TWI336484B - Cathode and counter-cathode arrangement in an ion source - Google Patents

Cathode and counter-cathode arrangement in an ion source Download PDF

Info

Publication number
TWI336484B
TWI336484B TW95112873A TW95112873A TWI336484B TW I336484 B TWI336484 B TW I336484B TW 95112873 A TW95112873 A TW 95112873A TW 95112873 A TW95112873 A TW 95112873A TW I336484 B TWI336484 B TW I336484B
Authority
TW
Taiwan
Prior art keywords
cathode
processing chamber
ion source
voltage potential
bias
Prior art date
Application number
TW95112873A
Other languages
Chinese (zh)
Other versions
TW200739647A (en
Inventor
Richard David Goldberg
Christopher James Sydney Burgess
Andrew Stephen Devaney
David George Armour
David Kirkwood
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to TW95112873A priority Critical patent/TWI336484B/en
Publication of TW200739647A publication Critical patent/TW200739647A/en
Application granted granted Critical
Publication of TWI336484B publication Critical patent/TWI336484B/en

Links

Description

1336484 九、發明說明: 【發明所屬之技術領域】 本發明關於適用離子佈植器之離子源,其包括一陰極 及一反向陰極。 【先前技術】1336484 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an ion source suitable for use in an ion implanter comprising a cathode and a reverse cathode. [Prior Art]

本發明應用範圍在於半導體元件或其他材料製造中所 用的離子佈植器,然亦有其他可能的應用範圍。於前述應 用中,半導體晶圓係藉由將所欲摻雜物種的原子佈植至晶 圓本體中,以形成具不同導電性的區域。常見摻雜物的範 例為硼、磷、砷及銻。The application of the invention lies in the ion implanter used in the manufacture of semiconductor components or other materials, but there are other possible applications. In the foregoing application, the semiconductor wafer is implanted into the wafer body by atomizing the atoms of the desired species to form regions of different conductivity. Examples of common dopants are boron, phosphorus, arsenic and antimony.

一般而言,離子佈植器包括離子源,處於真空處理室 的真空内。離子源可利用電弧處理室内所形成的電漿形成 離子。電漿離子以「離子喷淋(ion shower)」的模式由電弧 處理室取出,並移動以將該等離子佈植於例如半導體晶圓 這樣的靶材。或者,所擷取的離子可通過質量分析台,以 使所欲質量的離子及能量可作選擇而向前移動佈植於半導 體晶圓中。離子佈植器更詳細的描述可參照美國專利第 4,754,200 號案中。 於典型Bernas形式的離子源中,熱電子會在陰極的電 場影響下發射並加速,並由磁場迫使沿螺旋路徑移向反向 陰極,並在電弧處理室内與先驅物氣體的相互影響後形成 所欲電漿。 於一已知配置中,反向陰極係連接至陰極以使兩者有 5 1336484In general, the ion implanter includes an ion source within the vacuum of the vacuum processing chamber. The ion source can form ions using the plasma formed in the arc treatment chamber. The plasma ions are taken out of the arc processing chamber in an "ion shower" mode and moved to implant the plasma onto a target such as a semiconductor wafer. Alternatively, the extracted ions can be passed through a mass spectrometer to allow the desired mass of ions and energy to be selected and moved forward into the semiconductor wafer. A more detailed description of the ion implanter can be found in U.S. Patent No. 4,754,200. In a typical Bernas-type ion source, the hot electrons are emitted and accelerated under the influence of the electric field of the cathode, and are forced by the magnetic field to move toward the reverse cathode along the spiral path, and form an interaction between the arc treatment chamber and the precursor gas. Want to plasma. In a known configuration, the reverse cathode is connected to the cathode to have both 5 1336484

共同電位(參照美國專利第5,517,077及5,977,552號 反向陰極為一負偏壓,使其排斥來自陰極的電子,增 過離子源的螺旋路徑數目,藉以增加電弧處理室中的 化效應。 於另一已知配置中,反向陰極則作電性隔絕,以 浮動接近電漿電位(參照美國專利第5,703,372號案)。 離子佈植器的質量分析台則以控制磁場方式操作 選擇所欲質量的離子(經由其動量或質量對電荷狀態 方式例)並排除不想要的離子(即某種程度上於磁場中 不同路徑者)。 例如於硼摻雜的情況中,通常以 B F 3作為先驅 體。電弧處理室中的游離會導致電漿大致含有B+、F + 及BF2 +離子。此離子混合物會經擷取並進入質量分析 而確保僅有所欲的B/BFX物種送至半導體晶圓。雖然 佈植物種皆需要佈植B +離子,但亦有其他使用BF2 +離 因為BF2 +離子在佈植半導體晶圓時游離,所產生的硼 便可以較低的能量佈植而形成某些應用所需的較淺 層。 【發明内容】 本發明目的在於增加離子源操作的彈性,例如最 用於佈植不同物種(由共同來源材料所衍生)的離子源 最佳化特定離子物種(來自特定氣體饋送器)的輸出。 於本發明第一態樣中,本發明係關於一種用於離 案)° 加穿 離子 使其 > 以 比的 依循 物氣 、BF + 台, 許多 子。 原子 摻雜 佳化 ,或 子佈 6 1336484 植器的離子源,其至少包含:一電弧處理室,配置以產生 且包含一電漿;一陰極,配置以將電子發射至該電弧處理 室;一電極,設於該電弧處理室中,以使陰極所發射的電 子可入射其上;一或多個電壓電位源,配置以偏壓該電極; 以及一電壓電位調整器,其可操作以於正偏壓該電極之電 壓電位源(作為陽極)以及負偏壓該電極之電壓電位源(作 為反向陰極)之間切換。The common potential (refer to U.S. Patent Nos. 5,517,077 and 5,977,552, the negative cathode is a negative bias, such that it repels electrons from the cathode, increasing the number of helical paths of the ion source, thereby increasing the effect in the arc processing chamber. In the known configuration, the reverse cathode is electrically isolated to float close to the plasma potential (see U.S. Patent No. 5,703,372). The mass spectrometer of the ion implanter operates to select the desired mass of ions in a controlled magnetic field mode. (by its momentum or mass versus charge state) and exclude unwanted ions (ie somewhere different paths in the magnetic field). For example, in the case of boron doping, BF 3 is usually used as the precursor. Freeing in the processing chamber causes the plasma to contain approximately B+, F+, and BF2+ ions. This ionic mixture is extracted and subjected to mass analysis to ensure that only the desired B/BFX species are sent to the semiconductor wafer. Plant species need to implant B + ions, but there are other uses of BF2 + because BF2 + ions are free when implanting semiconductor wafers, and the boron produced can be lower. The present invention aims to increase the flexibility of ion source operation, such as the ion source most used for implanting different species (derived from common source materials). Optimizing the output of a particular ionic species (from a particular gas feed). In a first aspect of the invention, the invention relates to a method for displacing ions by ionization, > + Taiwan, many children. An atomic doping, or an ion source of a sub-cloth 6 1336484 implanter, comprising at least: an arc processing chamber configured to produce and comprise a plasma; a cathode configured to emit electrons to the arc processing chamber; An electrode disposed in the arc processing chamber such that electrons emitted by the cathode are incident thereon; one or more voltage potential sources configured to bias the electrode; and a voltage potential adjuster operable to positively The source of the voltage potential biasing the electrode (as the anode) and the source of the voltage potential negatively biasing the electrode (as the reverse cathode) are switched.

現在「反向陰極(counter-cathode)」並未有通用確認 的用詞。「對立陰極(anti-cathode)」及「反射器(reflector)」 亦為業界所採用的同意字。下文將使用「反向陰極」來指 此電極,而申請專利範圍所用的「反向陰極」亦應採相同 解釋。事實上,電極係在電弧處理室對面朝向陰極,且事 先連結陰極電位或作電性隔絕,以使其浮動接近電漿電位。Now, "counter-cathode" does not have a general confirmation. "Anti-cathode" and "reflector" are also the consent words used in the industry. The "reverse cathode" will be used to refer to this electrode below, and the "reverse cathode" used in the patent application should be interpreted in the same way. In fact, the electrode is facing the cathode opposite the arc treatment chamber and is either connected to the cathode potential or electrically isolated so that it floats close to the plasma potential.

在本發明所揭示的配置下,電弧會在陰極及反向陰極 (後者作為陽極)之間打出。此外,反向陰極上的正偏壓電 位會吸引陰極所發射的電子,以使其移至反向陰極而匯集 於於該處。因此,電子傾向僅來回於電弧處理室一次(假設 採用習知相對陰極以及反向陰極的配置)。在與具負偏壓陰 極以及反向陰極的習知配置(反射模式的操作下)相比時, 電弧處理室内的電子其平均壽命較短。’ 於反射模式操作下,反向陰極維持在與陰極相同的電 位,以使該等電子可重複反射。此會增加電子(由陰極所發 射)在電弧處理室中的壽命而形成更具能量的電漿,加強離 子化及來源氣體分子的裂解。在新穎、非反射操作模式中, 7 1336484In the configuration disclosed herein, an arc is struck between the cathode and the counter cathode (the latter acts as the anode). In addition, the positive bias potential on the reverse cathode attracts the electrons emitted by the cathode to move it to the reverse cathode where it accumulates. Therefore, the electron tends to go back and forth only once to the arc processing chamber (assuming a conventional configuration of the cathode and the counter cathode). The electrons in the arc processing chamber have a shorter average life when compared to conventional configurations with a negative bias cathode and a reverse cathode (in the operation of the reflective mode). In the reflective mode operation, the reverse cathode is maintained at the same potential as the cathode to allow the electrons to be re-reflected. This increases the lifetime of the electrons (emitted by the cathode) in the arc processing chamber to form a more energetic plasma that enhances the ionization and cracking of the source gas molecules. In a novel, non-reflective mode of operation, 7 1336484

電子會吸附至正反向陰極而匯集於該處。因此, 命在電弧處理室内會減少。 然而,現已發現減少的電子壽命會導致分子 例如,若BF3作為先驅物氣體,會有較少的B +及 產生。此表示雖然電漿内產生的離子可能較少, 多的碎片維持在BF2 +離子態。令人意外的是,吾 減少的裂解會提供相當多量的較大離子(例如BF: 整個離子產量的任何損失。使用B F3做為先驅物 例可貢獻高達70%的BF2 +離子束電流(此係測量 析台出現的BF2 +離子)。 因此,此新配置優點在於可以較高質量分子 如BF2 +作佈植,而非低質量裂解的產物。 此外,其亦可依據所需佈植選擇最適當的操 即依據佈植配方(例如分別協助B +產生或BF2 +產i 一種模式。 亦可選擇的是,離子源更包括一真空處理室 壓電位調整器係位於大氣環境下。此方式可於操 切換,而無須為了對電壓電位調整器進行存取而 理室抽氣至大氣壓。 當操作於非反射模式時,較佳係負偏壓電弧 以促使電子移至反向陰極。或者,該電弧處理室 偏壓或可將其作電性隔絕以浮動接近電漿電位。 式中,處理室壁係正偏壓以提供陽極打出所欲電3 離子源可包含一額外電壓電位調整器,其可操作 電子的壽 的裂解。 BF +離子 但會有更 人亦發現 ,)以補償 氣體的範 由質量分 的離子例 作模式, η選擇任 ,而該電 作模式間 將真空處 處理室壁 壁也可正 於反射模 ίν。因此, 以正偏壓 8 1336484 或負偏壓一電弧處理室壁。同樣的,為省去將該真空處理 室抽氣的必要,該額外電壓電位調整器可位於大氣環境中。The electrons are attracted to the positive and negative cathodes and pooled there. Therefore, life will be reduced in the arc processing room. However, it has been found that reduced electron lifetime leads to molecules such as BF3 as a precursor gas with less B + and production. This means that although the ions generated in the plasma may be less, more fragments are maintained in the BF2+ state. Surprisingly, my reduced cleavage will provide a significant amount of larger ions (eg BF: any loss of overall ion yield. Using B F3 as a precursor can contribute up to 70% of the BF2+ beam current (this It measures the BF2+ ions present in the stage. Therefore, the advantage of this new configuration is that it can be implanted with higher quality molecules such as BF2 + instead of low-quality cracking products. In addition, it can also be selected according to the desired planting. Appropriate operation is based on the implant formula (for example, assisting B + generation or BF2 + production respectively). Alternatively, the ion source may include a vacuum processing chamber piezoelectric position regulator in an atmospheric environment. Switching can be performed without the need to access the voltage potential regulator and the chamber is evacuated to atmospheric pressure. When operating in the non-reflective mode, a negative bias arc is preferred to cause electrons to move to the reverse cathode. The arc processing chamber is biased or electrically isolated to float close to the plasma potential. In the formula, the processing chamber wall is positively biased to provide the anode with the desired electrical output. The ion source may contain an additional voltage potential. The whole device, which can handle the cleavage of the electrons of life. BF + ions, but there will be more people also found that, in order to compensate for the gas mass of the mass of the ion mode, η choose any, and the vacuum between the modes The wall of the processing chamber may also be in the reflection mode ίν. Therefore, the chamber wall is treated with a positive bias of 8 1336484 or a negative bias. Similarly, in order to eliminate the need to evacuate the vacuum processing chamber, the additional voltage The potential adjuster can be located in the atmosphere.

較佳而言,為了至少第一及第二離子產生模式,離子 源更可配置以利用電壓電位調整器及額外電壓電位調整器 組進行操作,以分別使反向陰極作正向偏壓而電弧處理室 壁作負像偏壓,反之亦然。此方式分別對應非反射及反射 模式。雖然是選擇性的,然離子源較佳可進一步配置以於 第一及第二離子產生模式間變換,並藉由操作該電壓電位 調整器及該額外電壓電位調整器而回復,以使第一開關能 通常由負偏壓至正偏壓。此方式確保了陽極總是可用,以 持續打出電弧而維持電弧處理室中的電漿。於此方式下, 電弧處理室可維持在經提升的操作溫度。Preferably, for at least the first and second ion generating modes, the ion source is further configurable to operate with the voltage potential adjuster and the additional voltage potential adjuster group to forward bias the reverse cathode respectively The chamber wall is negatively biased and vice versa. This mode corresponds to the non-reflective and reflective modes, respectively. Although selective, the ion source is preferably further configured to switch between the first and second ion generating modes and to recover by operating the voltage potential adjuster and the additional voltage potential adjuster to make the first The switch can typically be biased from negative to positive. This approach ensures that the anode is always available to continue to arc and maintain the plasma in the arc processing chamber. In this manner, the arc processing chamber can be maintained at elevated operating temperatures.

亦可選擇的是,電壓電位調整器可作配置以進一步電 性隔絕反向陰極,且其中為了第三離子產生模式,該離子 源可進一步配置以與電壓電位調整器及額外電壓電位調整 器組進行操作,以使反向陰極電性隔絕而正偏壓該電弧處 理室壁。 此方式提供了第三(浮動)操作模式,使反向陰極的電 位可浮動至電漿電位。此方式可藉反向陰極提供中間強度 (intermediate level)的電子反射,因此而提供了中間強度的 裂解。 亦可選擇的是,電壓電位調整器可為雙向開關,經配 置以切換於第一位置(用以正偏壓反向陰極)及第二位置 (用以負偏壓反向陰極)之間。或者,該電壓電位調整器可 9 1336484 為三向開關,經配置以切換於第一位置(用以正偏壓該反向 陰極)、第二位置(用以負偏壓該反向陰極)以及第三位置 (用以電性隔絕反向陰極)之間。 亦可選擇的是,額外電壓電位調整器為一經配置可切 換於第一位置(用以正偏壓該電弧處理室壁)及第二位置 (用以負偏壓該電弧處理室壁)之間的開關。該電壓調整器 或開關可選擇性配置以使電弧處理室壁及反向陰極位於相 同電位。Alternatively, the voltage potential adjuster can be configured to further electrically isolate the reverse cathode, and wherein the ion source can be further configured to interact with the voltage potential adjuster and the additional voltage potential adjuster group for the third ion generation mode An operation is performed to electrically isolate the reverse cathode from positively biasing the arc processing chamber wall. This mode provides a third (floating) mode of operation that allows the potential of the reverse cathode to float to the plasma potential. This approach provides an intermediate level of electronic reflection by the reverse cathode, thus providing intermediate strength cracking. Alternatively, the voltage potential adjuster can be a bidirectional switch configured to switch between a first position (for positive biasing of the reverse cathode) and a second position (for negative biasing of the reverse cathode). Alternatively, the voltage potential adjuster 9 1336484 can be a three-way switch configured to switch to a first position (to positively bias the reverse cathode), a second position (to negatively bias the reverse cathode), and Between the third position (to electrically isolate the reverse cathode). Alternatively, the additional voltage potential adjuster is configured to be switchable between a first position (for positively biasing the arc processing chamber wall) and a second position (for negatively biasing the arc processing chamber wall) Switch. The voltage regulator or switch is selectively configurable such that the arc processing chamber wall and the counter cathode are at the same potential.

亦可選擇的是,該離子源更包括一磁性組件,經配置 以於電弧處理室中提供磁場,而界定出該陰極所發散電子 的電子路徑。此方式提供熱電子較長的電子路徑長度,否 則在操作於處理室壁處於相對於陰極的正電位時,熱電子 會被直接吸到鄰近電弧處理室壁。磁場會迫使電子沿電弧 處理室的長度方向(例如,陰極與反向陰極位於電弧處理室 之相對端處)移動。Alternatively, the ion source further includes a magnetic component configured to provide a magnetic field in the arc processing chamber to define an electron path for the electrons emitted by the cathode. This mode provides a longer electronic path length for the hot electrons, otherwise the hot electrons are drawn directly into the adjacent arc processing chamber wall while operating at the positive potential of the chamber wall relative to the cathode. The magnetic field forces the electrons to move along the length of the arc processing chamber (e.g., the cathode and the counter cathode are located at opposite ends of the arc processing chamber).

於本發明之第二態樣中,其係關於一種離子佈植器, 其包括前述任一離子源。亦可選擇的是,該電弧處理室更 包括一出口且該離子佈植器更包括一擷取電極,可操作以 經由該出口自電弧處理室内的電漿擷取離子,並將所擷取 的離子佈植於靶材。亦可選擇的是,該離子佈植器更可包 括一質量分析台,經設置以接取自該電弧處理室擷取的離 子,並可操作以將所選質量及電荷態的離子以一特定能量 傳遞(例如佈植)至靶材。 於本發明第三態樣中,係提供一種操作一離子源的方 10 1336484 法,其中該離子源包括一電弧處理室,其具有一陰極及一 反向陰極,該方法包括:一第一反射操作模式,包括負偏 壓該陰極、正偏壓一處理室壁以於陰極及處理室壁間打出 電漿、以及負偏壓該反向陰極以排斥該等電子;以及一第 二非反射操作模式,包括負偏壓該陰極及正偏壓該反向陰 極,以於該陰極及反向陰極間打出電漿。此方法較佳特徵 係界定於附加申請專利範圍中。In a second aspect of the invention, it relates to an ion implanter comprising any of the foregoing ion sources. Optionally, the arc processing chamber further includes an outlet and the ion implanter further includes a pumping electrode operable to extract ions from the plasma in the arc processing chamber via the outlet, and the extracted Ions are implanted on the target. Alternatively, the ion implanter may further comprise a mass analysis station configured to pick up ions extracted from the arc processing chamber and operable to set ions of the selected mass and charge state to a specific one. Energy transfer (eg, planting) to the target. In a third aspect of the present invention, there is provided a method of operating an ion source according to the method of 1 10336484, wherein the ion source comprises an arc processing chamber having a cathode and a reverse cathode, the method comprising: a first reflection An operating mode comprising negatively biasing the cathode, positively biasing a chamber wall to plasma between the cathode and the chamber wall, and negatively biasing the counter cathode to repel the electrons; and a second non-reflective operation The mode includes negatively biasing the cathode and positively biasing the reverse cathode to produce a plasma between the cathode and the counter cathode. Preferred features of this method are defined in the scope of the additional patent application.

【實施方式】 第1圖係顯示本發明的示範應用,然熟習此項技術人 士應可領會此僅為本發明之實施範例,而非用以限制其範 圍。[Embodiment] FIG. 1 shows an exemplary application of the present invention, and those skilled in the art should understand that this is merely an embodiment of the present invention and is not intended to limit the scope thereof.

第 1圖係圖示一習知用以佈植離子於半導體晶圓 1 2 的離子佈植器10,其包括一依據本發明之離子源14。由離 子源 1 4產生的離子於此實施例中係經擷取與傳送通過一 質量分析台3 0。所欲質量的離子係經選擇通過質量分析狹 口 32,並接著打至半導體晶圓12。 離子佈植器10包含一離子源14,用以產生真空處理 室15内所欲物種之離子束。該離子源14通常包含一電弧 處理室16,其於一端具有一陰極20。依據習知技術,可操 作離子源1 4以使電弧處理室1 6壁1 8作為陽極。陰極2 0 則作充分加熱以形成熱電子。 由陰極20發散的熱電子會吸附至陽極,於此案中係指 鄰近處理室壁18。該等熱電子在橫越電弧處理室16時會 11 1336484 離子化氣體分子,藉以形成電漿並產生所欲離子。 熱電子所依循的路徑亦會依習知技術予以控制,以避 免電子僅循向最短路徑至處理室壁18。磁組件46可提供 延伸過電弧處理室16的磁場,以使熱電子依循電弧處理室 16長度方向的空間路徑移向電弧處理室16相對端的反向 陰極1 4。1 is a diagram of a conventional ion implanter 10 for implanting ions onto a semiconductor wafer 12, including an ion source 14 in accordance with the present invention. The ions generated by the ion source 14 are drawn and transported through a mass spectrometer 30 in this embodiment. The desired mass of ions is selected through the mass analysis slit 32 and then to the semiconductor wafer 12. The ion implanter 10 includes an ion source 14 for generating an ion beam of a desired species within the vacuum processing chamber 15. The ion source 14 typically includes an arc processing chamber 16 having a cathode 20 at one end. According to conventional techniques, the ion source 14 can be operated to cause the arc treatment chamber 16 wall 18 as an anode. Cathode 20 is then heated sufficiently to form hot electrons. The hot electrons diverging from the cathode 20 are adsorbed to the anode, which in this case is adjacent to the processing chamber wall 18. The hot electrons ionize the gas molecules 11 336 484 as they traverse the arc processing chamber 16 to form a plasma and produce the desired ions. The path followed by the hot electrons is also controlled by conventional techniques to prevent electrons from following only the shortest path to the processing chamber wall 18. The magnetic assembly 46 can provide a magnetic field that extends through the arc processing chamber 16 to cause the hot electrons to follow the spatial path along the length of the arc processing chamber 16 toward the opposite cathode 14 at the opposite end of the arc processing chamber 16.

氣體饋送器22係以先驅氣體物種(例如BF3)裝填電弧 處理室1 6。電弧處理室16係維持在真空處理室1 5的減 壓。移動通過電弧處理室16的熱電子會將先驅物BF3氣體 分子離子化,並也裂解BF3分子形成BF2、BF及B分子及 離子。電漿中形成的離子也將含有微量的污染物離子(例如 由處理室壁材料所形成的污染物)。The gas feed 22 is loaded with an arc treatment chamber 16 with a precursor gas species (e.g., BF3). The arc processing chamber 16 is maintained at a reduced pressure in the vacuum processing chamber 15. The hot electrons moving through the arc treatment chamber 16 ionize the precursor BF3 gas molecules and also cleave the BF3 molecules to form BF2, BF and B molecules and ions. The ions formed in the plasma will also contain traces of contaminant ions (e.g., contaminants formed by the walls of the process chamber).

該電弧處理室1 6内的離子會利用負偏壓擷取電極2 6 而自出口 28取出。電源供應器21會於該離子源14及隨後 質量分析台3 0間施加電壓差以加速所擷取的離子,離子源 1 4及質量分析台 3 0彼此係以絕緣體(未示出)電性隔絕。 所擷取離子的混合物會接著通過質量分析台3 0,以使其通 過磁場影響的曲狀路徑。任一離子所移動的曲率半徑係由 其質量、電荷態即能量所決定,且磁場係經控制以在一特 定束能量下,僅有此等具有所欲質荷比(mass to charge ratio)的離子及能量可沿著與質量分析狹口 32相符的路徑 離開。所衍生的新離子束會接著送至靶材,亦即欲佈植的 基材晶圓12、或靶材位置沒有晶圓12時的離子束檔體38。 於其他模式中,離子束也可利用透鏡組(設於質量分析台 12 1336484 3 0及靶材位置之間)作加速或減速。 半導體晶圓12將安裝在晶圓支撐件3 6上,晶圓12 則連續的傳送進出該晶圓支撐件3 6以作連續佈植。或者, 也可使用平行處理,讓許多晶圓12定位於轉台36上,以 旋轉將晶圓呈現於隨後的入射離子。 第2及3圖則較詳細顯示兩個已知離子源1 4,可用於 第1圖之離子佈植器1 0。第2圖對應於一燈絲配置而第3 圖對應於一間接加熱之陰極配置。The ions in the arc processing chamber 16 are taken out of the outlet 28 by the negative biasing of the electrode 26. The power supply 21 applies a voltage difference between the ion source 14 and the subsequent mass analysis stage 30 to accelerate the extracted ions. The ion source 14 and the mass analysis stage 30 are electrically connected to each other by an insulator (not shown). Isolated. The mixture of ions taken will then pass through the mass analysis station 30 to pass the curved path affected by the magnetic field. The radius of curvature of any ion is determined by its mass, charge state, ie energy, and the magnetic field is controlled to have a desired mass to charge ratio at a particular beam energy. The ions and energy can exit along a path that coincides with the mass analysis slit 32. The new ion beam that is derived is then sent to the target, i.e., the substrate wafer 12 to be implanted, or the ion beam file 38 when the target position is free of the wafer 12. In other modes, the ion beam can also be accelerated or decelerated using a lens set (located between the mass analysis station 12 1336484 3 0 and the target position). The semiconductor wafer 12 will be mounted on the wafer support 36, and the wafer 12 will be continuously transferred into and out of the wafer support 36 for continuous implantation. Alternatively, parallel processing can be used to position a plurality of wafers 12 on turntable 36 for rotation to present the wafer to subsequent incident ions. Figures 2 and 3 show two known ion sources 14 in more detail and can be used in the ion implanter 10 of Figure 1. Figure 2 corresponds to a filament configuration and Figure 3 corresponds to an indirectly heated cathode configuration.

首先參照第2圖,作為陰極的燈絲4 0係置於電弧處理 室16的一端以位於電子反射器42的前方。電子反射器42 係維持再予燈絲4 0相同的負電位,以負偏壓其兩者並排斥 電子。電子反射器42及襯墊5 6間並有小間隙,其包含了 電弧處理室1 6的最深處部分。此間隙可確保電子反射器Referring first to Fig. 2, a filament 40 as a cathode is placed at one end of the arc processing chamber 16 to be positioned in front of the electron reflector 42. The electronic reflector 42 maintains the same negative potential for the filament 40, negatively biasing both of them and rejecting electrons. There is a small gap between the electronic reflector 42 and the spacer 56, which contains the deepest portion of the arc processing chamber 16. This gap ensures an electronic reflector

4 2與通常作為陽極的襯墊5 6電性隔絕。公差應極小以避 免先驅物氣體自電弧處理室16漏失。反向陰極44係位於 電弧處理室1 6的最遠端,同樣與襯墊5 6有微小的間隔以 確保電性隔絕及最小化氣體洩漏。磁鐵組件4 6 (僅示於第1 圖)可操作以提供磁場,使燈絲4 0發散的電子循著電弧處 理室16長度方向的空間路徑34移向反向陰極44。電弧處 理室16則藉由氣體饋送器22或一或多種喷霧器23填以先 驅物氣體物種,以加熱固體或液體。 燈絲4 0則以兩個夾持部4 8固定,其每一者係利用絕 緣塊52連接至離子源14的本體50。絕緣塊52並安裝一 檔體54以避免任何自電弧處理室16逃出的氣體分子接觸 13 1336484 絕緣塊。 很明顯的是,第3圖絕大多數對應第2圖,故相同部 分不再贅述。此外,相同元件仍將以相同參考號標示。4 2 is electrically isolated from the gasket 56 which is usually used as an anode. The tolerance should be minimal to avoid leakage of precursor gases from the arc processing chamber 16. The reverse cathode 44 is located at the extreme end of the arc processing chamber 16 and is also slightly spaced from the spacer 56 to ensure electrical isolation and minimize gas leakage. The magnet assembly 46 (shown only in Figure 1) is operable to provide a magnetic field such that electrons diverging from the filament 40 follow the spatial path 34 in the longitudinal direction of the arc processing chamber 16 toward the counter cathode 44. The arc processing chamber 16 is filled with a precursor gas species by a gas feed 22 or one or more sprayers 23 to heat the solid or liquid. The filament 40 is secured by two clamping portions 48, each of which is coupled to the body 50 of the ion source 14 by an insulating block 52. The insulating block 52 is mounted with a gear 54 to prevent any gas molecules that escape from the arc processing chamber 16 from contacting the 13 1336484 insulating block. It is obvious that the majority of Fig. 3 corresponds to Fig. 2, so the same parts will not be described again. In addition, the same elements will still be denoted by the same reference numerals.

第2及第3圖間的差異在於電弧處理室16頂部,第3 圖顯示一間接加熱之陰極配置。陰極設於管部60之一端蓋 58而略突出至電弧處理室16,管部 60並含有加熱燈絲 6 2。加熱燈絲6 2及端蓋5 8並維持在不同電位,以確保燈 絲62發散的熱電子可加速至端蓋58,且管部60及電弧處 理室1 6之襯墊5 6間的間隙可維持電性隔絕。電子至端蓋 5 8的加速會將能量傳送至端蓋5 8,以使其充分加熱以將熱 電子發散至電弧處理室16。 此配置較第3圖之燈絲配置為優係因為燈絲4 0在電漿 的反應性離子及離子轟擊的影響下會較快磨損。為減輕此 問題,間接加熱的陰極之加熱燈絲6 2會罩在封圍管部6 0 内,以使離子不會接觸加熱燈絲6 2。 具有新偏壓配置的離子源14將參照第4至7圖作描The difference between Figures 2 and 3 is at the top of the arc processing chamber 16, and Figure 3 shows an indirect heated cathode configuration. The cathode is provided on one of the end caps 58 of the tube portion 60 to slightly protrude into the arc treatment chamber 16, and the tube portion 60 contains the heating filament 62. The filament 6 2 and the end cap 58 are heated and maintained at different potentials to ensure that the hot electrons diverging from the filament 62 can be accelerated to the end cap 58, and the gap between the tube portion 60 and the gasket 56 of the arc treatment chamber 16 can be maintained. Electrically isolated. The acceleration of the electron to end cap 58 transfers the energy to the end cap 5 8 to allow it to heat sufficiently to dissipate the hot electrons to the arc processing chamber 16. This configuration is superior to the filament configuration of Figure 3 because the filament 40 wears faster under the influence of reactive ions and ion bombardment of the plasma. To alleviate this problem, the indirectly heated cathode heating filament 62 will be housed within the envelope tube portion 60 so that ions do not contact the heating filament 62. Ion source 14 with a new bias configuration will be described with reference to Figures 4 through 7.

述。 首先看到第4圖,第3圖簡略表示的電弧處理室16 係圖示於電源供應器6 4旁。虛線盒6 6指出數個元件(遮罩 於真空處理室15内)間的邊界,且此等元件係處於大氣7〇 中。很明顯的是,大氣70中的元件可作調整而無須破壞真 空68。 如第4圖所示,大氣70中的連續三個電源供應器可以 不同電位提供電流至離子源1 4的不同元件。該離子源1 4 14 1336484 包括間接加熱的陰極。燈絲電源供應器7 2可提供相當高的 電流至間接加熱之陰極的燈絲6 2。偏壓電源供應器7 4則 用以相對於燈絲6 2正偏壓端蓋5 8,以使燈絲6 2所發散的 熱電子加速朝向端蓋5 8。電弧電源供應器7 6係藉由相對 於端蓋58設定大的正電位之方式形成陽極,打出電漿並接 著維持該電漿。 依據習知技術,離子源1 4應操作在反射模式,以正偏 壓處理室壁18作為陽極,負偏壓反向陰極44以排斥電子。Said. First, see Fig. 4, and the arc processing chamber 16 shown schematically in Fig. 3 is shown next to the power supply 64. The dashed box 66 indicates the boundaries between several components (masked within the vacuum processing chamber 15), and these components are in the atmosphere 7〇. It is obvious that the components in the atmosphere 70 can be adjusted without damaging the vacuum 68. As shown in Figure 4, three consecutive power supplies in atmosphere 70 can supply current to different components of ion source 14 at different potentials. The ion source 1 4 14 1336484 includes an indirectly heated cathode. The filament power supply 72 provides a relatively high current to the filament 62 of the indirectly heated cathode. The bias power supply 74 is used to positively bias the end caps 5 8 relative to the filaments 6 2 to accelerate the thermal electrons radiated by the filaments 6 2 toward the end caps 58. The arc power supply 76 forms an anode by setting a large positive potential with respect to the end cap 58, punching the plasma and then maintaining the plasma. According to conventional techniques, the ion source 14 should operate in a reflective mode with a positive biasing chamber wall 18 as the anode and a negative biasing counter cathode 44 to repel the electrons.

本發明係提供一種新穎、非反射的操作模式,其中反 向陰極44可正偏壓以使其作為陽極,而處理室壁18則負 偏壓而使其排斥電子。此等電位可用以將端蓋58的電子導 向反向陰極44,於該處完成回路。或者,處理室壁18可 正偏壓,或處理室壁1 8可電性隔絕以使其浮動至電漿所處 之電位。The present invention provides a novel, non-reflective mode of operation in which the reverse cathode 44 is positively biased to act as an anode and the process chamber wall 18 is negatively biased to repel electrons. This potential can be used to direct electrons from the end cap 58 to the counter cathode 44 where the loop is completed. Alternatively, the process chamber wall 18 can be positively biased, or the process chamber wall 18 can be electrically isolated to float to the potential at which the plasma is located.

第4圖之離子源可操作在反射(如第4圖所示者)或非 反射操作模式(第 4圖未示出,但僅對應相對切換的開關 8 2及8 4)。如此的設計彈性可藉由一對開關8 2及8 4達成, 以使正偏壓或負偏壓可施加至反向陰極44及處理室壁18。 由反向陰極 44及處理室壁 18 延伸的電源連接 (electrical connections)可分別提供開關 82及 84電源連 接。開關82及84可置於大氣70中,因此電源連接可經由 真空饋送通道80(處於真空/大氣介面66處)延伸。將開關 82及84置於大氣70中便可於操作模式間切換,而無須將 真空處理室15柚氣。然亦可使用分隔的饋送通道80或共 15 1336484 用的饋送通道8 0。來自燈絲電源供應器7 2及電壓電源供 應器74的電源連接也會通過真空饋送通道80。可分隔的 饋送通道80,然較佳是使用單一饋送通道80以安排所有 電源連接。或者,開關82、84可設於真空處理室15内。The ion source of Figure 4 can be operated either in reflection (as shown in Figure 4) or in a non-reflective mode of operation (not shown in Figure 4, but only for switches 6 2 and 8 4 that are relatively switched). Such design flexibility can be achieved by a pair of switches 8 2 and 8 4 such that a positive or negative bias can be applied to the reverse cathode 44 and the process chamber wall 18. The electrical connections extending from the reverse cathode 44 and the process chamber wall 18 provide power connections to the switches 82 and 84, respectively. Switches 82 and 84 can be placed in atmosphere 70 so that the power connection can extend via vacuum feed passage 80 (at vacuum/atmosphere interface 66). By placing switches 82 and 84 in atmosphere 70, it is possible to switch between operating modes without having to pour the vacuum processing chamber 15 into a pouch. It is also possible to use a separate feed channel 80 or a feed channel 80 for a total of 15 1336484. The power connection from the filament power supply 72 and the voltage source supply 74 also passes through the vacuum feed channel 80. The separable feed channel 80, but preferably a single feed channel 80 is used to arrange all power connections. Alternatively, the switches 82, 84 can be disposed within the vacuum processing chamber 15.

開關82為一雙向開關,其係將反向陰極44連接至一 對接頭之任一者。此等接頭係電性連接至電弧電源供應器 76之任一側,藉以提供正及負偏壓至反向電極44。開關 8 4可使用類似配置,亦即,開關8 4可正或負偏壓處理室 壁18。 第4圖表示操作於反射模式之離子源14。因此,開關 82係設至其負接頭,以使反向陰極44呈負偏壓。開關84 則設至其正接頭以使處理室壁1 8呈正偏壓。 為於新的非反射模式中操作,第4圖中開關8 2及8 4 的位置僅顛倒以使反向陰極44呈正偏壓而處理室壁18呈 負偏壓。當於此模式操作時,較佳是將磁鐵4 6關閉、或以 低電流操作該磁鐵46。Switch 82 is a bidirectional switch that connects reverse cathode 44 to either of a pair of connectors. These connectors are electrically connected to either side of the arc power supply 76 to provide positive and negative bias to the counter electrode 44. A similar configuration can be used for switch 84, i.e., switch 84 can handle chamber wall 18 positively or negatively. Figure 4 shows the ion source 14 operating in a reflective mode. Thus, switch 82 is attached to its negative terminal to bias reverse cathode 44. Switch 84 is then provided to its positive terminal to positively bias process chamber wall 18. For operation in the new non-reflective mode, the positions of switches 8 2 and 8 4 in Figure 4 are only reversed such that reverse cathode 44 is positively biased and process chamber wall 18 is negatively biased. When operating in this mode, it is preferred to turn off the magnet 46 or operate the magnet 46 at a low current.

兩模式間的操作可在無須熄滅電漿的情況下切換,如 下文所述。由第 4圖所示之反射操作模式開始,開關 8 2 會先切換以正偏壓該反向陰極44,並接著切換開關84以 負偏壓該處理室壁18。此方式可確保電漿的維繫,因陰極 與陽極間總是有足夠的電位差。為自非反射操作模式改變 至反射模式,開關84會先切換以正偏壓該處理室壁18, 並接著切換開關82以負偏壓反向陰極44。同樣的,此方 式可確保電漿的維繫。 16 1336484Operation between the two modes can be switched without the need to extinguish the plasma, as described below. Beginning with the reflective mode of operation illustrated in Figure 4, switch 8 2 will first switch to positively bias the reverse cathode 44 and then switch switch 84 to negatively bias the process chamber wall 18. This method ensures the maintenance of the plasma because there is always a sufficient potential difference between the cathode and the anode. To change from the non-reflective mode of operation to the reflective mode, switch 84 will first switch to positively bias the process chamber wall 18, and then switch switch 82 to negatively bias reverse cathode 44. Again, this approach ensures the maintenance of the plasma. 16 1336484

第5圖大致對應第4圖,故為簡明起見相同元件 再贅述。此外,文中係以相同參考標號標示相同元件 第5圖係顯示與第4圖類似之配置,但具有燈」 而非間接加熱之陰極。第5圊之離子源1 4包含一燈絲 設於電子反射器42前方。該燈絲40及電子反射器42 均藉由電源連接 83(可設於真空 68内)維持在相同 壓。此外,並不需要獨立的偏壓電源供應器74,因燈 及電子反射器42間並無電位差。因此,單一電弧電源 器76可相對於壁18(或襯墊5 6)設定電子反射器42及 40的電位。 除此之外,第5圖之實施例對應第4圖實施例。区 反向陰極44及處理室壁18的電位可在兩操作模式進 切換。 第6圖大致對應第4圖,故相同元件不再贅述並 同參考標號標示相同元件。第6圖與第4圖差異處在 向開關8 2已由三向開關8 2 ’取代。開關8 2 ’具有同樣 及負接頭,以讓反向陰極44作正及負偏壓。然而,亦 供第三接頭,其僅用以電性隔絕反向陰極44。此浮動 模式僅用於在處理室壁18為正極時。離子源14可配 用於浮動操作模式。此浮動操作模式可提供中等程度 子壽命,使電子不再如反向陰極44維持在負偏壓時遭 陰極44強力反射,但會相對於反向陰極44維持在正 時反射更多電子。 當反向陰極44的電位維持在負壓時,電弧處理: 將不 〇 浩4 0 40, 全程 負偏 絲40 供應 燈絲 I此, 行前 以相 於雙 的正 可提 操作 置以 的電 反向 偏壓 t 16 17 1336484The fifth drawing generally corresponds to the fourth drawing, so the same components will be described again for the sake of brevity. In addition, the same reference numerals are used to designate the same elements. Fig. 5 shows a configuration similar to that of Fig. 4, but with a lamp instead of an indirectly heated cathode. The fifth source ion source 14 includes a filament disposed in front of the electron reflector 42. Both the filament 40 and the electronic reflector 42 are maintained at the same voltage by a power connection 83 (which can be placed in the vacuum 68). In addition, a separate bias power supply 74 is not required because there is no potential difference between the lamp and the electronic reflector 42. Thus, single arc power source 76 can set the potential of electronic reflectors 42 and 40 relative to wall 18 (or pad 56). Except for this, the embodiment of Fig. 5 corresponds to the embodiment of Fig. 4. The potential of the reverse cathode 44 and the process chamber wall 18 can be switched in two modes of operation. Fig. 6 generally corresponds to Fig. 4, and the same components are not described again, and the same components are denoted by the same reference numerals. The difference between Fig. 6 and Fig. 4 is that the switch 8 2 has been replaced by the three-way switch 8 2 '. Switch 8 2 ' has the same and negative contacts to bias reverse cathode 44 positively and negatively. However, a third joint is also provided which is only used to electrically isolate the reverse cathode 44. This floating mode is only used when the process chamber wall 18 is positive. The ion source 14 can be used in a floating mode of operation. This floating mode of operation provides a moderate sub-life, such that the electrons are no longer strongly reflected by the cathode 44 as the counter-cathode 44 is maintained at a negative bias, but will maintain more electrons at the timing relative to the counter-cathode 44. When the potential of the counter-cathode 44 is maintained at a negative pressure, the arc treatment: will not be 4 Hao 4 0 40, the whole process of the negative-off wire 40 is supplied with the filament I, and the electric opposite is applied before the line. Directional bias t 16 17 1336484

中裂解BF3分子的可能性會因電弧處理室16中的高電子 密度而增加。因此,電漿中硼離子相對於所有其他離子(例 如BF及BF2離子)會增加。當反向陰極44被隔離且浮動 至電漿所設電位時,會減少裂解而使電漿中留有更多的分 子離子(例如BF +及/或BF2 + )。當反向陰極44作正偏壓時, 甚至會進一步降低裂解。如先前所述,無論蝴或BF2 +離子 皆可較佳用以佈植半導體晶圊1 2。切換反向陰極44之電 位可使入射於質量分析台30的較佳離子數目最大化,並因 此向前傳送至半導體晶圓12。因此,反向陰極44可被偏 壓至優先形成特定摻雜物。 第7圖顯示相同的三向開關8 2 (及所伴隨的三種操作 模式)應用在第5圖之離子源。當開關8 2設定至第三接頭 時(如圖所示),反向陰極44會自由浮動至電弧處理室16 内的電漿電位。 熟習此項技術人士應可瞭解在不悖離本發明精神下亦 可對前述實施例進行任何潤飾。The likelihood of cleavage of the BF3 molecule is increased by the high electron density in the arc processing chamber 16. Therefore, boron ions in the plasma increase with respect to all other ions (e.g., BF and BF2 ions). When the counter-cathode 44 is isolated and floats to the potential set by the plasma, the cracking is reduced to leave more molecular ions (e.g., BF+ and/or BF2+) in the plasma. When the reverse cathode 44 is positively biased, the cracking is even further reduced. As described previously, either the butterfly or BF2 + ions can be preferably used to implant the semiconductor wafer 12. Switching the potential of the reverse cathode 44 maximizes the preferred number of ions incident on the mass analysis station 30 and is therefore forwarded to the semiconductor wafer 12. Thus, the counter cathode 44 can be biased to preferentially form a particular dopant. Figure 7 shows the same three-way switch 8 2 (and the accompanying three modes of operation) applied to the ion source of Figure 5. When switch 8 2 is set to the third joint (as shown), reverse cathode 44 is free to float to the plasma potential within arc processing chamber 16. It will be appreciated by those skilled in the art that the foregoing embodiments may be modified without departing from the spirit of the invention.

應可理解前述處理室壁18也可以正偏壓、負偏壓或電 性隔絕方式操作。第4至7圖顯示一雙向開關8 4、8 4 ’, 其可讓該等偏壓變換於正及負之間並回復。將此開關84、 8 4 ’以三向開關替換時(類似第6及7圖之開關8 2 ’),將可 使三向切換於正偏壓、負偏壓及電性隔絕之間。 雖然前述實施例是採用開關8 2及8 4,以讓反向陰極 44及處理室壁18的電位可藉由連接電弧電源供應器76任 一側的方式作改變,但其他配置亦有可能。例如,開關可 18 1336484 用以將反向陰極44及/或處理室壁18連接至一或多個替代 電源供應器。替代電源供應器可為第4至7圖所示任一種, 或其可為額外電源供應器。前示切換配置為佳乃因其簡易 性。其他的替代可為電位分壓器,經連接以提供經區分的 電壓電位,及一開關,可操作以將反向陰極44連接至陰極 20或該經區分的電壓電位之一者。再者,可變化的電源供 應器或可變換的電阻或可變換的電位計也可用於提供經選 擇的電壓予反向陰極44及/或處理室壁18。It will be appreciated that the aforementioned process chamber wall 18 can also be operated in a positive, negative or electrical isolation manner. Figures 4 through 7 show a bidirectional switch 8 4, 8 4 ' which allows the bias voltage to be converted between positive and negative and restored. When the switches 84, 8 4 ' are replaced by a three-way switch (similar to the switches 8 2 ' of Figures 6 and 7), the three-way switching can be made between positive bias, negative bias and electrical isolation. Although the foregoing embodiment employs switches 8 2 and 8 4 to allow the potential of the reverse cathode 44 and the process chamber wall 18 to be changed by connecting either side of the arc power supply 76, other configurations are possible. For example, the switch 18 1336484 can be used to connect the reverse cathode 44 and/or the process chamber wall 18 to one or more alternative power supplies. The alternative power supply can be any of the types shown in Figures 4 through 7, or it can be an additional power supply. The switch configuration shown above is better because of its simplicity. Other alternatives may be a potential divider, connected to provide a differentiated voltage potential, and a switch operable to connect the reverse cathode 44 to the cathode 20 or one of the differentiated voltage potentials. Further, a variable power supply or a switchable resistor or switchable potentiometer can also be used to provide a selected voltage to the reverse cathode 44 and/or the process chamber wall 18.

開關8 2及8 4可以任何標準數量方式實施。開關僅為 範例,故亦有其他可能之配置。 很明顯的是用於離子源 1 4結構中的材料及元件的特 定配置均可依所欲來作選擇。Switches 8 2 and 8 4 can be implemented in any standard number of ways. The switches are only examples and there are other possible configurations. It is obvious that the specific configuration of the materials and components used in the structure of the ion source can be selected as desired.

雖然本發明前述實施例係描述離子佈植器 1 〇的離子 源1 4,但本發明亦可用於許多其他應用中,例如離子喷灑 系統,其中由離子源14擷取出的離子可佈植於靶材上而無 須作質量分析;或其他任何利用反向陰極4 4的離子源1 4, 其中可依所欲作選擇性離子化及/或分子裂解。 【圖式簡單說明】 依據本發明的方法及設備範例將參照附加圖示進行詳 述,其中: 第1圖係離子佈植器之概要代表圖; 第2圖係第一離子源的側視圖; 第3圖係第二離子源的側視圖,其包括一間接加熱之 19 1336484 陰極配置; 第4圖係一具有間接加熱之陰極配置的離子源概要代 表圖,圖示出依據本發明第一實施例的偏壓配置; 第 5圖係一具有簡化燈絲(filament)配置之離子源的 簡要代表圖,圖示出依據本發明第二實施例之偏壓裝置。 第6圖對應至第4圖,但圖示出本發明第三實施例包 含用以設定反向陰極電位的三向開關;以及 第7圖對應第5圖,但圖示出本發明第四實施例包含Although the foregoing embodiments of the present invention describe the ion source 14 of the ion implanter, the present invention can also be used in many other applications, such as ion spray systems, in which ions taken from the ion source 14 can be implanted in The target is not required for mass analysis; or any other ion source 14 utilizing a counter-cathode 4 4 wherein selective ionization and/or molecular cleavage can be performed as desired. BRIEF DESCRIPTION OF THE DRAWINGS The method and apparatus examples according to the present invention will be described in detail with reference to the accompanying drawings in which: FIG. 1 is a schematic representation of an ion implanter; FIG. 2 is a side view of a first ion source; Figure 3 is a side view of a second ion source comprising an indirectly heated 19 1336484 cathode configuration; Figure 4 is a schematic representation of an ion source having an indirectly heated cathode configuration illustrating a first embodiment in accordance with the present invention Example of biasing configuration; Figure 5 is a simplified representation of an ion source having a simplified filament configuration, showing a biasing device in accordance with a second embodiment of the present invention. 6 corresponds to FIG. 4, but illustrates a third embodiment of the present invention including a three-way switch for setting a reverse cathode potential; and FIG. 7 corresponds to FIG. 5, but illustrates a fourth embodiment of the present invention. Example contains

用 於設 定 反 向 陰 極 電 位之 三向開 關。 [ 主要 元 件 符 號 說 明 ] 10 佈 植 器 12 半 導 體 晶 圓 14 離 子 源 15 真 空 處 理 室 16 電 弧 處 理 室 18 處 理 室 壁 20 陰 極 2 1 電 源 供 應 器 22 氣 體 饋 送 器 23 噴 霧 器 26 擷 取 電 極 28 開 σ 30 質 量 分 析 台 32 質 量 分 析 狹 36 晶 圓 支 撐 件 40 燈 絲 42 電 子 反 射 器 44 反 向 陰 極 46 磁 鐵 組 件 48 夾 持 部 52 絕 緣 塊 54 檔 體 56 襯 墊 58 端 蓋 60 管 部 62 加 熱 燈 絲 20 1336484 64 電 源 供 應 器 66 虛 線 盒 68 真 空 70 大 氣 72 燈 絲 電 源 供 應 器 74 偏 壓 電 源 供 應器 76 電 弧 電 源 供 應 器 80 真 空 饋 送 通 道 82,ί ?2’, 84 開 關A three-way switch for setting the reverse cathode potential. [Main component symbol description] 10 Handler 12 Semiconductor wafer 14 Ion source 15 Vacuum processing chamber 16 Arc processing chamber 18 Processing chamber wall 20 Cathode 2 1 Power supply 22 Gas feeder 23 Sprayer 26 Extraction electrode 28 Opening σ 30 Mass Analysis Table 32 Mass Analysis Narrow 36 Wafer Support 40 Filament 42 Electronic Reflector 44 Reverse Cathode 46 Magnet Assembly 48 Clamping Port 52 Insulation Block 54 Body 56 Pad 58 End Cap 60 Tube 62 Heat Filament 20 1336484 64 Power Supply 66 Dotted Box 68 Vacuum 70 Atmosphere 72 Filament Power Supply 74 Bias Power Supply 76 Arc Power Supply 80 Vacuum Feed Channel 82, ί 2', 84 Switch

21twenty one

Claims (1)

13.36484 牟月曰修正替换頁 第號專^案竹年月修正 十、申請專利範圍: 1. 一種用於一離子佈植器之離子源,其至少包含·· 一電弧處理室,經配置以產生並容納一電漿; 一陰極,經配置以將電子發散至該電弧處理室; 一電極,設於該電弧處理室中,以使該陰極所發散 的電子被引導至該處; 一或多個電壓電位源,經配置以偏壓該電極;以及 一電壓電位調整器,可操作以於該電壓電位源正偏 壓該電極而作為二陽極的步驟以及該電壓電位源負偏 壓該電極而作為一反向陰極的步驟之間切換。 2. 如申請專利範圍第1項所述之離子源,其更包含一真空 處理室,且其中該電壓電位調整器係位於大氣中。 3. 如申請專利範圍第1項所述之離子源,其更包含一額外 電壓電位調整器,經配置以於正偏壓一電弧處理室壁的 步驟以及負偏壓該電弧處理室壁的步驟之間切換。 4. 如申請專利範圍第3項所述之離子源,其更包含一真空 處理室,且其中該額外電壓電位調整器係位於大氣中。 5. 如申請專利範圍第3項所述之離子源,其更配置為了至 少第一離子產生模式及第二離子產生模式而利用該電 22 1336484 • I qq in 1 4日修正替换頁 壓電位調整器及額外電壓電位調整器組來操作,藉以分 別正偏壓該電極並負偏壓該電弧處理室壁,且反之亦 然。 6. 如申請專利範圍第5項所述之離子源,其更經配置以於 第一離子產生模式及第二離子產生模式之間改變,並繼 而藉操作該電壓電位調整器及該額外電壓電位調整器 的方式回復,以使該第一開關由負偏壓回復至正偏壓。 7. 如申請專利範圍第1項所述之離子源,其中該電壓電位 調整器係經配置以進一步電性隔絕該電極。 8. 如申請專利範圍第3項所述之離子源,其令該額外電壓 電位調整器係經配置以進一步電性隔絕該電弧處理室 壁〇 9. 如申請專利範圍第5項所述之離子源,其中該電壓電位 調整器係經配置以進一步電性隔絕該電極,且其中該離 子源經進一步配置為了第三離子產生模式而利用該電 壓電位調整器及額外電壓電位調整器組來操作,以使電 極為電性隔絕且該電弧處理室壁呈正偏壓。 10. 如申請專利範圍第1項所述之離子源,其中該電壓電位 23 1336484 • I 9|10月14日修王替換頁 調整器為一經配置可於一可正偏壓該電極之第一位置 以及一可負偏壓該電極之第二位置之間切換的開關。 11. 如申請專利範圍第7項所述之離子源,其中該電壓電位 調整器為一經配置可於一經配置可正偏壓該電極之第 一位置、一經配置可負偏壓該電極之第二位置以及一經 配置可電性隔絕該電極之第三位置之間切換的開關。 12. 如申請專利範圍第3項所述之離子源,其中該額外電壓 電位調整器為一經配置可於一經配置可提供相對於該 陰極之正電位予該電弧處理室壁的第一位置以及一經 配置可提供相對於該電極之負電位予該電弧處理室壁 的第二位置之間切換的開關。 1 3.如申請專利範圍第8項所述之離子源,其中該額外電壓 電位調整器為一經配置可於一可正偏壓該電弧處理室 壁之第一位置、一經配置可負偏壓該電弧處理室壁之第 二位置以及一經配置可電性隔絕該電弧處理室壁之第 三位置之間切換的開關。 14.如申請專利範圍第1項所述之離子源,其中該陰極為一 燈絲或一間接加熱之陰極型式之離子源之一管部的端 蓋(end cap) ° 24 1336484 • I ~sorrt- 年月日修替換頁 15. 如申請專利範圍第14項所述之離子源,其更包括一電 極,其可操作為一鄰近一離子源之燈絲的電子反射器。 16. 如申請專利範圍第1項所述之離子源,其更包括一磁鐵 組件,經配置以於該電弧處理室中提供磁場,以界定出 該陰極所發散之電子的一電子路徑》 17. —種包括前述申請專利範圍之任一項所述之離子源的 離子佈植器。 18. 如申請專利範圍第17項所述之離子佈植器,其中該電 弧處理室更包括一出口,且該離子佈植器更包括一擷取 電極,其可操作以經由該出口自該電弧處理室内含的電 漿擷取離子,並傳送所擷取之離子以佈植於一靶材。 19. 如申請專利範圍第18項所述之離子佈植器,其更包括 一質量分析台,經定位以接收擷取自該電弧處理室之離 子,且可操作以按一特定能量傳送所選質量及電荷態的 離子以佈植至一靶材。 20. —種操作一離子源的方法,其中該離子源包括一電弧處 理室,其具有一陰極及一反向陰極,該方法包括以下步 25 1336484 •it* 9W w正替換頁 ___」 驟:一第一反射操作模式,包括負偏壓該陰極、正偏壓 一處理室壁以將電漿打在該陰極及該處理室壁之間、以 及負偏壓該反向陰極以排斥該等電子:以及一第二非反 射操作模式,包括負偏壓該陰極及正偏壓該反向陰極以 將電漿打在該陰極及反向陰極之間。 21. 如申請專利範圍第20項所述之方法,其更包含以下步 驟:以非反射操作模式電性隔絕一電弧處理室壁。 22. 如申請專利範圍第20項所述之方法,其更包括以下步 驟:自該非反射模式切換至該反射模式,其係藉由將電 弧處理室壁上之偏壓由負偏壓切換至正偏壓並接著將 該反向陰極上之偏壓由正偏壓至負偏壓的方式進行。 23. 如申請專利範圍第22項所述之方法,其更包含以下步 驟:分離該反向陰極以使其電性隔絕。 2 4.如申請專利範圍第20項所述之方法,其更包含切換至 一第三操作模式,其係藉由確保該電弧處理室壁上之偏 壓為正偏壓,並分離該反向陰極以使其為電性隔絕的方 式進行。 2613.36484 牟月曰Revision and replacement page No.1 Specialization Bamboo Year Revision 10, Patent Application Range: 1. An ion source for an ion implanter, which at least includes an arc processing chamber configured to generate And accommodating a plasma; a cathode configured to diverge electrons into the arc processing chamber; an electrode disposed in the arc processing chamber to direct electrons emitted by the cathode to the portion; one or more a voltage potential source configured to bias the electrode; and a voltage potential adjuster operative to forward the electrode as a two anode step and the voltage potential source to negatively bias the electrode Switching between the steps of a reverse cathode. 2. The ion source of claim 1, further comprising a vacuum processing chamber, and wherein the voltage potential adjuster is located in the atmosphere. 3. The ion source of claim 1, further comprising an additional voltage potential adjuster configured to positively bias an arc processing chamber wall and to negatively bias the arc processing chamber wall Switch between. 4. The ion source of claim 3, further comprising a vacuum processing chamber, and wherein the additional voltage potential adjuster is in the atmosphere. 5. The ion source of claim 3, further configured to utilize at least a first ion generation mode and a second ion generation mode to utilize the electrical 22 1336484 • I qq in 1 4 day correction replacement page piezoelectric position The regulator and the additional set of voltage potential adjusters operate to positively bias the electrode and negatively bias the arc processing chamber wall, and vice versa. 6. The ion source of claim 5, further configured to change between a first ion generation mode and a second ion generation mode, and in turn to operate the voltage potential adjuster and the additional voltage potential The regulator is responsive to return the first switch from a negative bias to a positive bias. 7. The ion source of claim 1, wherein the voltage potential adjuster is configured to further electrically isolate the electrode. 8. The ion source of claim 3, wherein the additional voltage potential adjuster is configured to further electrically isolate the arc processing chamber wall. 9. The ion of claim 5 a source, wherein the voltage potential adjuster is configured to further electrically isolate the electrode, and wherein the ion source is further configured to operate with the voltage potential adjuster and the additional voltage potential adjuster set for a third ion generation mode, The electrodes are electrically isolated and the arc processing chamber walls are positively biased. 10. The ion source of claim 1, wherein the voltage potential 23 1336484 • I 9|October 14th, the Xiong replacement page adjuster is configured to be capable of positively biasing the electrode first A switch that switches between a position and a second position that can negatively bias the electrode. 11. The ion source of claim 7, wherein the voltage potential adjuster is configured to be capable of positively biasing the first position of the electrode once configured, and configured to negatively bias the second electrode of the electrode The position and a switch configured to electrically switch between the third position of the electrode. 12. The ion source of claim 3, wherein the additional voltage potential adjuster is configured to provide a positive potential relative to the cathode to a first position of the arc processing chamber wall and once A switch is provided that provides a switch between a negative potential of the electrode and a second position of the arc processing chamber wall. The ion source of claim 8, wherein the additional voltage potential adjuster is configured to be capable of positively biasing the first position of the arc processing chamber wall, and configured to be negatively biased A second position of the arc processing chamber wall and a switch configured to electrically switch between the third position of the arc processing chamber wall. 14. The ion source of claim 1, wherein the cathode is an end cap of one of the filaments or an indirectly heated cathode type ion source ° 24 1336484 • I ~sorrt- The ion source of claim 14, further comprising an electrode operable as an electron reflector adjacent to the filament of an ion source. 16. The ion source of claim 1, further comprising a magnet assembly configured to provide a magnetic field in the arc processing chamber to define an electronic path of electrons diverging from the cathode. An ion implanter comprising the ion source of any of the preceding claims. 18. The ion implanter of claim 17, wherein the arc processing chamber further comprises an outlet, and the ion implanter further comprises a dip electrode operable to electrically elect the arc via the outlet The plasma contained in the processing chamber extracts ions and transports the extracted ions to be implanted in a target. 19. The ion implanter of claim 18, further comprising a mass analysis station positioned to receive ions extracted from the arc processing chamber and operable to deliver a particular energy transfer Mass and charge ions are implanted into a target. 20. A method of operating an ion source, wherein the ion source comprises an arc processing chamber having a cathode and a reverse cathode, the method comprising the following step 25 1336484 • it* 9W w positive replacement page ___ a first reflective mode of operation comprising: negatively biasing the cathode, positively biasing a chamber wall to strike plasma between the cathode and the chamber wall, and negatively biasing the counter cathode to repel such Electron: and a second non-reflective mode of operation comprising negatively biasing the cathode and positively biasing the reverse cathode to strike plasma between the cathode and the counter cathode. 21. The method of claim 20, further comprising the step of electrically isolating an arc treatment chamber wall in a non-reflective mode of operation. 22. The method of claim 20, further comprising the step of switching from the non-reflective mode to the reflective mode by switching the bias voltage on the wall of the arc processing chamber from a negative bias to a positive The bias is then applied in a manner that the bias on the reverse cathode is biased from positive to negative. 23. The method of claim 22, further comprising the step of separating the reverse cathode to electrically isolate it. 2. The method of claim 20, further comprising switching to a third mode of operation by ensuring that the bias on the wall of the arc processing chamber is positively biased and separating the reverse The cathode is carried out in such a way as to be electrically isolated. 26
TW95112873A 2006-04-11 2006-04-11 Cathode and counter-cathode arrangement in an ion source TWI336484B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95112873A TWI336484B (en) 2006-04-11 2006-04-11 Cathode and counter-cathode arrangement in an ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95112873A TWI336484B (en) 2006-04-11 2006-04-11 Cathode and counter-cathode arrangement in an ion source

Publications (2)

Publication Number Publication Date
TW200739647A TW200739647A (en) 2007-10-16
TWI336484B true TWI336484B (en) 2011-01-21

Family

ID=45075078

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95112873A TWI336484B (en) 2006-04-11 2006-04-11 Cathode and counter-cathode arrangement in an ion source

Country Status (1)

Country Link
TW (1) TWI336484B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089051B2 (en) * 2010-02-24 2012-01-03 Kla-Tencor Corporation Electron reflector with multiple reflective modes
US10269530B1 (en) * 2017-11-29 2019-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Ion beam source for semiconductor ion implantation
US10861666B1 (en) * 2020-01-30 2020-12-08 ICT Integrated Circuit Testing Gesellschaft für Halbletterprüftechnik mbH Method of operating a charged particle gun, charged particle gun, and charged particle beam device

Also Published As

Publication number Publication date
TW200739647A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
US8281738B2 (en) Cathode and counter-cathode arrangement in an ion source
US5517077A (en) Ion implantation having increased source lifetime
US8809800B2 (en) Ion source and a method for in-situ cleaning thereof
CN1129951C (en) Cathode mounting for ion source with indirectly heated cathode
US7679070B2 (en) Arc chamber for an ion implantation system
JP6237127B2 (en) Ion source, operation method thereof, and electron gun
US6184532B1 (en) Ion source
US20110240877A1 (en) Temperature controlled ion source
CN100533649C (en) Cathode and counter cathode arrangement in an ion source
TWI336484B (en) Cathode and counter-cathode arrangement in an ion source
JP4401977B2 (en) Method for producing filament used for ion source and ion source
US6639223B2 (en) Gaseous ion source feed for oxygen ion implantation
JPH11142599A (en) Ribbon filament for ion implanter and its assembled body
US8350236B2 (en) Aromatic molecular carbon implantation processes
US10217600B1 (en) Indirectly heated cathode ion source assembly
JP2837023B2 (en) Ion implanter with improved ion source life
JP2009283459A (en) Multimode ion source
JP6637285B2 (en) Apparatus and method for generating discharge
CN114242549B (en) Ion source device for forming plasma by material sputtering
US11961696B1 (en) Ion source cathode
US20110018423A1 (en) Indirect heated cathode of ion implanter
US11798775B2 (en) Extended lifetime dual indirectly-heated cathode ion source
JP4184846B2 (en) Ion generator for ion implanter
JP4114770B2 (en) Vacuum processing equipment for oxygen ion generation
WO2016092368A2 (en) Plasma generator with at least one non-metallic component

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees