JP2003212547A - Iron oxide powder - Google Patents
Iron oxide powderInfo
- Publication number
- JP2003212547A JP2003212547A JP2002015169A JP2002015169A JP2003212547A JP 2003212547 A JP2003212547 A JP 2003212547A JP 2002015169 A JP2002015169 A JP 2002015169A JP 2002015169 A JP2002015169 A JP 2002015169A JP 2003212547 A JP2003212547 A JP 2003212547A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- iron oxide
- nicuzn
- oxide powder
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、携帯電話,パソコ
ン,ビデオカメラ等の電子部品として使用されるチップ
インダクタのフェライト層を形成するNiCuZn系フェライ
ト粉の原料となる酸化鉄粉に関する。
【0002】
【従来の技術】チップインダクタは、磁性体であるフェ
ライト層と導体である銀のパターンとを積層し、さらに
焼結して製造される。チップインダクタのフェライト層
を形成するフェライト粉としては、銀の融点(すなわち
961℃)より低い 900℃以下で焼結可能なNiCuZn系フェ
ライト粉が用いられる。 特に、 900℃以下の低温で焼結
を促進させるために、比表面積が6〜10m2 /g程度
(粒径 0.1〜0.4 μm程度)の微細なNiCuZn系フェライ
ト粉が広く用いられている。
【0003】NiCuZn系フェライト粉は、酸化鉄粉,NiO
粉,ZnO粉,CuO粉を混合した原料混合粉を 700〜900
℃で仮焼し、得られたNiCuZn系フェライトの粗い粉体
(以下、仮焼粉という)をさらに粉砕して製造する。仮
焼粉を粉砕するにあたって、長時間(たとえば十数時
間)の粉砕を行なうと、仮焼粉の粒子が破壊されて、表
面に凹凸を有するNiCuZn系フェライト粉となる。表面に
凹凸を有するフェライト粉に溶媒を加え、ペーストとす
ると、流動性が低下するため、チップインダクタのフェ
ライト層の形成が困難となる。そこで、仮焼粉の粒子の
破壊を防止するために、短時間(たとえば数時間)で粉
砕を行なう。粉砕を短時間で終了すると、不純物の混入
を防止するという効果も得られる。
【0004】原料混合粉に混合される酸化鉄粉,NiO
粉,ZnO粉,CuO粉のうち、酸化鉄粉の混合比率が最も
大きく、原料混合粉の約70質量%を占める。そのため酸
化鉄の純度や粒度が、NiCuZn系フェライト粉の粒度分布
や粒子形状に多大な影響を及ぼす。たとえば酸化鉄粉に
低融点の不純物が混入すると、原料混合粉を仮焼する過
程で液相が生成し、粗大な仮焼粉(たとえば粒径1μm
程度)が生じる。仮焼粉の粉砕は、前記した通り、短時
間で行なうので、この粗大な仮焼粉は粉砕されず、粗大
なNiCuZn系フェライト粉(たとえば粒径1μm程度)と
なって残留する。
【0005】また粗大粒子が混入した酸化鉄粉を使用す
ると、原料混合粉を仮焼した後も粗大な仮焼粉となって
残留する。これは、仮焼では、酸化鉄粉に他の成分が溶
け込んでフェライト化反応が進行するので、酸化鉄粉の
形状はほとんど変化しないからである。仮焼粉の粉砕は
短時間で行なうので、この粗大な仮焼粉(たとえば粒径
1μm程度)は粉砕されず、粗大なNiCuZn系フェライト
粉(たとえば粒径1μm程度)となって残留する。
【0006】これらの粗大なNiCuZn系フェライト粉は、
チップインダクタの焼結(すなわち低温焼結)の促進を
阻害し、得られた焼結体の密度は低くなる。このため、
比抵抗や初透磁率が低下し、 チップインダクタの特性が
損なわれる。このようにチップインダクタで用いるNiCu
Zn系フェライト粉を製造するにあたって、原料となる酸
化鉄粉の純度や粒度の選定は極めて重要である。
【0007】
【発明が解決しようとする課題】本発明は上記のような
問題を解決し、粗大粒子を含まないNiCuZn系フェライト
粉を得るための原料として最適な酸化鉄粉を提供するこ
とを目的とし、詳しくは、仮焼粉を短時間で粉砕して
も、粗大粒子を含まず、 かつ比表面積が6〜10m2/g
のNiCuZn系フェライト粉を製造できる酸化鉄粉を提供す
ることを目的とする。
【0008】
【課題を解決するための手段】通常、NiCuZn系フェライ
ト粉の原料となる酸化鉄粉は、鋼材の酸洗設備で発生す
る廃酸から製造するので、不可避的に 0.2質量%程度の
Mnを含有する。一方、NiCuZn系フェライト粉にMnOを
0.3質量%程度添加すると、電気抵抗を高める効果があ
ることが知られている。
【0009】そこで酸化鉄粉に不可避的に混入するMnO
の含有量を維持し、かつ粗大な粒子を含まず、微細なNi
CuZn系フェライト粉(比表面積6〜10m2 /g程度)を
得るための条件を検討した。その結果、酸化鉄粉のMnO
含有量が 600〜5000質量ppmの範囲内で、かつB2 O3
含有量がB換算で8質量ppm 以下であれば、粗大な粒子
を含まず、 微細なNiCuZn系フェライト粉が得られること
が分かった。
【0010】すなわち本発明は、チップインダクタ用Ni
CuZn系フェライト粉の原料として用いる酸化鉄粉であっ
て、B2 O3 の含有量がB換算で8質量ppm 以下、MnO
の含有量が 600〜5000質量ppm であり、かつ比表面積が
6〜60m2 /gである酸化鉄粉である。
【0011】
【発明の実施の形態】本発明では、酸化鉄粉の製造方法
は特定の技術に限定しない。たとえば塩化第1鉄溶液お
よびアルカリ溶液を混合し、さらに塩化第2鉄を添加し
た後、所定の温度とpHに調整(すなわち中和)するこ
とによって、 Fe3O4 粉が得られる。これを脱塩,乾
燥,解砕して Fe3O4 粉とし、さらに 150〜600 ℃で加
熱酸化してγ− Fe2O3 単相,α− Fe2O3 単相または
γ− Fe2O3 とα− Fe2O3 の混合相よりなる酸化鉄粉
を得ることができる。
【0012】その他にも酸化鉄粉を得る方法として、α
−FeOOHを合成し、さらに加熱酸化する方法、湿式で
α− Fe2O3 を合成する方法、あるいは噴霧焙焼法等の
従来から知られている技術を使用できる。
このようにして得られた酸化鉄粉を必要に応じて分級し
て、比表面積が6〜60m2 /gの酸化鉄粉を選別する。
酸化鉄粉の比表面積が6m2 /g未満では、NiCuZn系フ
ェライト粉も6m2 /g未満の粒子が多量に発生する。
また原料混合粉を仮焼する昇温段階で局所的に粒成長が
起こり、粗大な仮焼粉やNiCuZn系フェライト粉が生じ
る。その結果、比表面積が6〜10m2 /gのNiCuZn系フ
ェライト粉を製造するのが困難になる。
【0013】一方、酸化鉄粉の比表面積が60m2 /gを
超えると、凝集しやすくなり、粗大な仮焼粉が生じる。
その結果、そのNiCuZn系フェライト粉を用いて製造した
チップインダクタの特性を損なう原因になる。したがっ
て、粗大な粒子を含まず、 しかも微細なNiCuZn系フェラ
イト粉(比表面積6〜10m2 /g)を得るためには、酸
化鉄粉の比表面積は6〜60m2 /gの範囲内を満足する
必要がある。なお酸化鉄粉の比表面積は、好ましくは10
〜40m2 /gである。
【0014】また、酸化鉄粉のMnO含有量が 600質量pp
m 未満では、その酸化鉄を混合した原料混合粉から得ら
れたNiCuZn系フェライト粉を用いて製造したチップイン
ダクタのフェライト層の電気抵抗を高める効果が期待で
きない。一方、MnO含有量が5000質量ppm を超えると、
その酸化鉄を混合した原料混合粉から得られたNiCuZn系
フェライト粉を用いて製造したチップインダクタのフェ
ライト層の粒界にMn酸化物が析出して、磁気特性が損な
われる。したがって、酸化鉄粉のMnO含有量は600〜500
0質量ppm の範囲内を満足する必要がある。なお、好ま
しくは1000〜3500質量ppm である。
【0015】酸化鉄粉のB2 O3 含有量がB換算で8質
量ppm を超えると、その酸化鉄を混合した原料混合粉か
ら得られたNiCuZn系フェライト粉の粒度が不均一にな
り、チップインダクタのフェライト層の磁気特性が損な
われる。したがって、酸化鉄粉のB2 O3 含有量はB換
算で8質量ppm 以下とする。なお、好ましくは1〜5質
量ppm である。
【0016】本発明の酸化鉄粉を用いた原料混合粉の仮
焼を低温で行なうことによって、粗大な粒子を含まない
NiCuZn系フェライト粉が得られる理由は、未だ明確では
ないが、以下のような機構によるものと考えられる。す
なわち、B2 O3 は 450〜600 ℃程度の温度域に融点を
持つので、通常の仮焼温度(約 700〜900 ℃)で仮焼を
行なう場合には、昇温過程で液相を生じ、仮焼の進行中
に局所的に粒成長が起こり、その結果、粗大なNiCuZn系
フェライト粉が生じる。 しかし、MnOとB2 O3 が共存
すると 750℃程度から液相を生じる(Phase Diagrams
for Ceramists (1964), Fig.276 )。その結果、低温
での仮焼工程では局所的な粒成長が抑制され、粗大なNi
CuZn系フェライト粉の発生を防止できる。
【0017】MnZnフェライトの微細構造や磁気特性に及
ぼす原料中のBの影響については、これまでいくつかの
検討がなされているが、本発明とは組成および仮焼温度
が異なっている。たとえば文献「フェライト」(平賀
ら,丸善,1986)の47頁には「B2 O3 は微量で粒成長
を著しく促進」 ,92頁には「Bは結晶組織を均一にし
て、高透磁率の発現を阻害」する旨が記載され、50ppm
以下にしておかなければならないと記載されている。こ
のようにMnZnフェライトに関しては、B含有量を低減す
ることで良好な微細組織および磁気特性が得られること
が示されている。 しかし文献に記載されている通り、こ
れらは焼成温度1200〜1400℃の高温域でMnZnフェライト
を焼成した場合に有効な方法であり、 750℃以下の低温
で仮焼し、かつ 900℃以下の低温で焼成することを前提
としたチップインダクタ用NiCuZn系フェライト粉の製造
条件とは異なるものである。
【0018】また、特開平3-163802号公報には、Mn−Zn
系フェライトにBを微量添加することによって、鉄損を
低減する技術が開示されている。しかし特開平3-163802
号公報には、原料である酸化鉄粉中に所定量のBとMnO
を含有させる旨の記載はない。特開2000-277318 号公報
には、MnZn系フェライトにBを微量添加することによっ
て、初透磁率を改善する技術が開示されている。しかし
特開2000-277318 号公報には、粗大なNiCuZn系フェライ
ト粉の生成を防止するために、原料である酸化鉄粉中に
所定量のBとMnOを含有させる旨の記載はない。
【0019】以上のように本発明の酸化鉄粉を用いれ
ば、他の原料(すなわちNiO粉,ZnO粉,CuO粉)と混
合した原料混合粉を 750℃以下で仮焼した後、仮焼粉を
粉砕することによって、フェライト化率が90%以上、か
つ微細で均一なNiCuZn系フェライト粉が得られる。しか
もこの粉砕は短時間で、チップインダクタに用いるに好
適な比表面積6〜10m2 /gのNiCuZn系フェライト粉が
得られる。 このNiCuZn系フェライト粉を用いて製造した
チップインダクタのフェライト層は、 900℃程度の焼結
温度で 5.1g/cm3 以上(真密度の95%以上)の焼結密
度が得られる。
【0020】なお本発明の酸化鉄粉は、通常の鋼材の酸
洗廃酸に不可避的に含まれるSiO2,Ca,Al,Cr,Ni,M
g,Cu,Ti等の金属成分に由来する不純物および酸化鉄
生成後にも少量残留する0.15質量%以下のClを含有して
もよい。
【0021】
【実施例】(実施例1)B含有量の高い鋼板を塩酸に溶
かし、Bを含有する塩化第一鉄溶液を作製した。次に試
薬の塩化第一鉄溶液,塩化第二鉄溶液および上記のBを
含有する塩化第一鉄溶液の混合溶液を苛性ソーダで中和
し、温度85℃,pH 8.5±0.2 に保持しながら、空気を
通気して酸化を行ない、 Fe3O4 粒子を合成した。反応
が終了した後、脱塩,ろ過,乾燥,解砕して Fe3O4 乾
燥粉を得た。引き続き、 480℃で加熱酸化してBを含有
するα− Fe2O3 粒子を得た。 Bを含有する塩化第一鉄
溶液と試薬の塩化第一鉄溶液の比率を変えることによっ
て表1に示すB含有量の異なるα− Fe2O3 粒子を得
た。各試料のMnO含有量は1000質量ppm ,比表面積は15
m2 /gであった。
【0022】
【表1】
【0023】発明例1〜3は、B含有量が本発明の範囲
を満足する例であり、比較例1は、B含有量が本発明の
範囲を外れる例である。表1に示した各酸化鉄粉とNiO
粉,ZnO粉,CuO粉を、混合比率が Fe2O3 :NiO:Zn
O:CuO=49:9:30:12( mol%)となるように秤量
し、得られた原料混合粉を所定の温度で2時間仮焼し
た。仮焼が終了した後、X線解析で仮焼粉の相構成を測
定し、スピネル相のピーク強度比を求めた。次に仮焼温
度を変えて、2時間仮焼し、スピネル相のピーク強度比
を求め、 仮焼温度とスピネル相のピーク強度比の関係を
求めた。この関係からスピネル相のピーク強度比が90%
となる温度をフェライト化温度とした。このフェライト
化温度で原料混合粉を2時間仮焼した後、仮焼粉を湿式
ボールミルで2時間粉砕し、乾燥,整粒してNiCuZn系フ
ェライト粉を得た。 次にNiCuZn系フェライト粉にPVA
を添加して造粒し、リングを成形して大気中 900℃で3
時間焼結した。得られた焼結体の寸法,重量を測定し、
焼結密度を算出した。その結果は表1に示す通りであ
る。
【0024】なお表1において、酸化鉄粉のB含有量,
MnO含有量,比表面積は、それぞれICP,けい光X
線,BET法で測定した。なお原料混合粉を仮焼し、得
られた仮焼粉を粉砕して得られるNiCuZn系フェライト粉
の粗大粒子はSEM(いわゆる走査型電子顕微鏡)観察
で確認することができる。つまり 10000倍程度の倍率で
観察すると、粗大粒子を含むNiCuZn系フェライト粉で
は、周囲の粒子(粒径0.05〜0.4 μm程度)より明らか
に粗い粒子(粒径1μm程度)が1〜3視野に1個程度
観察される。ランダムに10視野SEM観察し、粗大粒子
がないものを○,1〜3視野に1個程度存在するものを
△,1視野に1個以上存在するものを×とした。
【0025】表1から明らかなように、発明例1〜3で
は、仮焼粉に粗大粒は含まれず、比表面積が6〜10m2
/gの粒度分布の均一なNiCuZn系フェライト粉が得られ
た。さらに、この発明例1〜3のNiCuZn系フェライト粉
を 900℃で焼結すると、 5.1g/cm3 以上の焼結密度が
得られた。またB含有量が多いもの(比較例1)は、仮
焼粉,NiCuZn系フェライト粉中に粗大粒子が存在する。
このため、焼結体の密度が低く、特性も悪い。
【0026】(実施例2)B含有量の高い鋼板を塩酸に
溶かし、Bを含有する塩化第一鉄溶液を作製した。次に
試薬の塩化第一鉄溶液,塩化第二鉄溶液,上記のBを含
有する塩化第一鉄溶液および塩化マンガンの混合溶液を
苛性ソーダで中和し、温度75℃,pH 9.8±0.2 に保持
しながら、空気を通気して酸化を行ない、 Fe3O4 粒子
を合成した。反応が終了した後、脱塩,ろ過,乾燥,解
砕して Fe3O4 乾燥粉を得た。引き続き、 500℃で加熱
酸化してBおよびMnOを含有するα− Fe2O3 粒子を得
た。Bを含有する塩化第一鉄溶液と試薬の塩化第一鉄溶
液の比率を変えることによって表2に示すB含有量およ
びMnO含有量の異なるα− Fe2O3 粒子を得た。
【0027】発明例4〜7は、MnO含有量が本発明の範
囲を満足する例であり、比較例2〜4は、MnO含有量が
本発明の範囲を外れる例である。
【0028】
【表2】【0029】原料混合粉を仮焼してNiCuZn系フェライト
粉を得る工程は実施例1と同じであるから説明を省略す
る。
表2から明らかなように、発明例4〜7では、仮焼粉に
粗大粒は含まれず、比表面積が6〜10m2 /gの粒度分
布の均一なNiCuZn系フェライト粉が得られた。さらに、
この発明例4〜7のNiCuZn系フェライト粉を 900℃で焼
結すると、 5.1g/cm3 以上の焼結密度が得られた。
【0030】MnOが少ない例(比較例2)は、粗大粒子
は存在しないが、比抵抗が低い。MnOが多い例(比較例
3),MnOとOがともに多い例(比較例4)は、粗大粒
子が存在し、焼結密度も低く、 特性も悪い。
(実施例3)表2に示した発明例5と同じ条件で得た F
e3O4 乾燥粉を 180〜600 ℃で加熱酸化して表3に示す
比表面積を有するα− Fe2O3 粒子,γ− Fe2O3 粒子
あるいはα− Fe2O3 粒子とγ− Fe2O3 粒子との混合
物からなる酸化鉄粉を得た。B含有量,MnO含有量は、
発明例5と同等のB:5質量ppm ,MnO含有量:1490質
量ppm であった。
【0031】この酸化鉄粉とNiO粉,ZnO粉,CuO粉を
混合して、得られた原料混合粉を仮焼した後、NiCuZn系
フェライト粉を得るまでの工程は実施例1と同じである
から説明を省略する。
発明例8〜12は、比表面積が本発明の範囲を満足する例
であり、比較例5,6は、比表面積が本発明の範囲を外
れる例である。
【0032】
【表3】
【0033】表3から明らかなように、発明例8〜12で
は、仮焼後の仮焼粉に粗大粒子は含まれず、比表面積が
6〜10m2 /gの粒度分布の均一なNiCuZn系フェライト
粉が得られた。さらに、この発明例8〜12のNiCuZn系フ
ェライト粉を 900℃で焼結すると、 5.1g/cm3 以上の
焼結密度が得られた。酸化鉄粉の比表面積が本発明の範
囲を外れる場合は、粗大な粒子が存在する。
【0034】
【発明の効果】本発明の酸化鉄粉を混合した原料混合粉
から得られたNiCuZn系フェライト粉を用いてチップイン
ブクタを製造するにあたって、 750℃以下の低温で原料
混合粉の仮焼を行なうことによって粗大な粒子を含まな
い仮焼粉が得られ、その仮焼粉を短時間で粉砕を行なう
ことによって丸みを帯びた比表面積6〜10m2 /gのNi
CuZn系フェライト粉が得られ、さらにこのNiCuZn系フェ
ライト粉を用いて作製したチップインブクタを 900℃以
下で低温焼結を行なうことによって焼結密度が 5.1g/
cm3 以上の高い磁気特性のフェライト層を得ることがで
きる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material of a NiCuZn ferrite powder for forming a ferrite layer of a chip inductor used as an electronic component of a mobile phone, a personal computer, a video camera, and the like. Iron oxide powder. 2. Description of the Related Art A chip inductor is manufactured by laminating a ferrite layer, which is a magnetic material, and a silver pattern, which is a conductor, and then sintering. As the ferrite powder forming the ferrite layer of the chip inductor, the melting point of silver (ie,
A NiCuZn ferrite powder that can be sintered at 900 ° C or lower, which is lower than 961 ° C, is used. Particularly, in order to promote sintering at a low temperature of 900 ° C. or less, fine NiCuZn-based ferrite powder having a specific surface area of about 6 to 10 m 2 / g (particle diameter of about 0.1 to 0.4 μm) is widely used. [0003] NiCuZn-based ferrite powder includes iron oxide powder, NiO
Powder mixed with powder, ZnO powder and CuO powder 700-900
The powder is calcined at ℃, and the obtained coarse powder of NiCuZn ferrite (hereinafter, referred to as calcined powder) is further pulverized to produce. If the calcined powder is pulverized for a long period of time (for example, ten and several hours), the particles of the calcined powder are destroyed to form NiCuZn-based ferrite powder having irregularities on the surface. When a solvent is added to a ferrite powder having irregularities on the surface to form a paste, the fluidity is reduced, so that it is difficult to form a ferrite layer of the chip inductor. Therefore, in order to prevent the particles of the calcined powder from being broken, the pulverization is performed in a short time (for example, several hours). When the pulverization is completed in a short time, an effect of preventing contamination of impurities can be obtained. [0004] Iron oxide powder, NiO mixed with raw material mixed powder
Among the powder, ZnO powder, and CuO powder, the mixing ratio of iron oxide powder is the largest, and accounts for about 70% by mass of the raw material mixed powder. Therefore, the purity and the particle size of the iron oxide greatly affect the particle size distribution and the particle shape of the NiCuZn-based ferrite powder. For example, when low-melting impurities are mixed into iron oxide powder, a liquid phase is formed in the process of calcining the raw material mixed powder, and coarse calcined powder (for example, having a particle size of 1 μm
Degree). Since the calcined powder is pulverized in a short time as described above, the coarse calcined powder is not pulverized but remains as a coarse NiCuZn-based ferrite powder (for example, a particle size of about 1 μm). [0005] When iron oxide powder mixed with coarse particles is used, coarse powder remains after calcining the raw material mixed powder. This is because, in the calcination, the other components dissolve into the iron oxide powder and the ferrite formation reaction proceeds, so that the shape of the iron oxide powder hardly changes. Since the calcined powder is pulverized in a short time, the coarse calcined powder (for example, having a particle size of about 1 μm) is not pulverized, but remains as a coarse NiCuZn-based ferrite powder (for example, having a particle size of about 1 μm). [0006] These coarse NiCuZn ferrite powders
The promotion of sintering (that is, low-temperature sintering) of the chip inductor is hindered, and the density of the obtained sintered body is reduced. For this reason,
The specific resistance and initial permeability decrease, and the characteristics of the chip inductor are impaired. NiCu used in chip inductors
In the production of Zn-based ferrite powder, it is extremely important to select the purity and particle size of the iron oxide powder as a raw material. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an iron oxide powder optimal as a raw material for obtaining a NiCuZn ferrite powder containing no coarse particles. More specifically, even if the calcined powder is pulverized in a short time, it does not contain coarse particles, and has a specific surface area of 6 to 10 m 2 / g.
It is an object of the present invention to provide an iron oxide powder capable of producing a NiCuZn-based ferrite powder. [0008] Usually, iron oxide powder, which is a raw material of NiCuZn-based ferrite powder, is produced from waste acid generated in steel pickling equipment.
Contains Mn. On the other hand, MnO is added to NiCuZn ferrite powder.
It is known that the addition of about 0.3% by mass has the effect of increasing electric resistance. Therefore, MnO inevitably mixed into iron oxide powder
And maintain a high content of fine Ni
The conditions for obtaining CuZn-based ferrite powder (specific surface area of about 6 to 10 m 2 / g) were studied. As a result, the iron oxide powder MnO
When the content is within the range of 600 to 5000 ppm by mass and B 2 O 3
It was found that when the content was 8 ppm by mass or less in terms of B, fine NiCuZn-based ferrite powder was obtained without containing coarse particles. [0010] That is, the present invention relates to Ni for chip inductors.
An iron oxide powder used as a raw material of a CuZn-based ferrite powder, wherein the content of B 2 O 3 is 8 mass ppm or less in terms of B,
Is an iron oxide powder having a content of 600 to 5000 ppm by mass and a specific surface area of 6 to 60 m 2 / g. In the present invention, the method for producing iron oxide powder is not limited to a specific technique. For example, a ferrous chloride solution and an alkaline solution are mixed, and after adding ferric chloride, the mixture is adjusted to a predetermined temperature and pH (ie, neutralized) to obtain Fe 3 O 4 powder. This is desalted, dried and crushed to obtain Fe 3 O 4 powder, which is further oxidized by heating at 150 to 600 ° C. to obtain a γ-Fe 2 O 3 single phase, α-Fe 2 O 3 single phase or γ-Fe 2 An iron oxide powder consisting of a mixed phase of O 3 and α-Fe 2 O 3 can be obtained. As another method for obtaining iron oxide powder, α
A conventionally known technique such as a method of synthesizing -FeOOH and further oxidizing by heating, a method of synthesizing α-Fe 2 O 3 by a wet method, or a spray roasting method can be used. The iron oxide powder thus obtained is classified as necessary, and the iron oxide powder having a specific surface area of 6 to 60 m 2 / g is selected.
If the specific surface area of the iron oxide powder is less than 6 m 2 / g, the NiCuZn-based ferrite powder also generates a large amount of particles less than 6 m 2 / g.
In addition, grain growth occurs locally at the heating stage of calcining the raw material mixed powder, and coarse calcined powder and NiCuZn-based ferrite powder are generated. As a result, it becomes difficult to produce NiCuZn-based ferrite powder having a specific surface area of 6 to 10 m 2 / g. On the other hand, if the specific surface area of the iron oxide powder exceeds 60 m 2 / g, it tends to agglomerate and coarse calcined powder is generated.
As a result, the characteristics of a chip inductor manufactured using the NiCuZn-based ferrite powder may be impaired. Therefore, in order to obtain fine NiCuZn-based ferrite powder (specific surface area: 6 to 10 m 2 / g) which does not contain coarse particles, the specific surface area of iron oxide powder must satisfy the range of 6 to 60 m 2 / g. There is a need to. The specific surface area of the iron oxide powder is preferably 10
4040 m 2 / g. Further, the MnO content of the iron oxide powder is 600 mass pp
If it is less than m 2, the effect of increasing the electric resistance of the ferrite layer of the chip inductor manufactured using the NiCuZn-based ferrite powder obtained from the raw material mixed powder containing the iron oxide cannot be expected. On the other hand, when the MnO content exceeds 5000 mass ppm,
Mn oxide precipitates at the grain boundary of the ferrite layer of the chip inductor manufactured using the NiCuZn-based ferrite powder obtained from the raw material mixed powder into which the iron oxide is mixed, and the magnetic characteristics are impaired. Therefore, the MnO content of the iron oxide powder is 600 to 500
It is necessary to satisfy the range of 0 mass ppm. The content is preferably from 1,000 to 3,500 ppm by mass. If the B 2 O 3 content of the iron oxide powder exceeds 8 ppm by mass in terms of B, the particle size of the NiCuZn-based ferrite powder obtained from the raw material mixture powder containing the iron oxide becomes non-uniform, and the chip The magnetic properties of the ferrite layer of the inductor are impaired. Therefore, the B 2 O 3 content of the iron oxide powder is set to 8 ppm by mass or less in terms of B. Preferably, the content is 1 to 5 ppm by mass. [0016] By calcining the raw material mixed powder using the iron oxide powder of the present invention at a low temperature, coarse particles are not contained.
The reason why the NiCuZn-based ferrite powder is obtained is not yet clear, but it is considered to be due to the following mechanism. That is, since B 2 O 3 has a melting point in the temperature range of about 450 to 600 ° C., when calcination is performed at a normal calcination temperature (about 700 to 900 ° C.), a liquid phase is formed during the heating process. In addition, grain growth occurs locally during the progress of calcination, and as a result, coarse NiCuZn-based ferrite powder is generated. However, when MnO and B 2 O 3 coexist, a liquid phase is generated from about 750 ° C (Phase Diagrams
for Ceramists (1964), Fig. 276). As a result, in the calcining process at a low temperature, local grain growth is suppressed, and coarse Ni
The generation of CuZn-based ferrite powder can be prevented. Some studies have been made on the effects of B in the raw material on the microstructure and magnetic properties of MnZn ferrite, but the composition and calcination temperature are different from those of the present invention. For example, on page 47 of the document “Ferrite” (Hiraga et al., Maruzen, 1986), “B 2 O 3 promotes grain growth remarkably with a trace amount”, and on page 92, “B has a uniform crystal structure and high magnetic permeability. To inhibit the expression of
It states that it must be done below. As described above, it is shown that good microstructure and magnetic properties can be obtained by reducing the B content of MnZn ferrite. However, as described in the literature, these are effective methods when firing MnZn ferrite at a high temperature range of 1200 to 1400 ° C, calcining at a low temperature of 750 ° C or less, and a low temperature of 900 ° C or less. This is different from the manufacturing conditions for the NiCuZn-based ferrite powder for chip inductors, which is supposed to be fired at a temperature. Japanese Patent Application Laid-Open No. 3-163802 discloses Mn-Zn
There is disclosed a technique for reducing iron loss by adding a small amount of B to a system ferrite. However, JP-A-3-163802
Discloses that a predetermined amount of B and MnO is contained in iron oxide powder as a raw material.
Is not described. Japanese Patent Application Laid-Open No. 2000-277318 discloses a technique for improving initial magnetic permeability by adding a small amount of B to MnZn-based ferrite. However, Japanese Patent Application Laid-Open No. 2000-277318 does not disclose that predetermined amounts of B and MnO are contained in iron oxide powder as a raw material in order to prevent the formation of coarse NiCuZn-based ferrite powder. As described above, when the iron oxide powder of the present invention is used, the raw material mixed powder mixed with other raw materials (namely, NiO powder, ZnO powder, CuO powder) is calcined at 750 ° C. or less, and then calcined powder. By milling, a fine and uniform NiCuZn-based ferrite powder having a ferrite conversion ratio of 90% or more can be obtained. In addition, this pulverization can be performed in a short time to obtain a NiCuZn ferrite powder having a specific surface area of 6 to 10 m 2 / g suitable for use in a chip inductor. A ferrite layer of a chip inductor manufactured using this NiCuZn-based ferrite powder has a sintered density of 5.1 g / cm 3 or more (95% or more of the true density) at a sintering temperature of about 900 ° C. [0020] The iron oxide powder of the present invention is composed of SiO 2 , Ca, Al, Cr, Ni, M which is inevitably contained in the pickling waste acid of ordinary steel materials.
It may contain impurities derived from metal components such as g, Cu, Ti and the like, and 0.15% by mass or less of Cl remaining in a small amount even after generation of iron oxide. EXAMPLES Example 1 A steel sheet having a high B content was dissolved in hydrochloric acid to prepare a ferrous chloride solution containing B. Next, a mixed solution of the reagents ferrous chloride solution, ferric chloride solution and the above-mentioned ferrous chloride solution containing B is neutralized with caustic soda, and the temperature is maintained at 85 ° C. and pH 8.5 ± 0.2. Oxidation was performed by passing air through to synthesize Fe 3 O 4 particles. After the reaction was completed, desalting, filtration, drying and crushing were performed to obtain a dry powder of Fe 3 O 4 . Subsequently, it was heated and oxidized at 480 ° C. to obtain B-containing α-Fe 2 O 3 particles. By changing the ratio of the ferrous chloride solution containing B to the ferrous chloride solution of the reagent, α-Fe 2 O 3 particles having different B contents shown in Table 1 were obtained. The MnO content of each sample was 1000 mass ppm and the specific surface area was 15
m 2 / g. [Table 1] Inventive Examples 1 to 3 are examples in which the B content satisfies the range of the present invention, and Comparative Example 1 is an example in which the B content is out of the range of the present invention. Each iron oxide powder and NiO shown in Table 1
Powder, ZnO powder, and CuO powder in a mixing ratio of Fe 2 O 3 : NiO: Zn
It was weighed so that O: CuO = 49: 9: 30: 12 (mol%), and the obtained raw material mixed powder was calcined at a predetermined temperature for 2 hours. After the calcination was completed, the phase composition of the calcined powder was measured by X-ray analysis, and the peak intensity ratio of the spinel phase was determined. Next, the calcination temperature was changed, and calcination was performed for 2 hours, the peak intensity ratio of the spinel phase was determined, and the relationship between the calcination temperature and the peak intensity ratio of the spinel phase was determined. From this relationship, the peak intensity ratio of the spinel phase is 90%.
Is the ferrite temperature. After calcining the raw material mixed powder at this ferrite-forming temperature for 2 hours, the calcined powder was pulverized by a wet ball mill for 2 hours, dried and sized to obtain a NiCuZn-based ferrite powder. Next, PVA was added to the NiCuZn ferrite powder.
Is added and granulated, and a ring is formed.
Sintered for hours. Measure the size and weight of the obtained sintered body,
The sintering density was calculated. The results are as shown in Table 1. In Table 1, the B content of the iron oxide powder,
The MnO content and specific surface area are ICP and fluorescent X, respectively.
Line, measured by the BET method. Note that coarse particles of the NiCuZn-based ferrite powder obtained by calcining the raw material mixed powder and pulverizing the obtained calcined powder can be confirmed by SEM (so-called scanning electron microscope) observation. In other words, when observed at a magnification of about 10,000 times, in the NiCuZn-based ferrite powder containing coarse particles, particles (particle diameter: about 1 μm) that are clearly coarser than surrounding particles (particle diameter: about 0.05 to 0.4 μm) appear in one to three fields. About a few are observed. Observation by SEM at 10 visual fields at random was evaluated as ○ when there were no coarse particles, Δ when about 1 in 1 to 3 visual fields, and × when there was one or more in 1 visual field. As is clear from Table 1, in Invention Examples 1 to 3, the calcined powder did not contain coarse particles and the specific surface area was 6 to 10 m 2.
/ G of NiCuZn-based ferrite powder having a uniform particle size distribution. Further, when the NiCuZn-based ferrite powders of Inventive Examples 1 to 3 were sintered at 900 ° C., a sintered density of 5.1 g / cm 3 or more was obtained. In the case of a high B content (Comparative Example 1), coarse particles are present in the calcined powder and the NiCuZn-based ferrite powder.
For this reason, the density of the sintered body is low and the characteristics are poor. Example 2 A steel sheet having a high B content was dissolved in hydrochloric acid to prepare a ferrous chloride solution containing B. Next, a mixed solution of the reagents ferrous chloride solution, ferric chloride solution, ferrous chloride solution containing B, and manganese chloride is neutralized with caustic soda, and the temperature is maintained at 75 ° C. and pH 9.8 ± 0.2. Then, air was passed to oxidize to synthesize Fe 3 O 4 particles. After the reaction was completed, desalting, filtration, drying and crushing were performed to obtain a dry powder of Fe 3 O 4 . Subsequently, it was heated and oxidized at 500 ° C. to obtain α-Fe 2 O 3 particles containing B and MnO. By changing the ratio of the ferrous chloride solution containing B to the ferrous chloride solution of the reagent, α-Fe 2 O 3 particles having different B contents and MnO contents shown in Table 2 were obtained. Inventive Examples 4 to 7 are examples in which the MnO content satisfies the range of the present invention, and Comparative Examples 2 to 4 are examples in which the MnO content is out of the range of the present invention. [Table 2] The step of calcining the raw material mixed powder to obtain the NiCuZn-based ferrite powder is the same as that of the first embodiment, and therefore the description is omitted. As is evident from Table 2, in Examples 4 to 7, the calcined powder did not contain coarse particles, and NiCuZn-based ferrite powder having a specific surface area of 6 to 10 m 2 / g and a uniform particle size distribution was obtained. further,
When the NiCuZn-based ferrite powders of Inventive Examples 4 to 7 were sintered at 900 ° C., a sintered density of 5.1 g / cm 3 or more was obtained. [0030] In the case of a small amount of MnO (Comparative Example 2), coarse particles do not exist but the specific resistance is low. An example with a large amount of MnO (Comparative Example 3) and an example with a large amount of both MnO and O (Comparative Example 4) have coarse particles, low sintering density, and poor characteristics. (Example 3) F obtained under the same conditions as Inventive Example 5 shown in Table 2
and the e 3 O 4 dry powder was heated oxidized at one hundred eighty to six hundred ° C. with a specific surface area shown in Table 3 α- Fe 2 O 3 particles, and γ- Fe 2 O 3 particles or alpha-Fe 2 O 3 particles .gamma. An iron oxide powder consisting of a mixture with Fe 2 O 3 particles was obtained. B content and MnO content are
B: 5 mass ppm and MnO content: 1490 mass ppm equivalent to Inventive Example 5. The steps from mixing this iron oxide powder with NiO powder, ZnO powder and CuO powder and calcining the obtained raw material mixed powder to obtaining NiCuZn ferrite powder are the same as those in Example 1. Therefore, the description is omitted. Inventive Examples 8 to 12 are examples in which the specific surface area satisfies the range of the present invention, and Comparative Examples 5 and 6 are examples in which the specific surface area is out of the range of the present invention. [Table 3] As is apparent from Table 3, in Invention Examples 8 to 12, the calcined powder after calcination does not contain coarse particles, and has a specific surface area of 6 to 10 m 2 / g and a uniform particle size distribution of NiCuZn-based ferrite. A powder was obtained. Further, when the NiCuZn-based ferrite powders of Inventive Examples 8 to 12 were sintered at 900 ° C., a sintered density of 5.1 g / cm 3 or more was obtained. When the specific surface area of the iron oxide powder is out of the range of the present invention, coarse particles are present. According to the present invention, when manufacturing a chip injector using NiCuZn-based ferrite powder obtained from the raw material mixed powder mixed with the iron oxide powder of the present invention, the raw material mixed powder is calcined at a low temperature of 750 ° C. or less. As a result, calcined powder containing no coarse particles is obtained, and the calcined powder is pulverized in a short time to obtain a rounded Ni having a specific surface area of 6 to 10 m 2 / g.
A CuZn-based ferrite powder is obtained, and a chip injector made using this NiCuZn-based ferrite powder is sintered at 900 ° C or lower at a low temperature to obtain a sintered density of 5.1 g /
A ferrite layer having a high magnetic property of at least 3 cm 3 can be obtained.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 聡志 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4G002 AA06 AA12 AC02 5E041 AB01 AB03 CA01 NN02 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Satoshi Goto 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Iron Research Institute F term (reference) 4G002 AA06 AA12 AC02 5E041 AB01 AB03 CA01 NN02
Claims (1)
粉の原料として用いる酸化鉄粉であって、B2 O3 の含
有量がB換算で8質量ppm 以下、MnOの含有量が 600〜
5000質量ppm であり、かつ比表面積が6〜60m2 /gで
あることを特徴とする酸化鉄粉。Claims 1. An iron oxide powder used as a raw material of a NiCuZn-based ferrite powder for a chip inductor, wherein the content of B 2 O 3 is 8 mass ppm or less in terms of B, and the content of MnO is 600 ~
An iron oxide powder having a 5,000 mass ppm and a specific surface area of 6 to 60 m 2 / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002015169A JP3919546B2 (en) | 2002-01-24 | 2002-01-24 | Iron oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002015169A JP3919546B2 (en) | 2002-01-24 | 2002-01-24 | Iron oxide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003212547A true JP2003212547A (en) | 2003-07-30 |
JP3919546B2 JP3919546B2 (en) | 2007-05-30 |
Family
ID=27651650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002015169A Expired - Fee Related JP3919546B2 (en) | 2002-01-24 | 2002-01-24 | Iron oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3919546B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008016619A (en) * | 2006-07-05 | 2008-01-24 | Hitachi Metals Ltd | Ferrite magnetic core and electronic component using the same |
JP2017014096A (en) * | 2015-07-06 | 2017-01-19 | Jfeケミカル株式会社 | IRON OXIDE FOR MnZn-BASED FERRITE RAW MATERIAL, MnZn-BASED FERRITE AND MANUFACTURING METHOD OF MnZn-BASED FERRITE |
JP2021104913A (en) * | 2019-12-26 | 2021-07-26 | 太陽誘電株式会社 | Method for producing magnetic material and coil component containing magnetic material |
US11848151B2 (en) | 2019-12-26 | 2023-12-19 | Taiyo Yuden Co., Ltd. | Method for manufacturing magnetic body and coil component containing magnetic body |
-
2002
- 2002-01-24 JP JP2002015169A patent/JP3919546B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008016619A (en) * | 2006-07-05 | 2008-01-24 | Hitachi Metals Ltd | Ferrite magnetic core and electronic component using the same |
JP2017014096A (en) * | 2015-07-06 | 2017-01-19 | Jfeケミカル株式会社 | IRON OXIDE FOR MnZn-BASED FERRITE RAW MATERIAL, MnZn-BASED FERRITE AND MANUFACTURING METHOD OF MnZn-BASED FERRITE |
JP2021104913A (en) * | 2019-12-26 | 2021-07-26 | 太陽誘電株式会社 | Method for producing magnetic material and coil component containing magnetic material |
US11848151B2 (en) | 2019-12-26 | 2023-12-19 | Taiyo Yuden Co., Ltd. | Method for manufacturing magnetic body and coil component containing magnetic body |
JP7426818B2 (en) | 2019-12-26 | 2024-02-02 | 太陽誘電株式会社 | Manufacturing method of magnetic material and coil parts including magnetic material |
Also Published As
Publication number | Publication date |
---|---|
JP3919546B2 (en) | 2007-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2881956B1 (en) | Sintered ferrite magnet and its production method | |
EP2660830B1 (en) | Ferrite sintered magnet and method for producing same | |
JP2008100871A (en) | METHOD OF PRODUCING epsi-IRON OXIDE | |
JP2006306693A (en) | Ferrite sintered body and method for manufacturing same | |
EP2892058A1 (en) | Ferrite calcined body, method for producing ferrite sintered magnet, and ferrite sintered magnet | |
KR20010050925A (en) | The method of manufacturing Ferrite raw material powder and Ferrite magnet by spray thermo decomposing method | |
İçi̇n et al. | Effect of the stoichiometric ratio on phase evolution and magnetic properties of SrFe12O19 produced with mechanochemical process using mill scale | |
JP6070454B2 (en) | Ferrite compound | |
JP3919546B2 (en) | Iron oxide powder | |
JP4087555B2 (en) | Iron oxide and method for producing the same | |
JP3266187B2 (en) | Rotating machine | |
JP7367581B2 (en) | ferrite sintered magnet | |
KR970008749B1 (en) | Process for the preparation of nickel-zinc ferrite powder | |
CN116323491A (en) | MnZn ferrite and method for producing same | |
CN113436823A (en) | Ferrite sintered magnet | |
JPH0826833A (en) | Production of ceramic raw material | |
JP2010111545A (en) | Ferrite composition and inductor | |
JP2002141212A (en) | Rotating machine | |
JP2007031204A (en) | W-type ferrite magnet | |
JPS6131601B2 (en) | ||
JP4053230B2 (en) | Iron oxide and method for producing the same | |
JP3406382B2 (en) | Method for producing ferrite magnetic powder | |
KR100638572B1 (en) | The fabrication method of nizncu ferrite | |
JP3406381B2 (en) | Ferrite-based magnetic powder raw material oxide and method for producing ferrite-based magnetic powder | |
JP2002353019A (en) | Method of manufacturing hard ferrite magnetic powder and the hard ferrite magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040611 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070213 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3919546 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100223 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110223 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120223 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130223 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140223 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |