JP2003212557A - Method and apparatus for manufacturing glass preform - Google Patents

Method and apparatus for manufacturing glass preform

Info

Publication number
JP2003212557A
JP2003212557A JP2002013941A JP2002013941A JP2003212557A JP 2003212557 A JP2003212557 A JP 2003212557A JP 2002013941 A JP2002013941 A JP 2002013941A JP 2002013941 A JP2002013941 A JP 2002013941A JP 2003212557 A JP2003212557 A JP 2003212557A
Authority
JP
Japan
Prior art keywords
base material
glass
support rod
glass base
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002013941A
Other languages
Japanese (ja)
Inventor
Tomohiro Ishihara
朋浩 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002013941A priority Critical patent/JP2003212557A/en
Publication of JP2003212557A publication Critical patent/JP2003212557A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing a glass preform, in which a working environment is improved and the quality of the glass preform is stabilized by preventing the flowing-out of a corrosive gas such as a chlorine gas from the apparatus into a room during the heat treatment of a fine glass particle deposit. <P>SOLUTION: The apparatus for manufacturing the glass preform is provided with a furnace tube having a top cover provided with an insert opening to insert a supporting rod to be connected to an elevating device, a heater surrounding the furnace tube, and a furnace body to cover the heater. The tubular sealed chamber is provided on the upper surface of the top cover in a manner covering the lower part of a supporting rod and the insert opening of the supporting rod. The dehydration of the fine glass particle deposit and making of clear glass are carried out while introducing an inert gas to the sealed chamber so as to bring predetermined pressure in the sealed chamber. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス微粒子堆積
体を加熱して脱水及び透明ガラス化を行う光ファイバ用
ガラス母材などのガラス母材の製造方法及び製造装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a glass base material such as a glass base material for an optical fiber, which heats a glass particle deposit to dehydrate and vitrify it.

【0002】[0002]

【従来の技術】従来、光ファイバ用ガラス母材などのガ
ラス母材はVAD法やOVD法により製造されるガラス
微粒子堆積体(多孔質ガラス母材)を加熱処理し、脱水
及び透明ガラス化を行うことによって製造されている。
前記加熱処理の工程においては、脱水、透明ガラス化な
どの処理内容に応じて雰囲気ガスを選択しており、例え
ば、特開昭61−270232号公報に開示された方法
では、第1加熱処理でガラス微粒子堆積体をHeとO2
及び脱水ガス(塩素ガス、塩化チオニル、フルオル系シ
ランなど)を用いて脱水し、続く第2加熱処理において
HeとO2 又はHeのみの雰囲気中で透明ガラス化して
いる。
2. Description of the Related Art Conventionally, glass preforms such as glass preforms for optical fibers are dehydrated and transparent vitrified by heat-treating glass particle deposits (porous glass preforms) produced by the VAD method or OVD method. Manufactured by doing.
In the heat treatment step, the atmosphere gas is selected according to the treatment contents such as dehydration and transparent vitrification. For example, in the method disclosed in JP-A-61-270232, the first heat treatment is performed. He and O 2 from the glass particulate deposits
And dehydration gas (chlorine gas, thionyl chloride, fluorinated silane, etc.) are used for dehydration, and in the subsequent second heat treatment, transparent vitrification is performed in an atmosphere containing only He and O 2 or He.

【0003】[0003]

【発明が解決しようとする課題】このようなガラス母材
の製造方法においては、加熱処理を行うガラス母材製造
装置内において、支持棒で支持されたガラス微粒子堆積
体を炉心管内につり下げ、ガラス微粒子堆積体を塩素系
ガス(脱水剤)雰囲気下で脱水し、さらに不活性ガス雰
囲気下もしくは不活性ガスと塩素系ガス又はO2 の混合
雰囲気化で透明ガラス化するか、あるいは、塩素系ガス
で脱水後、プロファイル(屈折率)調整のためSiF4
などのガスを用いてF添加を行い、その後、不活性ガス
雰囲気下もしくは不活性ガスと塩素系ガスの混合雰囲気
化で透明ガラス化する方法が一般的である。
In such a glass base material manufacturing method, in a glass base material manufacturing apparatus for carrying out heat treatment, a glass fine particle deposit supported by a supporting rod is suspended in a furnace core tube, The glass fine particle deposit is dehydrated in a chlorine-based gas (dehydrating agent) atmosphere, and is further made into vitrified glass in an inert gas atmosphere or a mixed atmosphere of an inert gas and a chlorine-based gas or O 2 , or a chlorine-based material. After dehydration with gas, SiF 4 for profile (refractive index) adjustment
In general, a method of adding F using a gas such as the above, and then forming a transparent glass in an inert gas atmosphere or in a mixed atmosphere of an inert gas and a chlorine-based gas is performed.

【0004】このような方法の場合、製造装置から腐食
性ガス(塩素系ガス、フッ素化合物ガスなどのハロゲン
系ガス)が漏れ、製造装置の設置された室内の各装置の
金属部品を腐食させ、室内雰囲気中の金属系ダスト量が
増加する場合がある。通常、この種の製造装置はガラス
微粒子堆積体を製造するガラス微粒子堆積装置などと同
じ室内に設置されている場合が多いが、室内の金属系ダ
スト量が増加すると、ガラス微粒子の堆積中に室内雰囲
気中の金属系ダストが堆積装置内に混入し、最終的に得
られるガラス母材中に多数の金属不純物が存在すること
となる。
In the case of such a method, corrosive gas (halogen gas such as chlorine gas and fluorine compound gas) leaks from the manufacturing apparatus to corrode metal parts of each apparatus in the room where the manufacturing apparatus is installed, The amount of metal-based dust in the indoor atmosphere may increase. Normally, this type of manufacturing equipment is often installed in the same room as the glass particle deposition apparatus that manufactures glass particle deposits, but if the amount of metal-based dust in the room increases, it will be The metal-based dust in the atmosphere is mixed in the deposition apparatus, and many metal impurities are present in the finally obtained glass base material.

【0005】ガラス母材製造装置から室内へ流出する腐
食性ガス(ハロゲン系ガス)の大部分は炉心管上蓋の支
持棒が挿入されている部分から流出する。このような腐
食性ガスの流出を防止する方法として、炉心管上端のフ
ランジ部に接触して炉心管と支持棒との間をガスシール
するシール蓋を設ける方法が知られている(特開平8−
12365号公報)。しかし、このような形式のガスシ
ールだけでは炉心管内のガスが外部へ流出するのを完全
に抑えることはできない。その理由は、この構造のガス
シール部は気密性が低いため、ガスシール部の圧力が安
定せず、炉心管内圧力がガスシール部の圧力よりも高く
なった場合に炉心管内ガスが外部へ流出してしまうため
である。
Most of the corrosive gas (halogen-based gas) flowing out from the glass base material manufacturing apparatus into the room flows out from the portion where the support rod of the core upper tube is inserted. As a method for preventing such a corrosive gas from flowing out, there is known a method of providing a seal lid that makes a gas seal between the furnace core tube and the support rod by contacting the flange portion at the upper end of the furnace core tube (Japanese Patent Laid-Open No. HEI-8). −
No. 12365). However, the gas seal of this type alone cannot completely prevent the gas in the core tube from flowing out. The reason is that the gas seal part of this structure has low airtightness, so the pressure in the gas seal part is not stable, and when the pressure in the core tube becomes higher than the pressure in the gas seal section, the gas in the core tube flows out to the outside. The reason is that

【0006】本発明はこのような従来技術における問題
点を解消し、ガラス微粒子堆積体の加熱処理中に、ガラ
ス母材製造装置からハロゲン系ガスなどの腐食性ガスが
室内に流出するのを防止し、作業環境の改善及びガラス
母材の品質安定化が可能なガラス母材の製造方法及び製
造装置を提供することを目的とする。
The present invention solves the above problems in the prior art and prevents corrosive gas such as halogen gas from flowing out from the glass base material manufacturing apparatus into the room during the heat treatment of the glass particle deposit. However, it is an object of the present invention to provide a glass base material manufacturing method and manufacturing apparatus capable of improving the working environment and stabilizing the quality of the glass base material.

【0007】[0007]

【課題を解決するための手段】本発明は前記課題を解決
する手段として次の(1)〜(7)の方法及び装置を提
案するものである。 (1)昇降装置に接続する支持棒を挿入する挿入口が設
けられた上蓋と、ガラス微粒子堆積体を収納し内部で加
熱処理する炉心管と、該炉心管の周囲を囲むヒーター
と、該ヒーターを覆う炉体とを備えたガラス母材の製造
装置を使用し、前記支持棒により支持されたガラス微粒
子堆積体を軸回りに回転させながら上下方向に移動させ
て加熱し、脱水及び透明ガラス化するガラス母材の製造
方法において、前記上蓋の上面に前記支持棒及び支持棒
挿入口を覆う形で管状のシール室を設け、該シール室内
に該シール室内の圧力が炉心管内圧力よりも高い所定の
圧力となるように不活性ガスを導入しながら脱水及び透
明ガラス化を行うことを特徴とするガラス母材の製造方
法。 (2)前記シール室の支持棒長手方向の長さが50mm
以上であることを特徴とする前記(1)のガラス母材の
製造方法。 (3)前記管状のシール室の内径と支持棒外径との差が
20mm以下であることを特徴とする前記(1)又は
(2)のガラス母材の製造方法。
The present invention proposes the following methods and devices (1) to (7) as means for solving the above problems. (1) An upper lid provided with an insertion port for inserting a support rod connected to an elevating device, a furnace core tube for accommodating a glass particulate deposit and heat-treating the inside, a heater surrounding the furnace core tube, and the heater Using a glass base material manufacturing apparatus equipped with a furnace body for covering, the glass particulate deposits supported by the support rods are moved in the vertical direction while being rotated about an axis, and heated to perform dehydration and transparent vitrification. In the method for manufacturing a glass preform, a tubular seal chamber is provided on the upper surface of the upper lid so as to cover the support rod and the support rod insertion port, and the pressure in the seal chamber is higher than the pressure in the core tube. The method for producing a glass base material, which comprises performing dehydration and transparent vitrification while introducing an inert gas so that the pressure becomes equal to. (2) The length of the sealing chamber in the longitudinal direction of the support rod is 50 mm.
It is above, The manufacturing method of the glass base material of said (1) characterized by the above-mentioned. (3) The method for producing a glass preform according to (1) or (2) above, wherein the difference between the inner diameter of the tubular seal chamber and the outer diameter of the support rod is 20 mm or less.

【0008】(4)昇降装置に接続する支持棒を挿入す
る挿入口が設けられた上蓋と、ガラス微粒子堆積体を収
納し内部で加熱処理する炉心管と、該炉心管の周囲を囲
むヒーターと、該ヒーターを覆う炉体とを備え、前記支
持棒により支持されたガラス微粒子堆積体を軸回りに回
転させながら上下方向に移動させて加熱し、脱水及び透
明ガラス化するガラス母材の製造装置において、前記上
蓋の上面に前記支持棒及び支持棒挿入口を覆う形で、不
活性ガスの導入量調整により内部の圧力を炉心管内圧力
よりも高い所定の圧力に調整可能な管状のシール室が設
置されていることを特徴とするガラス母材の製造装置。 (5)前記シール室内の圧力を測定する測定器と、該測
定器の測定値に基づいて不活性ガスの導入量を制御する
制御装置が設けられていることを特徴とする前記(4)
のガラス母材の製造装置。 (6)前記シール室の支持棒長手方向の長さが50mm
以上であることを特徴とする前記(4)又は(5)のガ
ラス母材の製造装置。 (7)前記管状のシール室の内径と支持棒外径との差が
20mm以下であることを特徴とする前記(4)〜
(6)のいずれか1つのガラス母材の製造装置。
(4) An upper lid provided with an insertion port for inserting a support rod connected to the lifting device, a furnace core tube for accommodating the glass particle deposit and heat-treating the inside, and a heater surrounding the furnace tube. An apparatus for producing a glass base material, comprising: a furnace body that covers the heater; and a glass fine particle deposited body supported by the support rod, which is vertically rotated while being rotated about an axis to be heated, dehydrated, and made into transparent vitrified material. In the above, in the form of covering the support rod and the support rod insertion port on the upper surface of the upper lid, a tubular seal chamber capable of adjusting the internal pressure to a predetermined pressure higher than the pressure in the core tube by adjusting the amount of inert gas introduced is provided. A glass base material manufacturing device characterized by being installed. (5) A measuring device for measuring the pressure in the seal chamber, and a control device for controlling the amount of the inert gas introduced based on the measurement value of the measuring device are provided.
Glass base material manufacturing equipment. (6) The length of the sealing chamber in the longitudinal direction of the support rod is 50 mm.
The glass base material manufacturing apparatus according to the above (4) or (5), which is the above. (7) The difference between the inner diameter of the tubular seal chamber and the outer diameter of the support rod is 20 mm or less, (4) to
An apparatus for manufacturing a glass base material according to any one of (6).

【0009】[0009]

【発明の実施の形態】本発明に係るガラス母材製造装置
は、昇降装置に接続する支持棒を挿入する挿入口が設け
られた上蓋と、ガラス微粒子堆積体を収納し内部で加熱
処理する炉心管と、炉心管の周囲を囲むヒーターと、ヒ
ーターを覆う炉体を主たる構成要素とし、前記上蓋の上
面に前記支持棒及び支持棒挿入口を覆う形で、不活性ガ
スの導入量調整により内部の圧力を炉心管内圧力よりも
高い所定の圧力に調整可能な管状のシール室が設置され
た構成となっている。このようにガラス微粒子堆積体を
透明ガラス化させるガラス母材製造装置の上蓋とガラス
微粒子堆積体を吊るす支持棒とのクリアランス部を覆う
シール室を設置し、該シール室に炉心管内圧力よりも高
い所定圧力の不活性ガスを導入することで炉心管内雰囲
気と装置外雰囲気との気密性が増し、炉心管内で使用す
る腐食性ガスが上蓋のクリアランス部から外へ漏れるの
を抑制することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A glass base material manufacturing apparatus according to the present invention comprises an upper lid provided with an insertion opening for inserting a supporting rod connected to an elevating device, and a core for accommodating a glass particle deposit and heat-treating it inside. A tube, a heater surrounding the core tube, and a furnace body that covers the heater are main components, and the support rod and the support rod insertion opening are covered on the upper surface of the upper lid by adjusting the amount of inert gas introduced inside. It is configured such that a tubular seal chamber capable of adjusting the pressure of 1 to a predetermined pressure higher than the pressure in the core tube is installed. In this way, a seal chamber is installed which covers the clearance between the upper lid of the glass base material manufacturing apparatus for making the glass particulate deposit body into transparent glass and the support rod for suspending the glass particulate deposit body, and the seal chamber has a higher pressure than the core tube internal pressure. By introducing the inert gas of a predetermined pressure, the airtightness between the atmosphere inside the core tube and the atmosphere outside the apparatus is increased, and the corrosive gas used in the core tube can be prevented from leaking out from the clearance portion of the upper lid.

【0010】以下、図面を参照して本発明を詳細に説明
する。図1は本発明に係るガラス母材製造装置の1実施
態様を示す概略説明図である。図1の装置は、上部に母
材1(ガラス微粒子堆積体又は透明ガラス化後のガラス
母材)の出し入れ口を有する炉心管2、炉心管2の周囲
に設けられたヒーター3、ヒーター3を覆う炉体4、支
持棒挿入口7を有して母材1の挿入後に炉心管2の上部
の母材の出し入れ口を密封する上蓋5、炉心管2の下部
を密封する下蓋6、母材1を上下方向に移動させる昇降
装置8で構成されており、上蓋5の上面に前記支持棒1
0及び支持棒挿入口7を覆う形でシール室9が設置され
ている。シール室9には不活性ガス導入ポート16が設
置されており、シール室9内に該シール室内が所定の圧
力となるように不活性ガスを導入できるようになってい
る。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic explanatory view showing one embodiment of a glass base material manufacturing apparatus according to the present invention. The apparatus of FIG. 1 includes a furnace core tube 2 having an inlet / outlet for a base material 1 (glass fine particle deposit or glass base material after transparent vitrification) in the upper part, a heater 3 provided around the core tube 2, and a heater 3. An upper lid 5 having a furnace body 4 for covering and a support rod insertion port 7 for sealing the inlet / outlet of the base material above the core tube 2 after the insertion of the base material 1, a lower lid 6 for sealing the lower part of the core tube 2, a mother It is composed of a lifting device 8 for moving the material 1 in the vertical direction.
A seal chamber 9 is installed so as to cover 0 and the support rod insertion port 7. An inert gas introduction port 16 is installed in the seal chamber 9 so that the inert gas can be introduced into the seal chamber 9 so that the seal chamber 9 has a predetermined pressure.

【0011】炉心管2及び炉体4には、必要により不活
性ガスを供給するガス供給ライン及び排気用の排気ライ
ン(図には上蓋5に接続された排気ライン11のみを示
した)が接続されている。なお、図中の12はヒーター
温度を測定する放射温度計、13は炉心管2内の圧力を
計測する圧力測定器である。
A gas supply line for supplying an inert gas and an exhaust line for exhaust (only an exhaust line 11 connected to the upper lid 5 is shown in the figure) are connected to the core tube 2 and the furnace body 4 as necessary. Has been done. In the figure, 12 is a radiation thermometer for measuring the heater temperature, and 13 is a pressure measuring device for measuring the pressure in the core tube 2.

【0012】図1の構成のガラス母材製造装置を用い、
ガラス微粒子堆積体の脱水及び透明ガラス化によりガラ
ス母材を製造する場合の操作方法は例えば次のように行
う。先ず、VAD法やOVD法などにより作製したガラ
ス微粒子堆積体(母材1)を、昇降装置8に接続した支
持棒10の下端に接合し、炉心管2内のスタート位置
(通常は最上部)にセットする。
Using the glass base material manufacturing apparatus having the configuration shown in FIG.
For example, the operation method for producing the glass base material by dehydration and transparent vitrification of the glass particle deposit is as follows. First, a glass particle deposit (base material 1) produced by the VAD method or the OVD method is joined to the lower end of the support rod 10 connected to the elevating device 8, and the start position (usually the uppermost position) in the furnace core tube 2 is joined. Set to.

【0013】次に、ヒーター3によりガラス微粒子堆積
体を加熱すると同時に、炉心管2内に所定比率のCl2
とHeとの混合ガスを流す。ヒーター温度を所定温度範
囲内に保持し、そこから母材を適当な速度で下降させ
る。母材1が最終位置(通常は最下端)に到着した時点
(ここまでが脱水工程)で母材1の引き上げを開始し、
同時にヒーターを透明化温度へ昇温し、炉心管内に所定
比率のCl2 とHeとの混合ガス若しくはHeガスのみ
を流す。
Next, the glass particulate deposit is heated by the heater 3, and at the same time, Cl 2 of a predetermined ratio is placed in the furnace tube 2.
And a mixed gas of He are caused to flow. The heater temperature is maintained within a predetermined temperature range, and the base material is lowered from there at an appropriate speed. When the base material 1 arrives at the final position (usually the bottom end) (up to this point is the dehydration step), pulling up of the base material 1 is started,
At the same time, the heater is heated to the clearing temperature and only a mixed gas of Cl 2 and He in a predetermined ratio or He gas is flown into the furnace core tube.

【0014】ヒーター温度が所定温度範囲になった時点
で、スタート位置へ戻った母材1を適当な速度で下降さ
せ、最下端に到着した時点で母材1の引き上げを開始
し、同時にヒーター3の電源を切る(透明ガラス化工
程)。
When the heater temperature reaches the predetermined temperature range, the base material 1 returned to the start position is lowered at an appropriate speed, and when the base material 1 reaches the lowest end, the base material 1 is started to be pulled up, and at the same time, the heater 3 Power off (transparent vitrification process).

【0015】脱水工程時のヒーター温度(ヒーター3の
中心位置におけるヒーター外表面温度)は、1000〜
1300℃に維持するのが好ましく、更に好ましくは1
200〜1300℃の範囲に維持するのが好ましい。ま
た、透明ガラス化工程時の炉内温度は、1400〜16
00℃に維持するのがよく、更に好ましくは、1520
〜1570℃の範囲で維持することが好ましい。
The heater temperature (heater outer surface temperature at the central position of the heater 3) during the dehydration step is 1000 to
The temperature is preferably maintained at 1300 ° C, more preferably 1
It is preferable to maintain the temperature in the range of 200 to 1300 ° C. The temperature in the furnace during the transparent vitrification step is 1400 to 16
The temperature is preferably maintained at 00 ° C., more preferably 1520
It is preferable to maintain in the range of ˜1570 ° C.

【0016】上記脱水及び透明ガラス化の間に、炉心管
2内の腐食性ガスが上蓋5の支持棒挿入口7の部分(上
蓋クリアランス部)から漏れ出すことがあるが、本発明
の装置においては、上蓋5の上面に前記支持棒10及び
支持棒挿入口7を覆う形でシール室9が設置されてお
り、シール室9に不活性ガスを導入してシール室9内の
圧力を炉心管内圧力よりも高い所定の圧力となるように
不活性ガスを導入するようにしているので、支持棒挿入
口7から漏れた腐食性ガスはこの部分でシールされ、装
置が設置されている室内に腐食性ガスが漏れ出すのを防
止することができる。
During the above dehydration and transparent vitrification, the corrosive gas in the core tube 2 may leak out from the support rod insertion port 7 portion of the upper lid 5 (upper lid clearance portion). Is provided with a seal chamber 9 on the upper surface of the upper lid 5 so as to cover the support rod 10 and the support rod insertion port 7. An inert gas is introduced into the seal chamber 9 to adjust the pressure in the seal chamber 9 to the inside of the core tube. Since the inert gas is introduced so as to have a predetermined pressure higher than the pressure, the corrosive gas leaked from the support rod insertion port 7 is sealed at this portion and corroded in the room where the device is installed. It is possible to prevent the volatile gas from leaking out.

【0017】シール室9は上蓋5の上面から支持棒10
(上蓋5の上面から約300mmまでの間)及び支持棒
挿入口7を覆う形で設置されるが、炉心管2内雰囲気と
外部雰囲気との気密性を上げるためには、シール室9の
支持棒10の長手方向の長さは50mm以上とするのが
好ましい。また、同じ理由で管状のシール室9の内径と
支持棒10の外径との差は20mm以下となるようにす
るのが好ましい。
The seal chamber 9 is provided with a support rod 10 from the upper surface of the upper lid 5.
It is installed so as to cover (up to about 300 mm from the upper surface of the upper lid 5) and the support rod insertion port 7. However, in order to improve the airtightness of the atmosphere inside the core tube 2 and the outside atmosphere, the seal chamber 9 is supported. The length of the rod 10 in the longitudinal direction is preferably 50 mm or more. For the same reason, it is preferable that the difference between the inner diameter of the tubular seal chamber 9 and the outer diameter of the support rod 10 is 20 mm or less.

【0018】シール室9内の圧力の調整はシール室9に
取付けられた圧力測定器14によりシール室9内の圧力
を測定し、シール室9内へ導入する不活性ガスの流量を
調整することで、シール室9内の圧力を調整する方法が
好適である。また、シール室9内の圧力調整作業におい
て、マノメーターなどの圧力測定器14からの測定値に
基いて不活性ガス流量を調整する制御装置15及びMF
C(マスフローコントローラ)17を付加することによ
り省力化、コスト低減が可能となる。不活性ガス流量を
圧力変動に合わせて調整することによりシール室9内及
び炉心管2内の圧力を所定値に保つことができて、製品
の品質が保持できる。また、シール室9内の圧力を炉心
管2内の圧力より高く(好ましくは10〜200Pa程
度)設定することにより、炉心管2内の雰囲気ガスは上
蓋クリアランス部からシール室9内へ漏れにくくなり結
果的に、装置外へのガス漏れがより効果的に抑制され
る。
The pressure in the seal chamber 9 is adjusted by measuring the pressure in the seal chamber 9 with a pressure measuring device 14 attached to the seal chamber 9 and adjusting the flow rate of the inert gas introduced into the seal chamber 9. Therefore, the method of adjusting the pressure in the seal chamber 9 is preferable. Further, in the pressure adjusting work in the seal chamber 9, the controller 15 and the MF for adjusting the inert gas flow rate based on the measurement value from the pressure measuring device 14 such as a manometer.
By adding C (mass flow controller) 17, it is possible to save labor and reduce costs. By adjusting the flow rate of the inert gas according to the pressure fluctuation, the pressure in the seal chamber 9 and the core tube 2 can be maintained at a predetermined value, and the quality of the product can be maintained. Further, by setting the pressure in the seal chamber 9 higher than the pressure in the furnace core tube 2 (preferably about 10 to 200 Pa), the atmospheric gas in the furnace core tube 2 is less likely to leak from the upper lid clearance portion into the seal chamber 9. As a result, gas leakage to the outside of the device is suppressed more effectively.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに具体的に
説明するが、本発明はこれらの実施例に限定されるもの
ではない。 (実施例1)コア/クラッド部を有する直径20mmの
コアガラスロッドの両端にガラスダミーロッドを溶着し
て出発ガラスロッドを作製した。この出発ロッドの外周
にガラス微粒子をOVD法により堆積させ、ガラス微粒
子堆積体(長さ:1000mm)を作製した。このガラ
ス微粒子堆積体を、図1に示す構成の装置(ヒーター3
の炉心管2の長手方向に沿った長さ:400mm)を用
いて脱水及び透明ガラス化し、ガラス母材を製造した。
シール室9は支持棒10の長手方向の長さが500mm
でシール室9の内径と支持棒外径との差が5mmの構造
とした。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 A starting glass rod was produced by welding glass dummy rods to both ends of a core glass rod having a core / clad portion and having a diameter of 20 mm. Glass fine particles were deposited on the outer circumference of this starting rod by the OVD method to prepare a glass fine particle deposit (length: 1000 mm). This glass particulate deposit is used as an apparatus (heater 3
(Length along the longitudinal direction of the furnace core tube 2 of: 400 mm) was used for dehydration and transparent vitrification to produce a glass preform.
The length of the support bar 10 in the longitudinal direction of the seal chamber 9 is 500 mm.
Thus, the difference between the inner diameter of the seal chamber 9 and the outer diameter of the support rod is 5 mm.

【0020】上記のガラス微粒子堆積体(母材1)を炉
心管2内のスタート位置(図1に示す最上部)に設置
し、ヒーター3により炉心管2内を昇温すると同時に炉
心管2内にCl2 :2SLM(スタンダードリットル/
分)とHe:20SLMの混合ガスを流し、母材1が最
下端に到達するまで流し続けた。ヒーター温度を130
0℃に保持し、母材1をスタート位置から10mm/分
の速度で下降させた。母材1が炉心管2の最下端に到達
した時点で昇温を開始し、炉心管2内にCl2 :2SL
MとHe:20SLMの混合ガスを流し、同時に母材1
の引き上げを開始した。
The above glass particulate deposit (base material 1) is installed at the start position (uppermost part shown in FIG. 1) in the core tube 2, and the temperature inside the core tube 2 is raised by the heater 3 and at the same time the inside of the core tube 2 is increased. Cl 2 : 2 SLM (standard liter /
Min) and He: 20 SLM mixed gas was allowed to flow until the base material 1 reached the lowest end. Heater temperature is 130
The base material 1 was kept at 0 ° C. and lowered from the start position at a speed of 10 mm / min. When the base material 1 reaches the lowermost end of the core tube 2, the temperature rise is started, and Cl 2 : 2SL is introduced into the core tube 2.
A mixed gas of M and He: 20 SLM was flowed, and at the same time, the base material 1
Started to raise.

【0021】母材1がスタート位置に戻った後、ヒータ
ー温度が1550℃になった時点で母材を3mm/分の
速度で下降させ、母材1が炉心管2の最下端に到着した
時点でヒーター3の電源を切り、ガスの供給を止めて母
材1を引き上げた。これにより良好な品質のガラス母材
が得られた。
After the base material 1 returns to the start position, when the heater temperature reaches 1550 ° C., the base material is lowered at a speed of 3 mm / min, and the base material 1 arrives at the lowermost end of the core tube 2. Then, the heater 3 was turned off, the gas supply was stopped, and the base material 1 was pulled up. As a result, a glass base material of good quality was obtained.

【0022】上記製造期間を通してシール室9内へは6
0〜70SLMのHeを供給することで、シール室9内
圧力を室圧差(装置の外側との圧力差)で+50Paに
なるよう制御した。また、上蓋5には排気ライン11を
設置し、炉心管2に取り付けられた圧力測定器13にお
いて室圧差で−20Paになるように管理した。
Throughout the above manufacturing period, the inside of the seal chamber 9 is 6
By supplying He of 0 to 70 SLM, the pressure inside the seal chamber 9 was controlled to be +50 Pa due to the chamber pressure difference (pressure difference with the outside of the device). Further, an exhaust line 11 was installed on the upper lid 5, and the pressure measuring device 13 attached to the core tube 2 was controlled so that the chamber pressure difference was −20 Pa.

【0023】また、上記製造作業中、装置の上蓋5の上
部へ塩素ガス検知器を設置し、塩素ガスの漏れ量を確認
した。測定位置は上蓋5の最上部より1m上方でかつ支
持棒10を中心とした直径1mの円周内とした(以下の
実施例、比較例においても同じ)。その結果、ガラス母
材の作製期間を通して、塩素ガス検知器により塩素漏れ
量が0.01ppm以下になっていることを確認した。
また、得られたガラス母材の塩素添加量(Δ+)(対象
母材のガラス屈折率−SiO2 ガラスの屈折率)を測定
した結果、長手方向でΔ+のばらつきは0.005%で
あった。この製造作業を繰り返した結果、このガラス母
材製造装置近傍に設置されているガラス微粒子堆積装置
及び焼結装置(ガラス母材製造装置)で作製されたガラ
ス母材中の巾1mm以上の異物及び気泡数は0のままで
あった。
During the above manufacturing operation, a chlorine gas detector was installed on the upper part of the upper lid 5 of the apparatus, and the leak amount of chlorine gas was confirmed. The measurement position was 1 m above the uppermost part of the upper lid 5 and within the circumference of 1 m in diameter centered on the support rod 10 (the same applies to the following examples and comparative examples). As a result, it was confirmed by the chlorine gas detector that the chlorine leakage amount was 0.01 ppm or less throughout the production period of the glass base material.
Moreover, as a result of measuring the chlorine addition amount (Δ +) of the obtained glass base material (glass refractive index of the target base material−refractive index of SiO 2 glass), the variation of Δ + in the longitudinal direction was 0.005%. . As a result of repeating this manufacturing operation, foreign substances having a width of 1 mm or more in the glass base material produced by the glass particle deposition apparatus and the sintering apparatus (glass base material production apparatus) installed near the glass base material production apparatus and The number of bubbles remained 0.

【0024】(実施例2)実施例1で使用したものと同
じガラス微粒子堆積体及びガラス母材製造装置を使用
し、シール室9内の圧力及び炉心管2内の圧力の管理条
件を変えた他は、実施例1と同様にしてガラス母材の製
造を行った。すなわち、製造期間を通してシール室9内
へは1〜2SLMのHeを供給することで、シール室9
内圧力を室圧差で0Paになるよう制御した。また、上
蓋5には排気ライン11を設置し、炉心管2に取り付け
られた圧力測定器13において室圧差で0Paになるよ
うに管理した。
(Example 2) Using the same glass particle deposit and glass preform manufacturing apparatus as those used in Example 1, the control conditions of the pressure in the seal chamber 9 and the pressure in the furnace core tube 2 were changed. A glass base material was manufactured in the same manner as in Example 1 except for the above. That is, by supplying 1 to 2 SLM of He into the seal chamber 9 throughout the manufacturing period,
The internal pressure was controlled so that the pressure difference between the chambers was 0 Pa. Further, an exhaust line 11 was installed on the upper lid 5, and the pressure measuring device 13 attached to the core tube 2 was controlled so that the chamber pressure difference was 0 Pa.

【0025】上記製造作業中、装置の上蓋5の上部へ塩
素ガス検知器を設置し、塩素ガスの漏れ量を確認した。
その結果、ガラス母材の作製期間を通して、塩素ガス検
知器により塩素漏れ量が0.02〜0.03ppmにな
っていることを確認した。また、得られたガラス母材の
塩素添加量(Δ+)を測定した結果、長手方向でΔ+の
ばらつきは0.005%であった。この製造作業を続け
た結果、本装置近傍のガラス微粒子堆積装置、焼結装置
で作製されたガラス母材中に存在する巾1mm以上の大
きさの異物及び気泡の数は、本装置での製造開始前は平
均で0個であったものが、製造開始から2ヶ月後には平
均2個に増加した。
During the above manufacturing operation, a chlorine gas detector was installed on the upper lid 5 of the apparatus to check the amount of chlorine gas leaked.
As a result, it was confirmed by the chlorine gas detector that the chlorine leakage amount was 0.02 to 0.03 ppm throughout the production period of the glass base material. Moreover, as a result of measuring the chlorine addition amount (Δ +) of the obtained glass base material, the variation of Δ + in the longitudinal direction was 0.005%. As a result of continuing this manufacturing work, the number of foreign particles and bubbles having a width of 1 mm or more present in the glass base material produced by the glass particle deposition apparatus and the sintering apparatus near this apparatus was determined by this apparatus. Before the start, the number was 0 on average, but two months after the start of production, the number increased to 2 on average.

【0026】(実施例3)実施例1で使用したものと同
じガラス微粒子堆積体及びガラス母材製造装置を使用
し、シール室9内の圧力及び炉心管2内の圧力の管理条
件を変えた他は、実施例1と同様にしてガラス母材の製
造を行った。すなわち、製造期間を通してシール室9内
へはHeを0〜50SLM供給し、圧力を積極的に変動
させた結果、シール室9内の圧力は室圧差で0〜15P
aの範囲にばらついた。また、上蓋5には排気ライン1
1を設置し、炉心管2に取り付けた圧力測定器13にお
いて室圧差で−10Paになるように管理しようとした
が、炉内圧力は−15〜−5Paにばらついた。
(Embodiment 3) The same control conditions for the pressure in the seal chamber 9 and the pressure in the furnace core tube 2 were changed by using the same glass particle deposit body and glass base material manufacturing apparatus as those used in Embodiment 1. A glass base material was manufactured in the same manner as in Example 1 except for the above. That is, He is supplied to the seal chamber 9 through the manufacturing period for 0 to 50 SLM, and the pressure is positively changed. As a result, the pressure in the seal chamber 9 is 0 to 15 P due to the chamber pressure difference.
It varied in the range of a. Further, the exhaust line 1 is attached to the upper lid 5.
1 was installed and the pressure measuring device 13 attached to the furnace core tube 2 tried to control so that the chamber pressure difference was −10 Pa, but the furnace pressure varied from −15 to −5 Pa.

【0027】上記製造作業中、装置の上蓋5の上部へ塩
素ガス検知器を設置し、塩素ガスの漏れ量を確認した。
その結果、ガラス母材の作製期間を通して、塩素ガス検
知器により塩素漏れ量が0.01〜0.025ppmに
なっていることを確認した。ままた、得られたガラス母
材の塩素添加量(Δ+)を測定した結果、長手方向でΔ
+のばらつきは0.02%であった。この製造作業を続
けた結果、本装置近傍のガラス微粒子堆積装置、焼結装
置で作製されたガラス母材中に存在する巾1mm以上の
大きさの異物及び気泡の数は、本装置での製造開始前は
平均で0個であったものが、製造開始から2ヶ月後には
平均1個に増加した。
During the above-mentioned manufacturing work, a chlorine gas detector was installed on the upper lid 5 of the apparatus, and the leak amount of chlorine gas was confirmed.
As a result, it was confirmed by the chlorine gas detector that the chlorine leakage amount was 0.01 to 0.025 ppm throughout the production period of the glass base material. Moreover, the chlorine addition amount (Δ +) of the obtained glass base material was measured, and as a result, Δ
The variation of + was 0.02%. As a result of continuing this manufacturing work, the number of foreign particles and bubbles having a width of 1 mm or more present in the glass base material produced by the glass particle deposition apparatus and the sintering apparatus near this apparatus was determined by this apparatus. Before the start, the number was 0 on average, but after 2 months from the start of production, the number increased to 1 on average.

【0028】(実施例4)シール室9の構造を、支持棒
10の長手方向の長さが500mmでシール室9の内径
と支持棒外径との差が30mmとなるようにした他は実
施例2と同様にしてガラス母材の製造を行った。すなわ
ち、製造期間を通してシール室9内へはHeを1〜2S
LM供給することで、シール室9内圧力を室圧差で0P
aになるよう制御した。また、上蓋5には排気ライン1
1を設置し、炉心管2に取り付けられた圧力測定器13
において室圧差で0Paになるように管理した。
(Embodiment 4) The construction of the seal chamber 9 is carried out except that the length of the support rod 10 in the longitudinal direction is 500 mm and the difference between the inner diameter of the seal chamber 9 and the support rod outer diameter is 30 mm. A glass base material was manufactured in the same manner as in Example 2. That is, He is allowed to enter the sealing chamber 9 for 1 to 2 S throughout the manufacturing period.
By supplying LM, the pressure in the seal chamber 9 is 0P due to the chamber pressure difference.
It was controlled to be a. Further, the exhaust line 1 is attached to the upper lid 5.
1 is installed and the pressure measuring device 13 is attached to the core tube 2.
It was controlled so that the room pressure difference was 0 Pa.

【0029】上記製造作業中、装置の上蓋5の上部へ塩
素ガス検知器を設置し、塩素ガスの漏れ量を確認した。
その結果、ガラス母材の作製期間を通して、塩素ガス検
知器により塩素漏れ量が0.04〜0.06ppmにな
っていることを確認した。ままた、得られたガラス母材
の塩素添加量(Δ+)を測定した結果、長手方向でΔ+
のばらつきは0.005%となった。この製造作業を続
けた結果、本装置近傍のガラス微粒子堆積装置、焼結装
置で作製されたガラス母材中に存在する巾1mm以上の
大きさの異物及び気泡の数は、本装置での製造開始前は
平均で0個であったものが、製造開始から2ヶ月後には
平均5個に増加した。
During the above manufacturing operation, a chlorine gas detector was installed above the upper lid 5 of the apparatus to check the amount of chlorine gas leaked.
As a result, it was confirmed by the chlorine gas detector that the chlorine leakage amount was 0.04 to 0.06 ppm throughout the production period of the glass base material. Moreover, the chlorine addition amount (Δ +) of the obtained glass base material was measured, and as a result, Δ + was measured in the longitudinal direction.
Variation was 0.005%. As a result of continuing this manufacturing work, the number of foreign particles and bubbles having a width of 1 mm or more present in the glass base material produced by the glass particle deposition apparatus and the sintering apparatus near this apparatus was determined by this apparatus. Before the start, the number was 0 on average, but two months after the start of production, the number increased to 5 on average.

【0030】(実施例5)シール室9の構造を、支持棒
10の長手方向の長さが20mmでシール室9の内径と
支持棒外径との差が30mmとなるようにした他は実施
例2と同様にしてガラス母材の製造を行った。すなわ
ち、製造期間を通してシール室9内へはHeを1〜2S
LM供給することで、シール室9内圧力を室圧差で0P
aになるよう制御した。また、上蓋5には排気ライン1
1を設置し、炉心管2に取り付けられた圧力測定器13
において室圧差で0Paになるように管理した。
(Embodiment 5) The construction of the seal chamber 9 is carried out except that the length of the support rod 10 in the longitudinal direction is 20 mm and the difference between the inner diameter of the seal chamber 9 and the support rod outer diameter is 30 mm. A glass base material was manufactured in the same manner as in Example 2. That is, He is allowed to enter the sealing chamber 9 for 1 to 2 S throughout the manufacturing period.
By supplying LM, the pressure in the seal chamber 9 is 0P due to the chamber pressure difference.
It was controlled to be a. Further, the exhaust line 1 is attached to the upper lid 5.
1 is installed and the pressure measuring device 13 is attached to the core tube 2.
It was controlled so that the room pressure difference was 0 Pa.

【0031】上記製造作業中、装置の上蓋5の上部へ塩
素ガス検知器を設置し、塩素ガスの漏れ量を確認した。
その結果、ガラス母材の作製期間を通して、塩素ガス検
知器により塩素漏れ量が0.07〜0.09ppmにな
っていることを確認した。ままた、得られたガラス母材
の塩素添加量(Δ+)を測定した結果、長手方向でΔ+
のばらつきは0.005%となった。この製造作業を続
けた結果、本装置近傍のガラス微粒子堆積装置、焼結装
置で作製されたガラス母材中に存在する巾1mm以上の
大きさの異物及び気泡の数は、本装置での製造開始前は
平均で0個であったものが、製造開始から2ヶ月後には
平均9個に増加した。
During the above manufacturing operation, a chlorine gas detector was installed on the upper lid 5 of the apparatus, and the leak amount of chlorine gas was confirmed.
As a result, it was confirmed by the chlorine gas detector that the chlorine leakage amount was 0.07 to 0.09 ppm throughout the production period of the glass base material. Moreover, the chlorine addition amount (Δ +) of the obtained glass base material was measured, and as a result, Δ + was measured in the longitudinal direction.
Variation was 0.005%. As a result of continuing this manufacturing work, the number of foreign particles and bubbles having a width of 1 mm or more present in the glass base material produced by the glass particle deposition apparatus and the sintering apparatus near this apparatus was determined by this apparatus. The number was 0 on average before the start, but increased to 9 on average 2 months after the start of production.

【0032】(比較例1)実施例1で使用したものと同
じガラス微粒子堆積体及びガラス母材製造装置を使用
し、シール管9を設置せず、炉心管2内の圧力の管理条
件を変えた他は、実施例1と同様にしてガラス母材の製
造を行った。すなわち、上蓋5には排気ライン11を設
置し、炉心管2に取り付けられた圧力測定器13におい
て室圧差で−20Paになるように管理した。
(Comparative Example 1) The same glass particle deposit and glass base material manufacturing apparatus as those used in Example 1 were used, the seal tube 9 was not installed, and the control conditions of the pressure in the core tube 2 were changed. A glass base material was manufactured in the same manner as in Example 1 except that. That is, the exhaust line 11 was installed in the upper lid 5, and the pressure measuring device 13 attached to the core tube 2 was controlled so that the chamber pressure difference was −20 Pa.

【0033】上記製造作業中、装置の上蓋5の上部へ塩
素ガス検知器を設置し、塩素ガスの漏れ量を確認した。
その結果、ガラス母材の作製期間を通して、塩素ガス検
知器により塩素漏れ量が0.2〜0.3ppmになって
いることを確認した。この製造作業を続けた結果、本装
置近傍のガラス微粒子堆積装置、焼結装置で作製された
ガラス母材中に存在する巾1mm以上の大きさの異物及
び気泡の数は、本装置での製造開始前は平均で0個であ
ったものが、製造開始から2ヶ月後には平均25個に増
加した。
During the above manufacturing operation, a chlorine gas detector was installed on the upper part of the upper lid 5 of the apparatus, and the leak amount of chlorine gas was confirmed.
As a result, it was confirmed by the chlorine gas detector that the chlorine leakage amount was 0.2 to 0.3 ppm throughout the production period of the glass base material. As a result of continuing this manufacturing work, the number of foreign particles and bubbles having a width of 1 mm or more present in the glass base material produced by the glass particle deposition apparatus and the sintering apparatus near this apparatus was determined by this apparatus. Before the start, the number was 0 on average, but after 2 months from the start of production, the number increased to 25 on average.

【0034】[0034]

【発明の効果】本発明によれば、ガラス微粒子堆積体を
加熱炉中で加熱処理して脱水及び透明ガラス化し、ガラ
ス母材を製造する際に、炉心管から腐食性のガスが室内
に漏れ出して環境を汚染し、同室内に設置されたガラス
微粒子堆積体製造装置など各装置の金属部品の腐食を抑
制することができる。また、同室内にガラス微粒子堆積
体製造装置が設置されている場合であっても、室内雰囲
気中の金属系ダストが堆積装置内に混入し、ガラス微粒
子堆積体の品質を低下させるのを防止することができ
る。
According to the present invention, when a glass particulate deposit is heat-treated in a heating furnace for dehydration and transparent vitrification to produce a glass preform, corrosive gas leaks from the furnace core tube into the room. It can be taken out to pollute the environment and suppress the corrosion of metal parts of each apparatus such as the apparatus for manufacturing glass particle deposits installed in the same room. Further, even when the apparatus for producing glass particle deposits is installed in the same room, it is possible to prevent deterioration of the quality of the glass particle deposits due to metal-based dust in the indoor atmosphere being mixed into the deposition apparatus. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るガラス母材製造装置の1実施態様
を示す概略説明図。
FIG. 1 is a schematic explanatory view showing one embodiment of a glass base material manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 母材 2 炉心管 3 ヒーター 4 炉体
5 上蓋 6 下蓋 7 支持棒装入口 8 昇降装置 9
シール室 10 支持棒 11 排気ライン 12 放射温度
計 13 圧力測定器 14 圧力測定器 15 制御
装置 16 不活性ガス導入ポート 17 MFC
1 Base Material 2 Core Tube 3 Heater 4 Furnace Body 5 Upper Lid 6 Lower Lid 7 Support Rod Loading Port 8 Lifting Device 9
Sealing chamber 10 Support rod 11 Exhaust line 12 Radiation thermometer 13 Pressure measuring instrument 14 Pressure measuring instrument 15 Control device 16 Inert gas introduction port 17 MFC

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 昇降装置に接続する支持棒を挿入する挿
入口が設けられた上蓋と、ガラス微粒子堆積体を収納し
内部で加熱処理する炉心管と、該炉心管の周囲を囲むヒ
ーターと、該ヒーターを覆う炉体とを備えたガラス母材
の製造装置を使用し、前記支持棒により支持されたガラ
ス微粒子堆積体を軸回りに回転させながら上下方向に移
動させて加熱し、脱水及び透明ガラス化するガラス母材
の製造方法において、前記上蓋の上面に前記支持棒及び
支持棒挿入口を覆う形で管状のシール室を設け、該シー
ル室内に該シール室内の圧力が炉心管内圧力よりも高い
所定の圧力となるように不活性ガスを導入しながら脱水
及び透明ガラス化を行うことを特徴とするガラス母材の
製造方法。
1. An upper lid provided with an insertion opening for inserting a support rod connected to an elevating device, a furnace core tube for accommodating a glass particulate deposit and heat-treating the inside, and a heater surrounding the furnace tube. Using a glass base material manufacturing apparatus equipped with a furnace body that covers the heater, the glass particulate deposits supported by the support rods are vertically moved while being rotated about an axis to be heated, dehydrated and transparent. In the method for producing a glass base material to be vitrified, a tubular seal chamber is provided on the upper surface of the upper lid so as to cover the support rod and the support rod insertion port, and the pressure in the seal chamber is higher than the pressure in the core tube. A method for producing a glass base material, comprising performing dehydration and transparent vitrification while introducing an inert gas so as to have a high predetermined pressure.
【請求項2】 前記シール室の支持棒長手方向の長さが
50mm以上であることを特徴とする請求項1記載のガ
ラス母材の製造方法。
2. The method for producing a glass preform according to claim 1, wherein the length of the seal chamber in the longitudinal direction of the support rod is 50 mm or more.
【請求項3】 前記管状のシール室の内径と支持棒外径
との差が20mm以下であることを特徴とする請求項1
又は2記載のガラス母材の製造方法。
3. The difference between the inner diameter of the tubular seal chamber and the outer diameter of the support rod is 20 mm or less.
Or the method for producing a glass base material according to 2.
【請求項4】 昇降装置に接続する支持棒を挿入する挿
入口が設けられた上蓋と、ガラス微粒子堆積体を収納し
内部で加熱処理する炉心管と、該炉心管の周囲を囲むヒ
ーターと、該ヒーターを覆う炉体とを備え、前記支持棒
により支持されたガラス微粒子堆積体を軸回りに回転さ
せながら上下方向に移動させて加熱し、脱水及び透明ガ
ラス化するガラス母材の製造装置において、前記上蓋の
上面に前記支持棒及び支持棒挿入口を覆う形で、不活性
ガスの導入量調整により内部の圧力を炉心管内圧力より
も高い所定の圧力に調整可能な管状のシール室が設置さ
れていることを特徴とするガラス母材の製造装置。
4. An upper lid provided with an insertion opening for inserting a support rod connected to a lifting device, a furnace core tube for accommodating a glass particulate deposit and heat-treating the inside, and a heater surrounding the furnace core tube. A furnace for covering the heater, comprising: a glass base material manufacturing apparatus for dehydrating and transparent vitrifying by heating and vertically moving a glass particle deposit supported by the support rod while rotating it about an axis. A tubular seal chamber is installed on the upper surface of the upper lid so as to cover the support rod and the support rod insertion port, and the internal pressure can be adjusted to a predetermined pressure higher than the pressure in the core tube by adjusting the amount of inert gas introduced. An apparatus for manufacturing a glass base material, which is characterized in that
【請求項5】 前記シール室内の圧力を測定する測定器
と、該測定器の測定値に基づいて不活性ガスの導入量を
制御する制御装置が設けられていることを特徴とする請
求項4記載のガラス母材の製造装置。
5. A measuring device for measuring the pressure in the seal chamber, and a control device for controlling the amount of the inert gas introduced based on the measurement value of the measuring device are provided. The glass base material manufacturing apparatus described.
【請求項6】 前記シール室の支持棒長手方向の長さが
50mm以上であることを特徴とする請求項4又は5記
載のガラス母材の製造装置。
6. The glass base material manufacturing apparatus according to claim 4, wherein the length of the sealing chamber in the longitudinal direction of the support rod is 50 mm or more.
【請求項7】 前記管状のシール室の内径と支持棒外径
との差が20mm以下であることを特徴とする請求項4
〜6のいずれか1項に記載のガラス母材の製造装置。
7. The difference between the inner diameter of the tubular seal chamber and the outer diameter of the support rod is 20 mm or less.
An apparatus for manufacturing a glass base material according to any one of items 1 to 6.
JP2002013941A 2002-01-23 2002-01-23 Method and apparatus for manufacturing glass preform Pending JP2003212557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013941A JP2003212557A (en) 2002-01-23 2002-01-23 Method and apparatus for manufacturing glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013941A JP2003212557A (en) 2002-01-23 2002-01-23 Method and apparatus for manufacturing glass preform

Publications (1)

Publication Number Publication Date
JP2003212557A true JP2003212557A (en) 2003-07-30

Family

ID=27650772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013941A Pending JP2003212557A (en) 2002-01-23 2002-01-23 Method and apparatus for manufacturing glass preform

Country Status (1)

Country Link
JP (1) JP2003212557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176925A (en) * 2013-05-21 2014-12-03 信越化学工业株式会社 Apparatus for sintering a glass preform for an optical fiber and sintering method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176925A (en) * 2013-05-21 2014-12-03 信越化学工业株式会社 Apparatus for sintering a glass preform for an optical fiber and sintering method thereof

Similar Documents

Publication Publication Date Title
US7946132B2 (en) Method for manufacturing optical fiber preform and optical fiber preform apparatus
US10807901B2 (en) Method for producing an optical blank from synthetic quartz glass
US20070271964A1 (en) Method and Device for Producing a Hollow Quartz-Glass Cylinder
RU2187475C2 (en) Apparatus for manufacture of optical fiber blank and method for shrinking and joining of deposited pipe
JP3949425B2 (en) Heat treatment apparatus and method for optical fiber preform
EP3601175B1 (en) Method and apparatus for drying and consolidating a preform for optical fibres
JP5603024B2 (en) Optical fiber preform manufacturing method
JP4737031B2 (en) Glass base material manufacturing method and manufacturing apparatus
JP2003212556A (en) Method and apparatus for manufacturing glass preform
JP2003212557A (en) Method and apparatus for manufacturing glass preform
US20230121772A1 (en) Optical fibers with high dopant concentrations and seed-free interfaces and methods of making the same
KR100587996B1 (en) Apparatus for sintering a porous glass base material and a method therefor
JP4062407B2 (en) Glass base material manufacturing method and manufacturing apparatus
JP4456054B2 (en) Method for producing fluorine-added quartz glass
JP2002104830A (en) Method of manufacturing glass preform
JP2007197228A (en) Method for producing glass
JP2003226541A (en) Method and apparatus for manufacturing glass preform
EP3971145B1 (en) Manufacturing method of glass base material for optical fiber
JP7024489B2 (en) Manufacturing method of base material for optical fiber
US8011209B2 (en) Method of making glass
US20240140853A1 (en) Manufacturing method of glass base material for optical fiber
JP7164384B2 (en) Manufacturing method of glass body for optical fiber
KR20230010578A (en) Method for manufacturing glass preform for optical fiber
JPH0524854A (en) Production of glass article
JP2003238188A (en) Apparatus for producing optical fiber preform