generating circuit using active resistance device
TWI454032B (en) Charging circuit
US20090284243A1 (en) Auto-nulled bandgap reference system and strobed bandgap reference circuit
JP2001237374A (en) Semiconductor integrated circuit
US7557428B2 (en) Semiconductor integrated circuit having a reduced parasitic capacitance and short start-up time
US6388511B1 (en) Filter circuit
JP4233634B2 (en) Temperature compensated crystal oscillator
JP4122909B2 (en) Semiconductor device
JP2003218222A (en) Semiconductor integrated circuit
JP2008501233A (en) High voltage switch using low voltage CMOS transistor
JP2001231098A (en) Microphone unit
JP2005316788A (en) Power supply circuit
EP0771033B1 (en) Semiconductor integrated circuit with differential circuit
JP2006319576A (en) Reverse amplifier and crystal oscillator having the same
US7402989B2 (en) Capacitor multiplier
JP4719002B2 (en) Piezoelectric oscillator
US6087896A (en) Compensation technique using MOS capacitance
JP2011120223A (en) Error amplifier
WO2003091817A1 (en) Noise filter circuit
JPH1032433A (en) Amplifier
JP2000188373A (en) Spiral inductor
JP2000150798A (en) Semiconductor device
JP2010056829A (en) Oscillation circuit