JP2003218096A - Vacuum processing system for generating oxygen ion - Google Patents

Vacuum processing system for generating oxygen ion

Info

Publication number
JP2003218096A
JP2003218096A JP2002018022A JP2002018022A JP2003218096A JP 2003218096 A JP2003218096 A JP 2003218096A JP 2002018022 A JP2002018022 A JP 2002018022A JP 2002018022 A JP2002018022 A JP 2002018022A JP 2003218096 A JP2003218096 A JP 2003218096A
Authority
JP
Japan
Prior art keywords
oxygen
ceramic substrate
porous ceramic
oxygen ions
vacuum processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002018022A
Other languages
Japanese (ja)
Other versions
JP2003218096A5 (en
JP4114770B2 (en
Inventor
Yoshiaki Agawa
阿川  義昭
Takashi Horiuchi
俊 堀内
Kokuka Chin
沈  国華
Koichi Yamaguchi
山口  広一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002018022A priority Critical patent/JP4114770B2/en
Publication of JP2003218096A publication Critical patent/JP2003218096A/en
Publication of JP2003218096A5 publication Critical patent/JP2003218096A5/ja
Application granted granted Critical
Publication of JP4114770B2 publication Critical patent/JP4114770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen ion generator exhibiting useful handling performance in which a desired quantity of negative charge oxygen ions can be obtained through a simple structure. <P>SOLUTION: In the vacuum processing system 1 having an ion source chamber 2 comprising a porous ceramic substrate 29, a lamp 27, a reflector 28 and a gas introduction pipe 31, the porous ceramic substrate 29 is heated by means of the lamp 27 and the reflector 28 under an atmosphere of oxygen supplied from the gas introduction pipe 31 thus generating oxygen ions. The porous ceramic substrate 29 is disposed oppositely to a porous conductive plate 19 through an electric insulating material 6. Furthermore, the porous conductive plate 19 is brought to the ground potential and preferably applied with a voltage with the porous ceramic substrate 29 as a negative electrode. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸素イオンを発生
させるための真空処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum processing apparatus for generating oxygen ions.

【0002】[0002]

【従来の技術】図1は、従来の酸素イオン発生装置の略
平面図である。図1を参照して、酸素イオン発生装置1
は、金属製イオンソース室2と荷電変換セル3を有する
荷電変換セル用チャンバ4とイオン照射室5とにより構
成されている。また、イオンソース室2と荷電変換セル
用チャンバ4とイオン照射室5とは、アルミナまたはエ
ポキシ樹脂から成る絶縁円筒6を介して、φ4〜8mm
程度の円形孔から成るイオンソース室2の開口7と、荷
電変換セル3のイオンソース室側開口8及び照射室側開
口8’とにより連通している。
2. Description of the Related Art FIG. 1 is a schematic plan view of a conventional oxygen ion generator. Referring to FIG. 1, oxygen ion generator 1
Is composed of a metal ion source chamber 2, a charge conversion cell chamber 4 having a charge conversion cell 3, and an ion irradiation chamber 5. Further, the ion source chamber 2, the charge conversion cell chamber 4, and the ion irradiation chamber 5 are φ4 to 8 mm through an insulating cylinder 6 made of alumina or epoxy resin.
The opening 7 of the ion source chamber 2 formed of a circular hole of a certain degree is in communication with the ion source chamber side opening 8 and the irradiation chamber side opening 8 ′ of the charge conversion cell 3.

【0003】イオンソース室2の内部には、外部のフィ
ラメント電源9により作動可能で、タングステン、タン
タル、レニウム等の高融点金属から成るフィラメント1
0が設置され、また、イオンソース室2自体は、アーク
電源11や引出電極電源12に導通されてこれらにより
容器電位が設定される。また、イオンソース室2のガス
導入口13は、導入バルブ14を介して、酸素ボンベ1
5に連通するガス流量調節器16や減圧器17に接続さ
れている。これらのガス導入部は、静電気による発火を
防止するため金属製のものを用いている。
Inside the ion source chamber 2, a filament 1 that can be operated by an external filament power source 9 and is made of a refractory metal such as tungsten, tantalum, or rhenium is used.
0 is installed, and the ion source chamber 2 itself is electrically connected to the arc power source 11 and the extraction electrode power source 12 to set the container potential. In addition, the gas introduction port 13 of the ion source chamber 2 is connected to the oxygen cylinder 1 through the introduction valve 14.
5 is connected to a gas flow rate controller 16 and a pressure reducer 17 which communicate with each other. These gas introduction parts are made of metal in order to prevent ignition due to static electricity.

【0004】一方、荷電変換セル用チャンバ4内部の荷
電変換セル3のイオンソース室側開口8近傍には、絶縁
スリーブ18によりセル3と絶縁してテーパ状に形成さ
れた引出電極19が設けられている。このとき引出電極
用電源12のマイナス側を接地して、引出電極19を接
地電位に設定している。また、荷電変換セル3の略中央
部には下部から、べーパライザ20のノズル部20aの
先端孔20bがセル3内に突出して設けられている。そ
して、荷電変換セル3とべーパライザ20とには、保温
のため外側からコイルヒータ21a、21bがそれぞれ
巻回されている。
On the other hand, in the vicinity of the ion source chamber side opening 8 of the charge conversion cell 3 inside the charge conversion cell chamber 4, an extraction electrode 19 which is insulated from the cell 3 by an insulating sleeve 18 and is formed in a tapered shape is provided. ing. At this time, the minus side of the extraction electrode power source 12 is grounded, and the extraction electrode 19 is set to the ground potential. Further, a tip end hole 20b of a nozzle portion 20a of the vaporizer 20 is provided at a substantially central portion of the charge conversion cell 3 so as to project into the cell 3 from a lower portion. Coil heaters 21a and 21b are wound around the charge conversion cell 3 and vaporizer 20 from the outside for keeping heat.

【0005】そして、照射室5内には、基板ステージ2
2上に保持された被酸化物から成る被照射体23が設け
られ、基板ステージ22から流れる電流を電流計24で
計測できるようにしている。
In the irradiation chamber 5, the substrate stage 2
An irradiation object 23 made of an oxide to be held on the substrate 2 is provided so that the current flowing from the substrate stage 22 can be measured by an ammeter 24.

【0006】上記のように構成された従来装置による酸
素イオンの発生に際しては、あらかじめ、装置1全体
を、イオンソース室2の排気口25及び照射室5の排気
口26を介して図外の真空排気ポンプにより1.3×1
-3Pa以下の低圧状態とし、その後、フィラメント電
源9を作動させて、白熱状態のフィラメント10の表面
から熱電子の放出を開始する。この状態で、アーク電源
11により40〜130Vの電圧を印加すると共に、ガ
ス流量調節器16や減圧器17を作動させて、流量2〜
10sccmの酸素ガスにより約1気圧程度となるよう
に導入バルブ14を開放し、イオンソース室2内に酸素
ガスを導入する。このとき、上記した白熱フィラメント
10からの熱電子と導入された酸素ガスとにより酸素プ
ラズマが発生する。このまま、引出電極用電源12によ
り15〜20kVの電圧を印加して、イオンソース室2
の開口7より正電荷の酸素イオンを出射させ、そして、
その際の飛行軌道を維持して開口8を介して荷電変換セ
ル3内に入射させる。
When the oxygen ion is generated by the conventional apparatus configured as described above, the entire apparatus 1 is previously vacuumed via a gas exhaust port 25 of the ion source chamber 2 and a gas exhaust port 26 of the irradiation chamber 5 (not shown). 1.3 × 1 by exhaust pump
The pressure is set to a low pressure of 0 -3 Pa or less, and then the filament power supply 9 is activated to start thermionic emission from the surface of the filament 10 in the incandescent state. In this state, a voltage of 40 to 130 V is applied by the arc power supply 11, and the gas flow rate controller 16 and the pressure reducer 17 are operated to change the flow rate from 2 to 2.
The introduction valve 14 is opened so that the pressure is about 1 atm with 10 sccm of oxygen gas, and oxygen gas is introduced into the ion source chamber 2. At this time, oxygen plasma is generated by the hot electrons from the incandescent filament 10 and the introduced oxygen gas. In this state, a voltage of 15 to 20 kV is applied by the extraction electrode power source 12 to generate the ion source chamber 2
Positively charged oxygen ions are emitted from the opening 7 of
The flight orbit at that time is maintained and the light is injected into the charge conversion cell 3 through the opening 8.

【0007】一方、荷電変換セル3においては、その下
部に配置したベーパライザ20に3〜5グラムの金属ナ
トリウムを充填し、セル3とベーパライザ20とを20
0〜400℃程度に加熱保温して、ベーパライザ20で
発生するナトリウム蒸気によりセル3から照射室5への
気流を生じさせている。
On the other hand, in the charge conversion cell 3, the vaporizer 20 arranged at the lower portion is filled with 3 to 5 g of metallic sodium, and the cell 3 and the vaporizer 20 are connected to each other.
The temperature is kept at about 0 to 400 ° C., and the vapor flow from the cell 3 to the irradiation chamber 5 is generated by the sodium vapor generated in the vaporizer 20.

【0008】このとき、上記のように荷電変換セル3に
入射した正電荷の酸素イオンがナトリウム蒸気中のナト
リウム原子あるいはナトリウム分子と衝突し、その過程
でナトリウム原子の電子が剥奪され、これにより正電荷
の酸素イオンが負電荷のものに変換される(図2参
照)。
At this time, as described above, the positively charged oxygen ions that have entered the charge conversion cell 3 collide with sodium atoms or sodium molecules in sodium vapor, and in the process electrons of the sodium atoms are stripped, which causes positive charges. The charged oxygen ions are converted into negatively charged ones (see FIG. 2).

【0009】このようにして得られる酸素イオンは、半
導体製造の酸化プロセスやディスプレイデバイス用の透
明導電膜に対する酸化プロセスに有用であると共に、化
学分野においてもその酸化力を利用した殺菌用途などに
用いることができる。
The oxygen ions thus obtained are useful for an oxidation process for manufacturing a semiconductor and an oxidation process for a transparent conductive film for a display device, and are also used for sterilization utilizing the oxidizing power in the chemical field. be able to.

【0010】[0010]

【発明が解決しようとする課題】ところで、上記の従来
の酸素イオン発生装置では、初めに正電荷の酸素イオン
を発生させてからこれを負電荷のものに変換して所望の
酸素イオンとして得ている。このため、多段階の工程に
対応して装置が複雑になり、酸素イオンの生成条件の変
更が容易でなくなる。
By the way, in the above-mentioned conventional oxygen ion generator, positively charged oxygen ions are first generated and then converted to negatively charged oxygen ions to obtain desired oxygen ions. There is. Therefore, the apparatus becomes complicated corresponding to the multi-step process, and it becomes difficult to change the oxygen ion generation conditions.

【0011】例えば、イオン量を増加させるためにはイ
オンソース室2の開口7を拡幅することで即効性が期待
できるが、このときにイオンソース室2内でのフィラメ
ント10のプラズマ点火を行うために1.3×10Pa
程度の圧力条件を維持する必要があり、このためには大
量の酸素ガスをイオンソース室2内に精度良く導入する
ことが求められる。また、イオンソース室2内で生成し
た正電荷の酸素イオンを充分に出射させて変換セル3に
到達させるためには、アノードたる開口7と引出電極1
9との間の電位差を安定して保つ必要があるが、このた
めには両電極間の圧力条件は1.3×10-3Pa以下で
あることが望ましい。そこで、イオンソース室2用に強
力な真空排気ポンプが必要となる。
For example, in order to increase the amount of ions, the immediate effect can be expected by widening the opening 7 of the ion source chamber 2, but at this time, the plasma ignition of the filament 10 in the ion source chamber 2 is performed. 1.3 × 10Pa
It is necessary to maintain a moderate pressure condition, and for this purpose, it is required to accurately introduce a large amount of oxygen gas into the ion source chamber 2. Further, in order to sufficiently emit positively charged oxygen ions generated in the ion source chamber 2 to reach the conversion cell 3, the opening 7 serving as an anode and the extraction electrode 1 are provided.
It is necessary to keep the potential difference between the electrodes 9 and 9 stable, but for this purpose, the pressure condition between the electrodes is preferably 1.3 × 10 −3 Pa or less. Therefore, a powerful vacuum exhaust pump is required for the ion source chamber 2.

【0012】このような取扱い上の不具合は、照射室5
においても同様であり、例えば、荷電変換セル3の照射
室側開口8’を拡幅してイオン量を増加させようとする
とき、これに伴って増大して流出するナトリウム蒸気に
抗して酸素イオンをイオンビームとして出射させるため
には、酸素イオンの平均自由工程を確保できるように変
換セル3内を1.3×10-3Pa以下とする必要があ
る。このため、イオンソース室2の場合と同様に照射室
5も強力な真空排気ポンプを備えたものとなる。
Such a problem in handling is caused by the irradiation chamber 5
Is similar to the above, for example, when the irradiation chamber side opening 8 ′ of the charge conversion cell 3 is widened to increase the amount of ions, oxygen ions are countered against the sodium vapor that increases and flows out accordingly. In order to ensure that the mean free path of oxygen ions can be secured, it is necessary to set the inside of the conversion cell 3 to 1.3 × 10 −3 Pa or less in order to ensure that the average free path of oxygen ions is secured. Therefore, as in the case of the ion source chamber 2, the irradiation chamber 5 also has a powerful vacuum exhaust pump.

【0013】さらに、例えば省電力などの目的で、酸素
イオン生成のための引出電極19に対する印加電圧(図
1の装置では20kV程度)を軽減させると、イオンソ
ース室2における正電荷の酸素イオンの生成量が減少す
るので、これを変換種として負電荷の酸素イオンを生成
するときの電荷変換効率が減少してしまう。
Furthermore, if the applied voltage (about 20 kV in the apparatus of FIG. 1) to the extraction electrode 19 for generating oxygen ions is reduced for the purpose of, for example, power saving, the positively charged oxygen ions in the ion source chamber 2 are generated. Since the production amount is reduced, the charge conversion efficiency is reduced when negatively charged oxygen ions are produced by using this as a conversion species.

【0014】これに加え、変換セル3内で酸素イオンが
正から負電荷に変換される過程での変換ロスも無視でき
ない。
In addition to this, the conversion loss in the process in which oxygen ions are converted from positive charges to negative charges in the conversion cell 3 cannot be ignored.

【0015】本発明は、上記問題点に鑑み、簡素な構造
で所望量の負電荷酸素イオンを得ることができ、また、
例えば、イオン量増加を目的としたイオンビームの照射
面積や引出電極に対する印加電圧の増大などの条件変更
を容易に行うことができて取扱い上有用な酸素イオン発
生装置を提供することを課題としている。
In view of the above problems, the present invention can obtain a desired amount of negatively charged oxygen ions with a simple structure, and
For example, it is an object of the present invention to provide an oxygen ion generator that is useful in handling because it is possible to easily change the conditions such as the irradiation area of the ion beam for increasing the amount of ions and the applied voltage to the extraction electrode. .

【0016】[0016]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、多孔質セラミックス基板と加熱手段と酸
素導入手段とを有し、酸素導入手段を作動させたときの
酸素雰囲気下、加熱手段により多孔質セラミックス基板
を加熱するように構成された真空処理装置により酸素イ
オンを発生させるものとした。
In order to solve the above-mentioned problems, the present invention has a porous ceramic substrate, a heating means and an oxygen introducing means, and heats them in an oxygen atmosphere when the oxygen introducing means is operated. Oxygen ions are generated by a vacuum processing apparatus configured to heat the porous ceramic substrate by the means.

【0017】このような装置により、多孔質セラミック
ス基板より酸素種を負電荷に帯電させた酸素イオンとし
て脱離させることができ、また、このようにして発生す
る負電荷の酸素イオンの発生量を加熱手段の調整により
増減することができるなど、簡易に条件変更を行うこと
ができるという点で取扱いが改善されている。
With such an apparatus, oxygen species can be desorbed from the porous ceramic substrate as negatively charged oxygen ions, and the amount of negatively charged oxygen ions thus generated can be reduced. Handling is improved in that the conditions can be easily changed, such as the amount can be increased or decreased by adjusting the heating means.

【0018】この場合、上記の酸素イオン発生用真空処
理装置を、多孔質セラミックス基板に電気絶縁材料を介
して多孔導電板を対向させるように構成すると、多孔質
セラミックス基板から発生する負電荷の酸素イオンの照
射方向が、多孔導電板に向けて集束されるので、導電板
を通過した以後、これによるイオンビームは高密度とな
る。したがって、所望の酸素イオン量を確保することが
容易になる。
In this case, when the above-mentioned vacuum processing apparatus for oxygen ion generation is constructed such that the porous conductive plate is opposed to the porous ceramic substrate through the electrically insulating material, negatively charged oxygen generated from the porous ceramic substrate is generated. Since the irradiation direction of the ions is focused toward the porous conductive plate, the ion beam due to this becomes high density after passing through the conductive plate. Therefore, it becomes easy to secure a desired amount of oxygen ions.

【0019】さらに、この場合、多孔導電板を接地する
と共に、多孔質セラミックス基板を負極として電圧を印
加すると、発生する酸素イオンを確実に負電荷に帯電さ
せることができる。
Further, in this case, when the porous conductive plate is grounded and a voltage is applied with the porous ceramic substrate as a negative electrode, the generated oxygen ions can be surely charged to a negative charge.

【0020】[0020]

【発明の実施の形態】図3は、本発明の酸素イオン発生
用真空処理装置の略平面図である。図1と同等の機能を
有する部位には同一の符号を付している。図3を参照し
て、排気口26を設けた照射室5内に、イオンソース室
2と、被照射体23を保持する基板ステージ22とが配
置され、基板ステージ22には装置外部の電流計24が
接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a schematic plan view of a vacuum processing apparatus for oxygen ion generation according to the present invention. Portions having the same functions as those in FIG. 1 are designated by the same reference numerals. Referring to FIG. 3, an ion source chamber 2 and a substrate stage 22 holding an irradiation target 23 are arranged in an irradiation chamber 5 provided with an exhaust port 26, and the substrate stage 22 has an ammeter outside the apparatus. 24 is connected.

【0021】イオンソース室2内には、フィラメント電
源9により作動されるランプ27と、これによる発熱を
反射させるための反射板28と、φ5cm程度の円盤状
の多孔質セラミックス基板29とが配置され、多孔質セ
ラミックス基板29はイオンソース室2の壁面に設けた
ホルダ30により固定されている。さらに、多孔質セラ
ミックス基板29の基板ステージ22側には、電気絶縁
材6を介し、基板29と3mm程度の間隔で多孔金属板
から成る引出電極19が取り付けられている。このと
き、引出電極19を構成する金属には、モリブデンなど
抗酸化性のものを用いる。また、反射板28に囲まれた
空間内にガス導入パイプ31を挿入して設けている。
In the ion source chamber 2, there are arranged a lamp 27 operated by the filament power source 9, a reflecting plate 28 for reflecting the heat generated by the lamp 27, and a disk-shaped porous ceramic substrate 29 of about 5 cm. The porous ceramic substrate 29 is fixed by a holder 30 provided on the wall surface of the ion source chamber 2. Further, on the substrate stage 22 side of the porous ceramics substrate 29, extraction electrodes 19 made of a porous metal plate are attached at a distance of about 3 mm from the substrate 29 via an electric insulating material 6. At this time, as a metal forming the extraction electrode 19, an antioxidizing material such as molybdenum is used. Further, a gas introduction pipe 31 is inserted and provided in the space surrounded by the reflection plate 28.

【0022】照射室5とイオンソース室2とは導電性を
確保するため金属製で構成されているが、両者はインシ
ュレータ32により電気的に絶縁され、接地電位の引出
電極19や照射室5やグランドカバ33との電位差を保
つようにしている。
The irradiation chamber 5 and the ion source chamber 2 are made of metal in order to ensure conductivity, but they are electrically insulated by the insulator 32, and the extraction electrode 19 at the ground potential, the irradiation chamber 5, and The potential difference from the ground cover 33 is kept.

【0023】図3の装置を用いて酸素イオンを発生させ
るには、あらかじめ、排気口26に連なる図外の真空排
気ポンプにより照射室5内を1.3×10-3Pa以下に
保ち、この状態で、フィラメント電源9によりランプ2
7を点灯する。このとき、ランプ27からの発光が反射
板28で反射されて多孔室セラミックス基板29が加熱
される。その際の基板温度は、フィラメント電源9の調
節により、600〜900℃の範囲とするのが望まし
い。
In order to generate oxygen ions using the apparatus of FIG. 3, the inside of the irradiation chamber 5 is kept at 1.3 × 10 −3 Pa or less by a vacuum exhaust pump (not shown) connected to the exhaust port 26 in advance. In this state, the lamp 2 is powered by the filament power supply 9.
Turn on 7. At this time, the light emitted from the lamp 27 is reflected by the reflection plate 28 and the porous chamber ceramic substrate 29 is heated. The substrate temperature at that time is preferably adjusted to a range of 600 to 900 ° C. by adjusting the filament power supply 9.

【0024】そして、導入バルブ14を開放することに
より、ガス導入管31経由にて酸素ガスを流量0.01
〜0.1sccmで導入しながら、反射板28に囲まれ
た空間内を1.3×10-3Pa程度に保つ。
Then, the introduction valve 14 is opened so that the flow rate of the oxygen gas is 0.01 via the gas introduction pipe 31.
The space surrounded by the reflection plate 28 is maintained at about 1.3 × 10 −3 Pa while introducing the gas at a flow rate of about 0.1 sccm.

【0025】このようにして、引出電極用電源12によ
りイオンソース室2に−300Vの電圧を印加する。こ
のとき、多孔質セラミックス基板29が負極となり、こ
のことにより、反射板28に囲まれた空間内の酸素種が
多孔質セラミックス基板29を通過する過程で、負電荷
に帯電されて照射室5内の被照射体23に飛着して電流
を生じさせる。
In this manner, the extraction electrode power source 12 applies a voltage of -300 V to the ion source chamber 2. At this time, the porous ceramics substrate 29 becomes a negative electrode, and as a result, oxygen species in the space surrounded by the reflection plate 28 are negatively charged and pass through the porous ceramics substrate 29, so that the inside of the irradiation chamber 5 is charged. And hits the irradiated body 23 to generate an electric current.

【0026】図3の装置の電流計24で計測された電流
値は約2mA(約100μA/cm 2)で、図1の電流
計24の計測で得られる電流値2〜15μAよりも格段
に良好な結果が得られる。
The current measured by the ammeter 24 of the apparatus of FIG.
The value is about 2mA (about 100μA / cm 2), The current of Figure 1
Much better than the current value of 2 to 15 μA obtained by the total of 24 measurements
Good results are obtained.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
の酸素イオン発生用真空処理装置では、酸素イオンの起
源となる酸素種が正から負への電荷変換を経ずに直接負
電荷に帯電されて酸素イオンが生成される。このように
酸素イオンの生成工程が簡略化されるので、酸素イオン
生成時の電荷の変換ロスを抑制できて効率良くイオン量
を確保することができ、また、装置構造も簡素となるた
め取扱い上の有用性が向上する。このため、酸素イオン
生成のための条件変更が容易となることが期待できる。
As is apparent from the above description, in the vacuum processing apparatus for oxygen ion generation according to the present invention, the oxygen species as the origin of oxygen ions are directly converted into negative charges without undergoing charge conversion from positive to negative. It is charged and oxygen ions are generated. Since the oxygen ion generation process is simplified in this way, charge conversion loss during oxygen ion generation can be suppressed and the amount of ions can be secured efficiently, and the device structure is also simplified, making it easy to handle. Improves the usefulness of. Therefore, it can be expected that the conditions for generating oxygen ions can be easily changed.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の酸素イオン発生装置FIG. 1 Conventional oxygen ion generator

【図2】(a)〜(c)図1の酸素イオン発生装置にお
ける負電荷酸素イオンの生成過程
2 (a) to (c) The generation process of negatively charged oxygen ions in the oxygen ion generator shown in FIG.

【図3】本発明の酸素イオン発生用真空処理装置FIG. 3 is a vacuum processing apparatus for generating oxygen ions of the present invention

【符号の説明】[Explanation of symbols]

1 酸素イオン発生用真空処理装置 6 電気絶縁材 12 引出電極用電源 19 多孔導電板 27 ランプ(加熱手段) 28 反射板(加熱手段) 29 多孔質セラミックス基板 31 ガス導入パイプ 1 Vacuum processing equipment for oxygen ion generation 6 electrical insulation 12 Power supply for extraction electrode 19 Perforated conductive plate 27 lamps (heating means) 28 Reflector (heating means) 29 Porous ceramic substrate 31 Gas introduction pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沈 国華 神奈川県茅ヶ崎市萩園2500 株式会社アル バック内 (72)発明者 山口 広一 神奈川県茅ヶ崎市萩園2500 株式会社アル バック内 Fターム(参考) 5F045 AA20 AC11 AE11 CA15 DP05 EK11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shen Guohua             2500 Hagien, Chigasaki-shi, Kanagawa Al             In the back (72) Inventor Koichi Yamaguchi             2500 Hagien, Chigasaki-shi, Kanagawa Al             In the back F-term (reference) 5F045 AA20 AC11 AE11 CA15 DP05                       EK11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多孔質セラミックス基板と加熱手段と酸素
導入手段とを有し、前記酸素導入手段を作動させて成る
酸素雰囲気下、前記加熱手段により前記多孔質セラミッ
クス基板を加熱して酸素イオンを発生させることを特徴
とする酸素イオン発生用真空処理装置。
1. A porous ceramic substrate, a heating means, and an oxygen introducing means, wherein the porous ceramic substrate is heated by the heating means under an oxygen atmosphere formed by operating the oxygen introducing means to generate oxygen ions. A vacuum processing apparatus for generating oxygen ions, which is characterized by generating oxygen ions.
【請求項2】前記多孔質セラミックス基板に電気絶縁材
料を介して多孔導電板を対向させることを特徴とする請
求項1に記載の酸素イオン発生用真空処理装置。
2. The vacuum processing apparatus for oxygen ion generation according to claim 1, wherein a porous conductive plate is opposed to the porous ceramic substrate with an electrically insulating material interposed therebetween.
【請求項3】前記多孔導電板を接地すると共に、前記多
孔質セラミックス基板を負極として電圧を印加すること
を特徴とする請求項2に記載の酸素イオン発生用真空処
理装置。
3. The oxygen ion generating vacuum processing apparatus according to claim 2, wherein the porous conductive plate is grounded and a voltage is applied with the porous ceramic substrate as a negative electrode.
JP2002018022A 2002-01-28 2002-01-28 Vacuum processing equipment for oxygen ion generation Expired - Fee Related JP4114770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002018022A JP4114770B2 (en) 2002-01-28 2002-01-28 Vacuum processing equipment for oxygen ion generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018022A JP4114770B2 (en) 2002-01-28 2002-01-28 Vacuum processing equipment for oxygen ion generation

Publications (3)

Publication Number Publication Date
JP2003218096A true JP2003218096A (en) 2003-07-31
JP2003218096A5 JP2003218096A5 (en) 2005-06-16
JP4114770B2 JP4114770B2 (en) 2008-07-09

Family

ID=27653506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018022A Expired - Fee Related JP4114770B2 (en) 2002-01-28 2002-01-28 Vacuum processing equipment for oxygen ion generation

Country Status (1)

Country Link
JP (1) JP4114770B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052980A (en) * 2008-08-28 2010-03-11 Tokyo Institute Of Technology Oxygen atom generating apparatus
US9797054B2 (en) 2014-07-09 2017-10-24 Carleton Life Support Systems Inc. Pressure driven ceramic oxygen generation system with integrated manifold and tubes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052980A (en) * 2008-08-28 2010-03-11 Tokyo Institute Of Technology Oxygen atom generating apparatus
US9797054B2 (en) 2014-07-09 2017-10-24 Carleton Life Support Systems Inc. Pressure driven ceramic oxygen generation system with integrated manifold and tubes

Also Published As

Publication number Publication date
JP4114770B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
US8350572B2 (en) Ionization vacuum device
KR100789592B1 (en) Soft x-ray tube with field emission cold cathode by using carbon nano tube
EP0095311B1 (en) Ion source apparatus
JP2006216440A (en) Formation method and ion source of filament used for ion source
JP4114770B2 (en) Vacuum processing equipment for oxygen ion generation
US7091443B2 (en) Heating device and heating method
JP2015088218A (en) Ion beam processing apparatus and neutralizer
JP2007123270A (en) Ion generating device
JPH08102278A (en) Device and method for generating ion beam
JPH0746586B2 (en) Ion source
JP2006260948A (en) Ionizer equipped with x-ray generator
TWI336484B (en) Cathode and counter-cathode arrangement in an ion source
JPS58102440A (en) Hollow-cathode electric-discharge device
JP4226276B2 (en) Vacuum processing equipment for generating negatively charged oxygen ions
JP2002022899A (en) Electron beam irradiator
JPH11273894A (en) Thin film forming device
JP2586836B2 (en) Ion source device
JPS6226879A (en) Metal vapor laser oscillation tube
JP4242190B2 (en) Oxygen negative ion generator
JPH0837099A (en) Plasma generating device
JP2003242917A (en) Electron gun and electron beam irradiation processing device
JP2010052980A (en) Oxygen atom generating apparatus
JP4627365B2 (en) Starting method of pressure gradient type plasma generator
JP2009179835A (en) Coaxial vacuum arc vapor deposition source and vacuum vapor deposition apparatus
JPH08222166A (en) Ion source

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4114770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees