JP2003215016A - 走査型プローブ顕微鏡の試料台及び観察方法 - Google Patents

走査型プローブ顕微鏡の試料台及び観察方法

Info

Publication number
JP2003215016A
JP2003215016A JP2002014371A JP2002014371A JP2003215016A JP 2003215016 A JP2003215016 A JP 2003215016A JP 2002014371 A JP2002014371 A JP 2002014371A JP 2002014371 A JP2002014371 A JP 2002014371A JP 2003215016 A JP2003215016 A JP 2003215016A
Authority
JP
Japan
Prior art keywords
gold
substrate
single crystal
probe microscope
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002014371A
Other languages
English (en)
Inventor
Kazuhiro Takada
一広 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002014371A priority Critical patent/JP2003215016A/ja
Publication of JP2003215016A publication Critical patent/JP2003215016A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

(57)【要約】 【目的】 生体分子、液晶分子等の有機分子の観察用基
板に最適な走査型プローブ顕微鏡の試料台及び観察方法
を提供すること。 【構成】 基板を金錯体溶液に浸漬し、前記基板上に金
の単結晶薄膜を形成する工程と前記金の単結晶薄膜に対
して熱処理を施す工程とを経て走査型プローブ顕微鏡の
試料台を構成する。ここで、前記金単結晶薄膜は111
方位の高い単結晶の群から成り、前記金錯体は、[AuI
4]−又は[AuCl4]−である。又、走査型プローブ顕微
鏡の観察方法として、基板を金錯体溶液に浸漬し、前記
基板上に金の単結晶薄膜を形成する工程と前記金の単結
晶薄膜に対して熱処理を施す工程とを経た基板を走査型
プローブ顕微鏡の試料台として用い、前記金の単結晶膜
内に存在するステップを用いて被観察試料における高さ
補正を行う。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、走査型プローブ顕
微鏡用の試料固定基板及びそれを用いた種々の材料の観
察方法に関するものである。
【0002】
【従来の技術】近年、デバイス、材料等の微小化が加速
度的に進行し、「ナノスケールテクノロジー」が今後の
重要な技術となりつつある。そのためnmスケールで表
面を分析・評価する手法が必要不可欠となり、走査型プ
ローブ顕微鏡(Scanning ProbeMicroscopy :SPM )が
その分析、評価技術の候補の1つとして挙げられる。代
表的なSPM技術としては、STMとAFMが挙げられ
る。
【0003】導体の物質表面及び表面近傍の電子構造を
直接観察できる走査型トンネル顕微鏡(Scanning Tunn
eling Microscopy :STM)の開発[G.Binniget al.
, Phys.Rev.Lett. 49(1982)57.]は、単結晶、非結晶
を問わず高分解能での実空間像の観測を可能にした。S
TMは、金属の探針(tip)と導電性物質の間に電圧
を加えて、1nm程度の距離まで近付けるとその間にト
ンネル電流が流れることを利用している。この電流は両
者の距離変化に非常に敏感であり、指数関数的に変化す
るので、トンネル電流を一定に保つように探針を走査す
ることにより実空間の表面構造を原子オーダーの分解能
で観察することができる。
【0004】更に、上述の装置、手段は試料物質に電流
による損傷を与えないで低電力で測定できる利点をも有
し、更には超高真空中のみならず大気中や溶液中でも動
作し、種々の材料に対して適用できる。
【0005】取り分け大気中及び溶液中の測定において
は、有機系、バイオ系高分子薄膜の観察が分子・原子レ
ベルの分解能で可能なことから、盛んに観察が行われて
いる。HOPG(Highly Oriented Pyrolytic graphite
;高配向熱分解グラファイト) 上のDNA分子の観察
やHOPG上の液晶分子の観察はSTMによってその高
分解能観察が行われている。
【0006】一方で原子間力顕微鏡(Atomic ForceMicr
oscopy :AFM )は、探針(tip)先端と試料表面と
の間に働く原子間力をカンチレバー(微小な板ばね)の
変位から測定し、探針を表面に沿って走査することで表
面の像を形成している。AFMでは原子間力を測定して
いるために、試料に対する制約がなく、STMでは観察
できない絶縁体表面の構造も高分解能で観察できる。
【0007】STM、AFM共に探針を試料表面に近づ
けて、或る物性変化を検出し、定められた基準値との差
をフィードバックし、フィードバック量を基に圧電体に
電圧を印加する圧電体は印加された電圧に対応して伸び
縮みを行うことで探針と試料表面との距離を制御するこ
とで試料表面の凹凸の測定を行っている。
【0008】
【発明が解決しようとする課題】SPMからは3次元的
な情報が正確に得られるが、ナノメータースケールの量
を正確に計測するためには配慮しなければならない事項
が多く挙げられる。
【0009】例えば、STMを用いてバイオ、有機分子
等の観察を行う場合、試料固定用基板として可能な限り
平坦な導電性基板を用いる必要があり、従来こうした基
板には原子レベルの平坦性が必要なことから、高配向熱
分解グラファイト(HOPG; Highly Oriented Pyrolytic
graphite)、硫化モリブデン(MoS2)等の導電性を有
する層状物質の劈開面、或は癖開したマイカ(雲母)上
に真空蒸着法やCVD法で成膜した金薄膜が用いられて
きた。
【0010】しかしながら、HOPGやMoS2のような
層状結晶材料の劈開面を用いる場合、劈開面表面は極微
小面積でみると(数十〜数百nm角)原子レベルで平滑
であり、平滑性に関しては良好な基板であるが、一様な
同一の劈開面で覆われることはなく、途中に多くの異な
る劈開面によるステップや、劈開面が剥離したフレーク
等が発生する。こうした表面の欠陥部は、その上にST
M観察対象物として堆積させた有機系高分子膜や生体系
高分子膜の観察を困難にしてしまう。
【0011】更には、HOPG基板上でのDNA分子観
察においてHOPG基板に起因する構造(アーティファ
クツ)が観察されてしまい、DNA分子の正確な情報が
得られなくなるという問題点が指摘されている[C.R.Cl
emmer Jr., T.P.Beebe, Science,251(1991)640. ]。
【0012】又、MoS2は脆く扱い難く、広い面積で平
滑面が得られないという問題点があった。一方、金基板
は結晶構造上アーティファクツを生じ難いとされてお
り、真空蒸着によりマイカ基板上に形成された金結晶薄
膜が使用されている。マイカ基板を使用するのは、金が
エピタキシャル成長し易いいためで、それにより比較的
平滑な結晶面({111}面)を有する金結晶薄膜が得
られる[J.A.DeRose, T.Thundat, L.A.Nagahara, S.M.L
indsay,Surf.Sci.256(1991)102 ]。
【0013】しかしながら、ここで得られる金結晶薄膜
の平滑性は1ミクロン単位の面積で見ると凹凸の高低差
が数nmと大きく、より平滑な基板作製が求められてい
た。このように、金薄膜は、表面に酸化層を形成しにく
く、且つ、比較的平滑な表面を容易に形成できるため、
SPMを使用した各種の技術において、大変多く使用さ
れている基板であるが、その平滑性は必ずしも満足でき
るものではなかった。
【0014】上記試料を固定する基板の問題に加えて、
高さ方向の正確性の問題がある。STMでは探針と試料
の間のギャップを一定に保つために、試料を固定した場
合、探針側が試料の凹凸を表すトンネル電流によって電
流を一定に保つように動作しなくてはならなく、こうし
た探針制御を行うために通常は圧電素子(ピエゾ素子)
が用いられている。AFM の場合にもカンチレバーと試料
表面間の距離を制御するために同様に圧電素子が用いら
れている。
【0015】電圧の印加によって伸縮を行う圧電素子で
は、印加電圧に対する伸縮量が完全に線形的でないため
に、線形性を満足するように種々のパラメーターを用い
ており、そのために個々のピエゾに対しては正確な補正
(キャリブレーション)を行う必要がある。キャリブレ
ーションでは高さが既知のものを実測し、その高さを再
現するように前述の圧電素子のパラメーターを決定する
操作を行う。
【0016】しかしながら、ピエゾが保管されている温
度や湿度、その他外乱等により経時変化等を起こすため
に、正確な高さ方向の情報を得るためにはピエゾのキャ
リブレーションがどれだけ正確に行えているかというこ
とに集約されていた。
【0017】従って、本発明の目的とする処は、生体分
子、液晶分子等の有機分子の観察用基板に最適な走査型
プローブ顕微鏡の試料台及び観察方法を提供することに
ある。
【0018】
【課題を解決するための手段】本発明は、上述した課題
を解決するために鋭意検討を行って成されたものであ
り、以下に述べる構成のものである。
【0019】即ち、基板を金錯体溶液に浸漬し、前記基
板上に金の単結晶薄膜を形成する工程と前記金の単結晶
薄膜に対して熱処理を施す工程とを経たことを特徴とす
る走査型プローブ顕微鏡の試料台である。
【0020】又、本発明の好ましい形態としては、前記
金結晶薄膜は111方位の高い単結晶の群から成るこ
と、又、前記金錯体は、[AuI4]−で[AuCl4]−である
ことを特徴とする走査型プローブ顕微鏡の試料台であ
る。
【0021】又、本発明の別の形態として、基板を金錯
体溶液に浸漬し、前記基板上に金の単結晶薄膜を形成す
る工程と前記金の単結晶薄膜に対して熱処理を施す工程
とを経た基板を走査型プローブ顕微鏡の試料台として用
い、前記金の単結晶膜内に存在するステップを用いて被
観察試料における高さ補正を行うことを特徴とする走査
型プローブ顕微鏡の観察方法である。
【0022】
【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。
【0023】図1は本発明の試料台作製の過程で用いる
選択的に金単結晶を堆積させる金結晶薄膜形成装置の概
略図である。
【0024】図1において、3は溶液槽、5は溶液、4
は溶液5の温度を測定する熱電対等の温度測定素子、6
は溶液4を加熱するためのヒータ、2は熱電対4により
得られた温度の信号を元にヒータ6に印加する電圧を制
御し、溶液の温度を一定に保つための機構を有する電源
である。
【0025】初めに基板1上に金の単結晶薄膜を形成す
る工程の説明を行う。
【0026】先ず、溶液槽3に蒸留水を入れ、ヨウ化カ
リウム及びヨウ素を投入してヨウ素水溶液を形成した
後、金を投入し攪拌溶解させ、溶液5として[AuI4]
− を含有する金錯体溶液を形成する。このとき、溶液
中には、金錯体[AuI4]− の他、I3−、K+が存在
するものと考えられる。
【0027】ヨウ素水溶液は、ヨウ化カリウム以外のヨ
ウ化化合物、例えばヨウ化アンモニウムを溶解すること
でも作成することができる。又、アルコールを溶媒とし
て用いたヨウ素アルコール溶液やアルコールと水の混合
物を溶媒として用いたヨウ素アルコール・水溶液も本発
明に用いることができる。溶液中のヨウ素、ヨウ化化合
物の濃度は、溶解することできる金の量を左右する。
【0028】次いで、前記基板1の表面を溶液に接した
後、ヒータ6によって溶液5を加熱し溶液5を30〜1
00℃の所望の温度に昇温し一定の温度になるように電
源2で制御し、ヨウ素成分の揮発を促進させる。
【0029】溶液5系内では、I3−の状態で存在する
ヨウ素成分の揮発による、溶液系内の平衡状態維持のた
めの[AuI4]− からのI成分の解離による分解又は
[AuI4]− の形で存在する錯体中のヨウ素成分の直接
の揮発による分解が進行すると考えられ、結果として金
が過飽和状態となる。
【0030】溶液5中で過飽和状態となった金は、基板
1表面に核として析出する。核は自己整合的に成長し単
結晶膜が形成される。
【0031】解析の結果、形成された結晶は、欠陥のな
い単結晶であり、111方位を有していた。又、成長レ
ートについて観察した結果、縦方向:横方向が1:10
0〜200の割合で成長することが分かった。
【0032】次に、前記工程で得られた基板1を溶液槽
3から取り出し、金単結晶薄膜に対して熱処理工程を施
す。熱処理工程としては常圧雰囲気下で700℃以上の
温度に加熱する。処理時間は適宜設定できるが30分以
上が望ましい。又、雰囲気は減圧下での実施も可能であ
る。
【0033】上記手続きで供される試料基板(試料台)
は、走査型プローブ顕微鏡に用いられるが、観察したい
試料を試料上に形成する方法は被観察体に最適な方法が
採用される。観察する試料の下地材料としては試料台と
しては金であるために、酸化されにくく大気中に放置し
ても安定に平滑な表面を維持することが可能である。
又、基板1としてバルクの金を用いることで、凹凸の大
きい基板の平滑性を高める効果があり、大きな試料台を
作成することが可能になる。
【0034】[実施例]以下、具体的な実施例を挙げて
本発明を詳しく説明するが。本発明はこれら実施例に限
定されるものではなく、本発明の目的が達成される範囲
内での各要素の置換や設計変更がなされたものをも包含
する。又、以下の実施例内で用いている符号は、図1で
記述してある符号と同一である。
【0035】<実施例1>初めに図1に示した装置を用
い、金単結晶薄膜の作成を行った。蒸留水500mlに
ヨウ化カリウム40g及びヨウ素6gを投入して攪拌溶
解させた。この溶液に金を3g投入して攪拌溶解させ
た。溶解後、この溶液から100ml分取して反応容器
に入れ、ここに更に蒸留水を500ml加えて攪拌し、
結晶成長用溶液5とし溶液槽3に入れた。
【0036】基板1としてSiを用い、結晶成長用溶液
5に浸漬した。次いで、溶液を80℃に加熱して放置し
た。1.5時間後基板を取り出し観察したところ、Si
基板上に111面を有する単結晶群が形成されていた。
各単結晶間には粒界が形成されていた。単結晶の平均粒
径は約10μmであった。膜の厚さは約300nmであ
った。STMで観察した結果、個々の単結晶表面の凹凸
は、1μm角内で1.4nmであった。
【0037】次に、基板1を大気中で900℃、30分
の加熱を施した。STMで観察したところ、単結晶の平
均粒径はそれほど変化していなかったが、単結晶表面の
凹凸が1μm角内で0.2nm程度になっており、加え
てAu(1111)の原子ステップ高さを有したテラス
構造が観察された。
【0038】次に、単結晶金薄膜が形成された基板1を
減圧したチャンバー(不図示)の中に設置した。基板と
対向してネマチック液晶材料である8−アルキルシアノ
ビフェニル(以下、8CB)を設置し、8CBを45℃
程度で1時間加熱することで、基板1上に8CBを形成
した。この試料に対してバイアス電圧1.2V程度を印
加し、STM観察を行った。得られたSTM像からは8
分子で1つの単位格子を形成している8CBのSTM像
が観察された。
【0039】<実施例2>基板として、マイカの癖開基
板上に真空中で金の薄膜を形成した基板を用いた。これ
を実施例1と同様にして作成した溶液槽3の中に入れ、
溶液を80℃に加熱して30分間浸漬した。次に、基板
を取り出し蒸留水で洗浄し、乾燥させた。その後、更に
大気中で900℃、20分の加熱を施した。基板1をS
TMで観察したところ、単結晶の平均粒径は10μm程
度、単結晶表面の凹凸が1μm角内で0.2nm程度に
なっており、加えてAu(111)の原子ステップ高さ
を有したテラス構造が観察された。
【0040】次に、単結晶金薄膜基板を減圧したチャン
バーの中に設置し、銅フタロシアニンを加熱蒸着して基
板1上に形成した。この試料に対してバイアス電圧1.
2V程度を印加し、STM観察を行った。得られた銅フ
タロシアニンのSTM像の高さ較正は基板内の金のステ
ップ(0.236nm)を用いて補正を行った。
【0041】<実施例3>実施例1で作成した試料をA
FMで観察した。AFM像における高さ較正は基板内の
金のステップ(0.236nm)を用いて補正を行っ
た。
【0042】
【発明の効果】以上の説明で明らかなように、本発明の
走査型プローブ顕微鏡の試料台及びその観察方法によれ
ば、平滑な導電性基板を使用しているため、従来困難で
あった安定的なSTM観察像の測定とSTMから得られ
る高さ方向の情報を試料基板におけるステップを用いる
ことで補正及び確認できることが可能となった。又、前
記基板は酸化されにくく安定的な観察を行うことが可能
となった。
【図面の簡単な説明】
【図1】本発明で用いる走査型プローブ顕微鏡用試料台
作成のための金結晶薄膜形成装置の概略図である。
【符号の説明】
1 基板 2 電源 3 溶液槽 4 温度測定素子 5 溶液 6 ヒータ 7 被観察体

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 基板を金錯体溶液に浸漬し、前記基板上
    に金の単結晶薄膜を形成する工程と前記金の単結晶薄膜
    に対して熱処理を施す工程とを経たことを特徴とする走
    査型プローブ顕微鏡の試料台。
  2. 【請求項2】 前記金単結晶薄膜は111方位の高い単
    結晶の群から成ることを特徴とする請求項1記載の走査
    型プローブ顕微鏡の試料台。
  3. 【請求項3】 前記金錯体は、[AuI4]− であることを
    特徴とする請求項1記載の走査型プローブ顕微鏡の試料
    台。
  4. 【請求項4】 前記金錯体は、[AuCl4]−であることを
    特徴とする請求項1記載の走査型プローブ顕微鏡の試料
    台。
  5. 【請求項5】 基板を金錯体溶液に浸漬し、前記基板上
    に金の単結晶薄膜を形成する工程と前記金の単結晶薄膜
    に対して熱処理を施す工程とを経た基板を走査型プロー
    ブ顕微鏡の試料台として用い、前記金の単結晶膜内に存
    在するステップを用いて被観察試料における高さ補正を
    行うことを特徴とする走査型プローブ顕微鏡の観察方
    法。
JP2002014371A 2002-01-23 2002-01-23 走査型プローブ顕微鏡の試料台及び観察方法 Pending JP2003215016A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002014371A JP2003215016A (ja) 2002-01-23 2002-01-23 走査型プローブ顕微鏡の試料台及び観察方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002014371A JP2003215016A (ja) 2002-01-23 2002-01-23 走査型プローブ顕微鏡の試料台及び観察方法

Publications (1)

Publication Number Publication Date
JP2003215016A true JP2003215016A (ja) 2003-07-30

Family

ID=27651071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002014371A Pending JP2003215016A (ja) 2002-01-23 2002-01-23 走査型プローブ顕微鏡の試料台及び観察方法

Country Status (1)

Country Link
JP (1) JP2003215016A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147353A (ja) * 2005-11-25 2007-06-14 Seiko Instruments Inc プローブ及び特定物質解析装置並びに特定物質解析方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147353A (ja) * 2005-11-25 2007-06-14 Seiko Instruments Inc プローブ及び特定物質解析装置並びに特定物質解析方法
JP4600769B2 (ja) * 2005-11-25 2010-12-15 セイコーインスツル株式会社 プローブ及び特定物質解析装置並びに特定物質解析方法

Similar Documents

Publication Publication Date Title
Espinosa et al. A review of mechanical and electromechanical properties of piezoelectric nanowires
Pfreundschuh et al. Multiparametric high-resolution imaging of native proteins by force-distance curve–based AFM
Chatterjee et al. Impact of polymer-assisted epitaxial graphene growth on various types of SiC substrates
Casuso et al. Nanoscale electrical conductivity of the purple membrane monolayer
Wang et al. Sub-molecular features of single proteins in solution resolved with scanning tunneling microscopy
Salmeron et al. High-resolution imaging of liquid structures: Wetting and capillary phenomena at the nanometer scale
Lazzerini et al. Traceable atomic force microscopy of high-quality solvent-free crystals of [6, 6]-phenyl-C61-butyric acid methyl ester
Lyles et al. Surface characterization using atomic force microscopy (afm) in liquid environments
Gewirth et al. Atomic Force Microscopy
Nagahara et al. Electrochemical deposition of molecular adsorbates for in situ scanning probe microscopy
JP2003215016A (ja) 走査型プローブ顕微鏡の試料台及び観察方法
Akiyama et al. Development of insulated conductive probes with platinum silicide tips for atomic force microscopy in cell biology
Świadkowski et al. Near-zero contact force atomic force microscopy investigations using active electromagnetic cantilevers
Yan et al. Local charge writing in epitaxial SmNiO 3 thin films
Baumeister et al. Scanning Tunneling Microscopy II: Further Applications and Related Scanning Techniques
KR101358989B1 (ko) 전이금속 나노 전극 및 이의 제조 방법
Signore et al. Improvement of the piezoelectric response of AlN thin films through the evaluation of the contact surface potential by piezoresponse force microscopy
Zeng et al. Breaking the Fundamental Limitations of Nanoscale Ferroelectric Characterization: Non‐Contact Heterodyne Electrostrain Force Microscopy
Morozova et al. Features of the Self-organization of Films Based on Triglycine under the Influence of Vapors of Organic Compounds
Rupasinghe Atomic Force Microscopy: Is It Just an Imaging Technique?
Kabat et al. Tilting in coronene layers on Au (111)
Abdelghani Atomic force microscopy on bare and thiol monolayer covered gallium arsenide
Zeng et al. Nanoscale Non-Destructive Ferroelectric Characterization with Non-Contact Heterodyne Electrostrain Force Microscopy
Arscott et al. [25] Scanning tunneling microscopy of nucleic acids
JP3845856B2 (ja) 薄膜形成装置および方法