JP2003217965A - Method of manufacturing stacked ceramic electronic component - Google Patents

Method of manufacturing stacked ceramic electronic component

Info

Publication number
JP2003217965A
JP2003217965A JP2002018119A JP2002018119A JP2003217965A JP 2003217965 A JP2003217965 A JP 2003217965A JP 2002018119 A JP2002018119 A JP 2002018119A JP 2002018119 A JP2002018119 A JP 2002018119A JP 2003217965 A JP2003217965 A JP 2003217965A
Authority
JP
Japan
Prior art keywords
internal electrode
partial pressure
ceramic
sintering
oxygen partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002018119A
Other languages
Japanese (ja)
Other versions
JP3744427B2 (en
Inventor
Tetsuhiko Ota
哲彦 太田
Hiromichi Yamaguchi
弘道 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002018119A priority Critical patent/JP3744427B2/en
Priority to CN 03103410 priority patent/CN100559522C/en
Publication of JP2003217965A publication Critical patent/JP2003217965A/en
Application granted granted Critical
Publication of JP3744427B2 publication Critical patent/JP3744427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method of manufacturing stacked ceramic electronic components which can control the formation of ball of internal electrode, without generation of fault in the structure due to the oxidation of the Ni electrode used as the internal electrode. <P>SOLUTION: The stacked ceramic electronic component 10 includes a ceramic element 12, consisting of a ceramic layer 14 and a Ni internal electrode 16. At the opposing end face of the ceramic element 12, external electrodes 18, 20 connected to the internal electrode 16 are formed. At manufacturing of the ceramic element 12, an electronic paste including Ni is coated on a ceramic green sheet, the ceramic green sheets are laminated and these are baked after cutting process. In this case, a partial pressure P1 of oxygen, before starting the sintering of the internal electrode, is set to a range with log P1<-15. Moreover, when the partial pressure of oxygen, after starting the sintering of the internal electrode is defined as P2 and the equilibrium partial pressure of oxygen of 2Ni+O<SB>2</SB>=2NiO is defined as P3, these partial pressures are to be set to a range of 1.1×log(P3)≤log(P2)≤log(P3). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、積層セラミック
電子部品の製造方法に関し、特に、たとえばNi電極材
料を用いて内部電極を形成した積層セラミックコンデン
サなどの積層セラミック電子部品の製造方法に関する。 【0002】 【従来の技術】たとえば、内部電極としてNiを用いた
積層セラミックコンデンサにおいては、Niを含む電極
ペーストを用いてセラミックグリーンシート上に内部電
極パターンを形成し、このセラミックグリーンシートを
積層して積層体が形成される。この積層体がカットさ
れ、隣接する内部電極パターンが交互に対向端面に露出
したチップ状の積層体が形成される。このようにカット
された積層体を焼成することにより、セラミック層中に
内部電極が形成されたセラミック素体が得られる。そし
て、内部電極が露出したセラミック素体の端面に外部電
極を形成し、内部電極と外部電極とを接続することによ
り、積層セラミックコンデンサが作製される。 【0003】このように、カットされた積層体を焼成す
る際に、内部電極パターンのNiが酸化されないよう
に、焼成炉内の酸素分圧をコントロールする必要があ
る。焼成炉内の酸素分圧がある特定の範囲を外れると、
内部電極が酸化して構造欠陥が発生したり、セラミック
素体の焼結性が低下して絶縁抵抗が劣化するといった不
具合が発生する。このような不具合を回避するため、た
とえば特開平6−196352号公報に示されるよう
に、積層体の焼成過程における酸素分圧を一定範囲に規
定する方法がある。特開平6−196352号公報に開
示された方法は、積層体の焼成過程において、温度の上
昇および降下に対応させて、脱脂ゾーン、焼結ゾーン、
酸素欠陥補充ゾーンに区分し、各ゾーンにおいて酸素分
圧を所定の範囲にコントロールするものである。 【0004】 【発明が解決しようとする課題】特開平6−19635
2号公報に開示された方法は、セラミックグリーンシー
トの積層体の焼結温度を複数のゾーンに分けて、各ゾー
ンにおける酸素分圧をコントロールするものである。し
かしながら、セラミック層の薄層化にともなって、内部
電極材料に含まれるNi粒子の粒径が小さくなり、特開
平6−196352号公報に開示された雰囲気で焼成す
ると、内部電極が玉化してしまう。そのため、玉化した
内部電極がセラミック層を貫通し、絶縁抵抗が劣化する
という問題が発生した。また、焼成雰囲気を内部電極の
玉化を抑制する雰囲気に設定した場合、内部電極の酸化
に伴う構造欠陥が発生することがわかった。 【0005】それゆえに、この発明の主たる目的は、内
部電極として用いられるNi電極の酸化による構造欠陥
を生じさせることなく、内部電極の玉化を抑制すること
ができる、積層セラミック電子部品の製造方法を提供す
ることである。 【0006】 【課題を解決するための手段】この発明は、内部電極と
してNi電極が形成された積層セラミック電子部品の製
造方法であって、Niを含む電極材料を用いて内部電極
パターンを形成したセラミックグリーンシートを積層し
た積層体を準備する工程と、積層体を焼成する工程とを
含み、内部電極パターンの焼結開始前の焼成雰囲気の酸
素分圧P1(atm)が、logP1<−15の範囲に
あり、かつ内部電極パターンの焼結開始後の焼成雰囲気
の酸素分圧P2(atm)が、2Ni+O2 ⇔2NiO
の平衡酸素分圧をP3(atm)としたとき、1.1×
logP3≦logP2≦logP3(ただし、log
P1<0、logP2<0、logP3<0)の範囲と
なるように設定される。 【0007】Niを含む内部電極パターンの焼結開始前
と焼結開始後において、焼成雰囲気の酸素分圧を個別に
コントロールすることにより、内部電極の玉化を抑制す
ることができ、かつ内部電極の酸化にともなう構造欠陥
の発生を防止することができる。内部電極の焼結開始前
においては、Ni粒子の粒径が大きく、活性度が高い。
そのため、焼成雰囲気の酸素分圧が高くなると内部電極
の酸化が始まり、構造欠陥を誘発するため、内部電極の
焼結開始前の酸素分圧は低いことが好ましい。また、内
部電極の焼結がある程度進み、Ni粒子の表面積が小さ
くなっていれば、ある程度酸素分圧が高くなっても構造
欠陥は発生せず、逆に、酸素分圧を低くしすぎると、焼
結途中で玉化してしまう。したがって、内部電極の焼結
開始後は、焼結開始前より酸素分圧の高い雰囲気で積層
体が焼成される。 【0008】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施の形態
の詳細な説明から一層明らかとなろう。 【0009】 【発明の実施の形態】図1は、この発明のセラミック電
子部品の製造方法によって作製される積層セラミックコ
ンデンサの一例を示す図解図である。積層セラミックコ
ンデンサ10は、セラミック素体12を含む。セラミッ
ク素体12は、複数のセラミック層14と内部電極16
とが交互に積層されて形成される。 【0010】セラミック素体12の対向端面には、隣接
する内部電極16が交互に露出し、これらの内部電極1
6に接続されるようにして、外部電極18,20が形成
される。セラミック層14は誘電体セラミックで形成さ
れ、内部電極16はNiで形成される。また、外部電極
18,20は、たとえばCu焼付電極層と、Niめっき
層と、Snめっき層などによって形成される。 【0011】この積層セラミックコンデンサ10を作製
する場合、誘電体材料で形成されたセラミックグリーン
シートが準備される。セラミックグリーンシート上に
は、Niを含む電極ペーストなどを用いて、内部電極パ
ターンが形成される。内部電極パターンが形成されたセ
ラミックグリーンシートが複数枚積層され、さらに、電
極パターンが形成されていないセラミックグリーンシー
トが積層される。このようにして得られた積層体が圧着
され、セラミック素体12を作製するためにチップ状に
カットされる。 【0012】チップ状にカットされた積層体は、焼成さ
れることにより、セラミック層14と内部電極16とか
らなるセラミック素体12が形成される。積層体の焼成
は、H2 ガス、N2 ガス、COガス、CO2 ガスなどの
混合ガス雰囲気中で行なわれる。このとき、Niを含む
電極ペーストで形成された内部電極パターンの焼結開始
前の温度域と、焼結開始後の温度域とにおいて、焼成雰
囲気の酸素分圧が調整される。 【0013】内部電極焼結開始前においては、焼成炉内
の焼成雰囲気の酸素分圧P1(atm)が、logP1
<−15の範囲となるように調整される。また、内部電
極焼結開始後においては、焼成炉内の焼成雰囲気の酸素
分圧P2(atm)が、2Ni+O2 ⇔2NiOの平衡
酸素分圧をP3(atm)としたとき、1.1×log
P3≦logP2≦logP3の範囲内にあるように調
整される。ここで、logP1<0、logP2<0、
logP3<0である。 【0014】内部電極16が露出したセラミック素体1
2の端面に、外部電極18,20が形成される。外部電
極18,20を形成するために、セラミック素体12の
端面に、AgやCuおよびガラス成分を含む電極ペース
トが塗布され、焼き付けられる。このようにして得られ
た焼付電極上に、Niめっき層およびSnめっき層など
を形成することにより、外部電極18,20が形成され
る。 【0015】積層体を焼成する際、内部電極焼結開始前
においては、Ni粒子の表面積が大きく、活性度が高
い。そのため、焼成炉内の焼成雰囲気の酸素分圧が高い
と、内部電極の酸化が始まり、構造欠陥が誘発される。
それに対して、内部電極焼結開始前の焼成雰囲気の酸素
分圧P1(atm)を、logP1<−15の範囲とな
るように調整することにより、内部電極の酸化を防止し
て、構造欠陥が発生しないようにすることができる。 【0016】さらに、内部電極焼結開始後においては、
内部電極の焼結がある程度進み、Ni粒子の表面積が小
さくなっており、ある程度酸素分圧を高くしても、構造
欠陥が発生しない。逆に、この温度領域で酸素分圧を低
くしすぎると、焼結途中で内部電極が玉化してしまい、
セラミック層14を貫通して、積層セラミックコンデン
サ10の絶縁抵抗が劣化してしまう。それに対して、焼
成炉内の焼成雰囲気の酸素分圧P2(atm)を、2N
i+O2 ⇔2NiOの平衡酸素分圧をP3(atm)と
したとき、1.1×logP3≦logP2≦logP
3の範囲内となるように調整することにより、内部電極
の玉化を防止することができる。したがって、内部電極
の玉化によるセラミック層14の破損を防止することが
でき、積層セラミックコンデンサ10の絶縁抵抗の劣化
を防ぐことができる。 【0017】このように、内部電極焼結開始前の温度域
と、焼結開始後の温度域とによって、それぞれ焼成雰囲
気中の酸素分圧を調整することにより、内部電極16の
構造欠陥を防止することができるとともに、内部電極1
6の玉化を防止して、積層セラミックコンデンサの絶縁
劣化を防ぐことができる。 【0018】 【実施例】(実施例1)誘電体セラミック材料に、バイ
ンダ(ポリビニルブチラール)、可塑材(フタル酸ジオ
クチル)、トルエン/エキネン混合溶液を添加し、ボー
ルミルで数時間〜数10時間混練して、セラミックスラ
リーを形成した。得られたセラミックスラリーをドクタ
ーブレード法により、所定の厚みのシート状に形成し、
セラミックグリーンシートを得た。得られたセラミック
グリーンシートに、Ni粒子を含む電極ペーストを印刷
し、セラミックグリーンシートを積層したのち、3.2
×2.5mmの大きさにカットした。 【0019】カットした積層体を大気中で240℃〜2
80℃で脱脂した。脱脂した積層体をアルミナ匣上に並
べ、密閉型バッチ炉内で焼成した。このときの焼成雰囲
気は、H2 ガス、N2 ガス、COガス、CO2 ガスなど
の混合ガス雰囲気であり、各温度における酸素分圧は、
表1に示すとおりである。焼成時の昇温速度は、常温か
ら最高温度までを1〜2℃/minとし、最高温度(1
250℃〜1350℃)に到達後1〜3時間保持し、そ
の後3〜4℃/minで常温まで冷却した。 【0020】このようにして得られたセラミック素体を
500個抜き取り、内部電極の構造欠陥の有無を20倍
のルーペで確認した。また、セラミック素体にAg外部
電極を塗布、焼き付けしたのち、200個抜き取って、
定格電圧の10倍の電圧を印加して、ショート不良発生
数をカウントした。そして、その結果を表1に示した。
なお、内部電極は、不活性雰囲気下でTMA分析(熱機
械分析)を行ない、電極収縮開始温度および終了温度が
特定されたものを使用した。 【0021】 【表1】 【0022】この実施例では、内部電極用の電極ペース
トの収縮が800℃から開始するものを使用している。
条件1は、表1に下線で示すように、内部電極焼結開始
以降においても、焼結開始前と同様の酸素分圧を保った
まま、焼成を続行した場合を示している。この条件1の
場合、焼成後のサンプルには、100%耐圧不良が発生
した。これは、内部電極が焼結する際に玉化し、セラミ
ック層を貫通したことによるものである。 【0023】内部電極焼結開始後も2Ni+O2 ⇔2N
iOの平衡酸素分圧より大きく還元側に設定し続ける
と、NiOの比率が極端に低下し、金属Niのみで殆ど
構成されるようになる。その場合、(金属Ni+金属N
i)の焼結にともなうネック成長は、(金属Ni+Ni
O)もしくは(NiO+NiO)の場合よりも急激にお
こる。このようにして内部電極は焼結が進むにつれて玉
化していくが、この温度域では、未だセラミック層は焼
結を開始しておらず、しかもバインダは十分に分解する
温度域であるため、セラミック層の強度は弱くなってい
る。その結果、玉化した内部電極によってセラミック層
が破られ、隣接する内部電極がショートして、耐圧不良
が発生するものである。 【0024】それに対して、条件2および条件3では、
内部電極焼結開始後の酸素分圧を焼結開始前より大きく
することにより、内部電極の玉化が発生せず、耐圧不良
が認められなかったものである。このように、内部電極
として用いられるNi電極の焼結開始前後で雰囲気を大
きく変更することにより、内部電極の玉化を防ぎ、耐圧
不良率を大幅に低下させることができた。 【0025】(実施例2)実施例1と同様にして、電極
ペーストを塗布したセラミックグリーンシートを積層
し、カットしてチップ状の積層体を得た。予備評価とし
て内部電極の収縮が800℃から開始することをTMA
分析で確認後、収縮開始前の700℃から収縮が完了す
る1100℃までの範囲で、表2に示すように、100
℃おきに炉内酸素分圧を調整して実験を行なった。この
ように焼成雰囲気を調整し、実施例1と同様にして、耐
圧不良率およびショート不良率を調べた。そして、その
結果を表2に示した。なお、参考として、各温度域にお
ける平衡酸素分圧logP3と、本発明の酸素分圧の下
限である1.1×logP3の値についても、表2に示
した。 【0026】 【表2】【0027】表2からわかるように、700℃における
酸素分圧をP1(atm)としたとき、表2に下線で示
すように、logP1の値が−15以上になると、積層
セラミックコンデンサに耐圧不良が認められた。これ
は、内部電極焼結開始前の段階では、Ni粒子の表面積
が大きく、活性度が高いため、炉内酸素分圧がわずかで
も高くなると酸化が始まり、構造欠陥を誘発するためで
ある。 【0028】また、内部電極焼結開始後である800℃
〜1100℃における酸素分圧をP2(atm)は、各
温度における2Ni+O2 ⇔2NiOの平衡酸素分圧を
P3(atm)としたとき、1.1×logP3≦lo
gP2≦logP3の範囲内にあるとき、不良のない積
層セラミックコンデンサを得ることができた。それに対
して、表2に下線で示すように、logP2が1.1×
logP3より低くなると、積層セラミックコンデンサ
にショート不良が認められた。これは、Ni電極の焼結
がある程度進み、表面積が小さくなっていれば、ある程
度酸素分圧を高くしても構造欠陥は発生せず、逆に、こ
の温度範囲で酸素分圧を低くしすぎると、焼結途中で内
部電極が玉化してしまい、セラミック層を突き破るため
である。 【0029】 【発明の効果】この発明によれば、内部電極としてNi
電極が用いられる積層セラミック電子部品を製造する際
に、Ni電極が酸化して構造欠陥が発生することを防止
することができる。さらに、内部電極の焼結に際して、
Ni電極の玉化を防止することができ、玉化したNi電
極によるセラミック層の破損を防ぐことができる。した
がって、この発明の製造方法を用いて、たとえば積層セ
ラミックコンデンサを製造した場合、十分な耐圧を有
し、かつショート不良のない積層セラミックコンデンサ
を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic electronic component, and more particularly, for example, a multilayer ceramic capacitor in which an internal electrode is formed using a Ni electrode material. The present invention relates to a method for manufacturing a ceramic electronic component. For example, in a multilayer ceramic capacitor using Ni as an internal electrode, an internal electrode pattern is formed on a ceramic green sheet using an electrode paste containing Ni, and the ceramic green sheet is laminated. Thus, a laminated body is formed. This laminated body is cut to form a chip-like laminated body in which adjacent internal electrode patterns are alternately exposed on the opposing end faces. By firing the laminated body thus cut, a ceramic body in which internal electrodes are formed in the ceramic layer is obtained. Then, an external electrode is formed on the end face of the ceramic body from which the internal electrode is exposed, and the internal electrode and the external electrode are connected to produce a multilayer ceramic capacitor. Thus, when firing the cut laminate, it is necessary to control the oxygen partial pressure in the firing furnace so that Ni in the internal electrode pattern is not oxidized. If the oxygen partial pressure in the firing furnace is outside a certain range,
The internal electrodes are oxidized to cause structural defects, or the ceramic body is deteriorated in sinterability and the insulation resistance is deteriorated. In order to avoid such problems, there is a method of defining the oxygen partial pressure in the firing process of the laminated body within a certain range as disclosed in, for example, Japanese Patent Laid-Open No. 6-196352. In the method disclosed in JP-A-6-196352, a degreasing zone, a sintering zone,
This is divided into oxygen defect replenishment zones, and the oxygen partial pressure is controlled within a predetermined range in each zone. SUMMARY OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 2 divides the sintering temperature of the laminate of ceramic green sheets into a plurality of zones, and controls the oxygen partial pressure in each zone. However, as the ceramic layer becomes thinner, the particle size of the Ni particles contained in the internal electrode material becomes smaller, and when fired in the atmosphere disclosed in Japanese Patent Laid-Open No. 6-196352, the internal electrode becomes balled. . For this reason, a problem has arisen in that the internal electrode that has been turned into a ball penetrates the ceramic layer and the insulation resistance deteriorates. Further, it was found that when the firing atmosphere is set to an atmosphere that suppresses the internal electrode from turning into a ball, structural defects accompanying the oxidation of the internal electrode occur. SUMMARY OF THE INVENTION Therefore, a main object of the present invention is to provide a method for manufacturing a multilayer ceramic electronic component capable of suppressing internalization of internal electrodes without causing structural defects due to oxidation of Ni electrodes used as internal electrodes. Is to provide. The present invention is a method of manufacturing a multilayer ceramic electronic component in which a Ni electrode is formed as an internal electrode, wherein the internal electrode pattern is formed using an electrode material containing Ni. Including a step of preparing a laminated body in which ceramic green sheets are laminated, and a step of firing the laminated body, wherein an oxygen partial pressure P1 (atm) of a firing atmosphere before starting sintering of the internal electrode pattern is logP1 <-15. And the oxygen partial pressure P2 (atm) of the firing atmosphere after the sintering of the internal electrode pattern is 2Ni + O 2 ⇔2NiO
When the equilibrium partial pressure of oxygen is P3 (atm), 1.1 ×
logP3 ≦ logP2 ≦ logP3 (however, log
P1 <0, logP2 <0, logP3 <0). By controlling the partial pressure of oxygen in the firing atmosphere before and after the start of sintering of the internal electrode pattern containing Ni, the internal electrode can be prevented from spheroidizing, and the internal electrode It is possible to prevent the occurrence of structural defects associated with the oxidation of the. Before the sintering of the internal electrode, the Ni particles have a large particle size and high activity.
Therefore, when the oxygen partial pressure in the firing atmosphere increases, the internal electrode starts to oxidize and induce structural defects. Therefore, it is preferable that the oxygen partial pressure before the start of sintering of the internal electrode is low. Moreover, if the sintering of the internal electrode proceeds to some extent and the surface area of the Ni particles is small, structural defects do not occur even if the oxygen partial pressure is increased to some extent, and conversely, if the oxygen partial pressure is too low, It will be spheroidized during sintering. Therefore, after starting the sintering of the internal electrode, the laminate is fired in an atmosphere having a higher oxygen partial pressure than before the start of sintering. The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings. DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an illustrative view showing an example of a multilayer ceramic capacitor produced by a method for producing a ceramic electronic component according to the present invention. The multilayer ceramic capacitor 10 includes a ceramic body 12. The ceramic body 12 includes a plurality of ceramic layers 14 and internal electrodes 16.
Are alternately stacked. Adjacent internal electrodes 16 are alternately exposed on the opposing end faces of the ceramic body 12, and these internal electrodes 1 are exposed.
External electrodes 18 and 20 are formed so as to be connected to 6. The ceramic layer 14 is made of a dielectric ceramic, and the internal electrode 16 is made of Ni. The external electrodes 18 and 20 are formed of, for example, a Cu baking electrode layer, a Ni plating layer, a Sn plating layer, or the like. When the multilayer ceramic capacitor 10 is manufactured, a ceramic green sheet formed of a dielectric material is prepared. An internal electrode pattern is formed on the ceramic green sheet using an electrode paste containing Ni. A plurality of ceramic green sheets on which internal electrode patterns are formed are stacked, and further, ceramic green sheets on which no electrode patterns are formed are stacked. The laminated body obtained in this way is pressure-bonded and cut into chips in order to produce the ceramic body 12. The laminated body cut into chips is fired to form a ceramic body 12 composed of a ceramic layer 14 and internal electrodes 16. The laminate is fired in a mixed gas atmosphere such as H 2 gas, N 2 gas, CO gas, and CO 2 gas. At this time, the oxygen partial pressure of the firing atmosphere is adjusted in the temperature range before the start of sintering of the internal electrode pattern formed of the electrode paste containing Ni and the temperature range after the start of sintering. Prior to the start of internal electrode sintering, the oxygen partial pressure P1 (atm) of the firing atmosphere in the firing furnace is log P1.
<-15 is adjusted. In addition, after starting the internal electrode sintering, the oxygen partial pressure P2 (atm) of the firing atmosphere in the firing furnace is 1.1 × log when the equilibrium oxygen partial pressure of 2Ni + O 2 ⇔2NiO is P3 (atm).
It is adjusted to be within the range of P3 ≦ logP2 ≦ logP3. Where logP1 <0, logP2 <0,
logP3 <0. The ceramic body 1 with the internal electrode 16 exposed.
External electrodes 18 and 20 are formed on the two end faces. In order to form the external electrodes 18 and 20, an electrode paste containing Ag, Cu and a glass component is applied to the end face of the ceramic body 12 and baked. External electrodes 18 and 20 are formed by forming a Ni plating layer, a Sn plating layer, and the like on the baked electrode thus obtained. When the laminate is fired, the Ni particles have a large surface area and high activity before the internal electrode sintering is started. Therefore, when the oxygen partial pressure in the firing atmosphere in the firing furnace is high, the internal electrodes begin to oxidize and induce structural defects.
On the other hand, by adjusting the oxygen partial pressure P1 (atm) of the firing atmosphere before starting the internal electrode sintering so as to be in the range of logP1 <−15, the internal electrode is prevented from being oxidized and the structural defect is It can be prevented from occurring. Furthermore, after the internal electrode sintering starts,
The sintering of the internal electrode proceeds to some extent, the surface area of the Ni particles is reduced, and no structural defects occur even if the oxygen partial pressure is increased to some extent. Conversely, if the oxygen partial pressure is too low in this temperature range, the internal electrode will bend during sintering,
The insulation resistance of the multilayer ceramic capacitor 10 deteriorates through the ceramic layer 14. On the other hand, the oxygen partial pressure P2 (atm) of the firing atmosphere in the firing furnace is 2N.
When the equilibrium oxygen partial pressure of i + O 2 、 2NiO is P3 (atm), 1.1 × logP3 ≦ logP2 ≦ logP
By adjusting so as to be within the range of 3, it is possible to prevent the internal electrode from becoming ball. Therefore, it is possible to prevent the ceramic layer 14 from being broken due to the internal electrodes, and the insulation resistance of the multilayer ceramic capacitor 10 can be prevented from deteriorating. Thus, structural defects of the internal electrode 16 can be prevented by adjusting the oxygen partial pressure in the firing atmosphere according to the temperature range before the start of internal electrode sintering and the temperature range after the start of sintering. The internal electrode 1
6 can be prevented from becoming dull, and insulation deterioration of the multilayer ceramic capacitor can be prevented. EXAMPLE 1 A binder (polyvinyl butyral), a plasticizer (dioctyl phthalate), and a toluene / equinene mixed solution are added to a dielectric ceramic material and kneaded in a ball mill for several hours to several tens of hours. Thus, a ceramic slurry was formed. The resulting ceramic slurry is formed into a sheet with a predetermined thickness by the doctor blade method,
A ceramic green sheet was obtained. After printing the electrode paste containing Ni particles on the obtained ceramic green sheet and laminating the ceramic green sheets, 3.2
Cut to a size of × 2.5 mm. The cut laminate is heated at 240 ° C. to 2 ° C. in the atmosphere.
Degreased at 80 ° C. The degreased laminates were arranged on an alumina bowl and fired in a closed batch furnace. The firing atmosphere at this time is a mixed gas atmosphere such as H 2 gas, N 2 gas, CO gas, CO 2 gas, and the oxygen partial pressure at each temperature is
As shown in Table 1. The rate of temperature increase during firing is from 1 to 2 ° C./min from room temperature to the maximum temperature, and the maximum temperature (1
250 degreeC-1350 degreeC), it hold | maintained for 1 to 3 hours, and it cooled to normal temperature at 3-4 degreeC / min after that. 500 ceramic bodies thus obtained were extracted, and the presence or absence of structural defects in the internal electrodes was confirmed with a 20-fold magnifier. Also, after applying and baking the Ag external electrode to the ceramic body, 200 pieces were extracted,
A voltage 10 times the rated voltage was applied to count the number of short-circuit defects. The results are shown in Table 1.
The internal electrode was subjected to TMA analysis (thermomechanical analysis) under an inert atmosphere, and the electrode contraction start temperature and end temperature were specified. [Table 1] In this embodiment, the electrode paste for internal electrodes starts shrinking from 800 ° C.
Condition 1 shows the case where the firing is continued while maintaining the same oxygen partial pressure as before the sintering start even after the internal electrode sintering start, as indicated by the underline in Table 1. In the case of this condition 1, 100% withstand pressure failure occurred in the sample after firing. This is because the internal electrode spheroidizes when sintered and penetrates the ceramic layer. 2Ni + O 2 ⇔2N even after internal electrode sintering
If the value is kept larger than the equilibrium oxygen partial pressure of iO on the reduction side, the NiO ratio is extremely reduced, and it is almost composed only of metallic Ni. In that case, (metal Ni + metal N
The neck growth associated with the sintering of i) is (metal Ni + Ni
O) or (NiO + NiO) occurs more rapidly. In this way, the internal electrode becomes spheroidized as the sintering progresses. However, in this temperature range, the ceramic layer has not yet started sintering, and the binder is in a temperature range where it is sufficiently decomposed. The strength of the layer is weakened. As a result, the ceramic layer is broken by the internal electrodes that are turned into a ball, and the adjacent internal electrodes are short-circuited, resulting in a breakdown voltage failure. On the other hand, in condition 2 and condition 3,
By increasing the oxygen partial pressure after the start of the internal electrode sintering from before the start of the sintering, the internal electrode did not become spheroidized and no pressure resistance failure was observed. Thus, by greatly changing the atmosphere before and after the start of the sintering of the Ni electrode used as the internal electrode, it was possible to prevent the internal electrode from spheroidizing and greatly reduce the breakdown voltage failure rate. Example 2 In the same manner as in Example 1, ceramic green sheets coated with an electrode paste were laminated and cut to obtain a chip-like laminate. TMA that internal electrode shrinkage starts at 800 ° C as a preliminary evaluation.
In the range from 700 ° C. before the start of shrinkage to 1100 ° C. where the shrinkage is completed after confirmation by analysis, as shown in Table 2, 100
Experiments were carried out by adjusting the oxygen partial pressure in the furnace every ° C. Thus, the firing atmosphere was adjusted, and the breakdown voltage failure rate and the short-circuit failure rate were examined in the same manner as in Example 1. The results are shown in Table 2. For reference, the equilibrium oxygen partial pressure logP3 in each temperature range and the value of 1.1 × logP3, which is the lower limit of the oxygen partial pressure of the present invention, are also shown in Table 2. [Table 2] As can be seen from Table 2, when the oxygen partial pressure at 700 ° C. is P1 (atm), as shown by the underline in Table 2, if the value of log P1 is −15 or more, the multilayer ceramic capacitor has a poor withstand voltage. Was recognized. This is because, in the stage before the start of internal electrode sintering, the surface area of Ni particles is large and the activity is high, so that oxidation starts when a partial oxygen partial pressure in the furnace increases even slightly and induces structural defects. Also, 800 ° C. after the start of internal electrode sintering.
The oxygen partial pressure at ˜1100 ° C. is P2 (atm), where the equilibrium oxygen partial pressure of 2Ni + O 2 ⇔2NiO at each temperature is P3 (atm), 1.1 × log P3 ≦ lo
When it was in the range of gP2 ≦ logP3, a multilayer ceramic capacitor free from defects could be obtained. On the other hand, as indicated by the underline in Table 2, logP2 is 1.1 ×
When it was lower than log P3, a short circuit defect was observed in the multilayer ceramic capacitor. This is because, if the Ni electrode is sintered to some extent and the surface area is small, structural defects do not occur even if the oxygen partial pressure is increased to some extent, and conversely, the oxygen partial pressure is too low in this temperature range. This is because the internal electrode becomes spheroidized during the sintering and breaks through the ceramic layer. According to the present invention, Ni is used as the internal electrode.
When manufacturing a multilayer ceramic electronic component in which an electrode is used, it is possible to prevent the Ni electrode from being oxidized and causing structural defects. Furthermore, when sintering the internal electrode,
It is possible to prevent spheroidization of the Ni electrode, and it is possible to prevent breakage of the ceramic layer due to the spheroidized Ni electrode. Therefore, for example, when a multilayer ceramic capacitor is manufactured using the manufacturing method of the present invention, it is possible to obtain a multilayer ceramic capacitor having a sufficient breakdown voltage and having no short-circuit defect.

【図面の簡単な説明】 【図1】この発明の製造方法によって作製される積層セ
ラミックコンデンサの一例を示す図解図である。 【符号の説明】 10 積層セラミックコンデンサ 12 セラミック素体 14 セラミック層 16 内部電極 18 外部電極 20 外部電極
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an illustrative view showing one example of a multilayer ceramic capacitor produced by the production method of the present invention. [Description of Symbols] 10 Multilayer Ceramic Capacitor 12 Ceramic Body 14 Ceramic Layer 16 Internal Electrode 18 External Electrode 20 External Electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5E001 AB03 AC09 AH08 AH09 5E082 AB03 BC38 EE04 EE23 EE35 FG06 FG26 FG54 LL01 LL02 PP07    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5E001 AB03 AC09 AH08 AH09                 5E082 AB03 BC38 EE04 EE23 EE35                       FG06 FG26 FG54 LL01 LL02                       PP07

Claims (1)

【特許請求の範囲】 【請求項1】 内部電極としてNi電極が形成された積
層セラミック電子部品の製造方法であって、 Niを含む電極材料を用いて内部電極パターンを形成し
たセラミックグリーンシートを積層した積層体を準備す
る工程と、前記積層体を焼成する工程とを含み、 前記内部電極パターンの焼結開始前の焼成雰囲気の酸素
分圧P1(atm)が、logP1<−15の範囲にあ
り、かつ前記内部電極パターンの焼結開始後の焼成雰囲
気の酸素分圧P2(atm)が、2Ni+O2 ⇔2Ni
Oの平衡酸素分圧をP3(atm)としたとき、1.1
×logP3≦logP2≦logP3(ただし、lo
gP1<0、logP2<0、logP3<0)の範囲
にあることを特徴とする、積層セラミック電子部品の製
造方法。
What is claimed is: 1. A method of manufacturing a multilayer ceramic electronic component having an Ni electrode formed as an internal electrode, wherein a ceramic green sheet having an internal electrode pattern formed by using an electrode material containing Ni is stacked A step of preparing the laminated body and a step of firing the laminated body, wherein the oxygen partial pressure P1 (atm) of the firing atmosphere before the sintering of the internal electrode pattern is in a range of logP1 <−15 And the oxygen partial pressure P2 (atm) of the firing atmosphere after the sintering of the internal electrode pattern is 2Ni + O 2 Ni2Ni
When the equilibrium oxygen partial pressure of O is P3 (atm), 1.1
× logP3 ≦ logP2 ≦ logP3 (however, lo
A method for producing a multilayer ceramic electronic component, wherein gP1 <0, logP2 <0, logP3 <0).
JP2002018119A 2002-01-28 2002-01-28 Manufacturing method of multilayer ceramic electronic component Expired - Lifetime JP3744427B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002018119A JP3744427B2 (en) 2002-01-28 2002-01-28 Manufacturing method of multilayer ceramic electronic component
CN 03103410 CN100559522C (en) 2002-01-28 2003-01-28 The manufacture method of laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018119A JP3744427B2 (en) 2002-01-28 2002-01-28 Manufacturing method of multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2003217965A true JP2003217965A (en) 2003-07-31
JP3744427B2 JP3744427B2 (en) 2006-02-08

Family

ID=27653581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018119A Expired - Lifetime JP3744427B2 (en) 2002-01-28 2002-01-28 Manufacturing method of multilayer ceramic electronic component

Country Status (2)

Country Link
JP (1) JP3744427B2 (en)
CN (1) CN100559522C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234205A1 (en) * 2022-05-31 2023-12-07 株式会社村田製作所 Resin composition for ceramic green sheets, method for producing ceramic green sheet, and method for producing multilayer ceramic electronic component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462218B2 (en) * 2006-03-28 2010-05-12 Tdk株式会社 External electrode forming method and external electrode forming apparatus for chip-like electronic component
CN113270270B (en) * 2021-05-27 2022-04-05 广东省先进陶瓷材料科技有限公司 Anti-oxidation nickel slurry and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3346293B2 (en) * 1998-08-07 2002-11-18 株式会社村田製作所 Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP4803854B2 (en) * 1999-01-27 2011-10-26 Tdk株式会社 Manufacturing method of multilayer ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234205A1 (en) * 2022-05-31 2023-12-07 株式会社村田製作所 Resin composition for ceramic green sheets, method for producing ceramic green sheet, and method for producing multilayer ceramic electronic component

Also Published As

Publication number Publication date
CN1435856A (en) 2003-08-13
JP3744427B2 (en) 2006-02-08
CN100559522C (en) 2009-11-11

Similar Documents

Publication Publication Date Title
US6704191B2 (en) Multilayer ceramic electronic components and methods for manufacturing the same
JP4998222B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2000138129A (en) Laminated ceramic capacitor and its manufacture
JP2005174974A (en) Manufacturing method for laminated piezoelectric body
JP2005285806A (en) Method of manufacturing multilayered ceramic element
JP3744427B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH06290985A (en) Internal electrode paste
JP2004179349A (en) Laminated electronic component and its manufacturing method
JP4122845B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4192523B2 (en) Manufacturing method of multilayer ceramic electronic component
US11104114B2 (en) Method for producing a multi-layered structural element, and a multi-layered structural element produced according to said method
JPH0348415A (en) Paste composition and manufacture of laminated ceramic capacitor
JP4072861B2 (en) Manufacturing method of multilayer chip component
JP2004221268A (en) Method for manufacturing laminated ceramic electronic component
JP2007134561A (en) Method for forming multilayer piezoelectric element
JP4300775B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2020035878A (en) Laminated ceramic capacitor and manufacturing method therefor
JP3780798B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3873928B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0225094A (en) Manufacture of ceramic multilayer wiring board
JP2000302558A (en) Production of multilayer ceramic electronic parts
JP2943360B2 (en) Conductive paste for multilayer ceramic capacitors
JPH1197280A (en) Method of manufacturing multilayer ceramic capacitor
JP3215450B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2943361B2 (en) Manufacturing method of multilayer ceramic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3744427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

EXPY Cancellation because of completion of term