JP2003217407A - Method for confirming ground-closing of grounding device and ground-closing confirmation device - Google Patents

Method for confirming ground-closing of grounding device and ground-closing confirmation device

Info

Publication number
JP2003217407A
JP2003217407A JP2002017919A JP2002017919A JP2003217407A JP 2003217407 A JP2003217407 A JP 2003217407A JP 2002017919 A JP2002017919 A JP 2002017919A JP 2002017919 A JP2002017919 A JP 2002017919A JP 2003217407 A JP2003217407 A JP 2003217407A
Authority
JP
Japan
Prior art keywords
grounding
line
current
state
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002017919A
Other languages
Japanese (ja)
Other versions
JP4073214B2 (en
Inventor
Hidetoshi Konno
秀俊 紺野
Hideki Ota
英樹 太田
Masanori Toi
雅則 戸井
Koji Yutani
浩次 湯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2002017919A priority Critical patent/JP4073214B2/en
Publication of JP2003217407A publication Critical patent/JP2003217407A/en
Application granted granted Critical
Publication of JP4073214B2 publication Critical patent/JP4073214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for confirming ground-closing of a grounding device and a ground-closing confirmation device which allow reliable and easy confirmation of the grounding state of a system circuit both during operation and shutdown. <P>SOLUTION: A ground current flowing through a ground wire in response to a contact closing in a grounding device is detected to confirm the ground- closing state. When a contact in the grounding device is closed for its own circuit which is in a shutdown state among a multiple circuits in a power transmission and distribution system, an induction current flowing into the ground wire of its own circuit from an adjacent operating circuit or a charging current flowing through the ground wire of its own circuit is detected to confirm the ground-closing state. Additionally, a low-frequency or high-frequency monitor signal is injected into the ground wire, and the signal is detected to confirm the ground-closing state. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、送配電線等の電力
系統が接地装置の接点投入により接地されていることを
確認する接地投入確認方法、及びこの方法を実施するた
めの接地投入確認装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grounding confirmation method for confirming that a power system such as a transmission and distribution line is grounded by making contact with a grounding device, and a grounding confirmation device for implementing this method. It is about.

【0002】[0002]

【従来の技術】接地装置の接点を投入して系統回線を接
地する接地投入は、系統保守作業の安全性を確保するた
め、確実に行われなければならない。通常、接地装置駆
動部にはリミットスイッチ等の投入確認センサが設置さ
れており、このセンサ情報から接地投入状態を確認する
ことができる。しかし、接地装置の接点の接触部に異物
が挿入されたり、接触子自体が損傷したりすると、投入
確認センサによる検出だけでは接点が確実に投入されて
いるか否かを確認できないこともある。よって、安全性
・信頼性を一層確保するため、接地装置の投入状態を直
接目視で確認することが行われたりしている。
2. Description of the Related Art Grounding for connecting a contact of a grounding device to ground a system line must be performed reliably in order to ensure safety of system maintenance work. Normally, a closing confirmation sensor such as a limit switch is installed in the grounding device driving unit, and the grounding state can be confirmed from this sensor information. However, if a foreign object is inserted into the contact portion of the contact of the grounding device or the contact itself is damaged, it may not be possible to confirm whether or not the contact is surely closed only by the detection by the closing confirmation sensor. Therefore, in order to further ensure safety and reliability, it has been attempted to directly check the closed state of the grounding device by visual inspection.

【0003】ここで、ガス絶縁接地装置のような密閉型
接地装置では、内部への異物の混入は考えにくく、通
常、目視確認することは不要と思われる。しかし、密閉
型ゆえに接点の損傷等を目視で確認することは困難であ
る。また、気中接地装置においても、接点位置によって
は目視確認が困難なことも多い。そこで、各種センサを
使用して電気的に接点投入を検出することでヒューマン
エラーを無くし、目視確認を省力化するニーズは高く、
各種の方式が考えられている。
Here, in a closed-type grounding device such as a gas-insulated grounding device, it is unlikely that foreign matter will enter the inside, and it is usually unnecessary to visually check. However, since it is a closed type, it is difficult to visually confirm the damage or the like of the contacts. Further, even in the air grounding device, it is often difficult to visually confirm depending on the contact position. Therefore, there is a strong need to eliminate human error by electrically detecting contact closure using various sensors, and to save visual confirmation labor.
Various methods are considered.

【0004】例えば、接地系統の接地線に変流器を設置
してその2次側巻線に接続された電源の電流から変流器
の1次側電流を検出することにより1次側接地系統の接
地状態を確認する方式として、特開昭60−24543
4号公報記載の発明があり、気中電波による送電線の誘
導電流を検出する方式を用いたものに特開平04−27
2627号公報記載の発明がある。
For example, by installing a current transformer in the ground wire of the ground system and detecting the primary current of the current transformer from the current of the power supply connected to the secondary winding of the current transformer, the primary ground system Japanese Patent Laid-Open No. 60-24543 discloses a method of confirming the grounding state of
Japanese Patent Laid-Open No. 04-27 discloses an invention described in Japanese Patent Application Laid-Open No. 4 which uses a method of detecting an induction current of a transmission line by an airwave.
There is an invention described in Japanese Patent No. 2627.

【0005】また、ガス絶縁接地装置において、外部か
ら注入した電流信号の状態を確認する方式として、特開
平02−246709号公報記載の発明がある。更に、
接地装置の主接触子の他に確認用の補助接触子及び確認
回路を設置し、接点が投入されると補助接触子も接続さ
れて確認回路が閉ループ回路となり、注入した電流信号
が還流することを検出して接地装置の動作状態を確認す
る方式として、特公昭56−54649号公報や実公昭
57−1376号公報に記載された発明がある。
Further, as a method of confirming the state of a current signal injected from the outside in a gas insulated grounding apparatus, there is an invention described in Japanese Patent Application Laid-Open No. 02-246709. Furthermore,
In addition to the main contactor of the grounding device, an auxiliary contactor for confirmation and a confirmation circuit are installed.When the contact is turned on, the auxiliary contactor is also connected and the confirmation circuit becomes a closed loop circuit, and the injected current signal flows back. There is an invention described in Japanese Patent Publication No. 56-54649 and Japanese Utility Model Publication No. 57-1376 as a method for detecting the operation state and confirming the operating state of the grounding device.

【0006】[0006]

【発明が解決しようとする課題】既存の接地装置(リミ
ットスイッチのような投入確認センサのみが設置されて
いる装置)を新たに交換することなくそのまま使用して
接地投入を確認する方式は、前述の通り各種提案されて
いる。ここで、接地線に流れる電流を計測すれば、接地
装置の投入状態以外に、接地系統の状態を併せて監視す
ることができる。例えば、接地系統に誘導される電流の
要因として、多回線が並行している送電系統における隣
接運転回線からの誘導電流や、特開平04−27262
7号のように気中電波からの誘導電流が考えられるた
め、このような接地系統では、単に接地装置の動作監視
だけでなく、これら接地系統の誘導電流レベルについて
も、実際に送電線に上って保守作業する側としては把握
しておきたいところである。
The method of confirming the grounding by using the existing grounding device (device having only the closing confirmation sensor such as the limit switch installed) as it is without replacing it has been described above. Various proposals have been made as follows. Here, if the current flowing through the ground line is measured, it is possible to monitor the state of the ground system in addition to the closed state of the grounding device. For example, as a factor of the current induced in the ground system, an induced current from an adjacent operation line in a power transmission system in which multiple lines are parallel, or JP-A-04-27262.
Since induced current from airwaves like No. 7 is considered, in such a ground system, not only the operation of the grounding device is monitored but also the level of the induced current in these ground systems is actually detected in the transmission line. Therefore, I would like to know as the maintenance work side.

【0007】上述した誘導電流の有無によって接地装置
の投入状態(接地装置の接点の開閉状態)を監視する方
式は、電流センサによる電流検出機能だけで判定可能で
あることから、安価な監視装置を容易に実現することが
可能である。また、前述の如く本方式によれば、単に接
地装置の投入状態を監視するだけでなく、接地系統の状
態そのものを把握・監視することも可能である。
The above-described method of monitoring the closing state of the grounding device (the open / closed state of the contacts of the grounding device) by the presence or absence of the induced current can be determined only by the current detection function of the current sensor. It can be easily realized. Further, as described above, according to this method, it is possible not only to monitor the closing state of the grounding device but also to grasp and monitor the state itself of the grounding system.

【0008】しかしながら、接地線の誘導電流は、系統
構成や運用条件により必ずしも得られるとは限らず、特
に気中電波から受ける誘導電流は欲しいときに得られる
ものではないことから、接地装置の状態監視に本方式が
常に適用できるとは限らない。
However, the induced current of the ground wire is not always obtained depending on the system configuration and operating conditions, and in particular, the induced current received from the radio wave in the air is not obtained when desired. This method is not always applicable to monitoring.

【0009】そこで、このように誘導電流が得られない
場合、接地系統に何らかの監視信号を故意に注入してそ
の有無を検出することにより、接地投入を確認する方式
が考えられる。系統の自端側と相手端側の接地装置が共
に動作して接点が閉じている場合、系統回線を含む接地
系統の閉ループ回路に前記監視信号(監視電流)が流れ
ることを検出すれば、接地投入状態を確認することがで
きる。このとき、監視信号の周波数が高いと、系統のリ
アクタンス成分によりそのインピーダンスが高くなり、
電流が流れにくくなる。よって、接地装置の動作監視に
当たっては、商用周波数以下程度の低周波数信号を注入
した方が効果的であると考えられる。
Therefore, when the induced current cannot be obtained in this way, a method of intentionally injecting some kind of monitoring signal into the ground system and detecting the presence or absence thereof to confirm the grounding can be considered. When the grounding devices on the self-end side and the other end side of the system are both operating and the contacts are closed, if it is detected that the monitoring signal (monitoring current) flows in the closed loop circuit of the grounding system including the system line, grounding is performed. You can check the input state. At this time, if the frequency of the monitoring signal is high, its impedance increases due to the reactance component of the system,
It becomes difficult for current to flow. Therefore, in monitoring the operation of the grounding device, it is considered more effective to inject a low frequency signal below the commercial frequency.

【0010】しかし、このように接地系統に低周波信号
を注入する場合には、次の2つの問題がある。まず、低
周波信号の注入により自端側の接地装置の投入状態を確
認する際に、相手端側の接地装置が投入されていて系統
回線を含む閉ループが形成されていることが前提であ
り、相手端側の接地装置が開放状態または投入異常の状
態では、本方式による投入確認は不可能である。次に、
例えば変流器を使って系統に低周波信号を注入した場
合、注入した監視信号の電圧レベルEは以下の数式1の
ようになる。
However, injecting a low-frequency signal into the ground system in this manner has the following two problems. First, when confirming the closing state of the grounding device on the self-end side by injecting a low-frequency signal, it is premised that the grounding device on the mating end side is turned on and a closed loop including a system line is formed. If the grounding device on the mating end side is in the open state or in the state of abnormal closing, it is impossible to confirm closing by this method. next,
For example, when a low-frequency signal is injected into the system by using a current transformer, the voltage level E of the injected monitoring signal is given by the following formula 1.

【0011】[0011]

【数1】E=A×f×N×S×B A:波形率(正弦波の場合は4.44、矩形波の場合は
4) f:監視信号の周波数 N:変流器の巻数(貫通型の場合1ターン) S:変流器の鉄心断面積 B:変流器の磁束密度
[Equation 1] E = A × f × N × S × B A: Waveform ratio (4.44 for sine wave, 4 for rectangular wave) f: Frequency of monitoring signal N: Number of turns of current transformer ( (One turn in case of through type) S: Iron core cross-sectional area of current transformer B: Magnetic flux density of current transformer

【0012】上記数式1によれば、監視信号の周波数を
低くすると信号の電圧レベルが低下し、接地系統への信
号注入とその検出を困難にする。
According to the above formula 1, when the frequency of the monitoring signal is lowered, the voltage level of the signal is lowered, which makes it difficult to inject the signal into the ground system and detect it.

【0013】そこで、次に監視信号として高周波信号を
注入することを考える。信号の周波数を高くすると、系
統のリアクタンス成分によってインピーダンスが高くな
り、電流が流れにくくなるが、系統は、抵抗、インダク
タンス及びキャパシタによるR,L,Cの分布定数回路
となっているので、その分布定数回路の共振周波数と同
一周波数の監視信号を注入すれば、系統に監視電流を効
果的に流すことができる。
Therefore, next, consider injection of a high frequency signal as a monitoring signal. When the frequency of the signal is increased, the impedance becomes high due to the reactance component of the system and it becomes difficult for the current to flow. However, since the system is a distributed constant circuit of R, L and C by resistance, inductance and capacitor, its distribution By injecting the monitoring signal having the same frequency as the resonance frequency of the constant circuit, the monitoring current can be effectively passed through the system.

【0014】上記共振周波数は、系統線路長や相手端の
接地装置の動作状態によって異なるが、相手端の接地装
置の動作状態に関係なく電流を流すことができるので、
いかなる系統構成でも接地系統の自端側の接地装置の投
入状態を確認することが可能である。しかし、この共振
周波数は上述した系統線路長や相手端側の接地装置の投
入状態等の系統条件によって系統ごとに異なるため、そ
の正確な値を事前に特定することは難しい。また、接地
系統であっても、高周波信号を注入すると注入先の系統
に高電圧が誘起されたり、高周波信号によって系統に接
続されている機器に影響を及ぼす可能性があるので、注
意が必要となる。
The resonance frequency differs depending on the system line length and the operating state of the grounding device at the other end, but since the current can flow regardless of the operating state of the grounding device at the other end,
With any system configuration, it is possible to confirm the closing state of the grounding device on the self-end side of the grounding system. However, since this resonance frequency differs for each system depending on the system conditions such as the system line length and the turning-on state of the grounding device on the other end side, it is difficult to specify its exact value in advance. Even with a grounded system, if a high-frequency signal is injected, high voltage may be induced in the injection-destination system, and the device connected to the system may be affected by the high-frequency signal, so caution is required. Become.

【0015】そこで本発明は、上述した種々の問題点を
解消し、系統回線の接地状態を確実かつ容易に確認でき
るようにした接地装置の接地投入確認方法及び接地投入
確認装置を提供しようとするものである。
Therefore, the present invention intends to solve the above-mentioned various problems and provide a grounding confirmation method and a grounding confirmation device for a grounding device which can surely and easily confirm the grounding state of a system line. It is a thing.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、接地装置の接点投入により
接地線に流れる接地電流を検出して接地投入状態を確認
するようにした接地装置の接地投入確認方法において、
多回線の並行送配電系統のうち停止状態にある自回線に
ついて接地装置の接点を投入した際に、自回線の接地線
に流れる隣接運転回線からの誘導電流、または、自回線
の接地線に流れる充電電流を検出して接地投入状態を確
認するものである。
In order to solve the above-mentioned problems, the invention according to claim 1 is to detect the grounding current flowing through the grounding wire when the contact of the grounding device is turned on to confirm the grounding state. In the method of confirming the grounding of the device,
When the contact of the grounding device is turned on for the own line that is in a stopped state in the multi-line parallel power transmission and distribution system, the induced current from the adjacent operating line that flows to the ground line of the own line or the ground line of the own line The charging current is detected to confirm the grounding state.

【0017】請求項2記載の発明は、系統回線の自端側
の接地線に低周波数の監視電流を注入した際に、相手端
側の接地線及び前記系統回線を介して形成される閉ルー
プ回路に前記監視電流が流れることを自端側で検出して
自端側及び相手端側の接地投入状態を確認するものであ
る。
According to a second aspect of the present invention, when a low-frequency monitoring current is injected into the ground line on the self-end side of the system line, a closed loop circuit is formed via the ground line on the other end side and the system line. In addition, the self-end side detects that the monitoring current flows, and confirms the grounding state of the self-end side and the mating end side.

【0018】請求項3記載の発明は、系統回線の自端側
の接地線に、分布定数回路としての系統回線の共振周波
数程度の周波数を有する監視電流を注入した際に、相手
端側の接地線及び前記系統回線を介して形成される閉ル
ープ回路に前記監視電流が流れることを自端側で検出し
て自端側の接地投入状態を確認するものである。
According to a third aspect of the present invention, when a monitoring current having a frequency close to the resonance frequency of the system line as a distributed constant circuit is injected into the ground line on the self-end side of the system line, the other end is grounded. The self-end side detects that the monitoring current flows in the closed loop circuit formed via the line and the system line, and confirms the grounding state of the self-end side.

【0019】請求項4記載の発明は、請求項3に記載し
た接地装置の接地投入確認方法において、監視電流の周
波数を所定範囲で変化させながら接地線への監視電流の
注入及び検出を自端側で繰り返し行い、監視電流が検出
されたときの監視電流の周波数により系統回線の共振周
波数を特定して相手端側の接地投入状態を確認するもの
である。
According to a fourth aspect of the present invention, in the grounding confirmation method for the grounding device according to the third aspect, the self-injection and detection of the monitoring current into the ground line is performed while changing the frequency of the monitoring current within a predetermined range. Repeatedly on the side, the resonance frequency of the system line is specified by the frequency of the monitoring current when the monitoring current is detected, and the grounding state of the other end is confirmed.

【0020】請求項5記載の発明は、上述した請求項
1,2,3、または、請求項1,2,4に記載した接地
投入確認動作をこの順に逐次実行し、自端側及び相手端
側の接地投入状態を確認するものである。
According to a fifth aspect of the present invention, the grounding confirmation operation described in the first, second and third aspects or the first, second and fourth aspects is sequentially executed in this order, and the self-end side and the other end This is to check the grounded state of the side.

【0021】請求項6記載の発明は、接地装置の接点投
入により接地線に流れる接地電流を検出して接地投入状
態を確認するようにした接地装置の接地投入確認装置に
おいて、周波数を可変とした監視電流を自回線の接地線
に注入するための信号注入制御手段と、自回線の接地線
に流れる隣接運転回線からの誘導電流または自回線の接
地線に流れる充電電流、もしくは、前記監視電流を計測
するための計測制御手段と、を備えたものである。
According to a sixth aspect of the present invention, the frequency is variable in the grounding confirmation device for the grounding device, which detects the grounding current flowing in the grounding wire by closing the contacts of the grounding device to confirm the grounding state. The signal injection control means for injecting the monitoring current into the ground line of the own line, the induction current from the adjacent operation line flowing in the ground line of the own line or the charging current flowing in the ground line of the own line, or the monitoring current The measurement control means for measuring is provided.

【0022】[0022]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。まず、この実施形態は、系統回線に接続
された接地装置の接点が投入されて接地投入状態になっ
たことを電気的に確認するものであり、基本的には、接
地線に流れる電流の有無を検出することにより接地投入
を確認するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. First, this embodiment is to electrically confirm that a contact of a grounding device connected to a system line has been turned on to be in a grounding state. The grounding is confirmed by detecting.

【0023】図1は、本実施形態が適用される系統構成
を示すものである。三相送電線等の系統回線2の自端及
び相手端の接地線2A,2Bには、接点1A’,1B’
を開閉駆動する接地装置1A,1Bが接続されている。
このうち、自端接地装置1Aの近傍には、その接点投入
状態を確認するための接地投入確認装置3が設置されて
いる。
FIG. 1 shows a system configuration to which this embodiment is applied. Contacts 1A 'and 1B' are provided on the ground lines 2A and 2B at the self-end and the other end of the system line 2 such as a three-phase transmission line.
The grounding devices 1A and 1B for driving to open and close are connected.
Of these, a grounding confirmation device 3 for confirming the contact closing state is installed near the self-end grounding device 1A.

【0024】接地投入確認装置3には、接地線2Aに流
れる電流を計測するための計測CT4R,4S,4T
と、接地線2Aに強制的に監視信号を注入するための信
号注入CT 5R,5S,5Tが接続されている。な
お、信号注入CTは、5Zとして示すように三相を一括
接続した接地線に1個だけ接続しても良い。ここで、接
地線2Aに対し各相個別に監視信号を注入する場合は、
各相ごとの信号注入CT 5R,5S,5Tを用い、三
相一括で監視信号を注入する場合には単一の信号注入C
T 5Zを用いる。
The grounding confirmation device 3 includes measurement CTs 4R, 4S, 4T for measuring the current flowing through the grounding wire 2A.
And signal injection CTs 5R, 5S, 5T for forcibly injecting the monitoring signal into the ground line 2A. It should be noted that only one signal injection CT may be connected to the ground line that collectively connects the three phases, as indicated by 5Z. Here, when injecting the monitoring signal into the ground line 2A for each phase individually,
Signal injection for each phase CT 5R, 5S, 5T is used, and a single signal injection C is used when the monitoring signals are injected in three phases at once.
T5Z is used.

【0025】また、接地投入確認装置3には接地装置1
Aから投入確認指令が入力されており、接地投入確認装
置3からは接地装置1Aの状態表示出力が発せられる。
ここで、前記投入確認指令は、接地装置1Aによる接点
1A’の投入状態を確認するべく接地投入確認装置3に
よる確認動作を行わせるための指令である。
The grounding confirmation device 3 includes a grounding device 1
The closing confirmation command is input from A, and the grounding confirmation device 3 issues a status display output of the grounding device 1A.
Here, the closing confirmation command is a command for causing the confirmation operation by the grounding confirmation device 3 to confirm the closing state of the contact 1A ′ by the grounding device 1A.

【0026】送電線等の電力系統回線2は、通常、並行
した複数回線により構成される場合が多いため、停止し
ている回線には隣接運転回線から誘導電流が流れること
になる。この停止回線が正常に接地されていれば、接地
線に誘導電流が流れることになり、このときの誘導電流
を計測CT 4R,4S,4Tにより検出して接地投入
確認装置3により停止回線の接地投入を確認することが
できる。同様なことは、停止回線の接地線に自回線の充
電電流が流れる場合にも言える。上記のように、隣接運
転回線からの誘導電流や自回線の充電電流(以下では、
誘導電流により代表させるものとする)を検出して接地
投入状態を確認する方式をSTEP1とする。
Since the power system line 2 such as a power transmission line is usually composed of a plurality of parallel lines, an induced current flows from the adjacent operation line to the line that is stopped. If this stop line is normally grounded, an induced current will flow in the ground line, and the induced current at this time will be detected by the measurement CTs 4R, 4S, 4T and the grounding confirmation device 3 will ground the stop line. You can confirm the input. The same applies to the case where the charging current of the own line flows through the ground line of the stop line. As mentioned above, the induced current from the adjacent operation line and the charging current of the own line (in the following,
A method for detecting the grounded state by detecting the induced current) is referred to as STEP 1.

【0027】しかし、1回線送電線や全回線停止時のよ
うに、系統構成や運用条件によっては、常に誘導電流が
得られるとは限らない。このときには、前述した信号注
入CT 5R,5S,5Tまたは5Zを介して接地線2
Aに強制的に監視電流を注入することで、相手端の接地
線、系統回線、自端の接地線を含む閉ループ回路で上記
監視電流の有無を計測CT 4R,4S,4Tにより検
出し、接地投入確認装置3によって自端の接地投入状態
を検出、判定する。すなわち、このときに監視電流が検
出されれば、自端及び相手端の接地装置は投入状態にあ
ると判定でき、監視電流が検出されなければ、少なくと
も自端及び相手端の接地装置の何れか一方または双方が
投入されていないと判定することができる。
However, an induced current is not always obtained depending on the system configuration and operating conditions, such as when one line power transmission line or all lines are stopped. At this time, the ground line 2 is connected through the signal injection CT 5R, 5S, 5T or 5Z described above.
By forcibly injecting the monitoring current into A, the presence or absence of the above monitoring current is detected by CT 4R, 4S, 4T in a closed loop circuit including the ground wire of the other end, the system line, and the ground wire of its own end, and grounded. The closing confirmation device 3 detects and judges the grounding state of the self-end. That is, if the monitoring current is detected at this time, it can be determined that the grounding devices at the self-end and the other end are in the closed state, and if the monitoring current is not detected, at least one of the grounding devices at the self-end and the other end is detected. It can be determined that one or both have not been input.

【0028】本発明では、上記信号注入検出方式におい
て、商用周波数程度またはそれ以下の比較的低い周波数
の監視信号を注入して検出する低周波信号注入検出方式
をSTEP2とし、分布定数回路としての系統の共振周
波数相当の高周波の監視信号を注入して検出する高周波
信号注入検出方式をSTEP3とする。
In the present invention, in the above-mentioned signal injection detection method, the low frequency signal injection detection method for injecting and detecting the monitoring signal of a relatively low frequency of about commercial frequency or lower is STEP2, and the system as a distributed constant circuit is used. The high frequency signal injection detection method of injecting and detecting the high frequency monitoring signal corresponding to the resonance frequency is referred to as STEP3.

【0029】図2は、接地投入確認装置3の内部構成を
示すものである。この装置3は、自端の接地線2Aを流
れる電流を計測する計測制御部31と、計測データや接
地投入判定結果、装置の自己診断結果等を無線等により
遠隔通信する通信インターフェース(I/F)32と、
接地線2Aに所定周波数の監視信号を注入するための信
号注入制御部33と、装置内の各部へ電源を供給する電
源部34とから構成されている。
FIG. 2 shows the internal structure of the grounding confirmation device 3. This device 3 communicates with a measurement control unit 31 that measures a current flowing through the grounding wire 2A at its own end, and a communication interface (I / F) that wirelessly communicates measurement data, a grounding determination result, a self-diagnosis result of the device, and the like. ) 32,
It is composed of a signal injection control unit 33 for injecting a monitoring signal of a predetermined frequency into the ground line 2A, and a power supply unit 34 for supplying power to each unit in the apparatus.

【0030】上記計測制御部31は、計測CT 4R,
4S,4Tに選択的に接続されるスイッチ311と、そ
の出力側のA/D変換器312と、そのディジタル出力
信号が入力されるマイコン314と、マイコン314の
出力信号が加えられるディジタル信号出力部(DO)3
15と、接地装置1Aからの投入確認指令及び後述する
周波数制御部333からのクロック信号CLKが入力さ
れるディジタル信号入力部(DI)313とを備えてい
る。
The measurement control unit 31 measures the measurement CT 4R,
A switch 311 selectively connected to 4S and 4T, an A / D converter 312 on the output side thereof, a microcomputer 314 to which the digital output signal thereof is input, and a digital signal output unit to which the output signal of the microcomputer 314 is added. (DO) 3
15 and a digital signal input unit (DI) 313 to which a closing confirmation command from the grounding device 1A and a clock signal CLK from a frequency control unit 333 to be described later are input.

【0031】また、信号注入制御部33は、電源部34
に接続された電源供給用のスイッチ334と、前記ディ
ジタル信号出力部315の出力信号が加えられる周波数
制御部333と、この周波数制御部333からのクロッ
ク信号CLKが入力される周波数可変信号源332と、
その出力側の監視CT335と、周波数可変信号源33
2の出力信号(監視信号)を信号注入CT 5R,5
S,5Tまたは5Zに選択的に印加するためのスイッチ
331とからなっている。なお、前記スイッチ311,
331,334はマイコン314からディジタル信号出
力部315を介して開閉制御されるものである。
In addition, the signal injection control unit 33 includes a power supply unit 34.
A switch 334 for power supply connected to the frequency control unit 333, a frequency control unit 333 to which the output signal of the digital signal output unit 315 is added, and a frequency variable signal source 332 to which the clock signal CLK from the frequency control unit 333 is input. ,
The monitoring CT 335 on the output side and the frequency variable signal source 33
2 output signal (monitoring signal) signal injection CT 5R, 5
And a switch 331 for selectively applying to S, 5T or 5Z. The switch 311,
331 and 334 are controlled to be opened and closed by the microcomputer 314 via the digital signal output unit 315.

【0032】以下、接地投入確認装置3の動作を説明す
る。図1の接地装置1Aが動作していない通常の系統運
用時は、計測制御部31と通信インターフェース32だ
けが動作しており、マイコン314による装置の自己診
断を常時行っている。この時、信号注入制御部33は動
作している必要がないので、必要時以外は内部のスイッ
チ334をOFFして周波数可変信号源332への電源
供給を停止し、不要な電源消費を抑制している。
The operation of the grounding confirmation device 3 will be described below. During normal system operation in which the grounding device 1A of FIG. 1 is not operating, only the measurement control unit 31 and the communication interface 32 are operating and the microcomputer 314 constantly performs self-diagnosis of the device. At this time, since the signal injection control unit 33 does not need to operate, the internal switch 334 is turned off to stop the power supply to the variable frequency signal source 332 and suppress unnecessary power consumption except when necessary. ing.

【0033】また、通常の系統運用時には接地装置1A
の接点1A’は開放状態であるから、接地線2Aには系
統の誘導電流は流れず、たとえ接地線2Aに監視信号を
注入したとしても、相手端接地装置1Bの接点1B’、
系統回線2及び自端接地装置1Aの接点1A’を含む閉
ループ回路が形成されずに接地線2Aには電流が流れな
いので、計測CT 4R,4S,4Tから監視電流は検
出されない。
The grounding device 1A is also used during normal system operation.
Since the contact point 1A 'of the above is in an open state, the system induced current does not flow in the ground line 2A, and even if a monitoring signal is injected into the ground line 2A, the contact point 1B' of the other end grounding device 1B,
Since a closed loop circuit including the system line 2 and the contact 1A 'of the self-grounding device 1A is not formed and no current flows through the ground line 2A, the monitoring current is not detected from the measurement CTs 4R, 4S, 4T.

【0034】よって、接地装置1Aが動作していない時
には、定期的に信号注入制御部33と信号注入CT 5
R,5S,5Tまたは5Zまでの信号回路、及び、計測
制御部31のA/D変換器312等の計測入力が正常か
否かを点検するため、定周期で信号注入制御部33の電
源供給スイッチ334をONにする。これにより、信号
注入CT 5R,5S,5Tまたは5Zに監視信号を印
加すると同時に、計測制御部31のスイッチ311を切
り替えながら、信号注入制御部33の監視CT335に
より信号注入CT 5R,5S,5Tまたは5Zに周波
数可変信号源332による既知レベルの励磁電流が流れ
ることを監視し、かつ接地線2Aの計測CT 4R,4
S,4Tからは監視電流が検出されないことを確認す
る。
Therefore, when the grounding device 1A is not operating, the signal injection control unit 33 and the signal injection CT 5 are periodically performed.
In order to check whether the signal input up to R, 5S, 5T or 5Z and the measurement input of the A / D converter 312 of the measurement control unit 31 are normal, power is supplied to the signal injection control unit 33 at regular intervals. The switch 334 is turned on. Accordingly, while applying the monitoring signal to the signal injection CT 5R, 5S, 5T or 5Z, at the same time as switching the switch 311 of the measurement control unit 31, the monitoring CT 335 of the signal injection control unit 33 causes the signal injection CT 5R, 5S, 5T or It is monitored that an exciting current of a known level by the frequency variable signal source 332 flows in 5Z, and the measurement CT 4R, 4 of the ground line 2A is measured.
Confirm that the monitoring current is not detected from S and 4T.

【0035】前述したSTEP1の誘導電流検出方式で
は、信号注入制御部33の動作を停止させたまま、接地
装置1Aからの投入確認指令をディジタル信号入力部3
13に取り込み、この投入確認指令をトリガーにして、
接地線2Aに流れる誘導電流が計測CT 4R,4S,
4Tから得られることをマイコン314により確認し、
接地投入状態を確認、判定する。そして、全回線停止等
によって誘導電流がある一定時間得られない場合には、
前記STEP2、STEP3の信号注入検出方式によ
り、接地投入状態を確認する。
In the induction current detection method of STEP 1 described above, the digital signal input unit 3 issues a closing confirmation command from the grounding device 1A while the operation of the signal injection control unit 33 is stopped.
Taken in 13, triggered by this injection confirmation command,
The induced current flowing in the ground wire 2A is measured by CT 4R, 4S,
Confirm that it can be obtained from 4T by the microcomputer 314,
Check and judge the grounding state. If the induced current cannot be obtained for a certain period of time due to the suspension of all lines,
The grounding state is confirmed by the signal injection detection method of STEP2 and STEP3.

【0036】これらの信号注入検出方式では、信号注入
制御部33の電源供給スイッチ334をONとして、周
波数制御部333及び周波数可変信号源332により制
御される各種周波数の監視信号を、スイッチ331及び
信号注入CT 5R,5S,5Tまたは5Zを経由して
接地線2Aに強制的に注入する。そして、相手端の接地
線2B、系統回線2及び自端の接地線2Aを含む閉ルー
プ回路を経た監視信号を計測CT 4R,4S,4Tに
より計測することで、接地投入状態を確認する。
In these signal injection detection methods, the power supply switch 334 of the signal injection controller 33 is turned on, and the monitoring signals of various frequencies controlled by the frequency controller 333 and the frequency variable signal source 332 are switched to the switch 331 and the signal. Injection CT 5R, 5S, 5T or 5Z is forcibly injected into the ground line 2A. Then, the grounding state is confirmed by measuring the monitoring signal that has passed through the closed loop circuit including the ground line 2B of the other end, the system line 2, and the ground line 2A of the own end by the measurement CTs 4R, 4S, 4T.

【0037】なお、図2の構成において、信号注入CT
を三相一括の5Zとした場合は、信号注入制御部33の
スイッチ331は不要となり、周波数可変信号源332
と信号注入CT 5Zとが直結された構成となる。ま
た、周波数制御部333の出力であるクロック信号CL
Kを計測制御部31にディジタル信号入力部313経由
で取り込むことで、監視信号の周波数の把握と周波数制
御部333の監視とを同時に行うことが可能である。
In the configuration of FIG. 2, signal injection CT
When the three-phase is set to 5Z, the switch 331 of the signal injection control unit 33 becomes unnecessary, and the variable frequency signal source 332 is used.
The signal injection CT 5Z is directly connected to the signal injection CT 5Z. Further, the clock signal CL which is the output of the frequency control unit 333
By taking K into the measurement control unit 31 via the digital signal input unit 313, it is possible to grasp the frequency of the monitoring signal and monitor the frequency control unit 333 at the same time.

【0038】図3は、前記各STEP(誘導電流検出方
式及び信号注入検出方式)の処理を示すフローチャート
であり、主として図2の接地投入確認装置3により実行
される処理である。接地装置1Aからの投入確認指令が
入力されると(S1)、STEP1の誘導電流検出方式
として、まず各相の検出フラグr=s=t=0とした
後、各相の接地線2Aに流れる誘導電流を計測CT 4
R,4S,4TによりR相から順に計測し(S2)、誘
導電流の有無を判定する(S3)。各相の誘導電流を検
出するたびに前記検出フラグを1にすると共に、全相の
誘導電流を検出(検出フラグr=s=t=1)した旨の
判定処理(S4)によりS23へジャンプして、接地投
入状態が正常である旨を表示出力する。この表示出力
は、図2における通信インターフェース32やディジタ
ル信号出力部315を介して実行される。ここで、誘導
電流がある一定時間検出されない相があった場合、S4
のNo分岐を経て次のSTEP2の処理へ移行する。
FIG. 3 is a flow chart showing the processing of each of the STEPs (induction current detection method and signal injection detection method), which is mainly processing executed by the grounding confirmation device 3 in FIG. When the closing confirmation command is input from the grounding device 1A (S1), as the induced current detection method of STEP1, first, the detection flag r of each phase is set to r = s = t = 0, and then it flows to the grounding wire 2A of each phase. Measure the induced current CT 4
The R, 4S, and 4T are sequentially measured from the R phase (S2), and the presence or absence of the induced current is determined (S3). The detection flag is set to 1 each time the induced current of each phase is detected, and the process jumps to S23 by the determination process (S4) that the induced currents of all phases are detected (detection flag r = s = t = 1). Then, a display indicating that the grounding state is normal is output. This display output is executed via the communication interface 32 and the digital signal output unit 315 in FIG. If there is a phase in which the induced current is not detected for a certain period of time, S4
After the No branch of No., the process moves to the next STEP2.

【0039】STEP2の低周波信号注入検出方式で
は、接地線2Aに商用周波数相当またはそれ以下の低周
波数の監視信号を注入するものであるが、この信号注入
はSTEP1で接地投入が確認できなかった相(誘導電
流が検出されなかった相)のみを対象として行う。ま
た、低周波信号を注入する前に、必ず接地線2Aに誘導
電流が存在しないことを確認し(S5,S6)、その後
に、S7にて低周波信号を注入する。上記の確認処理
(S5,S6)を入れることで、誘導電流の存在時に信
号注入CT 5R,5S,5Tまたは5Zから信号注入
制御部33への逆入力による障害が発生することを回避
している。この逆入力による障害を防止するために信号
注入制御部33に設けられる制御回路については、後に
図5を用いて説明する。なお、低周波信号の注入は、信
号注入制御部33内の周波数可変信号源332、スイッ
チ331及び信号注入CT 5R,5S,5Tまたは5
Zを介して行われる。
In the low frequency signal injection detection method of STEP2, a monitoring signal of a low frequency equivalent to or lower than the commercial frequency is injected into the ground line 2A, but this signal injection could not be confirmed in STEP1. Only the phase (phase in which no induced current is detected) is performed. Before injecting the low frequency signal, it is always confirmed that no induced current is present in the ground line 2A (S5, S6), and then the low frequency signal is injected in S7. By inserting the above confirmation processing (S5, S6), it is possible to avoid the occurrence of a failure due to the reverse input from the signal injection CT 5R, 5S, 5T or 5Z to the signal injection control unit 33 in the presence of the induced current. . The control circuit provided in the signal injection control unit 33 for preventing the failure due to the reverse input will be described later with reference to FIG. It should be noted that the low frequency signal is injected by the variable frequency signal source 332, the switch 331 and the signal injection CT 5R, 5S, 5T or 5 in the signal injection control unit 33.
Through Z.

【0040】次に、上記S7で注入された低周波信号を
計測CTにより計測してその有無を判定し(S8,S
9)、前記STEP1の結果と合わせて全相の接地電流
が検出されると各相の検出フラグs=r=t=1とな
り、監視信号の注入停止(S10)及び判定処理(S1
1)を経て、接地投入状態が正常である旨を表示出力す
る(S23)。
Next, the low frequency signal injected in the above S7 is measured by the measurement CT and the presence or absence thereof is determined (S8, S
9) When the ground currents of all the phases are detected together with the result of STEP1, the detection flag s = r = t = 1 for each phase, and the injection stop of the monitoring signal (S10) and the determination process (S1).
Through step 1), the fact that the grounded state is normal is displayed and output (S23).

【0041】接地線2Aに低周波の監視信号を注入する
場合、図4(a)に示すように相手端も接地状態である
ことによって系統回線2を含む閉ループに監視電流が流
れるが、相手端が接地状態でない場合には監視電流が流
れないため、自端の接地装置1Aが投入状態か否かの判
定は不可能である。この図4(a)において、R+jX
は系統のインピーダンスであり、Rは抵抗成分、Xはリ
アクタンス成分である。なお、低周波信号に対しては、
系統回線2と接地間に存在する容量成分は無視すること
ができる。このように、STEP2による低周波信号注
入検出方式では自端側の接地投入を確認できないことが
あるので、その場合には、引き続きSTEP3の高周波
信号注入検出方式に移行する。
When a low-frequency monitoring signal is injected into the ground line 2A, the monitoring current flows in the closed loop including the system line 2 because the other end is also grounded as shown in FIG. 4 (a). Since the monitoring current does not flow when is not in the grounded state, it is impossible to determine whether or not the grounding device 1A at its own end is in the closed state. In FIG. 4A, R + jX
Is the impedance of the system, R is the resistance component, and X is the reactance component. For low frequency signals,
The capacitance component existing between the system line 2 and the ground can be ignored. As described above, in the low frequency signal injection detection method according to STEP2, it may not be possible to confirm the grounding on the self-end side, and in that case, the process shifts to the high frequency signal injection detection method in STEP3.

【0042】系統への高周波の監視信号の注入を考える
場合、図4(b)に示す如く系統回線2はR,L,Cに
よる分布定数回路として考えられる。この分布定数回路
の共振周波数相当の高周波信号を接地線2Aに注入すれ
ば、容量成分Cを通して効果的に電流が流れることにな
る。この時、相手端の接地装置1B(接点1B’)の開
閉状態で系統共振周波数が大きく変化するが、何れの状
態でも共振周波数は存在するため、相手端の接地状態に
関係なく監視電流を流すことが可能であり、この監視電
流を検出することで自端の接地装置1Aの接地投入状態
を確認することができる。
When considering the injection of the high frequency monitoring signal into the system, the system line 2 can be considered as a distributed constant circuit of R, L and C as shown in FIG. 4 (b). If a high frequency signal corresponding to the resonance frequency of the distributed constant circuit is injected into the ground line 2A, a current effectively flows through the capacitance component C. At this time, the system resonance frequency greatly changes depending on the open / closed state of the grounding device 1B (contact 1B ') at the other end, but since the resonance frequency exists in any state, the monitoring current flows regardless of the grounding state at the other end. It is possible to check the grounding state of the grounding device 1A at its own end by detecting this monitoring current.

【0043】再び図3において、STEP3の高周波信
号注入検出方式による判定処理は、前段のSTEP1,
STEP2により接地投入が確認できなかった相のみに
対して実行される。ここで、高周波信号を注入する前
に、STEP2の時と同様に必ず接地線2Aに誘導電流
が存在しないことを確認する(S12,S13)。ま
た、前述したように、系統に高周波信号を印加すること
で、系統構成や運用条件によっては、高周波信号により
系統に高い電圧が誘起されたり、系統に接続されている
機器に高周波信号が印加されてしまう問題が考えられ
る。よって、本実施形態に係る接地投入確認装置のユー
ザーが、必要に応じてSTEP3の処理をロックできる
機能を有している(S14)。
Referring again to FIG. 3, the determination processing by the high frequency signal injection detection method in STEP3 is the same as that in STEP1,
It is executed only for the phase whose grounding cannot be confirmed in STEP2. Here, before injecting the high frequency signal, it is surely confirmed that there is no induced current in the ground line 2A as in STEP 2 (S12, S13). Further, as described above, by applying a high frequency signal to the system, depending on the system configuration and operating conditions, a high voltage may induce a high voltage in the system, or a high frequency signal may be applied to equipment connected to the system. There is a possible problem. Therefore, the user of the grounding confirmation device according to the present embodiment has a function of locking the process of STEP 3 as needed (S14).

【0044】上述したS12〜S14等からなるSTE
P3の使用条件が満足すれば、周波数fの高周波信号を
監視信号として注入することになる(S15)。ここ
で、監視信号の周波数fは、系統の共振周波数相当の信
号とすることで接地線2Aに流れる電流の大きさにピー
ク点が現れることになるが、この共振周波数は、系統線
路長や相手端の接地状態のように系統構成や運用条件に
左右されるため、事前に共振周波数を特定して注入する
のは困難である。
STE including S12 to S14 described above
If the usage condition of P3 is satisfied, a high frequency signal of frequency f will be injected as a monitoring signal (S15). Here, when the frequency f of the monitoring signal is a signal corresponding to the resonance frequency of the system, a peak point appears in the magnitude of the current flowing through the ground line 2A. Since it depends on the system configuration and operating conditions such as the grounding state at the end, it is difficult to identify and inject the resonance frequency in advance.

【0045】そこで、S15〜S19において、注入す
る高周波信号の周波数fをFmin値からFmax値ま
でΔf刻みで加算しつつ変化(スイープ)させながらS
16,S17により注入電流の有無を検出し、検出され
た相については検出フラグを1にして監視信号の注入を
停止する(S20)。上記S17による検出結果と前段
のSTEP1、STEP2の判定結果とを合わせて、全
相につき監視電流が検出されると各相の検出フラグr=
s=t=1となり、判定処理(S21)を経て接地投入
状態が正常である旨を表示出力する(S23)。ここ
で、注入する高周波信号の周波数のスイープについて
は、後述する図6により説明する。
Therefore, in S15 to S19, the frequency f of the high-frequency signal to be injected is changed (sweep) while adding (changing) from the F min value to the F max value in steps of Δf.
The presence or absence of the injection current is detected in S16 and S17, and the detection flag is set to 1 for the detected phase to stop the injection of the monitoring signal (S20). When the monitoring current is detected for all the phases by combining the detection result of S17 and the determination results of the previous STEP1 and STEP2, the detection flag r = of each phase
Since s = t = 1, the judgment processing (S21) is performed and the fact that the grounding state is normal is displayed and output (S23). Here, the frequency sweep of the high-frequency signal to be injected will be described with reference to FIG. 6 described later.

【0046】STEP1,STEP2,STEP3によ
り接地電流(誘導電流や監視電流)を検出できなかった
場合は、接地装置1Aの接点異常または接触部に異物が
挿入したと判定し、接地装置投入異常を表示出力する
(S22)。
When the ground current (induction current or monitoring current) cannot be detected in STEP1, STEP2, and STEP3, it is determined that the contact of the grounding device 1A is abnormal or a foreign object is inserted in the contact portion, and the grounding device closing error is displayed. Output (S22).

【0047】次に、図5は信号注入制御部33の出力制
御回路を示している。図5において、331Rx,33
1Sx,331Txは各相の監視信号が入力されるアン
ドゲート、331Ra,331Sa,331Taは上記
アンドゲートの出力によって動作するa接点、331R
b,331Sb,331Tbは上記アンドゲートの出力
によって動作するb接点、331yは各相の信号注入C
T 5R,5S,5Tの両端にそれぞれ接続された保護
素子である。なお、a接点331Ra,331Sa,3
31Ta及びb接点331Rb,331Sb,331T
bは図2におけるスイッチ331に相当する。
Next, FIG. 5 shows an output control circuit of the signal injection control unit 33. In FIG. 5, 331Rx, 33
1Sx and 331Tx are AND gates to which monitoring signals of respective phases are input, 331Ra, 331Sa and 331Ta are a-contacts that operate by the output of the AND gate, 331R
b, 331Sb, 331Tb are b contacts operated by the output of the AND gate, and 331y is a signal injection C of each phase.
The protective elements are respectively connected to both ends of T 5R, 5S, 5T. In addition, a-contacts 331Ra, 331Sa, 3
31Ta and b contact 331Rb, 331Sb, 331T
b corresponds to the switch 331 in FIG.

【0048】通常、監視信号を注入しないときは、b接
点331Rb,331Sb,331Tbが閉じており、
逆にa接点331Ra,331Sa,331Taは開い
ている。これにより、信号注入CT 5R,5S,5T
または5Zから系統の誘導電流等の逆入力信号が入って
きても、これらの信号が周波数可変信号源332に入力
されることはない。よって、前述した図3のS6等のよ
うに、確実に誘導電流等が無いことを確認したのちに、
アンドゲートの出力によって上記a接点、b接点を切り
換えて監視信号を注入する。
Normally, when the monitoring signal is not injected, the b contacts 331Rb, 331Sb, 331Tb are closed,
Conversely, the a contacts 331Ra, 331Sa, 331Ta are open. As a result, signal injection CT 5R, 5S, 5T
Alternatively, even if a reverse input signal such as a system induced current is input from 5Z, these signals are not input to the variable frequency signal source 332. Therefore, after surely confirming that there is no induced current, as in S6 of FIG. 3 described above,
The monitoring signal is injected by switching the a contact and the b contact according to the output of the AND gate.

【0049】次に、図6は前記STEP2,STEP3
において接地線に注入される監視信号の波形例を示して
いる。この種の監視信号としては、正弦波信号や矩形波
信号が考えられるが、本実施形態では周波数可変信号源
332の構成を簡略化して容易に実現するために、監視
信号を矩形波としている。
Next, FIG. 6 shows the above STEP2 and STEP3.
3 shows an example of the waveform of the supervisory signal injected into the ground line. Although a sine wave signal or a rectangular wave signal can be considered as this type of monitoring signal, in the present embodiment, the monitoring signal is a rectangular wave in order to simplify and easily realize the configuration of the frequency variable signal source 332.

【0050】図6(a)のように、STEP2における
低周波信号をここでは商用周波数の50Hz相当とし、
図6(b)のように、STEP3における高周波信号は
10ms周期で信号注入と停止を繰り返しながら周波数
fをFminからFmaxまでΔf刻みで変化させてい
る。これにより、同一周期の矩形波がある一定間隔で複
数回得られることから、計測制御部31では、監視電流
の検出判定動作を複数回実施することが可能であり、過
渡的なノイズ信号と監視信号とを区別して計測、判定す
ることが可能となる。
As shown in FIG. 6 (a), the low frequency signal in STEP 2 corresponds to a commercial frequency of 50 Hz,
As shown in FIG. 6B, the high frequency signal in STEP 3 changes the frequency f from F min to F max in steps of Δf while repeating signal injection and stop at a cycle of 10 ms. As a result, the rectangular wave having the same cycle can be obtained a plurality of times at a certain interval, so that the measurement control unit 31 can perform the detection determination operation of the monitoring current a plurality of times, and the transient noise signal and the monitoring are detected. It is possible to measure and determine the signal separately.

【0051】[0051]

【発明の効果】以上詳述したように本発明によれば、接
地投入状態を電気的に確認することから、接地装置の接
点の損傷や接点への異物挿入による電気的な接地不良を
確実に検出することが可能である。また、隣接運転回線
からの誘導電流を計測することで接地系統の状態を監視
でき、その誘導電流レベルから隣接運転回線の状態も推
定することができる。また、誘導電流が得られないよう
な系統でも、監視信号として低周波信号または高周波ス
イープ信号を注入してこれらを検出することにより、あ
らゆる形態の系統を対象として確実に接地投入状態を確
認することができる。
As described above in detail, according to the present invention, since the grounding state is electrically confirmed, the electrical grounding failure due to the damage of the contacts of the grounding device or the insertion of foreign matter into the contacts is surely ensured. It is possible to detect. Further, the state of the ground system can be monitored by measuring the induced current from the adjacent operation line, and the state of the adjacent operation line can be estimated from the induced current level. In addition, even in systems where an induced current cannot be obtained, by injecting a low-frequency signal or high-frequency sweep signal as a monitoring signal and detecting them, it is possible to reliably confirm the grounding state for all types of systems. You can

【0052】更に、例えば図4(b)のような系統回線
では、相手端の接地状態により系統回線の共振周波数は
大きく変化するが、この共振周波数の理論値は、系統定
数がわかれば容易に計算可能である。よって、前述した
STEP3の高周波信号注入検出方式によれば系統の共
振周波数を把握できることから、系統定数や系統条件が
把握できれば、この共振周波数の信号を注入して検出す
ることで、相手端の接地状態まで自端から判定すること
が可能になる。
Further, for example, in the system line as shown in FIG. 4B, the resonance frequency of the system line greatly changes depending on the grounding state of the other end, but the theoretical value of this resonance frequency can be easily obtained if the system constant is known. It can be calculated. Therefore, since the resonance frequency of the system can be grasped by the high-frequency signal injection detection method of STEP3 described above, if the system constant and the system condition can be grasped, the signal of this resonance frequency is injected and detected, thereby grounding the other end. It is possible to determine the state from the self end.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態が適用される系統構成を示す
図である。
FIG. 1 is a diagram showing a system configuration to which an embodiment of the present invention is applied.

【図2】図1における接地投入確認装置の構成図であ
る。
FIG. 2 is a configuration diagram of the grounding confirmation device in FIG.

【図3】本発明の実施形態の動作を示すフローチャート
である。
FIG. 3 is a flowchart showing the operation of the embodiment of the present invention.

【図4】信号注入検出方式における監視電流経路の説明
図である。
FIG. 4 is an explanatory diagram of a monitoring current path in the signal injection detection method.

【図5】本発明の実施形態における信号注入制御部の出
力制御回路の構成図である。
FIG. 5 is a configuration diagram of an output control circuit of the signal injection control unit according to the embodiment of the present invention.

【図6】本発明の実施形態における監視信号の波形例等
を示す図である。
FIG. 6 is a diagram showing an example of waveforms of a supervisory signal in the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1A 自端接地装置 1B 相手端接地装置 1A’,1B’ 接点 2 系統回線 2A,2B 接地線 3 接地投入確認装置 4R,4S,4T 計測CT 5R,5S,5T,5Z 信号注入CT 31 計測制御部 32 通信インターフェース 33 信号注入制御部 34 電源部 311,331,334 スイッチ 312 A/D変換器 313 ディジタル信号入力部(DI) 314 マイコン 315 ディジタル信号出力部(DO) 331Ra,331Sa,331Ta a接点 331Rb,331Sb,331Tb b接点 331Rx,331Sx,331Tx アンドゲート 331y 保護素子 332 周波数可変信号源 333 周波数制御部 335 監視CT 1A Self-grounding device 1B Opposite end grounding device 1A ', 1B' contacts 2 lines 2A, 2B ground wire 3 Grounding confirmation device 4R, 4S, 4T Measurement CT 5R, 5S, 5T, 5Z Signal injection CT 31 Measurement control unit 32 communication interface 33 Signal injection controller 34 Power Supply 311, 331, 334 switch 312 A / D converter 313 Digital signal input section (DI) 314 Microcomputer 315 Digital signal output section (DO) 331Ra, 331Sa, 331Ta a contact 331Rb, 331Sb, 331Tb b contact 331Rx, 331Sx, 331Tx AND gate 331y protection element 332 Frequency variable signal source 333 Frequency control unit 335 Surveillance CT

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 英樹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 戸井 雅則 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 湯谷 浩次 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hideki Ota             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. (72) Inventor Masanori Toi             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd. (72) Inventor Koji Yutani             1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa             Within Fuji Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】接地装置の接点投入により接地線に流れる
接地電流を検出して接地投入状態を確認するようにした
接地装置の接地投入確認方法において、 多回線の並行送配電系統のうち停止状態にある自回線に
ついて接地装置の接点を投入した際に、自回線の接地線
に流れる隣接運転回線からの誘導電流、または、自回線
の接地線に流れる充電電流を検出して接地投入状態を確
認することを特徴とする、接地装置の接地投入確認方
法。
1. A grounding confirmation method for a grounding device, which detects a grounding current flowing through a grounding wire when a contact of the grounding device is turned on to check the grounding state. When the contact of the grounding device is turned on for the own line in, the grounding state is confirmed by detecting the induced current from the adjacent operating line flowing in the ground line of the own line or the charging current flowing in the ground line of the own line. A method for confirming that the grounding device is grounded.
【請求項2】接地装置の接点投入により接地線に流れる
接地電流を検出して接地投入状態を確認するようにした
接地装置の接地投入確認方法において、 系統回線の自端側の接地線に低周波数の監視電流を注入
した際に、相手端側の接地線及び前記系統回線を介して
形成される閉ループ回路に前記監視電流が流れることを
自端側で検出して自端側及び相手端側の接地投入状態を
確認することを特徴とする、接地装置の接地投入確認方
法。
2. A method for confirming the grounding of a grounding device, which detects a grounding current flowing in a grounding wire when a contact of the grounding device is turned on to check the grounding state, wherein a low grounding wire is added to the grounding wire on the self-end side of the system line. When the monitoring current of the frequency is injected, the self-end side detects that the monitoring current flows in the closed loop circuit formed via the grounding wire and the system line on the other end side, and the self-end side and the other end side A method for confirming the grounding of a grounding device, characterized by confirming the grounding state of.
【請求項3】接地装置の接点投入により接地線に流れる
接地電流を検出して接地投入状態を確認するようにした
接地装置の接地投入確認方法において、 系統回線の自端側の接地線に、分布定数回路としての系
統回線の共振周波数程度の周波数を有する監視電流を注
入した際に、相手端側の接地線及び前記系統回線を介し
て形成される閉ループ回路に前記監視電流が流れること
を自端側で検出して自端側の接地投入状態を確認するこ
とを特徴とする、接地装置の接地投入確認方法。
3. A method for confirming the grounding of a grounding device, which detects a grounding current flowing in a grounding wire when a contact of the grounding device is turned on to check the grounding state, wherein the grounding wire on the self-end side of the system line is: When a monitoring current having a frequency close to the resonance frequency of the system line as a distributed constant circuit is injected, it is possible to prevent the monitoring current from flowing in the closed loop circuit formed via the ground line on the other end side and the system line. A method for confirming the grounding of a grounding device, characterized by detecting the grounding state of the self-side by detecting at the end side.
【請求項4】請求項3に記載した接地装置の接地投入確
認方法において、 監視電流の周波数を所定範囲で変化させながら接地線へ
の監視電流の注入及び検出を自端側で繰り返し行い、監
視電流が検出されたときの監視電流の周波数により系統
回線の共振周波数を特定して相手端側の接地投入状態を
確認することを特徴とする、接地装置の接地投入確認方
法。
4. The grounding confirmation method for the grounding device according to claim 3, wherein the monitoring current is repeatedly injected and detected at the self-end side while changing the frequency of the monitoring current within a predetermined range, and monitoring is performed. A method for confirming grounding of a grounding device, characterized in that a resonance frequency of a system line is specified by a frequency of a monitoring current when a current is detected to confirm a grounding state of a mating end.
【請求項5】請求項1,2,3、または、請求項1,
2,4に記載した接地投入確認動作をこの順に逐次実行
し、自端側及び相手端側の接地投入状態を確認すること
を特徴とする、接地装置の接地投入確認方法。
5. Claims 1, 2, 3 or claim 1,
A method for confirming grounding of a grounding device, characterized in that the grounding confirmation operation described in 2 and 4 is sequentially executed in this order to confirm the grounding state of the self-end side and the other end side.
【請求項6】接地装置の接点投入により接地線に流れる
接地電流を検出して接地投入状態を確認するようにした
接地装置の接地投入確認装置において、 周波数を可変とした監視電流を自回線の接地線に注入す
るための信号注入制御手段と、 自回線の接地線に流れる隣接運転回線からの誘導電流ま
たは自回線の接地線に流れる充電電流、もしくは、前記
監視電流を計測するための計測制御手段と、 を備えたことを特徴とする、接地装置の接地投入確認装
置。
6. A grounding-on confirmation device for a grounding device, which detects a grounding current flowing through a grounding wire when a contact of the grounding device is turned on to confirm a grounding-on state. Signal injection control means for injecting into the ground line, and an induced current from an adjacent operation line flowing through the ground line of the own line or a charging current flowing through the ground line of the own line, or measurement control for measuring the monitoring current A grounding confirmation device for a grounding device, comprising:
JP2002017919A 2002-01-28 2002-01-28 Grounding device confirmation method and grounding device confirmation device Expired - Fee Related JP4073214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017919A JP4073214B2 (en) 2002-01-28 2002-01-28 Grounding device confirmation method and grounding device confirmation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017919A JP4073214B2 (en) 2002-01-28 2002-01-28 Grounding device confirmation method and grounding device confirmation device

Publications (2)

Publication Number Publication Date
JP2003217407A true JP2003217407A (en) 2003-07-31
JP4073214B2 JP4073214B2 (en) 2008-04-09

Family

ID=27653449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017919A Expired - Fee Related JP4073214B2 (en) 2002-01-28 2002-01-28 Grounding device confirmation method and grounding device confirmation device

Country Status (1)

Country Link
JP (1) JP4073214B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341757A (en) * 2004-05-28 2005-12-08 Fuji Electric Systems Co Ltd Device for monitoring electrical path grounding state
WO2008077942A1 (en) * 2006-12-22 2008-07-03 Abb Research Ltd System and method to determine the impedance of a disconnected electrical facility
JP2010117180A (en) * 2008-11-11 2010-05-27 Active Medical Co Ltd Poor grounding detector
ES2557252A1 (en) * 2014-07-22 2016-01-22 Administrador De Infraestructuras Ferroviarias (Adif) Equipotentiality management system in high voltage railway installations (Machine-translation by Google Translate, not legally binding)
WO2017035067A1 (en) * 2015-08-24 2017-03-02 Cooper Technologies Company Monitoring system for a capacitor bank

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341757A (en) * 2004-05-28 2005-12-08 Fuji Electric Systems Co Ltd Device for monitoring electrical path grounding state
JP4541034B2 (en) * 2004-05-28 2010-09-08 富士電機システムズ株式会社 Electric circuit ground monitoring device
WO2008077942A1 (en) * 2006-12-22 2008-07-03 Abb Research Ltd System and method to determine the impedance of a disconnected electrical facility
US7772857B2 (en) 2006-12-22 2010-08-10 Abb Research Ltd. System and method to determine the impedance of a disconnected electrical facility
JP2010117180A (en) * 2008-11-11 2010-05-27 Active Medical Co Ltd Poor grounding detector
ES2557252A1 (en) * 2014-07-22 2016-01-22 Administrador De Infraestructuras Ferroviarias (Adif) Equipotentiality management system in high voltage railway installations (Machine-translation by Google Translate, not legally binding)
WO2017035067A1 (en) * 2015-08-24 2017-03-02 Cooper Technologies Company Monitoring system for a capacitor bank
US10184969B2 (en) 2015-08-24 2019-01-22 Eaton Intelligent Power Limited Monitoring system for a capacitor bank

Also Published As

Publication number Publication date
JP4073214B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
US8279567B2 (en) Circuit breaker with improved re-closing functionality
CA2660382C (en) Ground fault detection
EP1385360B1 (en) Current detection circuit for an inverter
CN104285350B (en) For Earth Fault Detection in adjustable-speed driver and the system and method for protection
US7772857B2 (en) System and method to determine the impedance of a disconnected electrical facility
US20090287430A1 (en) System and Method for Detecting Leak Current
CN102624325B (en) Motor drive system, detection method of ground faults, and common mode choker system
WO2009081215A2 (en) Equipment and procedure to determine fault location and fault resistance during phase to ground faults on a live network
JP2009032413A (en) Charge monitoring device
JP2003217407A (en) Method for confirming ground-closing of grounding device and ground-closing confirmation device
CN100495848C (en) Device and method for the differential protection and electrical apparatus including such a device
US20140211352A1 (en) Protection apparatus and control method for the same
EP2681572B1 (en) Method for adaptation of ground fault detection
JPH03128471A (en) Monitoring device for insulation deterioration of electric equipment
KR101019462B1 (en) Method for determining by detecting inpulse originated from arc
JP5744602B2 (en) Current transformer protection device
CN107548510B (en) Demagnetizer and method for transformer core demagnetization
KR102468562B1 (en) Device for diagnosing the condition of main transformer for rail vehicles
JPH09229985A (en) Testing device for warning detection of insulation monitoring apparatus
JP3351304B2 (en) System for detecting the applied voltage polarity of a cable line and the system for detecting the breakdown position of a cable line
KR20190033386A (en) EMI Filter
KR102491259B1 (en) Underground transmission and distribution line safety inspection apparatus and the inspection method using the same
JP3875651B2 (en) Magnetic levitation railway ground fault location method and apparatus
JPH0755858A (en) Insulation monitoring apparatus
JP2002122628A (en) Specifying method for fault point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees