JP2003209131A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JP2003209131A
JP2003209131A JP2002006283A JP2002006283A JP2003209131A JP 2003209131 A JP2003209131 A JP 2003209131A JP 2002006283 A JP2002006283 A JP 2002006283A JP 2002006283 A JP2002006283 A JP 2002006283A JP 2003209131 A JP2003209131 A JP 2003209131A
Authority
JP
Japan
Prior art keywords
layer
conductive metal
semiconductor device
metal layer
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002006283A
Other languages
Japanese (ja)
Other versions
JP4270788B2 (en
Inventor
Hirokazu Fukuda
浩和 福田
Tsutomu Aono
勉 青野
Hisaaki Tominaga
久昭 冨永
Hirotoshi Kubo
博稔 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002006283A priority Critical patent/JP4270788B2/en
Publication of JP2003209131A publication Critical patent/JP2003209131A/en
Application granted granted Critical
Publication of JP4270788B2 publication Critical patent/JP4270788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40095Kinked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the difficulty of a prior art that in a conventional semiconductor device, three metal layers are formed on a pad electrode using a sputter method to cause resulting in high manufacturing costs. <P>SOLUTION: In a surface electrode structure of a semiconductor device formed on a semiconductor element 21, there is formed a four-layer metal structure of a Ti layer 31, an Ni layer 32, a Cu layer 33, and an Au layer 34 on an Al layer 30 of a pad electrode. The Ni layer 32 and the Cu layer 33 prevent a solder after mounting from invading, and hold joining strength with the solder. The Ti layer 31 and the Ni layer 32 are deposited by an electron impact heating deposition method, so that a low manufacturing cost is ensured. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の表面電
極構造において、その電極部における半田の侵食を防止
する構造およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface electrode structure of a semiconductor device, a structure for preventing erosion of solder in the electrode part, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、半導体素子、回路素子では、携帯
電話、携帯用のコンピューター等に採用されるため、小
型化、薄型化、軽量化が求められている。そして、それ
らの素子を用いた半導体装置、回路装置においても、同
様に、小型化、薄型化、軽量化が求められている。その
ため、半導体装置の表面電極自体の薄型化も課題の1つ
である。例えば、従来の技術として、特開平10−32
208号公報を参照として、1実施例について以下に説
明する。
2. Description of the Related Art In recent years, semiconductor devices and circuit devices have been required for downsizing, thinning, and weight saving because they are used in mobile phones, portable computers, and the like. Also in the semiconductor device and the circuit device using these elements, similarly, miniaturization, thinning, and weight reduction are required. Therefore, reducing the thickness of the surface electrode itself of the semiconductor device is also an issue. For example, as a conventional technique, Japanese Patent Laid-Open No. 10-32
One embodiment will be described below with reference to Japanese Patent Publication No. 208.

【0003】図7に示す如く、従来における半導体装置
の表面電極の構造は、半導体基板1上の絶縁膜2上に例
えばアルミニウムよりなるパッド電極3が設けられてい
る。このパッド電極3上に開口部5が配置されるよう
に、絶縁膜2およびパッド電極3上には絶縁保護膜4が
形成されている。そして、絶縁保護膜4の開口部5を介
して露出するパッド電極3上にはTi膜6、Ni膜7が
連続して堆積されており、両者の厚みは、例えば、それ
ぞれ100nm、300nm程度である。そして、Ni
膜7上には半田の濡れ性が考慮されてPd膜8が形成さ
れ、このPd膜8上には半田バンプ9が形成されてい
る。ここで、半田バンプが形成されていないTi膜6表
面は酸化され酸化膜10が形成されている。
As shown in FIG. 7, in the conventional structure of a surface electrode of a semiconductor device, a pad electrode 3 made of, for example, aluminum is provided on an insulating film 2 on a semiconductor substrate 1. An insulating protective film 4 is formed on the insulating film 2 and the pad electrode 3 so that the opening 5 is arranged on the pad electrode 3. Then, a Ti film 6 and a Ni film 7 are continuously deposited on the pad electrode 3 exposed through the opening 5 of the insulating protection film 4, and the thicknesses of both are, for example, about 100 nm and 300 nm, respectively. is there. And Ni
A Pd film 8 is formed on the film 7 in consideration of solder wettability, and solder bumps 9 are formed on the Pd film 8. Here, the surface of the Ti film 6 on which the solder bumps are not formed is oxidized to form an oxide film 10.

【0004】次に、図8を用いて、上述した半導体装置
の製造方法について説明する。
Next, a method of manufacturing the above-mentioned semiconductor device will be described with reference to FIG.

【0005】先ず、図8(A)に示す如く、例えば半導
体基板1上の絶縁膜2上に例えばアルミニウムよりなる
パッド電極3を形成する。その後、全面に絶縁保護膜4
を堆積し、パッド電極3上の絶縁保護膜4を選択的にエ
ッチングし、パッド電極3上に開口部5を形成する。続
いて、全面にスパッタ法により、例えば、100nmの
膜厚のTi膜6と、例えば、300nmの膜厚のNi膜
7と、例えば、50nmの膜厚のPd膜8とを連続して
堆積する。
First, as shown in FIG. 8A, a pad electrode 3 made of, for example, aluminum is formed on an insulating film 2 on a semiconductor substrate 1, for example. After that, an insulating protective film 4 is formed on the entire surface.
And the insulating protection film 4 on the pad electrode 3 is selectively etched to form an opening 5 on the pad electrode 3. Subsequently, a Ti film 6 having a film thickness of 100 nm, a Ni film 7 having a film thickness of 300 nm, and a Pd film 8 having a film thickness of 50 nm, for example, are successively deposited on the entire surface by a sputtering method. .

【0006】次に、図8(B)に示す如く、Pd膜8上
にレジスト11を塗布し、フォトリングラフィ技術を用
いて、パッド電極3上以外のレジスト11を除去する。
Next, as shown in FIG. 8B, a resist 11 is applied on the Pd film 8 and the resist 11 other than on the pad electrode 3 is removed by using a photolinography technique.

【0007】次に、図8(C)に示す如く、レジスト1
1をマスクとして、Pd層8及びNi層7を逆王水系の
エッチング液を用いてエッチングする。Ti膜6の表面
は、このエッチング液により酸化され、酸化膜10が形
成される。
Next, as shown in FIG.
Using 1 as a mask, the Pd layer 8 and the Ni layer 7 are etched using a reverse aqua regia-based etching solution. The surface of the Ti film 6 is oxidized by this etching solution to form an oxide film 10.

【0008】その後、レジスト11を除去し、Ti膜6
を陰極として電界鍍金を行う。Ti膜6の表面は酸化膜
10により被覆されているので、電界鍍金の際に半田は
成膜されない。Pd層8上すなわちパッド電極3上にの
み選択的に半田が成膜される。この工程により、図7に
示した半導体装置の電極構造が完成する。
After that, the resist 11 is removed and the Ti film 6 is removed.
Electroplating is performed using the as a cathode. Since the surface of the Ti film 6 is covered with the oxide film 10, solder is not formed during the electroplating. Solder is selectively deposited only on the Pd layer 8, that is, on the pad electrode 3. Through this step, the electrode structure of the semiconductor device shown in FIG. 7 is completed.

【0009】[0009]

【発明が解決しようとする課題】上述したように、従来
の半導体装置の表面電極構造では、上記したように、例
えば、パッド電極3上にはスパッタ法によりTi膜6、
Ni膜7が連続して堆積されており、両者の厚みは、例
えば、それぞれ100nm、300nm程度であった。
そして、Ni膜7上には半田の濡れ性が考慮されてPd
膜8が形成され、このPd膜8上には半田バンプ9が形
成されていた。
As described above, in the surface electrode structure of the conventional semiconductor device, as described above, for example, the Ti film 6 is formed on the pad electrode 3 by the sputtering method.
The Ni film 7 was continuously deposited, and the thicknesses of both were, for example, about 100 nm and 300 nm, respectively.
The solder wettability is taken into consideration on the Ni film 7 to form Pd.
The film 8 was formed, and the solder bumps 9 were formed on the Pd film 8.

【0010】しかし、高融点金属であるTi膜6、Ni
膜7をスッパタ法により堆積するのでは、製造コストが
高価であるという課題があった。そこで、Ti膜6、N
i膜7を電子衝撃加熱蒸着法によりスパッタ法と同じ膜
厚を堆積すると、例えば、半導体素子としてMOSFE
Tを用いる場合、特性変動を起こすという課題があっ
た。更に、電子衝撃加熱蒸着法によりMOSFETの特
性変動を起こさない膜厚にNi膜7を堆積すると、導電
部材を実装する際、Ni膜7が半田により侵食されてし
まい、半田の接合強度が得られないという課題があっ
た。
However, the Ti film 6, which is a refractory metal, and Ni
There is a problem that the manufacturing cost is high when the film 7 is deposited by the sputtering method. Therefore, the Ti film 6, N
When the i film 7 is deposited by the electron impact heating evaporation method to the same film thickness as the sputtering method, for example, as a semiconductor element, MOSFE
When T is used, there is a problem that the characteristic changes. Further, when the Ni film 7 is deposited by the electron impact heating vapor deposition method to a thickness that does not cause the characteristic change of the MOSFET, the Ni film 7 is eroded by the solder when the conductive member is mounted, and the solder bonding strength is obtained. There was a problem that there was not.

【0011】[0011]

【課題を解決するための手段】上記した各事情に鑑みて
成されたものであり、本発明の半導体装置は、半導体基
板上に堆積されたAl層から成るパッド電極部と、前記
パッド電極部上に堆積した該パッド電極との接続性を目
的とした第1の導電性金属層と、前記第1の導電性金属
層上に堆積した半田との接合性および侵食防止を目的と
した第2の導電性金属層および第3の導電性金属層と、
前記第3の導電性金属層上に堆積した半田との濡れ性を
目的とした第4の導電性金属層とを具備することを特徴
とする。
The semiconductor device of the present invention is made in view of the above-mentioned circumstances, and a semiconductor device according to the present invention includes a pad electrode portion formed of an Al layer deposited on a semiconductor substrate, and the pad electrode portion. A second conductive metal layer deposited on the first conductive metal layer for the purpose of connection and a solder deposited on the first conductive metal layer for the purpose of bonding and erosion prevention. A conductive metal layer and a third conductive metal layer,
A fourth conductive metal layer for the purpose of wettability with the solder deposited on the third conductive metal layer.

【0012】本発明の半導体装置は、好適には、前記第
2および第3の導電性金属層はNi層とCu層の組み合
わせであることを特徴とする。
The semiconductor device of the present invention is preferably characterized in that the second and third conductive metal layers are a combination of a Ni layer and a Cu layer.

【0013】更に、本発明の半導体装置は、好適には、
前記Cu層は前記Ni層よりも厚く堆積されることを特
徴とする。
Further, the semiconductor device of the present invention is preferably
The Cu layer is deposited thicker than the Ni layer.

【0014】上記した課題を解決するために、本発明の
半導体装置の製造方法は、半導体基板上にAl層を堆積
させ該Al膜上の所望の領域にSiN層を堆積させ、前
記SiN層の一部を除去し開口部を形成し、前記開口部
を介して前記Al膜を露出させパッド電極を形成する工
程と、前記パッド電極上に電子衝撃加熱蒸着法により該
パッド電極との接続性を目的とした第1の導電性金属層
を堆積する工程と、前記第1の導電性金属層上に電子衝
撃加熱蒸着法により半田との接合性および侵食防止を目
的とした第2の導電性金属層を堆積する工程と、前記第
2の導電性金属層上に抵抗加熱蒸着法により半田との接
合性および侵食防止を目的とした第3の導電性金属層を
堆積する工程と、前記第3の導電性金属層上に半田との
濡れ性を目的とした第4の導電性金属層を堆積する工程
とを具備することを特徴とする。
In order to solve the above-mentioned problems, a method of manufacturing a semiconductor device according to the present invention comprises depositing an Al layer on a semiconductor substrate, depositing a SiN layer in a desired region on the Al film, and depositing the SiN layer. A step of removing a part to form an opening, exposing the Al film through the opening to form a pad electrode, and connecting the pad electrode to the pad electrode by electron impact heating evaporation method are performed. A step of depositing a desired first conductive metal layer, and a second conductive metal for the purpose of bonding to solder and preventing corrosion by electron impact heating vapor deposition on the first conductive metal layer A step of depositing a layer, a step of depositing a third conductive metal layer on the second conductive metal layer by resistance heating vapor deposition for the purpose of bonding to solder and preventing erosion, For wettability with solder on the conductive metal layer of Characterized by comprising the step of depositing a fourth conductive metal layer.

【0015】本発明の半導体装置の製造方法は、好適に
は、前記SiN層上にレジスト層を形成した後、前記レ
ジスト層をマスクとして用い前記第1から第4の導電性
金属層を堆積させることを特徴とする。
In the method for manufacturing a semiconductor device of the present invention, preferably, after forming a resist layer on the SiN layer, the first to fourth conductive metal layers are deposited using the resist layer as a mask. It is characterized by

【0016】[0016]

【発明の実施の形態】先ず、図1〜図5を参照して、本
発明である半導体装置について、以下に、説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a semiconductor device according to the present invention will be described below with reference to FIGS.

【0017】本発明の半導体装置は、半導体基板上に堆
積されたAl層から成るパッド電極部と、前記パッド電
極部上に堆積した該パッド電極との接続性を目的とした
第1の導電性金属層と、前記第1の導電性金属層上に堆
積した半田との接合性および侵食防止を目的とした第2
の導電性金属層および第3の導電性金属層と、前記第3
の導電性金属層上に堆積した半田との濡れ性を目的とし
た第4の導電性金属層とを具備することを特徴とする。
The semiconductor device of the present invention has the first conductivity for the purpose of connecting the pad electrode portion formed of the Al layer deposited on the semiconductor substrate and the pad electrode deposited on the pad electrode portion. A second layer for the purpose of joining the metal layer and the solder deposited on the first conductive metal layer and for preventing erosion.
A conductive metal layer and a third conductive metal layer, and
And a fourth conductive metal layer for the purpose of wettability with the solder deposited on the conductive metal layer.

【0018】そして、図1は本発明である半導体装置の
斜視図を示している。本実施の形態では、例えば、半導
体素子21としてMOSFETが用いられた場合につい
て説明する。具体的には、図示の如く、例えば、Cuフ
レームのアイランド27上に導電ペースト(図示せず)
等を介して半導体素子21が固着されている。この半導
体素子21表面には周端部を覆うSiN層23より内側
に、例えば、ゲート電極22およびソース電極24が形
成されている。そして、このソース電極24側は、例え
ば、銅板から成る導電部材によりソース電極24とCu
フレームのポスト28とを電気的に接続している。一
方、ゲート電極22側は、例えば、金属細線26により
ゲート電極22とCuフレームのポスト29とを電気的
に接続している。そして、詳細は後述するが、本発明の
半導体装置の特徴は半導体素子21の表面電極であるソ
ース電極24を多層金属層構造で形成することにある。
FIG. 1 is a perspective view of the semiconductor device according to the present invention. In the present embodiment, for example, a case where a MOSFET is used as the semiconductor element 21 will be described. Specifically, as shown, for example, a conductive paste (not shown) is formed on the island 27 of the Cu frame.
The semiconductor element 21 is fixed via the above. For example, a gate electrode 22 and a source electrode 24 are formed on the surface of the semiconductor element 21 inside the SiN layer 23 that covers the peripheral edge portion. On the source electrode 24 side, the source electrode 24 and Cu are formed by a conductive member made of a copper plate, for example.
The frame is electrically connected to the post 28. On the other hand, on the gate electrode 22 side, for example, the metal wire 26 electrically connects the gate electrode 22 and the post 29 of the Cu frame. Then, as will be described in detail later, a characteristic of the semiconductor device of the present invention is that the source electrode 24, which is a surface electrode of the semiconductor element 21, is formed in a multilayer metal layer structure.

【0019】ここで、ゲート電極22側は多層金属構造
を採用せず、ゲート電極22とポスト29とを金属細線
26で電気的に接続しているが、ゲート電極22側と同
様に多層金属構造で形成してもよい。尚、図示はしてい
ないが、半導体素子21裏面にはドレイン電極が形成さ
れており、アイランド27と導電ペースト等を介して接
続されている。また、図1ではCuフレームの一部分の
み図示しているが、アイランド27およびポスト28、
29とが一組となる搭載部が複数パターン同一のCuフ
レーム上に形成されている。
Here, the gate electrode 22 side does not adopt a multi-layer metal structure, and the gate electrode 22 and the post 29 are electrically connected by a thin metal wire 26. However, like the gate electrode 22 side, a multi-layer metal structure is used. You may form with. Although not shown, a drain electrode is formed on the back surface of the semiconductor element 21 and is connected to the island 27 via a conductive paste or the like. Although only a part of the Cu frame is shown in FIG. 1, the island 27 and the posts 28,
A plurality of mounting portions 29 and 29 are formed on the same Cu frame having a plurality of patterns.

【0020】次に、図2に示す如く、本発明の特徴であ
る半導体素子の表面電極構造、例えば、本実施の形態で
はソース電極24について説明する。
Next, as shown in FIG. 2, the surface electrode structure of the semiconductor element, which is a feature of the present invention, for example, the source electrode 24 in this embodiment will be described.

【0021】先ず、図2(A)では、図1に示した半導
体装置のソース電極24を拡大した断面図を示してい
る。本実施の形態では、半導体素子21表面にはソース
電極24が形成されているが、以下に説明する構造によ
り成る。半導体素子21表面にはパッド電極を構成す
る、例えば、Al層30が堆積されている。このAl層
30上には複数の金属層が形成されソース電極24が形
成されるが、このソース電極24形成領域外周部にはS
iN層23が形成されている。つまり、SiN層23は
Al層の酸化防止、耐湿性向上の為に堆積されるが、こ
のSiN層23により形成された第1の開口部38内に
ソース電極24が形成されている。そして、先ず、第1
層目の金属層として、第1の開口部38内のAl層30
上にはAl層30との接着性等が考慮され、例えば、T
i層31が50〜150Å程度堆積されている。次に、
第2層目の金属層として、このTi層31上には半田の
侵食防止、半田との接合性等が考慮され、例えば、Ni
層32が150〜250Å程度堆積されている。次に、
第3層目の金属層として、このNi層32上には、第2
の金属層と同様に、半田の侵食防止、半田との接合性等
が考慮され、例えば、Cu層33が1000〜2000
Å程度堆積されている。最後に、第4層目の金属層とし
て、Cu層33上には、半田の濡れ性、Cu層の酸化防
止等が考慮され、例えば、Au層34が500〜150
0Å程度堆積されている。また、第4の金属層としては
Pd層やPt層でもよい。
First, FIG. 2A shows an enlarged sectional view of the source electrode 24 of the semiconductor device shown in FIG. In the present embodiment, the source electrode 24 is formed on the surface of the semiconductor element 21, but it has the structure described below. On the surface of the semiconductor element 21, for example, an Al layer 30 forming a pad electrode is deposited. A plurality of metal layers are formed on the Al layer 30 to form the source electrode 24.
The iN layer 23 is formed. That is, the SiN layer 23 is deposited to prevent oxidation of the Al layer and improve the moisture resistance, but the source electrode 24 is formed in the first opening 38 formed by the SiN layer 23. And first, the first
As the first metal layer, the Al layer 30 in the first opening 38
Considering the adhesiveness with the Al layer 30 and the like, for example, T
The i layer 31 is deposited on the order of 50 to 150 Å. next,
As the second metal layer, on the Ti layer 31, the erosion prevention of the solder, the bondability with the solder, etc. are taken into consideration.
Layer 32 is deposited on the order of 150-250 liters. next,
As a third metal layer, a second metal layer is formed on the Ni layer 32.
Like the metal layer of No. 3, the corrosion resistance of the solder, the bondability with the solder, and the like are taken into consideration.
Å Accumulated. Finally, as the fourth metal layer, the wettability of the solder, the oxidation prevention of the Cu layer, etc. are considered on the Cu layer 33. For example, the Au layer 34 is 500 to 150.
About 0Å is deposited. Further, the fourth metal layer may be a Pd layer or a Pt layer.

【0022】次に、図2(B)では、図2(A)の場合
と同様に、図1に示した半導体装置のソース電極24を
拡大した断面図を示している。そして、図2(A)の構
造との相違点としては、第2層目の金属層として、例え
ば、Cu層33が1000〜2000Å程度堆積され、
第3層目の金属層として、例えば、Ni層32が150
〜250Å程度堆積されている点である。その他の構造
においては、図2(A)の場合と同様であるので図2
(A)の説明を参照とし、ここでは説明を割愛する。
Next, FIG. 2B is an enlarged cross-sectional view of the source electrode 24 of the semiconductor device shown in FIG. 1, as in the case of FIG. 2A. And, the difference from the structure of FIG. 2A is that, as the second metal layer, for example, a Cu layer 33 is deposited on the order of 1000 to 2000Å,
As the third metal layer, for example, the Ni layer 32 is 150
It is a point where about 250Å is deposited. Other structures are the same as those in the case of FIG.
The description is omitted here with reference to the description of (A).

【0023】ここで、本発明の半導体装置における表面
電極構造と従来の半導体装置における表面電極構造との
相違点について説明する。図7に示す如く、従来におけ
る半導体装置では、例えば、スパッタ法によりパッド電
極3上にTi膜6、Ni膜7、Pd膜8の3層の金属膜
が連続して堆積されていた。そして、それぞれの膜厚
は、例えば、Ti膜6が100nm程度、Ni膜7が3
00nm程度、Pd膜8が50nm程度である。一方、
本発明の半導体装置では、上述の如く、Al層30上
に、例えば、Ti層31、Ni層32、Cu層33、A
u層34の4層の金属層が堆積されている構造である。
そして、詳細は製造方法で後述するが、この金属層の中
で高融点金属であるTi層31、Ni層32は電子衝撃
加熱蒸着法で堆積され薄膜で形成されている。つまり、
従来と本発明における表面電極の金属層の堆積方法で
は、スパッタ法と電子衝撃加熱蒸着法との相違点があ
る。
Differences between the surface electrode structure in the semiconductor device of the present invention and the surface electrode structure in the conventional semiconductor device will be described. As shown in FIG. 7, in a conventional semiconductor device, for example, a three-layer metal film of a Ti film 6, a Ni film 7, and a Pd film 8 is continuously deposited on the pad electrode 3 by a sputtering method. The respective film thicknesses are, for example, about 100 nm for the Ti film 6 and 3 for the Ni film 7.
The Pd film 8 has a thickness of about 50 nm. on the other hand,
In the semiconductor device of the present invention, as described above, for example, the Ti layer 31, the Ni layer 32, the Cu layer 33, the A layer 30 are formed on the Al layer 30.
This is a structure in which four metal layers of the u layer 34 are deposited.
Then, as will be described later in detail in the manufacturing method, the Ti layer 31 and the Ni layer 32, which are refractory metals among the metal layers, are deposited by the electron impact heating vapor deposition method and formed into a thin film. That is,
The conventional method and the method of depositing a metal layer of a surface electrode according to the present invention are different from the sputtering method and the electron impact heating vapor deposition method.

【0024】そして、図3は電子衝撃加熱蒸着法による
蒸着時間とMOSFETのしきい値電圧Vthとの特性
図である。図からもわかるように、蒸着時間が長くなる
につれてMOSFETのしきい値電圧Vthも大きくな
り、特性変動を起こしている。例えば、電子衝撃加熱蒸
着法では、蒸着前のMOSFETのしきい値電圧Vth
を基準値とすると、4t時間後にはしきい値電圧Vth
はおよそ150%増加してしまうことがわかっている。
このことからも、電子衝撃加熱蒸着法によりTi層3
1、Ni層32を堆積する際は蒸着時間を短くすること
が望ましく、Ti層31、Ni層32は上述のように薄
膜で形成されることとなる。一方、一点鎖線で示したよ
うに、抵抗加熱蒸着法により金属層を蒸着する場合はM
OSFETのしきい値電圧Vthにはほとんど影響を及
ぼさないことがわかる。
FIG. 3 is a characteristic diagram of the vapor deposition time by the electron impact heating vapor deposition method and the threshold voltage Vth of the MOSFET. As can be seen from the figure, the threshold voltage Vth of the MOSFET also increases as the vapor deposition time increases, causing characteristic variations. For example, in the electron impact heating vapor deposition method, the threshold voltage Vth of the MOSFET before vapor deposition is
Is a reference value, the threshold voltage Vth is reached after 4t.
Is known to increase by approximately 150%.
From this, the Ti layer 3 is formed by the electron impact heating vapor deposition method.
1. When depositing the Ni layer 32, it is desirable to shorten the vapor deposition time, and the Ti layer 31 and the Ni layer 32 are formed as thin films as described above. On the other hand, as indicated by the one-dot chain line, when the metal layer is deposited by the resistance heating deposition method, M
It can be seen that the threshold voltage Vth of the OSFET is hardly affected.

【0025】また、図4は半田の侵食状況を示した特性
図である。具体的には、図4(A)は表面にNi層が形
成されている場合の半田の侵食状況を示した特性図であ
る。一方、図4(B)は表面にCu層が形成されている
場合の半田の侵食状況を示した特性図である。
FIG. 4 is a characteristic diagram showing the erosion state of the solder. Specifically, FIG. 4A is a characteristic diagram showing the erosion state of solder when a Ni layer is formed on the surface. On the other hand, FIG. 4B is a characteristic diagram showing the erosion state of the solder when the Cu layer is formed on the surface.

【0026】先ず、図4(A)に示す如く、表面層がN
i層である場合では、半田の侵食速度が遅いことが示さ
れている。具体的には、表面部分に直線で示したPb層
が形成され、一点鎖線で示したNi層も表面部分が多少
半田により侵食されているが、その部分以降は100%
濃度のNi層が形成されている。また、点線で示したS
n層からも分かるように、半田の構成要素であるSnと
Ni層との金属間化合物であるNi/Sn層も表面部分
に形成されているのみである。つまり、Ni層は半田の
侵食防止に優れた金属層であり、ある一定の厚みを有す
れば、単層でも半田の侵食を防止することができる。
First, as shown in FIG. 4A, the surface layer is N
It is shown that the erosion rate of the solder is low in the case of the i layer. Specifically, a Pb layer shown by a straight line is formed on the surface portion, and the Ni layer shown by the alternate long and short dash line is also eroded by the solder to some extent.
A Ni layer having a high concentration is formed. In addition, S shown by the dotted line
As can be seen from the n layer, the Ni / Sn layer, which is an intermetallic compound of Sn and Ni layers, which are the constituent elements of the solder, is also only formed on the surface portion. That is, the Ni layer is a metal layer that is excellent in preventing corrosion of solder, and if it has a certain thickness, even a single layer can prevent corrosion of solder.

【0027】一方、図4(B)に示す如く、表面層がC
u層である場合では、逆に、半田の侵食速度が速いこと
が示されている。具体的には、表面部分に直線で示した
Pb層が形成されているが、Ni層の場合と比較する
と、更に、Pb層が深部まで侵食していることがわか
る。そして、二点鎖線で示したCu層においても、Ni
層の場合と異なり深部においても金属濃度が低下してい
ることがわかる。つまり、点線で示したSn層からも分
かるように、半田の構成要素であるSnとCu層との金
属間化合物であるCu/Sn層がCu層の深部にまで形
成されていることがわかる。つまり、Cu層は半田の侵
食速度が速く、単層ではある一定の厚みをもって対処し
なければ半田の侵食を防止することが困難であることが
わかる。
On the other hand, as shown in FIG. 4B, the surface layer is C
On the contrary, in the case of the u layer, it is shown that the solder erosion rate is high. Specifically, the Pb layer indicated by a straight line is formed on the surface portion, but it can be seen that the Pb layer further erodes deeper than in the case of the Ni layer. Even in the Cu layer shown by the chain double-dashed line, Ni
It can be seen that, unlike the case of the layer, the metal concentration is lowered even in the deep portion. That is, as can be seen from the Sn layer shown by the dotted line, it is understood that the Cu / Sn layer, which is an intermetallic compound of Sn which is a constituent element of the solder and the Cu layer, is formed to a deep portion of the Cu layer. That is, it is understood that the Cu layer has a high solder erosion rate, and it is difficult to prevent the solder erosion unless the Cu layer is a single layer and has a certain thickness.

【0028】そして、図3および図4のデータを総合す
ると、特に、半導体素子21としてMOSFETのよう
に、電子衝撃加熱蒸着法を用いると素子の特性変動を起
こし易い素子を用いる場合、以下のことが言える。電子
衝撃加熱蒸着法を用いると、その使用時の電子が上記の
特性変動に起因していると思われる。そのため、半導体
素子21表面に電子衝撃加熱蒸着法により金属層を形成
する場合は、MOSFETのしきい値電圧Vthの特性
変動を防止するために短時間で行うことが望ましい。そ
して、電子衝撃加熱蒸着法を短時間で行うということ
は、半田の侵食防止を目的とするNi層32を薄膜で形
成することとなる。つまり、Ni層が半田の侵食速度が
遅いことがわかっているが、本発明のように、Ni層3
2上にCu層33を厚く形成する。そのことで、半田の
侵食を完全に防止し、かつ、素子の特性変動も抑制でき
る表面電極構造を実現することができる。
3 and FIG. 4 are summarized below, particularly when a semiconductor element 21, such as a MOSFET, is used, which is liable to cause characteristic variations of the element when the electron impact heating evaporation method is used, Can be said. When the electron impact heating vapor deposition method is used, it is considered that the electrons at the time of use are caused by the above characteristic variation. Therefore, when the metal layer is formed on the surface of the semiconductor element 21 by the electron impact heating evaporation method, it is desirable to perform it in a short time in order to prevent the characteristic variation of the threshold voltage Vth of the MOSFET. Performing the electron impact heating vapor deposition method in a short time means that the Ni layer 32 for the purpose of preventing solder erosion is formed as a thin film. That is, it is known that the Ni layer has a slow solder erosion rate.
The Cu layer 33 is formed thick on the second layer. As a result, it is possible to realize a surface electrode structure capable of completely preventing solder erosion and suppressing fluctuations in element characteristics.

【0029】具体的には、図5は導電部材25を実装し
た後の表面電極構造を示した断面図である。図5(A)
は、図2(A)に対応し、第2層目の金属層としてNi
層32を堆積し、第3層目の金属層としてCu層33を
堆積した場合の断面図である。図示の如く、導電部材2
5を実装後には×印示したライン36まで半田によりC
u層33の大部分が侵食されている。しかし、図2
(A)でも示したように、Cu層33は抵抗加熱蒸着法
により厚く堆積しているので、このCu層33で半田の
侵食を食い止めている。また、たとえCu層33が全て
半田により侵食されてもNi層32で半田の侵食を防止
することができる。一方、図5(B)は、図2(B)に
対応し、第2層目の金属層としてCu層33を堆積し、
第3層目の金属層としてNi層32を堆積した場合の断
面図である。図示の如く、導電部材25を実装後には×
印示したライン36まで半田によりNi層32およびC
u層33の大部分が侵食されている。この場合はMOS
FETのしきい値電圧Vthの特性変動との関係でNi
層32が薄膜で形成されており、Ni層32は全て侵食
されている。しかし、図2(B)でも示したように、C
u層33は抵抗加熱蒸着法により厚く堆積しているの
で、このCu層33で半田の侵食を食い止めている。
Specifically, FIG. 5 is a sectional view showing the surface electrode structure after mounting the conductive member 25. Figure 5 (A)
Corresponds to FIG. 2 (A) and corresponds to Ni as the second metal layer.
It is sectional drawing at the time of depositing the layer 32 and depositing the Cu layer 33 as a 3rd metal layer. As shown, the conductive member 2
After mounting 5, C is soldered to the line 36 marked with ×
Most of the u layer 33 is eroded. However, FIG.
As shown in (A), since the Cu layer 33 is thickly deposited by the resistance heating vapor deposition method, the Cu layer 33 prevents solder corrosion. Even if the Cu layer 33 is entirely eroded by the solder, the Ni layer 32 can prevent the solder from eroding. On the other hand, FIG. 5B corresponds to FIG. 2B, and a Cu layer 33 is deposited as a second metal layer,
It is sectional drawing at the time of depositing Ni layer 32 as a 3rd metal layer. As shown in the figure, after mounting the conductive member 25, ×
Solder up to the marked line 36 by soldering Ni layer 32 and C
Most of the u layer 33 is eroded. In this case MOS
In relation to the characteristic variation of the threshold voltage Vth of the FET, Ni
The layer 32 is formed as a thin film, and the Ni layer 32 is entirely eroded. However, as shown in FIG. 2B, C
Since the u layer 33 is thickly deposited by the resistance heating vapor deposition method, the Cu layer 33 prevents the corrosion of the solder.

【0030】上述したように、本発明の半導体装置で
は、Al層30から成るパッド電極上に4層の金属層3
1〜34が堆積されている。そして、半田の侵食防止等
を目的とする層として、Ni層32およびCu層33の
2層構造にしていることに特徴がある。つまり、本発明
の半導体装置では、Ni層32およびCu層33にて半
田の侵食を完全に防止することができる。そのことで、
Ni層32およびCu層33では半田の侵食を食い止め
ることができ、更に、実装後に表面電極が剥離すること
のない構造を実現することができる。
As described above, in the semiconductor device of the present invention, the four metal layers 3 are formed on the pad electrode composed of the Al layer 30.
1-34 are deposited. The layer is characterized by having a two-layer structure of a Ni layer 32 and a Cu layer 33 for the purpose of preventing solder corrosion. That is, in the semiconductor device of the present invention, solder erosion can be completely prevented by the Ni layer 32 and the Cu layer 33. With that,
The Ni layer 32 and the Cu layer 33 can prevent solder erosion, and can realize a structure in which the surface electrode does not peel off after mounting.

【0031】更に、本発明の半導体装置では、半導体素
子21としてMOSFETを用いる場合、第2金属層で
あるNi層32は電子衝撃加熱蒸着法により堆積される
ため、例えば、150〜250Å程度で堆積されてい
る。つまり、半田の侵食防止等を目的とする層をNi層
32およびCu層33の2層とする。そのことで、MO
SFET21の特性、特に、しきい値電圧Vthの特性
変動を起こすことなく、たとえNi層が薄膜でも半田の
侵食を防止する構造を実現することができる。
Further, in the semiconductor device of the present invention, when a MOSFET is used as the semiconductor element 21, since the Ni layer 32 which is the second metal layer is deposited by the electron impact heating vapor deposition method, for example, it is deposited at about 150 to 250 Å. Has been done. That is, the layers for the purpose of preventing solder erosion are two layers of the Ni layer 32 and the Cu layer 33. With that, MO
It is possible to realize a structure that prevents corrosion of the solder even if the Ni layer is a thin film, without causing the characteristics of the SFET 21, particularly the characteristics of the threshold voltage Vth, to fluctuate.

【0032】更に、本発明の半導体装置では、ソース電
極24とポスト28との接続手段として導電部材25を
用いている。そのため、多数の金属細線で接続する場合
と比較して、電流密度が高い半導体素子の場合にもこの
電極構造を有することで対応することができる。
Further, in the semiconductor device of the present invention, the conductive member 25 is used as a connecting means for connecting the source electrode 24 and the post 28. Therefore, compared with the case where a large number of thin metal wires are connected, it is possible to deal with a semiconductor element having a high current density by having this electrode structure.

【0033】尚、本実施における構造については半導体
素子としてMOSFETを用いる場合について説明した
が、特に、限定する必要はなく、その他の表面電極を形
成する半導体素子についても同様な効果を得ることがで
きる。また、表面電極構造だけでなく、裏面電極構造に
も応用することができる。
Although the structure in this embodiment has been described using a MOSFET as a semiconductor element, it is not particularly limited, and the same effect can be obtained for other semiconductor elements forming a surface electrode. . Further, not only the front surface electrode structure but also the back surface electrode structure can be applied.

【0034】次に、図6を参照にして、本発明の半導体
装置の製造方法について説明する。そして、半導体装置
の説明と同様に、ソース電極24構造の製造方法につい
て以下に説明する。なお、上述した半導体装置の説明で
用いた図および符番のうち共通のものは、本製法の説明
にも用いることとする。
Next, with reference to FIG. 6, a method of manufacturing the semiconductor device of the present invention will be described. Then, similarly to the description of the semiconductor device, a method of manufacturing the source electrode 24 structure will be described below. Note that the same drawings and reference numerals used in the above description of the semiconductor device are also used in the description of the present manufacturing method.

【0035】先ず、図6(A)に示す如く、半導体素子
21の表面上にパッド電極を構成する、例えば、Al層
30を堆積する。次に、このAl層30上には、Al層
30の耐酸化性、耐湿性等が考慮され、SiN層23
が、例えば、800℃、2時間程度のCVD法により厚
さ6000Å〜8000Å程度デポジションされる。そ
の後、ソース電極24用の多層金属層41を形成するた
めに、ソース電極24形成領域以外のSiN層23上に
レジスト39を堆積させる。そして、公知のフォトリソ
グラフィ技術によりレジスト39をマスクとして、ソー
ス電極24形成領域上のSiN層23を除去する。この
時、SiN層23はレジスト39よりも余分に除去さ
れ、レジスト39の端部はSiN層23に対してひさし
を設けたように形成される。そして、SiN層23より
成る第1の開口部38より内側には、レジスト39によ
り第2の開口部42が形成される。その結果、図6
(A)に示した構造が得られる。
First, as shown in FIG. 6A, an Al layer 30, for example, which constitutes a pad electrode is deposited on the surface of the semiconductor element 21. Next, the SiN layer 23 is formed on the Al layer 30 in consideration of the oxidation resistance and the moisture resistance of the Al layer 30.
However, for example, a thickness of about 6000 Å to 8000 Å is deposited by a CVD method at 800 ° C. for about 2 hours. Then, in order to form the multilayer metal layer 41 for the source electrode 24, a resist 39 is deposited on the SiN layer 23 other than the region where the source electrode 24 is formed. Then, the SiN layer 23 on the source electrode 24 formation region is removed using the resist 39 as a mask by a known photolithography technique. At this time, the SiN layer 23 is removed more than the resist 39, and the end portion of the resist 39 is formed as if the eaves were provided to the SiN layer 23. Then, a second opening 42 is formed by the resist 39 inside the first opening 38 made of the SiN layer 23. As a result, FIG.
The structure shown in (A) is obtained.

【0036】次に、図6(B)に示す如く、リフトオフ
法によりレジスト39より成る第2の開口部42を介し
て、ソース電極24形成領域に多層金属層41を形成す
る。先ず、図2(A)に示す如く、Al層30上には第
1層目の金属層として、Al層30との接着性等を考慮
し、例えば、Ti層31を50〜150Å程度、電子衝
撃加熱蒸着法により堆積する。次に、第2層目の金属層
として、このTi層31上には半田の侵食防止、半田と
の接合性等を考慮し、例えば、Ni層32を150〜2
50Å程度、電子衝撃加熱蒸着法により堆積する。次
に、第3層目の金属層として、このNi層32上には、
第2の金属層と同様に、半田の侵食防止、半田との接合
性等を考慮し、例えば、Cu層33を1000〜200
0Å程度、抵抗加熱蒸着法により堆積する。最後に、第
4層目の金属層として、Cu層33上には、半田の濡れ
性、Cu層の酸化防止等を考慮し、例えば、Au層34
を500〜1500Å程度、抵抗加熱蒸着法により堆積
する。また、第4の金属層としてはPd層やPt層でも
よい。
Next, as shown in FIG. 6B, a multilayer metal layer 41 is formed in the source electrode 24 forming region through the second opening 42 made of the resist 39 by the lift-off method. First, as shown in FIG. 2 (A), as a first metal layer on the Al layer 30, considering the adhesiveness with the Al layer 30, etc., for example, a Ti layer 31 of about 50 to 150 Å It is deposited by the impact heating vapor deposition method. Next, as a second metal layer, for example, a Ni layer 32 of 150 to 2 is formed on the Ti layer 31 in consideration of solder erosion prevention, bondability with the solder, and the like.
About 50Å is deposited by the electron impact heating vapor deposition method. Next, as the third metal layer, on the Ni layer 32,
Similar to the second metal layer, the Cu layer 33 is, for example, 1000 to 200 in consideration of erosion prevention of solder, bondability with solder, and the like.
Deposit about 0Å by the resistance heating evaporation method. Finally, as the fourth metal layer, for example, the Au layer 34 is provided on the Cu layer 33 in consideration of the wettability of the solder, the oxidation prevention of the Cu layer, and the like.
About 500 to 1500 Å by resistance heating vapor deposition. Further, the fourth metal layer may be a Pd layer or a Pt layer.

【0037】また、図2(B)に示す如く、第2層目の
金属層として、例えば、Cu層33を1000〜200
0Å程度、抵抗加熱蒸着法により堆積する。その後、第
3層目の金属層として、例えば、Ni層32を150〜
250Å程度、電子衝撃加熱蒸着法により堆積してもよ
い。このような構造を形成することによる効果は、半導
体装置の説明で上述した通りである。尚、SiN層23
を、例えば、7000Å程度で形成するので、多層金属
層41の膜厚を5000Å程度で形成することが望まし
い。その結果、図6(B)に示した構造が得られる。
Further, as shown in FIG. 2B, as the second metal layer, for example, a Cu layer 33 of 1000 to 200 is used.
Deposit about 0Å by the resistance heating evaporation method. After that, as the third metal layer, for example, the Ni layer 32 is 150 to
About 250 Å may be deposited by the electron impact heating vapor deposition method. The effect of forming such a structure is as described above in the description of the semiconductor device. The SiN layer 23
Is formed, for example, with a thickness of about 7,000 Å. As a result, the structure shown in FIG. 6B is obtained.

【0038】次に、図6(C)に示す如く、レジスト3
9上に堆積した多層金属層41およびレジスト39を除
去する。その結果、図6(C)に示した構造が得られ
る。その後、半導体素子21がCuフレームのアイラン
ド27上に実装される。そして、ソース電極24上に半
田が供給され導電部材25と固着され、図1に示した構
造となる。
Next, as shown in FIG. 6C, the resist 3
The multilayer metal layer 41 and the resist 39 deposited on 9 are removed. As a result, the structure shown in FIG. 6C is obtained. After that, the semiconductor element 21 is mounted on the island 27 of the Cu frame. Then, the solder is supplied onto the source electrode 24 and fixed to the conductive member 25, and the structure shown in FIG. 1 is obtained.

【0039】上述したように、本発明の半導体装置の製
造方法では、従来におけるスパッタ法でなく電子衝撃加
熱蒸着法によりTi層およびNi層を堆積することで、
製造コストを安価することができる。また、Cu層は抵
抗加熱蒸着法により堆積するので、層厚を所望の厚さに
堆積することができるので半田の侵食を防止する。その
結果、半田との接合強度も確保でき製品品質も優れた半
導体装置を提供することができる。
As described above, in the method for manufacturing a semiconductor device of the present invention, the Ti layer and the Ni layer are deposited by the electron impact heating vapor deposition method instead of the conventional sputtering method.
The manufacturing cost can be reduced. Further, since the Cu layer is deposited by the resistance heating vapor deposition method, the layer thickness can be deposited to a desired thickness, thus preventing corrosion of the solder. As a result, it is possible to provide a semiconductor device having excellent solder joint strength and excellent product quality.

【0040】更に、本発明の半導体装置の製造方法で
は、ソース電極24上において、ワイヤレス構造を実現
することができるので、電流密度が高い半導体素子にも
適用することが可能となる。更に、ソース電極24と導
電部材25とを半田にて接続するので、ワイヤーボンデ
ィングの場合と比べて衝撃なく実装することができる。
Further, according to the method of manufacturing a semiconductor device of the present invention, since the wireless structure can be realized on the source electrode 24, it can be applied to a semiconductor element having a high current density. Furthermore, since the source electrode 24 and the conductive member 25 are connected by soldering, it is possible to mount without impact as compared with the case of wire bonding.

【0041】尚、本実施の形態では、ソース電極側につ
いてのみ多層金属層を形成する場合について説明した
が、特に、限定する必要はなく、ゲート電極側において
も同様な構造を形成することができる。また、上述の製
造方法では、リフトオフ法による製造方法にて説明した
が、イオンミリング法においても同様な効果を得ること
ができる。そして、その他、本発明の要旨を逸脱しない
範囲で、種々の変更が可能である。
In this embodiment, the case where the multi-layer metal layer is formed only on the source electrode side has been described, but there is no particular limitation, and a similar structure can be formed on the gate electrode side. . Further, in the above-described manufacturing method, the manufacturing method by the lift-off method has been described, but the same effect can be obtained by the ion milling method. In addition, various modifications can be made without departing from the scope of the present invention.

【0042】[0042]

【発明の効果】上記したように、本発明の半導体装置で
は、Al層から成るパッド電極上に、例えば、Ti層、
Ni層、Cu層、Au層から成る4層の金属層が堆積さ
れていることである。特に、半田の侵食防止等を目的と
する層として、Ni層およびCu層の2層構造にしてい
ることに特徴がある。つまり、Ni層およびCu層にて
半田の侵食を完全に防止することができ、実装後に表面
電極が剥離することのない構造を実現することができ
る。
As described above, in the semiconductor device of the present invention, for example, a Ti layer, a
That is, four metal layers including a Ni layer, a Cu layer, and an Au layer are deposited. In particular, it is characterized by having a two-layer structure of a Ni layer and a Cu layer as a layer for the purpose of preventing corrosion of solder. In other words, the Ni layer and the Cu layer can completely prevent the solder from eroding, and can realize a structure in which the surface electrode does not peel off after mounting.

【0043】更に、本発明の半導体装置では、半導体素
子としてMOSFETを用いる場合、Ti層およびNi
層を堆積する電子衝撃加熱蒸着法はMOSFETのしき
い値電圧Vthに特性変動を起こす。そのため、Ni層
は薄膜に形成されるため半田により侵食される恐れがあ
る。しかし、本発明では、Ni層およびCu層の2層で
半田の侵食防止構造を実現することで、MOSFETの
しきい値電圧Vthの特性変動を起こすことのない構造
を実現することができる。
Further, in the semiconductor device of the present invention, when a MOSFET is used as a semiconductor element, a Ti layer and Ni are used.
The electron impact heating vapor deposition method for depositing layers causes characteristic variations in the threshold voltage Vth of the MOSFET. Therefore, since the Ni layer is formed into a thin film, it may be eroded by the solder. However, according to the present invention, by implementing the solder erosion preventive structure with the two layers of the Ni layer and the Cu layer, it is possible to realize the structure in which the characteristic variation of the threshold voltage Vth of the MOSFET is not caused.

【0044】また、本発明の半導体装置の製造方法によ
れば、従来におけるスパッタ法でなく電子衝撃加熱蒸着
法によりTi層およびNi層を堆積することで、製造コ
ストを安価することができる。また、Cu層は抵抗加熱
蒸着法により堆積するので、層厚を所望の厚さに堆積す
ることができる。そのことで、半田の侵食を防止し、半
田との接合強度も確保でき製品品質も優れた半導体装置
を提供することができる。
According to the method for manufacturing a semiconductor device of the present invention, the Ti layer and the Ni layer are deposited by the electron impact heating vapor deposition method instead of the conventional sputtering method, so that the manufacturing cost can be reduced. Further, since the Cu layer is deposited by the resistance heating vapor deposition method, the layer thickness can be deposited to a desired thickness. As a result, it is possible to provide a semiconductor device that prevents solder erosion, secures the bonding strength with the solder, and has excellent product quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置を説明するための斜視図で
ある。
FIG. 1 is a perspective view for explaining a semiconductor device of the present invention.

【図2】本発明の半導体装置の表面電極構造を説明する
ための断面図である。
FIG. 2 is a sectional view for explaining a surface electrode structure of a semiconductor device of the present invention.

【図3】本発明の半導体装置に用いられる半導体素子の
特性を示す特性図である。
FIG. 3 is a characteristic diagram showing characteristics of a semiconductor element used in the semiconductor device of the present invention.

【図4】本発明の半導体装置に用いられる金属層と半田
との侵食状況を示す特性図である。
FIG. 4 is a characteristic diagram showing an erosion state of a metal layer and a solder used in the semiconductor device of the present invention.

【図5】本発明の半導体装置を説明するための断面図で
ある。
FIG. 5 is a cross-sectional view illustrating a semiconductor device of the present invention.

【図6】本発明の半導体装置の製造方法を説明するため
の断面図である。
FIG. 6 is a cross-sectional view for explaining the method for manufacturing a semiconductor device of the present invention.

【図7】従来の半導体装置を説明するための断面図であ
る。
FIG. 7 is a cross-sectional view illustrating a conventional semiconductor device.

【図8】従来の半導体装置の製造方法を説明するための
断面図である。
FIG. 8 is a cross-sectional view for explaining the conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

21 半導体素子 22 ゲート電極 23 シリコン酸化膜 24 ソース電極 25 導電部材 26 金属細線 27 アイランド 28、29 ポスト 21 Semiconductor element 22 Gate electrode 23 Silicon oxide film 24 Source electrode 25 Conductive member 26 thin metal wires 27 islands 28, 29 post

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨永 久昭 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 久保 博稔 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5F033 HH07 HH08 HH11 HH13 HH18 MM08 MM13 PP19 QQ09 QQ14 QQ33 QQ41 RR06 SS11 VV07 XX12 XX28 XX34 5F044 RR00    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hisashi Tominaga             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Hirotoshi Kubo             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F-term (reference) 5F033 HH07 HH08 HH11 HH13 HH18                       MM08 MM13 PP19 QQ09 QQ14                       QQ33 QQ41 RR06 SS11 VV07                       XX12 XX28 XX34                 5F044 RR00

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に堆積されたAl層から成
るパッド電極部と、 前記パッド電極部上に堆積した該パッド電極との接続性
を目的とした第1の導電性金属層と、 前記第1の導電性金属層上に堆積した半田との接合性お
よび侵食防止を目的とした第2の導電性金属層および第
3の導電性金属層と、 前記第3の導電性金属層上に堆積した半田との濡れ性を
目的とした第4の導電性金属層とを具備することを特徴
とする半導体装置。
1. A pad electrode section made of an Al layer deposited on a semiconductor substrate, a first conductive metal layer for the purpose of connecting the pad electrode section deposited on the pad electrode section, and A second conductive metal layer and a third conductive metal layer for the purpose of bonding with a solder deposited on the first conductive metal layer and preventing erosion; and on the third conductive metal layer A semiconductor device comprising a fourth conductive metal layer for the purpose of wettability with the deposited solder.
【請求項2】 前記第2および第3の導電性金属層はN
i層とCu層の組み合わせであることを特徴とする請求
項1記載の半導体装置。
2. The second and third conductive metal layers are N
The semiconductor device according to claim 1, wherein the semiconductor device is a combination of an i layer and a Cu layer.
【請求項3】 前記Cu層は前記Ni層よりも厚く堆積
されることを特徴とする請求項2記載の半導体装置。
3. The semiconductor device according to claim 2, wherein the Cu layer is deposited thicker than the Ni layer.
【請求項4】 前記第1の導電性金属層はTi層から成
ることを特徴とする請求項1記載の半導体装置。
4. The semiconductor device according to claim 1, wherein the first conductive metal layer is a Ti layer.
【請求項5】 前記第4の導電性金属層はAu層、Pd
層またはPt層のいずれかから成ることを特徴とする請
求項1記載の半導体装置。
5. The fourth conductive metal layer is an Au layer, Pd
The semiconductor device according to claim 1, wherein the semiconductor device comprises either a layer or a Pt layer.
【請求項6】 半導体基板上にAl層を堆積させ該Al
膜上の所望の領域にSiN層を堆積させ、前記SiN層
の一部を除去し開口部を形成し、前記開口部を介して前
記Al膜を露出させパッド電極を形成する工程と、 前記パッド電極上に電子衝撃加熱蒸着法により該パッド
電極との接続性を目的とした第1の導電性金属層を堆積
する工程と、 前記第1の導電性金属層上に電子衝撃加熱蒸着法により
半田との接合性および侵食防止を目的とした第2の導電
性金属層を堆積する工程と、 前記第2の導電性金属層上に抵抗加熱蒸着法により半田
との接合性および侵食防止を目的とした第3の導電性金
属層を堆積する工程と、 前記第3の導電性金属層上に半田との濡れ性を目的とし
た第4の導電性金属層を堆積する工程とを具備すること
を特徴とする半導体装置の製造方法。
6. An Al layer is deposited on a semiconductor substrate to form the Al layer.
Depositing a SiN layer on a desired region of the film, removing a part of the SiN layer to form an opening, and exposing the Al film through the opening to form a pad electrode; Depositing a first conductive metal layer on the electrode by electron impact heating vapor deposition for the purpose of connecting to the pad electrode, and soldering on the first conductive metal layer by electron impact heating vapor deposition And a step of depositing a second conductive metal layer for the purpose of bonding property with erosion and erosion prevention, and the purpose of bonding property with solder and erosion prevention by resistance heating vapor deposition on the second conductive metal layer. And a step of depositing a fourth conductive metal layer for the purpose of wettability with solder on the third conductive metal layer. A method for manufacturing a characteristic semiconductor device.
【請求項7】 前記SiN層上にレジスト層を形成した
後、前記レジスト層をマスクとして用い前記第1から第
4の導電性金属層を堆積させることを特徴とする請求項
6記載の半導体装置の製造方法。
7. The semiconductor device according to claim 6, wherein after forming a resist layer on the SiN layer, the first to fourth conductive metal layers are deposited using the resist layer as a mask. Manufacturing method.
【請求項8】 前記第2の導電性金属層はNi層であ
り、前記第3の導電性金属層はCu層であることを特徴
とする請求項6または請求項7記載の半導体装置の製造
方法。
8. The method of manufacturing a semiconductor device according to claim 6, wherein the second conductive metal layer is a Ni layer, and the third conductive metal layer is a Cu layer. Method.
【請求項9】 前記Cu層を前記Ni層よりも厚く堆積
することを特徴とする請求項8記載の半導体装置の製造
方法。
9. The method of manufacturing a semiconductor device according to claim 8, wherein the Cu layer is deposited thicker than the Ni layer.
【請求項10】 半導体基板上にAl層を堆積させ該A
l膜上の所望の領域にSiN層を堆積させ、前記SiN
層の一部を除去し開口部を形成し、前記開口部を介して
前記Al膜を露出させパッド電極を形成する工程と、 前記パッド電極上に電子衝撃加熱蒸着法により該パッド
電極との接続性を目的とした第1の導電性金属層を堆積
する工程と、 前記第1の導電性金属層上に抵抗加熱蒸着法により半田
との接合性および侵食防止を目的とした第2の導電性金
属層を堆積する工程と、 前記第2の導電性金属層上に電子衝撃加熱蒸着法により
半田との接合性および侵食防止を目的とした第3の導電
性金属層を堆積する工程と、 前記第3の導電性金属層上に半田との濡れ性を目的とし
た第4の導電性金属層を堆積する工程とを具備すること
を特徴とする半導体装置の製造方法。
10. An Al layer is deposited on a semiconductor substrate,
l deposit a SiN layer on the desired region on the
Removing a part of the layer to form an opening, exposing the Al film through the opening to form a pad electrode, and connecting the pad electrode to the pad electrode by electron impact heating vapor deposition A step of depositing a first conductive metal layer for the purpose of improving the conductivity, and a second conductivity for the purpose of preventing erosion and bonding with solder by resistance heating vapor deposition on the first conductive metal layer. Depositing a metal layer, depositing a third conductive metal layer on the second conductive metal layer by electron impact heating vapor deposition for the purpose of bonding with solder and preventing erosion, And a step of depositing a fourth conductive metal layer on the third conductive metal layer for the purpose of wettability with solder, the method for manufacturing a semiconductor device.
【請求項11】 前記SiN層上にレジスト層を形成し
た後、前記レジスト層をマスクとして用い前記第1から
第4の導電性金属層を堆積させることを特徴とする請求
項10記載の半導体装置の製造方法。
11. The semiconductor device according to claim 10, wherein after forming a resist layer on the SiN layer, the first to fourth conductive metal layers are deposited using the resist layer as a mask. Manufacturing method.
【請求項12】 前記第2の導電性金属層はCu層であ
り、前記第3の導電性金属層はNi層であることを特徴
とする請求項10または請求項11記載の半導体装置の
製造方法。
12. The manufacturing of a semiconductor device according to claim 10, wherein the second conductive metal layer is a Cu layer and the third conductive metal layer is a Ni layer. Method.
【請求項13】 前記Cu層を前記Ni層よりも厚く堆
積することを特徴とする請求項12記載の半導体装置の
製造方法。
13. The method of manufacturing a semiconductor device according to claim 12, wherein the Cu layer is deposited thicker than the Ni layer.
JP2002006283A 2002-01-15 2002-01-15 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4270788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006283A JP4270788B2 (en) 2002-01-15 2002-01-15 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006283A JP4270788B2 (en) 2002-01-15 2002-01-15 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003209131A true JP2003209131A (en) 2003-07-25
JP4270788B2 JP4270788B2 (en) 2009-06-03

Family

ID=27645095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006283A Expired - Fee Related JP4270788B2 (en) 2002-01-15 2002-01-15 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4270788B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015029159A1 (en) * 2013-08-28 2017-03-02 三菱電機株式会社 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015029159A1 (en) * 2013-08-28 2017-03-02 三菱電機株式会社 Semiconductor device
US9716052B2 (en) 2013-08-28 2017-07-25 Mitsubishi Electric Corporation Semiconductor device comprising a conductive film joining a diode and switching element

Also Published As

Publication number Publication date
JP4270788B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP3413020B2 (en) Manufacturing method of semiconductor device
US5648686A (en) Connecting electrode portion in semiconductor device
US6614113B2 (en) Semiconductor device and method for producing the same
JPS62133738A (en) Integrated circuit
JP2003031576A (en) Semiconductor element and manufacturing method therefor
US5422307A (en) Method of making an ohmic electrode using a TiW layer and an Au layer
JP3682227B2 (en) Electrode formation method
JP6579989B2 (en) Semiconductor device and manufacturing method of semiconductor device
JPH09260645A (en) Semiconductor device
JP4956461B2 (en) Liquid crystal display device and manufacturing method thereof
JP4179769B2 (en) Manufacturing method of semiconductor device
JP2003209131A (en) Semiconductor device and its manufacturing method
JP2005123247A (en) Semiconductor device and its manufacturing method
JPS63122248A (en) Manufacture of semiconductor device
JPH03159152A (en) Manufacture of bump electrode
JPH0233929A (en) Semiconductor device
JPH07130790A (en) Construction of electrode of semiconductor device
JP2010062388A (en) Diamond semiconductor element
JPH10199886A (en) Semiconductor device and manufacture thereof
JP2005072253A (en) Semiconductor device and method for manufacturing the same
JP2000049181A (en) Semiconductor device and production thereof
JP2005150440A (en) Semiconductor device
JP2004228295A (en) Semiconductor device and its manufacturing process
JP3110795B2 (en) Method for manufacturing semiconductor device
JPH0629292A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061201

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4270788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees