JP2003213352A - Method for manufacturing functional porous structure - Google Patents

Method for manufacturing functional porous structure

Info

Publication number
JP2003213352A
JP2003213352A JP2002017453A JP2002017453A JP2003213352A JP 2003213352 A JP2003213352 A JP 2003213352A JP 2002017453 A JP2002017453 A JP 2002017453A JP 2002017453 A JP2002017453 A JP 2002017453A JP 2003213352 A JP2003213352 A JP 2003213352A
Authority
JP
Japan
Prior art keywords
fine particles
porous body
porous structure
compound
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002017453A
Other languages
Japanese (ja)
Other versions
JP4328052B2 (en
JP2003213352A5 (en
Inventor
Goro Yamauchi
五郎 山内
Hideo Nakajima
英雄 中嶋
Hirohito Taira
博仁 平
Mamoru Mabuchi
馬渕  守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Japan Science and Technology Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002017453A priority Critical patent/JP4328052B2/en
Publication of JP2003213352A publication Critical patent/JP2003213352A/en
Publication of JP2003213352A5 publication Critical patent/JP2003213352A5/ja
Application granted granted Critical
Publication of JP4328052B2 publication Critical patent/JP4328052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a porous structure in which functional fine particles are uniformly dispersed over the whole of a porous body by applying heat treatment to the porous body as a starting material containing components to be the functional fine particles. <P>SOLUTION: The porous body which is composed of an element Z having high affinity and an element Y as a matrix and has 0.1 to 95.0% porosity, is heated in an atmosphere containing an element X to allow the element X to selectively react with the element Z, by which the porous structure in which a compound Z-X is dispersed finely and uniformly can be manufactured. In this way, the porous structure provided with various functionalities according to the kinds of the compound Z-X, such as the oxides, nitrides, fluorides and hydrides of various metals, can be obtained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種機能を発現する微
粒子状や平板状の化合物を多孔質体の内部や表面に分散
析出させた多孔質構造体を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a porous structure in which fine particle or plate-like compounds exhibiting various functions are dispersed and deposited inside or on the surface of a porous body.

【0002】[0002]

【従来の技術】微粒子分散複合機能材料は、マトリック
スを構成する金属又は合金粉末に所定の機能を呈する微
粒子を配合し、得られた混合物を所定形状に成形した
後、焼成することによって製造している。しかし、この
製造方法によるとき、機能性微粒子をマトリックスに均
一分散させることが困難である。因みに、大きな比表面
積が要求される触媒粒子を分散させた複合機能材料では
機能性微粒子の粒径が小さなほど触媒反応に有効に寄与
するが、極微細粒径の微粒子は凝集しやすい。そのた
め、マトリックスを構成する金属又は合金粉末と混合し
た状態で機能性微粒子が大径の凝集粒子として分布し、
極微細粒化に由来する反応活性の向上が期待できない。
2. Description of the Related Art A fine particle-dispersed composite functional material is manufactured by mixing fine particles having a predetermined function with a metal or alloy powder constituting a matrix, molding the obtained mixture into a predetermined shape, and then firing the mixture. There is. However, according to this manufacturing method, it is difficult to uniformly disperse the functional fine particles in the matrix. By the way, in a composite functional material in which catalyst particles having a large specific surface area are dispersed, the smaller the particle size of the functional fine particles, the more effectively they contribute to the catalytic reaction, but the fine particles having an extremely fine particle size are likely to aggregate. Therefore, the functional fine particles are distributed as large-sized aggregated particles in a state of being mixed with the metal or alloy powder forming the matrix,
It cannot be expected that the reaction activity resulting from the ultrafine graining will be improved.

【0003】粉末混合−焼結法における機能性微粒子の
凝集を避けるため、酸化物(機能性微粒子)となる金属
元素を含む合金を内部酸化する方法がある。本発明者
も、特定条件下での内部酸化により酸化物粒子をマトリ
ックスに分散析出させることにより、導電材料,接点材
料,高強度材料等の機能材料が得られることを紹介した
(JEMS NEWS,第28号(1986)第1〜5頁)。
In order to avoid aggregation of the functional fine particles in the powder mixing-sintering method, there is a method of internally oxidizing an alloy containing a metal element to be an oxide (functional fine particles). The present inventor also introduced that functional materials such as conductive materials, contact materials, and high-strength materials can be obtained by dispersing and depositing oxide particles in a matrix by internal oxidation under specific conditions (JEMS NEWS, No. 1). 28 (1986), pages 1-5).

【0004】[0004]

【発明が解決しようとする課題】内部酸化法によると
き、微粒子状の機能性酸化物をマトリックスに分散でき
る。しかし、平坦な形状をもつ金属材料を内部酸化させ
ると、機能性微粒子を生成する反応が金属材料の表層に
限られ、金属材料内部にまで機能性微粒子を析出させる
ことができない。そのため、金属材料の内部にある添加
元素が未反応のまま残留しやすい。しかも、生成反応時
の加熱により機能性微粒子が大粒径に成長しやすく、機
能性微粒子の実効比表面積が予定値ほど大きくならな
い。その結果、付与可能な機能性に限りがあり、極微細
粒径の機能性微粒子に起因した機能性向上にも限度があ
る。また、内部酸化によって機能性微粒子を生成させる
ことから、酸化物以外の機能性微粒子を分散析出させる
ことにも適用できない。
When the internal oxidation method is used, finely divided functional oxide can be dispersed in the matrix. However, when the metal material having a flat shape is internally oxidized, the reaction for producing the functional fine particles is limited to the surface layer of the metal material, and the functional fine particles cannot be deposited inside the metal material. Therefore, the additional element inside the metal material is likely to remain unreacted. Moreover, the functional fine particles are likely to grow to a large particle size due to the heating during the formation reaction, and the effective specific surface area of the functional fine particles does not become larger than the planned value. As a result, there is a limit to the functionality that can be imparted, and there is also a limit to the improvement in functionality due to the functional fine particles having an extremely fine particle size. Further, since the functional fine particles are generated by internal oxidation, it cannot be applied to disperse and deposit the functional fine particles other than the oxide.

【0005】[0005]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、機能性微粒子と
なる成分を含んだ出発材料として多孔体を使用すること
により、多孔体の表層部は勿論、内部にまで機能性微粒
子の析出を可能とし、表面積が大きく機能性微粒子の効
果を著しく向上させ、しかも軽量で分散強化機構に基づ
く高強度化も可能な多孔質構造体を提供することを目的
とする。
The present invention has been devised to solve such a problem, and by using a porous body as a starting material containing a component which becomes functional fine particles, A porous structure that enables deposition of functional fine particles not only on the surface layer of the body but also has a large surface area and significantly improves the effect of functional fine particles, and is lightweight and capable of achieving high strength based on a dispersion strengthening mechanism. The purpose is to provide.

【0006】本発明の多孔質構造体製造方法は、その目
的を達成するため、常態が気相の元素Xとの親和力が大
きな元素Z,マトリックスとなる元素Yからなり、元素
Zの濃度が0.0001〜70原子%で空隙率0.1〜9
5.0%の多孔体を用意し、元素Yと元素Xとの化合物
生成には不十分であるが元素Zと元素Xの化合物生成に
は十分な分圧の元素Xを含む雰囲気下で多孔体を加熱
し、元素Zと元素Xとの化合物を粒子状又は平板状に多
孔体の表面及び/又は内部に析出させることを特徴とす
る。
In order to achieve the object, the method for producing a porous structure of the present invention comprises an element Z having a large affinity with an element X in the vapor phase and an element Y forming a matrix, and the concentration of the element Z is 0. Porosity 0.1 to 9 at 0.0001 to 70 atom%
A porous body of 5.0% was prepared, which was insufficient for forming a compound of the element Y and the element X, but was porous under an atmosphere containing a partial pressure of the element X which was sufficient for forming a compound of the element Z and the element X. The body is heated to deposit a compound of the element Z and the element X in the form of particles or a plate on the surface and / or inside of the porous body.

【0007】機能性微粒子として酸化物を分散析出させ
た多孔質構造体では、酸素Oを元素Xに、Si,Mn,
P,Al,Zn,Ti,Ni,Cr,Co,Fe,B
e,Mg,Cd,In,Zr,Sn,Ce,Ca,G
a,B,Sb,Tl,Pb,Nb,Ta,Bi,Li,
Mo,W,V,Pb.Hfから得らればれた1種又は2
種以上の金属を元素Zに、元素Zと異なりAg,Cu,
Ni,Fe,Pd,Co,Au,Pt,Cr,Mo,
W,Ti,Zr,Hf,V,Nb,Ta,Ge,Sn,
Pbから選ばれた1種又は2種以上の金属を元素Yに使
用する。
In a porous structure in which oxides are dispersed and deposited as functional fine particles, oxygen O is an element X, Si, Mn,
P, Al, Zn, Ti, Ni, Cr, Co, Fe, B
e, Mg, Cd, In, Zr, Sn, Ce, Ca, G
a, B, Sb, Tl, Pb, Nb, Ta, Bi, Li,
Mo, W, V, Pb. 1 or 2 obtained from Hf
More than one kind of metal is used as element Z, and unlike element Z, Ag, Cu,
Ni, Fe, Pd, Co, Au, Pt, Cr, Mo,
W, Ti, Zr, Hf, V, Nb, Ta, Ge, Sn,
One or more metals selected from Pb are used for the element Y.

【0008】機能性微粒子として窒化物を分散析出させ
た多孔質構造体では、窒素Nを元素Xに、Ti,Zr,
Al,Fe,Cr,Mo,V,Siから選ばれた1種又
は2種以上の金属を元素Zに、元素Zと異なりAg,C
u,Ni,Fe,Pd,Co,Au,Pt,Cr,M
o,Wから選ばれた1種又は2種以上の金属を元素Yに
使用する。
In a porous structure in which nitride is dispersed and deposited as functional fine particles, nitrogen N is used as element X, Ti, Zr,
One or more metals selected from Al, Fe, Cr, Mo, V, and Si are used as the element Z, and unlike the element Z, Ag, C
u, Ni, Fe, Pd, Co, Au, Pt, Cr, M
One or more metals selected from o and W are used for the element Y.

【0009】機能性微粒子としてフッ化物を分散析出さ
せた多孔質構造体では、フッ素Fを元素Xに、Be,M
g,Ca,Al,Ti,Si,Crから選ばれた1種又
は2種以上の金属を元素Zに、元素Zと異なりAg,C
u,Ni,Fe,Pd,Co,Au,Pt,Cr,M
o,W,Ti,Zrから選ばれた1種又は2種以上の金
属を元素Yに使用する。
In the porous structure in which fluoride is dispersed and deposited as the functional fine particles, fluorine F is added to the element X, Be and M are added.
element Z is one or more metals selected from g, Ca, Al, Ti, Si, and Cr, and unlike element Z, Ag, C
u, Ni, Fe, Pd, Co, Au, Pt, Cr, M
One or more metals selected from o, W, Ti, and Zr are used for the element Y.

【0010】機能性微粒子として水素化物を分散析出さ
せた多孔質構造体では、水素Hを元素Xに、La,C
a,Li,Ti,K,Na,U,Mg,Ni,Co,
V,Fe,Mn,Ce,Al,Y,Zrから選ばれた1
種又は2種以上を元素Zに、元素Zと異なりAg,C
u,Ni,Fe,Pd,Co,Au,Pt,Cr,M
o,W,Ti,Zr,Mgから選ばれた1種又は2種以
上の金属を元素Yに使用する。
In a porous structure in which hydride is dispersed and deposited as functional fine particles, hydrogen H is added to element X, and La and C are added.
a, Li, Ti, K, Na, U, Mg, Ni, Co,
1 selected from V, Fe, Mn, Ce, Al, Y, Zr
Species or two or more species as element Z, different from element Z, Ag, C
u, Ni, Fe, Pd, Co, Au, Pt, Cr, M
One or more metals selected from o, W, Ti, Zr, and Mg are used for the element Y.

【0011】[0011]

【作用】親和力が大きな元素Z及びマトリックスとなる
元素Yからなる多孔体を元素Xを含む雰囲気中で加熱す
ると、雰囲気中の元素Xが多孔体の表層にある元素Zと
反応し、酸化物,窒化物,フッ化物,水素化物等の機能
性微粒子が生成される。機能性微粒子の生成反応は、雰
囲気の元素Xと多孔体との接触界面で進行するが、雰囲
気ガスが侵入可能な多数の空隙を内部にもつ多孔体であ
ることから多孔体の表層部は勿論、内部にまで機能性微
粒子が析出する。そのため、機能性微粒子の比表面積が
極めて大きな多孔質構造体が得られる。しかも、酸化
物,窒化物,フッ化物,水素化物等、機能性微粒子の選
択自由度も高い。
When a porous body composed of the element Z having a high affinity and the element Y serving as a matrix is heated in an atmosphere containing the element X, the element X in the atmosphere reacts with the element Z in the surface layer of the porous body to form an oxide, Functional fine particles such as nitride, fluoride and hydride are generated. The formation reaction of the functional fine particles proceeds at the contact interface between the element X in the atmosphere and the porous body. However, since it is a porous body having a large number of voids into which atmospheric gas can penetrate, the surface layer portion of the porous body is of course. , Functional fine particles are deposited even inside. Therefore, a porous structure having an extremely large specific surface area of the functional fine particles can be obtained. Moreover, there is a high degree of freedom in selecting functional fine particles such as oxides, nitrides, fluorides and hydrides.

【0012】常態が気相の元素Xには、酸素O,窒素
N,フッ素F,水素H等がある。元素Xに応じてマトリ
ックスとなる元素Y及び親和力が大きな元素Zが選択さ
れ、加熱処理後に生成する酸化物,窒化物,フッ化物,
水素化物等の化合物Z−Xに由来する機能が付与された
多孔質構造体が得られる。化合物Z−Xに由来する機能
としては、光触媒,化学触媒,選択的物質分離能,導電
性向上,絶縁性付与,磁気特性付与,機械的特性向上,
耐熱性,耐食性,耐薬品性等、化合物Z−Xの種類に応
じた種々の機能がある。
The element X in the vapor phase in the normal state includes oxygen O, nitrogen N, fluorine F, hydrogen H and the like. An element Y that serves as a matrix and an element Z that has a large affinity are selected according to the element X, and oxides, nitrides, fluorides, which are formed after the heat treatment,
A porous structure having a function derived from the compound ZX such as hydride can be obtained. The functions derived from the compound Z-X include photocatalyst, chemical catalyst, selective substance separation ability, conductivity improvement, insulation property imparting, magnetic property imparting, mechanical property enhancing,
It has various functions such as heat resistance, corrosion resistance, and chemical resistance depending on the type of compound Z-X.

【0013】このような機能を付与する上では、出発材
料に含まれる元素Zの濃度を0.0001原子%以上に
することが必要である。元素Zの濃度が0.0001原
子%を下回ると、化合物Z−Xの作用が不十分になる。
しかし、70原子%以上の濃度で元素Zを含ませると、
加熱処理で生成する化合物Z−Xが凝集しやすくなり微
粒子の均一分散に支障をきたす。また、加熱処理中に雰
囲気中の元素Xと元素Zとの反応を効率よく進行させる
ためには、多孔体の空隙率を0.1%以上にすることが
必要である。しかし、95.0%を超える空隙率では多
孔体の骨格を維持できなくなる。
In order to impart such a function, it is necessary that the concentration of the element Z contained in the starting material be 0.0001 atomic% or more. When the concentration of the element Z is less than 0.0001 atom%, the action of the compound Z-X becomes insufficient.
However, when the element Z is contained at a concentration of 70 atomic% or more,
The compound Z-X produced by the heat treatment tends to agglomerate, which hinders the uniform dispersion of fine particles. Further, in order to efficiently proceed the reaction between the element X and the element Z in the atmosphere during the heat treatment, it is necessary to set the porosity of the porous body to 0.1% or more. However, if the porosity exceeds 95.0%, the skeleton of the porous body cannot be maintained.

【0014】出発材料に使用される多孔体は、一方向性
凝固法,溶湯発泡法,粒子間浸透鋳造法,インベストメ
ント鋳造法,めっき法,粉末冶金法,スパッタ堆積法等
で製造される。たとえば、一方向性凝固法では、冷却板
を一部に備えた金型に溶湯を注入し、冷却板を介した一
方向熱流路に沿って溶湯を冷却することにより、デンド
ライトの成長方向を揃え、デンドライトアーム間に無数
の隙間を形成する。溶湯発泡法には不活性ガスや炭酸ガ
スを溶融金属中に注入・攪拌する物理的な方法と、チタ
ン水素化物やジルコニウム水素化物等の発泡剤を溶融金
属に添加し、水素化物の分解反応によって生ずる水素ガ
スを利用して発泡させる化学的な方法がある。後者で
は、鋳型に注入した溶湯の粘度を調整した後、発泡剤を
添加して発泡させることにより、溶湯内部に無数の気泡
を生成する。
The porous material used as the starting material is manufactured by a unidirectional solidification method, a molten metal foaming method, an interparticle infiltration casting method, an investment casting method, a plating method, a powder metallurgy method, a sputter deposition method or the like. For example, in the unidirectional solidification method, the molten metal is injected into a mold partially equipped with a cooling plate, and the molten metal is cooled along a unidirectional heat flow path through the cooling plate, thereby aligning the growth direction of dendrites. , Create innumerable gaps between dendrite arms. In the molten metal foaming method, a physical method of injecting and stirring an inert gas or carbon dioxide gas into the molten metal, and a foaming agent such as titanium hydride or zirconium hydride is added to the molten metal to decompose the hydride. There is a chemical method of foaming by utilizing the generated hydrogen gas. In the latter case, after adjusting the viscosity of the molten metal poured into the mold, a foaming agent is added to foam the molten metal, thereby producing innumerable bubbles inside the molten metal.

【0015】粒子間浸透法では、ガラスや塩化ナトリウ
ムの小球を鋳型に詰め込み、その間隙に溶融金属をしみ
込ませ、凝固した後、小球を除去する。インベストメン
ト鋳造法では、ポリウレタンフォーム等の空隙に耐火物
スラリーを充填し、乾燥・焼成後にポリウレタンフォー
ムを除去して製作した鋳型に溶融金属を減圧鋳造した
後、鋳型を除去して多孔体を得る。めっき法は、ポリウ
レタンフォーム等の骨格の表面にNi等を電気めっきす
る方法であり、めっきの後同様にポリウレタンを除去す
る。
In the interparticle permeation method, small spheres of glass or sodium chloride are packed in a mold, molten metal is impregnated into the gaps, and after solidification, the small spheres are removed. In the investment casting method, the voids such as polyurethane foam are filled with a refractory slurry, the polyurethane foam is removed after drying and firing, the molten metal is vacuum-cast into a manufactured mold, and then the mold is removed to obtain a porous body. The plating method is a method of electroplating Ni or the like on the surface of a skeleton such as polyurethane foam, and after plating, polyurethane is similarly removed.

【0016】スパッタ堆積法では、水冷した基板上に不
活性ガス中でスパッタ堆積させた金属薄膜を融点近くま
で加熱し、混入していた不活性ガスが膨張して発泡する
ことを利用する。粉末冶金法には、発泡剤を含む混合粉
末スラリーを焼成するスラリー発泡法、熱間静水圧処理
や冷間等方加工処理をせずに常圧で金属粉体を焼結する
常圧焼結法、金属粉末スラリーをポリウレタンフォーム
にしみ込ませて乾燥・焼結させるスポンジ法等がある。
The sputter deposition method utilizes the fact that a metal thin film sputter-deposited in an inert gas on a water-cooled substrate is heated to near the melting point and the mixed inert gas expands and foams. The powder metallurgy method includes a slurry foaming method in which a mixed powder slurry containing a foaming agent is fired, and an atmospheric pressure sintering in which metal powder is sintered at atmospheric pressure without hot isostatic processing or cold isostatic processing. Method, a sponge method in which a metal powder slurry is soaked in polyurethane foam, dried and sintered.

【0017】[0017]

【実施例1】不活性雰囲気中でTiを2.0原子%添加
したNi合金を高周波溶解した後、底面に水冷銅ハース
を備えた鋳型に合金溶湯を鋳込み、水冷銅ハースを介し
た熱放散により合金溶湯を一方向凝固させた。凝固完了
したNi合金は、デンドライトが水冷銅ハースから上方
に延びた鋳造組織のため蓮根状の孔をもつ気孔率30%
の多孔体であった。酸化ニッケル粉末,ニッケル粉末,
アルミナ粉末を等量混合した混合粉末ベッドにNi合金
多孔体を埋め込み、Ar気流中で1050℃に2時間保
持した後、550℃に10時間保持し、次いで室温まで
徐冷した。
Example 1 After high-frequency melting of a Ni alloy containing 2.0 atomic% of Ti in an inert atmosphere, the molten alloy was cast into a mold equipped with a water-cooled copper hearth on the bottom surface to dissipate heat through the water-cooled copper hearth. The alloy melt was unidirectionally solidified by. The fully solidified Ni alloy has a porosity of 30% with lotus root-like pores due to the cast structure in which the dendrite extends upward from the water-cooled copper hearth.
It was a porous body of. Nickel oxide powder, nickel powder,
The Ni alloy porous body was embedded in a mixed powder bed in which equal amounts of alumina powders were mixed, and the mixture was kept at 1050 ° C. for 2 hours in an Ar stream, then kept at 550 ° C. for 10 hours, and then gradually cooled to room temperature.

【0018】加熱処理された多孔体を走査型電子顕微鏡
で観察したところ、多孔体内部に均一分散している微細
な粒子が検出された。X線回折の結果では、Niのピー
クの他にアナターゼ型,ルチル型TiO2のピークが検
出された。アナターゼ型TiO2が析出していることか
ら、当該多孔質構造体が光触媒作用を呈することが推測
される。
When the heat-treated porous body was observed with a scanning electron microscope, fine particles uniformly dispersed inside the porous body were detected. As a result of X-ray diffraction, peaks of anatase type and rutile type TiO 2 were detected in addition to the peak of Ni. Since the anatase-type TiO 2 is deposited, it is presumed that the porous structure exhibits a photocatalytic action.

【0019】そこで、多孔質構造体にサラダオイルを
0.1mg/cm2の割合で滴下し、1mW/cm2の紫
外光で多孔体表面を6時間照射した。紫外光照射前後で
重量測定した多孔体の重量変化からサラダオイルの減少
量Aを求めた。比較のため、加熱処理を施していない多
孔体についても同様にサラダオイル滴下,紫外光照射し
て紫外光照射前後の重量変化からサラダオイルの減少量
Bを求めた。減少量A,Bを比較したところA/Bの比
が59以上であり、アナターゼ型TiO2による光触媒
作用が効率よく発現されていることを確認できた。
Then, salad oil was dropped onto the porous structure at a rate of 0.1 mg / cm 2 , and the surface of the porous body was irradiated with 1 mW / cm 2 of ultraviolet light for 6 hours. The decrease amount A of the salad oil was determined from the weight change of the porous body measured before and after irradiation with ultraviolet light. For comparison, with respect to the porous body not subjected to the heat treatment, salad oil was dropped and irradiated with ultraviolet light in the same manner, and the decrease amount B of the salad oil was determined from the weight change before and after the irradiation with ultraviolet light. When the reduction amounts A and B were compared, the A / B ratio was 59 or more, and it was confirmed that the photocatalytic action by the anatase-type TiO 2 was efficiently expressed.

【0020】サラダオイルの減少量が極めて大きいこと
から、当該多孔質構造体は優れた防汚作用を呈すること
が判る。また、水素化,脱水素反応,還元脱硫,還元ア
ルキル化,還元アミノ化,レドックス反応等の化学反応
に優れた触媒活性を呈するNiを磯多孔質構造体の基材
に使用しているので、TiO2の光触媒作用と併せて優
れた複合触媒としての使用も期待される。
It can be seen that the porous structure exhibits an excellent antifouling action because the amount of salad oil reduced is extremely large. In addition, Ni, which has excellent catalytic activity for chemical reactions such as hydrogenation, dehydrogenation reaction, reductive desulfurization, reductive alkylation, reductive amination, and redox reaction, is used as the base material of the isoporous structure. It is also expected to be used as an excellent composite catalyst in combination with the photocatalytic action of TiO 2 .

【0021】[0021]

【実施例2】不活性雰囲気中でFe−6.4原子%Ni
−14.4原子%Cr−15.0原子%Pt−5.0原子
%Ti合金を高周波溶解し、実施例1と同じ鋳型に合金
溶湯を鋳込んで一方向凝固させた。得られた鋳塊は、P
t微粒子が分散している気孔率60%のFe−Ti合金
多孔体であった。酸化鉄粉末,鉄粉,アルミナ粉末を等
量混合した混合粉末ベッドにFe−Ti合金を埋め込
み、950℃に12時間保持する熱処理を施した。この
熱処理によって酸化鉄が分解し、発生した酸素でFe−
Ni合金に含まれている溶質Tiが酸化され、Fe−N
i合金の表層及び内部に微粒子状のTiO2が析出し
た。次いで、500℃に10時間保持した後、室温まで
徐冷した。
Example 2 Fe-6.4 atomic% Ni in an inert atmosphere
-14.4 atomic% Cr-15.0 atomic% Pt-5.0 atomic% Ti alloy was subjected to high frequency melting, and the molten alloy was cast in the same mold as in Example 1 and unidirectionally solidified. The obtained ingot is P
It was a Fe-Ti alloy porous body having a porosity of 60% in which fine particles of t were dispersed. The Fe—Ti alloy was embedded in a mixed powder bed in which equal amounts of iron oxide powder, iron powder, and alumina powder were mixed, and heat treatment was performed at 950 ° C. for 12 hours. Iron oxide is decomposed by this heat treatment, and the generated oxygen causes Fe-
The solute Ti contained in the Ni alloy is oxidized, and Fe--N
Fine-grained TiO 2 was deposited on the surface and inside of the i alloy. Then, the temperature was maintained at 500 ° C. for 10 hours and then gradually cooled to room temperature.

【0022】熱処理されたFe−Ti合金(多孔質構造
体)をX線回折したところ、Ti,Cr等の溶質元素が
光触媒作用のあるアナターゼ型酸化物微粒子になってい
ることが判った。自動車の排ガス系に多孔質構造体を組
み込み、排ガスに含まれているNOx成分を定量した。
定量結果は、従来の触媒を組み込んだ排ガス系に比較し
てNOx濃度が17体積%減少した排ガスであった。
X-ray diffraction of the heat-treated Fe-Ti alloy (porous structure) revealed that solute elements such as Ti and Cr were fine particles of anatase type oxide having a photocatalytic action. A porous structure was incorporated into the exhaust gas system of an automobile to quantify the NO x component contained in the exhaust gas.
The quantitative result was the exhaust gas in which the NO x concentration was reduced by 17% by volume as compared with the exhaust gas system in which the conventional catalyst was incorporated.

【0023】更にPtの触媒作用を高めるため、出発合
金に添加するPt15原子%に代え、内部酸化処理され
たFe−Ti合金多孔体を粒径5〜10nmのPt微粒
子が懸濁しているエマルジョンに浸漬した。エマルジョ
ン浸漬後のFe−Ti合金多孔体を乾燥させ、同様な熱
処理を施したところ、多孔体の表面にPt微粒子及びア
ナターゼ型TiO2,Cr23が均一分散した多孔質構
造体が得られた。この多孔質構造体を排ガス浄化用触媒
に使用したところ、同様な試験条件下で排ガスのNOx
濃度が27%減少した。この結果は、アナターゼ型Ti
2,Cr23及びPt微粒子が複合して優れた排ガス
浄化機能を発現させたことを示す。
In order to further enhance the catalytic action of Pt, instead of 15 atomic% of Pt added to the starting alloy, an internal oxidation-treated Fe-Ti alloy porous body is formed into an emulsion in which Pt fine particles having a particle size of 5 to 10 nm are suspended. Soaked. The Fe-Ti alloy porous body after the emulsion dipping and dried, was subjected to the same heat treatment, the porous structures Pt particles and anatase TiO 2 on the surface of the porous body, Cr 2 O 3 are uniformly dispersed can be obtained It was When this porous structure was used as an exhaust gas purifying catalyst, NO x of exhaust gas was obtained under the same test conditions.
The concentration was reduced by 27%. This result shows that anatase type Ti
It is shown that O 2 , Cr 2 O 3 and Pt fine particles are combined to exhibit an excellent exhaust gas purification function.

【0024】[0024]

【実施例3】Ag粉末にMg粉末を30.0原子%の割
合で配合し、混合粉末を450℃で焼結することにより
気孔率75%の多孔質Ag−Mg合金を用意した。この
Ag−Mg合金をフッ素ガス(F2)雰囲気下におき、
700℃に2時間保持した。室温まで冷却したAg−M
g合金を走査型電子顕微鏡で観察したところ、微細な粒
子が合金内部に均一分散していた。X線回折の結果で
は、MgF2のピークが検出された。したがって、加熱
処理されたAg−Mg合金は、MgF2微粒子の分散に
よって耐化学薬品性が改善された多孔質構造体といえ
る。また、殺菌作用や触媒活性に優れたAgを基材に使
用しているので、苛酷な環境に曝されても長期間にわた
って触媒活性を維持する触媒として使用できる。
Example 3 Mg powder was mixed with Ag powder in an amount of 30.0 atomic%, and the mixed powder was sintered at 450 ° C. to prepare a porous Ag—Mg alloy having a porosity of 75%. This Ag-Mg alloy is placed in a fluorine gas (F 2 ) atmosphere,
Hold at 700 ° C. for 2 hours. Ag-M cooled to room temperature
Observation of the g alloy with a scanning electron microscope revealed that fine particles were uniformly dispersed inside the alloy. As a result of X-ray diffraction, a peak of MgF 2 was detected. Therefore, it can be said that the heat-treated Ag—Mg alloy is a porous structure in which chemical resistance is improved by dispersing the MgF 2 fine particles. Further, since Ag having excellent bactericidal action and catalytic activity is used as the base material, it can be used as a catalyst which maintains catalytic activity for a long period of time even when exposed to a harsh environment.

【0025】[0025]

【実施例4】Mg粉末にZr粉末を60.0原子%の割
合で混合し、混合粉末を475℃で焼結することにより
気孔率85%のMg−Zr合金多孔体を得た。Mg−Z
r合金多孔体を水素気流中で530℃に1時間加熱した
後、室温まで徐冷した。作製された多孔質構造体を走査
型電子顕微鏡で観察したところ、微粒子がMg−Zr合
金内部に均一分散していた。X線回折の結果から、微粒
子はZrH2であることが判った。当該多孔質構造体の
水素放出圧を測定したところ、290℃で1気圧の水素
放出圧であった。この結果は、Mg−Zr系多孔質構造
体が優れた水素吸蔵材料であることを示している。
Example 4 Zr powder was mixed with Mg powder at a ratio of 60.0 atomic%, and the mixed powder was sintered at 475 ° C. to obtain a Mg-Zr alloy porous body having a porosity of 85%. Mg-Z
The r alloy porous body was heated in a hydrogen stream at 530 ° C. for 1 hour and then gradually cooled to room temperature. When the produced porous structure was observed with a scanning electron microscope, fine particles were uniformly dispersed inside the Mg—Zr alloy. From the results of X-ray diffraction, it was found that the fine particles were ZrH 2 . When the hydrogen release pressure of the porous structure was measured, it was 1 atm hydrogen release pressure at 290 ° C. This result indicates that the Mg-Zr-based porous structure is an excellent hydrogen storage material.

【0026】[0026]

【発明の効果】以上に説明したように、本発明において
は、親和力が大きな元素Zを含む合金多孔体を元素X含
有雰囲気下で加熱処理することにより、Z−Xの化合物
を多孔質構造体に均一分散させている。O,N,F,H
等を元素Xに使用し、それぞれ酸化物,窒化物,フッ化
物,水素化物を分散析出させることにより、化合物Z−
Xに由来する機能性が付与される。しかも、多孔体を出
発材料として使用しているので、析出した化合物微粒子
の比表面積が極めて大きくなり、化合物Z−Xの機能が
遺憾なく発現されるため、高機能の多孔質構造体が得ら
れる。
INDUSTRIAL APPLICABILITY As described above, in the present invention, the alloy porous body containing the element Z having a high affinity is heat-treated in the atmosphere containing the element X, so that the compound Z--X is converted into the porous structure. Evenly dispersed. O, N, F, H
Etc. are used as the element X, and an oxide, a nitride, a fluoride, and a hydride are dispersed and deposited, respectively, to obtain a compound Z-
Functionality derived from X is imparted. Moreover, since the porous body is used as the starting material, the specific surface area of the precipitated compound fine particles becomes extremely large and the function of the compound Z-X is fully exhibited, so that a highly functional porous structure can be obtained. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平 博仁 愛知県名古屋市緑区篠の風二丁目274番地 14 (72)発明者 馬渕 守 愛知県名古屋市北区平手町1−1 独立行 政法人産業技術総合研究所 中部センター 内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hirohito Hira             2-274 Shinonokaze, Midori-ku, Nagoya-shi, Aichi             14 (72) Inventor Mamoru Mabuchi             Independent trip to 1-1 Hirate-cho, Kita-ku, Nagoya City, Aichi Prefecture             Central Research Institute, National Institute of Advanced Industrial Science and Technology             Within

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 常態が気相の元素Xとの親和力が大きな
元素Z,マトリックスとなる元素Yからなり、元素Zの
濃度が0.0001〜70原子%で空隙率0.1〜95.
0%の多孔体を用意し、元素Yと元素Xとの化合物生成
には不十分であるが元素Zと元素Xの化合物生成には十
分な分圧の元素Xを含む雰囲気下で多孔体を加熱し、元
素Zと元素Xとの化合物を粒子状又は平板状に多孔体の
表面及び/又は内部に析出させることを特徴とする機能
性を付与した多孔質構造体の製造方法。
1. A normal state is composed of an element Z having a large affinity with an element X in a vapor phase and an element Y serving as a matrix. The concentration of the element Z is 0.0001 to 70 atomic%, and the porosity is 0.1 to 95.
A porous body of 0% is prepared, and the porous body is prepared in an atmosphere containing a partial pressure of the element X which is insufficient for forming the compound of the element Y and the element X but is sufficient for forming the compound of the element Z and the element X. A method for producing a porous structure having functionality, which comprises heating to deposit a compound of an element Z and an element X in the form of particles or a plate on the surface and / or inside of the porous body.
【請求項2】 酸素Oを元素Xにするとき、Si,M
n,P,Al,Zn,Ti,Ni,Cr,Co,Fe,
Be,Mg,Cd,In,Zr,Sn,Ce,Ca,G
a,B,Sb,Tl,Pb,Nb,Ta,Bi,Li,
Mo,W,V,Pb.Hfから得らればれた1種又は2
種以上の金属を元素Zに、元素Zと異なりAg,Cu,
Ni,Fe,Pd,Co,Au,Pt,Cr,Mo,
W,Ti,Zr,Hf,V,Nb,Ta,Ge,Sn,
Pbから選ばれた1種又は2種以上の金属を元素Yに使
用する請求項1記載の製造方法。
2. When oxygen O is converted to element X, Si, M
n, P, Al, Zn, Ti, Ni, Cr, Co, Fe,
Be, Mg, Cd, In, Zr, Sn, Ce, Ca, G
a, B, Sb, Tl, Pb, Nb, Ta, Bi, Li,
Mo, W, V, Pb. 1 or 2 obtained from Hf
More than one kind of metal is used as element Z, and unlike element Z, Ag, Cu,
Ni, Fe, Pd, Co, Au, Pt, Cr, Mo,
W, Ti, Zr, Hf, V, Nb, Ta, Ge, Sn,
The production method according to claim 1, wherein one or more metals selected from Pb are used for the element Y.
【請求項3】 窒素Nを元素Xにするとき、Ti,Z
r,Al,Fe,Cr,Mo,V,Siから選ばれた1
種又は2種以上の金属を元素Zに、元素Zと異なりA
g,Cu,Ni,Fe,Pd,Co,Au,Pt,C
r,Mo,Wから選ばれた1種又は2種以上の金属を元
素Yに使用する請求項1記載の製造方法。
3. When nitrogen N is changed to element X, Ti, Z
1 selected from r, Al, Fe, Cr, Mo, V, Si
Element or two or more metals as element Z, which is different from element Z
g, Cu, Ni, Fe, Pd, Co, Au, Pt, C
The production method according to claim 1, wherein one or more metals selected from r, Mo and W are used for the element Y.
【請求項4】 フッ素Fを元素Xにするとき、Be,M
g,Ca,Al,Ti,Si,Crから選ばれた1種又
は2種以上の金属を元素Zに、元素Zと異なりAg,C
u,Ni,Fe,Pd,Co,Au,Pt,Cr,M
o,W,Ti,Zrから選ばれた1種又は2種以上の金
属を元素Yに使用する請求項1記載の製造方法。
4. When fluorine F is converted to element X, Be, M
element Z is one or more metals selected from g, Ca, Al, Ti, Si, and Cr, and unlike element Z, Ag, C
u, Ni, Fe, Pd, Co, Au, Pt, Cr, M
The production method according to claim 1, wherein one or more metals selected from o, W, Ti, and Zr are used for the element Y.
【請求項5】 水素Hを元素Xにするとき、La,C
a,Li,Ti,K,Na,U,Mg,Ni,Co,
V,Fe,Mn,Ce,Al,Y,Zrから選ばれた1
種又は2種以上を元素Zに、元素Zと異なりAg,C
u,Ni,Fe,Pd,Co,Au,Pt,Cr,M
o,W,Ti,Zr,Mgから選ばれた1種又は2種以
上の金属を元素Yに使用する請求項1記載の製造方法。
5. When hydrogen H is converted to element X, La, C
a, Li, Ti, K, Na, U, Mg, Ni, Co,
1 selected from V, Fe, Mn, Ce, Al, Y, Zr
Species or two or more species as element Z, different from element Z, Ag, C
u, Ni, Fe, Pd, Co, Au, Pt, Cr, M
The manufacturing method according to claim 1, wherein one or more metals selected from o, W, Ti, Zr, and Mg are used for the element Y.
JP2002017453A 2002-01-25 2002-01-25 Method for producing porous structure with added functionality Expired - Lifetime JP4328052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017453A JP4328052B2 (en) 2002-01-25 2002-01-25 Method for producing porous structure with added functionality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017453A JP4328052B2 (en) 2002-01-25 2002-01-25 Method for producing porous structure with added functionality

Publications (3)

Publication Number Publication Date
JP2003213352A true JP2003213352A (en) 2003-07-30
JP2003213352A5 JP2003213352A5 (en) 2004-09-02
JP4328052B2 JP4328052B2 (en) 2009-09-09

Family

ID=27653144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017453A Expired - Lifetime JP4328052B2 (en) 2002-01-25 2002-01-25 Method for producing porous structure with added functionality

Country Status (1)

Country Link
JP (1) JP4328052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538101B1 (en) * 2013-11-29 2015-07-22 한국과학기술연구원 MANUFACTURING METHOD OF POROUS BODY CONTAINING Zr

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538101B1 (en) * 2013-11-29 2015-07-22 한국과학기술연구원 MANUFACTURING METHOD OF POROUS BODY CONTAINING Zr

Also Published As

Publication number Publication date
JP4328052B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
TWI257334B (en) Process for the production of sintered porous bodies
Chou et al. Shape-controlled conversion of β-Sn nanocrystals into intermetallic M-Sn (M= Fe, Co, Ni, Pd) nanocrystals
JP5826219B2 (en) Method for making a metal article having other additive components without melting
US5134039A (en) Metal articles having a plurality of ultrafine particles dispersed therein
US4944985A (en) Method for electroless plating of ultrafine or colloidal particles and products produced thereby
US4585617A (en) Amorphous metal alloy compositions and synthesis of same by solid state incorporation/reduction reactions
JP2003524073A5 (en)
EP2999661A1 (en) Process for manufacturing metal containing powder
JP2023153875A (en) Production method of aluminum-containing alloy powder and use of the same, and alloy ribbon
Sandhage Materials “alchemy”: shape-preserving chemical transformation of micro-to-macroscopic 3-D structures
CN109477223A (en) The material of coating method and coating
JPS58110401A (en) Metallic granule containing magnesium for accumulating hydrogen and method of manufacturing said granule
Azarniya et al. High-temperature mechanisms of hydrogen evolution in Ni–P coated titanium hydride (TiH2) powder
KR100713216B1 (en) Catalyst for use in reforming methanol with steam and method for preparation thereof
EP1488874B1 (en) Method for preparing aluminium-base metallic alloy articles without melting
US8974719B2 (en) Composite materials formed with anchored nanostructures
JP2018526538A (en) Method for recovery of metal-containing materials from composite materials
JP2004323891A (en) Method for surface improvement of steel
JP4328052B2 (en) Method for producing porous structure with added functionality
KR101872572B1 (en) Core-shell catalyst and method for palladium-based core particle
US11548067B2 (en) Method for producing an open-pored metal body having an oxide layer and metal body produced by said method
JP3480577B2 (en) Ti-A1 alloy excellent in oxidation resistance and method for producing the same
JP7383601B2 (en) Method for manufacturing a surface-modified metal open-pore molded body
JPS5848002B2 (en) Manufacturing method of composite powder for powder metallurgy
JP3872465B2 (en) High hydrogen storage material and its manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4328052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term