JP2003209028A - Method of manufacturing solid-state electrolytic capacitor - Google Patents

Method of manufacturing solid-state electrolytic capacitor

Info

Publication number
JP2003209028A
JP2003209028A JP2002007373A JP2002007373A JP2003209028A JP 2003209028 A JP2003209028 A JP 2003209028A JP 2002007373 A JP2002007373 A JP 2002007373A JP 2002007373 A JP2002007373 A JP 2002007373A JP 2003209028 A JP2003209028 A JP 2003209028A
Authority
JP
Japan
Prior art keywords
powder
valve action
die
action metal
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002007373A
Other languages
Japanese (ja)
Other versions
JP3949456B2 (en
Inventor
Nazumi Inukai
奈泉 犬飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002007373A priority Critical patent/JP3949456B2/en
Publication of JP2003209028A publication Critical patent/JP2003209028A/en
Application granted granted Critical
Publication of JP3949456B2 publication Critical patent/JP3949456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing solid-state electrolytic capacitors capable of substantially reducing L-C characteristics (leak current characteristics) so as to be suitable for capacitors, comprising steps of disposing a valve action metal plate so as to be punched out to overlay valve action metal powder in a portion contacting therewith, and knocked out to discharge a powder molded article downward a through-hole of a die using a knock-out punch. <P>SOLUTION: The method of manufacturing the solid-state electrolytic capacitor is characterized by comprising steps of disposing a valve action metal strip member, which is punched out so that a valve action metal plate is overlaid on valve action powder in a powder molding die, inserting the valve action metal powder into a through-hole in the die and compressing the powder between first and second punches so as to form a powder molded article, and knocked out to discharge the powder molded article downward the through-hole of the die using the second punch. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サの製造方法に関し、より詳細には、コンデンサの小型
化、静電容量向上のために、弁作用金属粉末との接触部
分に弁作用金属板を配設して用い、コンデンサとしての
LC特性(漏れ電流特性)を著しく低減できる固体電解コ
ンデンサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more specifically, to reduce the size of the capacitor and improve its capacitance, a valve-acting metal plate is provided at a contact portion with a valve-acting metal powder. The present invention relates to a method for manufacturing a solid electrolytic capacitor in which LC characteristics (leakage current characteristics) as a capacitor can be remarkably reduced by using.

【0002】[0002]

【従来の技術】従来から、タンタル、ニオブ、アルミニ
ウム、チタン等の弁作用を有する微細金属粉体をプレス
成型した粉末成形体を高温度・高真空下にて多孔質の焼
結体にさせて、電解コンデンサとして用いられている。
2. Description of the Related Art Conventionally, a powder compact formed by press-molding a fine metal powder having a valve action such as tantalum, niobium, aluminum and titanium is formed into a porous sintered body under high temperature and high vacuum. , Used as an electrolytic capacitor.

【0003】近年は、半導体集積回路が、益々微細化、
高集積、小型化の傾向にあるなかで、パソコン、電話機
等が、携帯形で、小型、軽量化の方向にあって、用いら
れるコンデンサも小型・大容量化の方向としての傾向が
益々強く求められてきている。
In recent years, semiconductor integrated circuits have become smaller and smaller.
In the trend of high integration and miniaturization, personal computers, telephones, etc. are portable and are becoming smaller and lighter, and the capacitors used are also becoming more and more demanding. Has been done.

【0004】このような要求を満たすために、上述した
粉末成形体の多孔質度(又は気孔率)を高め粉末成形体
の表面積を高めて、コンデンサの小型化、大容量化を達
成させるために、その出発原料の弁作用を有する金属粉
体をより微細な1次粒子径、例えば、特に近年、その平
均粒子径として1.5〜0.7μmの1次粒子径の原料
金属粉体が用いられるようになってきている。
In order to meet such demands, in order to increase the porosity (or porosity) of the above-mentioned powder compact and increase the surface area of the powder compact, the size and capacity of the capacitor can be reduced. A metal powder having a valve action of the starting material is used as a raw material metal powder having a finer primary particle diameter, for example, a primary particle diameter of 1.5 to 0.7 μm as an average particle diameter in recent years. Is becoming available.

【0005】しかしながら、まだこのような微細粉体を
成型するに際しては、例えば、コンデンサの粉末成形体
の成形工程において、造粒されたタンタル等の弁作用金
属粉末を加圧成形するに際して、通常は、垂直な側面を
有する貫通孔1aの穿設された成形金型のダイス1と、
この貫通孔の下部より嵌入した下パンチ2とで形成され
た粉末充填孔内に粉末を充填し(図4(a))、次いで、ダ
イス1上方に配設された陽極リード8が挿入され保持し
た状態で上パンチ3を粉末充填孔内に挿入すると同時に
下パンチ2を上昇させ、粉末を所望形状に圧縮成形する
(図4(b))。その後、上パンチ3をダイス孔内より引戻
し陽極リード8を切断刃13で切断する(4(c))。その
後、下パンチ2を突き上げることにより、あるいはダイ
ス1を下降させることにより、粉末成形体をダイス孔内
よりノックアウトして粉末成形体6を形成し(4(d))、
この後に高温・高真空下で燒結して陽極リードを埋設し
た固体電解コンデンサの粉末成形体を得る製造方法が一
般的である。(例えば、特開平2−69923号公報の
図1参照)
However, when molding such a fine powder, for example, in the step of molding a powder compact of a capacitor, it is usual to press-mold a valve action metal powder such as granulated tantalum. A die 1 of a molding die having a through hole 1a having a vertical side surface,
Powder is filled into the powder filling hole formed by the lower punch 2 fitted from the lower part of the through hole (FIG. 4 (a)), and then the anode lead 8 arranged above the die 1 is inserted and held. In this state, the upper punch 3 is inserted into the powder filling hole, and at the same time, the lower punch 2 is lifted to compress the powder into a desired shape.
(Fig. 4 (b)). Then, the upper punch 3 is pulled back from the inside of the die hole, and the anode lead 8 is cut by the cutting blade 13 (4 (c)). After that, by pushing up the lower punch 2 or by lowering the die 1, the powder compact is knocked out from the inside of the die hole to form the powder compact 6 (4 (d)),
After that, a manufacturing method is generally used to obtain a powder molded body of a solid electrolytic capacitor in which the anode lead is buried by sintering under high temperature and high vacuum. (For example, refer to FIG. 1 of Japanese Patent Laid-Open No. 2-69923)

【0006】また、一般に、陽極リードを埋設せずに弁
作用金属板材を粉末成形体に重ね合わせた固体電解コン
デンサには、例えば、特開昭58−96724公報に記
載され、且つ図5(a)〜5図(f)及び図6に示されている
ように、まず図5(a)に示すように粉末成形ダイス1の
金型の貫通孔1a上に、弁作用金属板材20を位置決め
載置する。そして図5(b)に示すように上パンチ3を下
方に引き下げて下パンチ2とで貫通孔1a内でプレスす
ることにより鍔付きの円盤21に整形する。この後、上
パンチ(3)のみ上方に引き上げ、弁作用金属板材20を
下パンチ2上に残しておく。そして、図5(c)に示すよ
うに、貫通孔1a上から弁作用金属粉末5を所定量投入
し、弁作用金属板材20の鍔付きの円盤21上に重ねて
おく。次に図5(d)に示すように、上パンチ3を再び貫
通孔1a内に嵌入させ、加圧・整形する。下パンチ2を
貫通孔1a上端まで、押し上げることにより、図5(e)に
示すように、弁作用金属板材20の鍔付きの円盤21と
一体化した、弁作用金属粉末の整形物を得ることができ
る。次にこの整形物を焼成して、多孔質構造のコンデン
サエレメント7とした後、図5(f)に示すように、弁作
用金属材よりなる陽極リード8を、弁作用金属板材20
の鍔付きの円盤21上に溶接する。また、図6にに示す
ようにコンデンサエレメント7の一面の一部に突出する
金属材20を用いてもよいと記載されている。
Further, generally, a solid electrolytic capacitor in which a valve action metal plate material is superposed on a powder compact without burying an anode lead is described in, for example, Japanese Patent Application Laid-Open No. 58-96724 and FIG. 5) As shown in FIGS. 5 (f) and 6, first, as shown in FIG. 5 (a), the valve action metal plate material 20 is positioned and mounted on the through hole 1a of the die of the powder molding die 1. Place. Then, as shown in FIG. 5 (b), the upper punch 3 is pulled down and pressed with the lower punch 2 in the through-hole 1a to form a disk 21 with a collar. After this, only the upper punch (3) is pulled upward, and the valve action metal plate material 20 is left on the lower punch 2. Then, as shown in FIG. 5 (c), a predetermined amount of valve action metal powder 5 is introduced from above the through hole 1 a and is stacked on the flanged disk 21 of the valve action metal plate member 20. Next, as shown in FIG. 5 (d), the upper punch 3 is fitted into the through hole 1a again, and pressed and shaped. By pushing up the lower punch 2 to the upper end of the through hole 1a, as shown in FIG. 5 (e), a shaped product of valve action metal powder, which is integrated with the disc 21 with a flange of the valve action metal plate member 20, is obtained. You can Next, after the shaped product is fired to form a capacitor element 7 having a porous structure, as shown in FIG. 5 (f), an anode lead 8 made of a valve action metal material is attached to the valve action metal plate material 20.
Weld on the disk 21 with a collar. Further, it is described that a metal material 20 protruding on a part of one surface of the capacitor element 7 may be used as shown in FIG.

【0007】[0007]

【発明が解決しようとする課題】しかし、この従来のコ
ンデンサ用粉末成形体には次ぎのような欠点がある。 (1)陽極リードを埋設した固体電解コンデンサ用粉末
成形体は、ダイス上方に配設された陽極リードが挿入さ
れ保持した状態で上パンチを粉末充填孔内に挿入すると
同時に下パンチを上昇させ、粉末を所望形状に圧縮成形
する。このため、上パンチには陽極リードを挿入し所定
量供給できて摺動できる貫通穴が設けられており、陽極
リードと上パンチの貫通穴とに所定のクリアランスが重
要であるが、上記で述べたように金属粉体が微細になれ
ば、その微細化に比例してこのクリアランスをより小さ
くすることが必要であるが陽極リードの線経精度面、貫
通穴の加工精度面との関係で限界がある。よって、この
クリアランスで陽極体の陽極リードの近傍には圧縮加圧
力が加わらず、また埋設された陽極リードが抵抗となっ
て粉末成形密度は他の部分の粉末成形体の成形密度より
粗密度状態となってしまうため、陽極リードの粉末成形
体との根元部分の機械的強度は弱くコンデンサの製造工
程中の陽極リードの曲がりなどでLC特性(漏れ電流)を
著しく劣化してしまう問題が発生する。また、このクリ
アランスを小さくした場合は、このコンデンサの固体電
解質層を形成する二酸化マンガン溶液或いは導電性高分
子などが、陽極リードの上パンチ貫通穴での摺動時に発
生したキズなどから表面張力によりコンデンサの製造中
に這い上がてしまいショート不良或いはLC特性不良が
多く発生する問題がある。
However, this conventional powder compact for capacitors has the following drawbacks. (1) The powder molded body for a solid electrolytic capacitor in which the anode lead is embedded has the anode lead arranged above the die inserted and held, and the upper punch is inserted into the powder filling hole and at the same time the lower punch is raised. Compress the powder into the desired shape. For this reason, the upper punch is provided with a through hole through which the anode lead can be inserted and a predetermined amount can be supplied and slid, and a predetermined clearance between the anode lead and the through hole of the upper punch is important. As described above, if the metal powder becomes finer, it is necessary to make this clearance smaller in proportion to the size reduction, but there is a limit in relation to the wire trace accuracy surface of the anode lead and the processing accuracy surface of the through hole. There is. Therefore, due to this clearance, no compressive pressure is applied near the anode lead of the anode body, and the embedded anode lead becomes a resistance, and the powder compaction density is in a coarser density state than the compaction densities of the powder compacts in other parts. Therefore, the mechanical strength of the base part of the anode lead with the powder compact is weak, and there is a problem that the LC characteristics (leakage current) is significantly deteriorated due to bending of the anode lead during the manufacturing process of the capacitor. . When this clearance is reduced, the manganese dioxide solution or conductive polymer that forms the solid electrolyte layer of this capacitor may be damaged by surface tension due to scratches generated when sliding in the upper punch through hole of the anode lead. There is a problem in that a short circuit or a defective LC characteristic often occurs due to the creeping up during the manufacturing of the capacitor.

【0008】(2)陽極リードを埋設せずに弁作用金属
板材を粉末成形体に重ね合わせた固体電解コンデンサの
製造方法は、図8(a)に示すように粉末成形ダイの金型
の貫通孔上に、弁作用金属板材を位置決め載置し、そし
て図8(b)に示すように上パンチを下方に引き下げて下
パンチとで貫通孔内でプレスすることにより鍔付きの円
盤に整形する。また、下パンチを貫通孔上端まで、押し
上げることにより、図8(e)に示すように、弁作用金属
板材と一体化した状態でしたパンチを引き上げてノック
アウトして粉末成形ダイの上方側に弁作用金属粉末の整
形物を排出する製造方のため、弁作用金属板材と粉末成
形ダイの貫通孔との位置決めが必要であり、且つ上パン
チを下方に引き下げて下パンチとで貫通孔内で鍔付きの
円盤にプレスする工程も必要となり生産効率が悪い。ま
た、粉末成形ダイの下方の位置にある弁作用金属粉末の
整形物を下パンチを貫通孔上端まで押し上げることによ
り、粉末成形ダイの内壁面と弁作用金属粉末の整形物と
の摺動する距離が長くなって整形物に摺りキズが発生し
てしまいコンデンサ特性としてのLC特性が劣化する問
題がある。
(2) A method of manufacturing a solid electrolytic capacitor in which a valve action metal plate material is superposed on a powder compact without burying an anode lead is as shown in FIG. 8 (a). A valve action metal plate is positioned on the hole, and as shown in FIG. 8 (b), the upper punch is pulled down and pressed with the lower punch in the through hole to form a disk with a collar. . Further, by pushing the lower punch to the upper end of the through hole, as shown in FIG. 8 (e), the punch integrated with the valve-acting metal plate material is pulled up and knocked out to move the valve upward of the powder molding die. For the manufacturing method to discharge the shaped product of the working metal powder, it is necessary to position the valve working metal plate and the through hole of the powder molding die, and the upper punch is pulled down and the lower punch and the through hole are provided in the through hole. It also requires a process to press the attached disk, resulting in poor production efficiency. In addition, by pushing the lower punch up to the upper end of the through-hole, the valve punch metal powder shaped object located below the powder molding die slides on the inner wall surface of the powder molding die and the valve action metallic powder molded object. Becomes longer and scratches are generated on the shaped article, and there is a problem that the LC characteristics as the capacitor characteristics deteriorate.

【0009】そこで、本発明の目的は、弁作用金属粉末
との接触部分に弁作用金属板を粉末成形金型で打ち抜き
ながら重ねた状態で配設し、ダイスの貫通孔の下方側へ
粉末成形体を第2のパンチでノックアウトして排出する
ことにより、コンデンサとしてのLC特性(漏れ電流特
性)を著しく低減できる固体電解コンデンサの製造方法
を提供することである。
Therefore, an object of the present invention is to arrange a valve action metal plate in a contact state with a valve action metal powder in a stacked state while punching it with a powder molding die, and to perform powder molding on a lower side of a through hole of a die. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor in which the LC characteristics (leakage current characteristics) as a capacitor can be remarkably reduced by knocking out and discharging the body with a second punch.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に提供する本願第一の発明に係る請求項1に記載の固体
電解コンデンサの製造方法は、弁作用金属粉末との接触
部分に弁作用金属板を重ねた状態に配設して、弁作用金
属粉末を第1のパンチと第2のパンチとでダイスの貫通
孔内に嵌入し加圧圧縮して粉末成形体を形成し、粉末成
形体を高温高真空燒結した後、誘電体酸化皮膜を形成
し、この表面に固体電解質となる二酸化マンガン層、ま
たは導電性高分子層を形成し、その表面に陰極層となる
グラファイト層、導電性樹脂層を順次形成する固体電解
コンデンサの製造方法において、ダイスの貫通孔の下方
側へ粉末成形体を第2のパンチでノックアウトして排出
することを特徴とする。
A method of manufacturing a solid electrolytic capacitor according to claim 1 of the present invention, which is provided to solve the above-mentioned problems, has a valve action at a contact portion with a valve action metal powder. The metal plates are arranged in a stacked state, the valve action metal powder is fitted into the through hole of the die by the first punch and the second punch, and compressed under pressure to form a powder compact, and the powder compact is formed. After sintering the body at high temperature and high vacuum, a dielectric oxide film is formed, a manganese dioxide layer that becomes a solid electrolyte, or a conductive polymer layer is formed on this surface, and a graphite layer that becomes a cathode layer and a conductive layer are formed on the surface. In the method for manufacturing a solid electrolytic capacitor in which resin layers are sequentially formed, the powder compact is knocked out by a second punch and discharged to the lower side of the through hole of the die.

【0011】係る製造方法を採用することにより、コン
デンサの小型化、静電容量向上のために、弁作用金属粉
末との接触部分に弁作用金属板を用いて、ダイスの貫通
孔の下方側より粉末成形体を第2のパンチでノックアウ
トして排出するため、ダイスの貫通孔内の内壁面と弁作
用金属粉末の成形体との摺動する距離が最小となり、平
均1次粒子径が1.5μm以下の微細な弁作用金属粉末
で、その成形性を高めるためのバインダを混合した造粒
粉である2次粒子経が10〜200μmの微細な弁作用
金属粉末を用いた粉末成形体でも摺りキズの発生が抑制
できるため、コンデンサ特性としてのLC特性を著しく
低減する固体電解コンデンサが実現できる。
By adopting such a manufacturing method, in order to reduce the size of the capacitor and improve the electrostatic capacity, a valve action metal plate is used in the contact portion with the valve action metal powder, and the lower side of the through hole of the die is used. Since the powder compact is knocked out by the second punch and discharged, the sliding distance between the inner wall surface in the through hole of the die and the compact of the valve action metal powder is minimized, and the average primary particle diameter is 1. Fine valve action metal powder of 5 μm or less, which is a granulated powder mixed with a binder for enhancing the moldability, and is also rubbed with a powder compact using a fine valve action metal powder having a secondary particle diameter of 10 to 200 μm. Since the generation of scratches can be suppressed, it is possible to realize a solid electrolytic capacitor that significantly reduces the LC characteristics as the capacitor characteristics.

【0012】前記課題を解決するために提供する本願第
二の発明に係る請求項2に記載の固体電解コンデンサの
製造方法は、請求項1記載の固体電解コンデンサの製造
方法において、ダイスの貫通孔の下方側からダイスと第
1のパンチとで弁作用金属条部材を打ち抜きし、打ち抜
きした弁作用金属板をダイスの貫通孔に嵌入して弁作用
金属粉末との接触部分に重ねた状態に配設することを特
徴とする。
A method for manufacturing a solid electrolytic capacitor according to a second aspect of the present invention, which is provided for solving the above-mentioned problems, is the method for manufacturing a solid electrolytic capacitor according to the first aspect. The valve action metal strip member is punched from the lower side of the die with the die and the first punch, and the punched valve action metal plate is inserted into the through hole of the die and placed in a state of overlapping with the contact portion with the valve action metal powder. It is characterized by setting.

【0013】係る製造方法を採用することにより、弁作
用金属条部材を粉末成形金型のダイスの下方面に配設
し、弁作用金属条部材を打ち抜きしながら嵌入するた
め、打ち抜かれた弁作用金属板の打ち抜きする側から粉
末成形体と共にノックアウトするため、接触界面に剥離
する方向に外力が加わらないので安定した接合となりL
C特性のバラツキが小さい、と共に従来例の上パンチを
下方に引き下げて下パンチとで貫通孔内で鍔付きの円盤
にプレスする工程が不要となり高い生産効率を得る。
By adopting such a manufacturing method, the valve action metal strip member is arranged on the lower surface of the die of the powder molding die, and the valve action metal strip member is inserted while being punched, so that the punched valve action is performed. Since the metal plate is knocked out together with the powder compact from the punching side, no external force is applied to the contact interface in the direction of peeling, resulting in stable joining.
The variation of the C characteristic is small, and the process of pulling the upper punch of the conventional example downward and pressing it with the lower punch to the disk with the collar in the through hole is not necessary, and high production efficiency is obtained.

【0014】前記課題を解決するために提供する本願第
三の発明に係る請求項3に記載の固体電解コンデンサの
製造方法は、請求項1または請求項2に記載の固体電解
コンデンサの製造方法において、粉末成形体を高温高真
空燒結後に、粉末成形体の打ち抜きした弁作用金属板の
露呈した面に弁作用を有する陽極リードをレーザ溶接す
ることを特徴とする。
The method for producing a solid electrolytic capacitor according to claim 3 according to the third invention of the present application, which is provided for solving the above-mentioned problems, is the same as the method for producing a solid electrolytic capacitor according to claim 1 or 2. After the powder compact is sintered at high temperature and high vacuum, the anode lead having the valve action is laser-welded to the exposed surface of the punched valve action metal plate of the powder compact.

【0015】係る製造方法を採用することにより、粉末
成形体を高温真空燒結する工程後にレーザ溶接のため、
粉末成形体に機械的な外力が加わらず、また不純物など
も付着せず接合できLC特性などの信頼性品質が安定で
ある。また、この陽極リードを利用してコンデンサの誘
電体酸化皮膜を形成する化成工程、二酸化マンガンまた
は導電性高分子などの固体電解質層を形成する分解また
は生成工程などで多数個を同時に持吊して処理でき効率
的な作業ができる。またこの所定の間隔に持吊した状態
での陽極リードは、所定の間隔に配列された外部端子
(例えば、42合金製リードフレーム)と対応されており接
合作業が効率的にできる。
By adopting such a manufacturing method, since the laser welding is performed after the step of vacuum-sintering the powder compact,
The powder compacts can be joined without any mechanical external force being applied thereto and impurities are not attached, and the reliability quality such as LC characteristics is stable. Also, using the anode lead, a large number are simultaneously suspended in a chemical conversion process for forming a dielectric oxide film of a capacitor, a decomposition or production process for forming a solid electrolyte layer such as manganese dioxide or a conductive polymer. It can be processed and can work efficiently. Also, the anode lead in a state of being hung and suspended at this predetermined interval is an external terminal arranged at a predetermined interval.
(For example, 42 alloy lead frame) is supported, and the joining work can be performed efficiently.

【0016】[0016]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して詳細に説明する。図1(a)〜図1
(e)は、本発明における固体電解コンデンサの製造方
法を工程順に示す要部断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in detail with reference to the drawings. 1 (a) to 1
FIG. 3E is a sectional view of a key portion showing, in the order of steps, the method for manufacturing the solid electrolytic capacitor according to the present invention.

【0017】図1(a)に示すように粉末成形金型のダ
イス1には、垂直な側面を有する貫通孔1aが形成され
ている。貫通孔1aの横断面形状は円形、楕円形または
矩形である。まずタンタル,ニオブ、チタン、アルミニ
ウムなどの弁作用金属条部材4(例えば、幅2.0mm×厚
さ0.05mm)を粉末成形金型のダイス1の下方面に配設
し(図1(a))、ダイス1の貫通孔の下方面側より下パ
ンチ2(第1のパンチ)を上昇させて弁作用金属条部材4
をバネ部10を介してパット部11で押圧しつつダイス
の貫通孔1aとでプレス打ち抜きし、打ち抜きした弁作用
金属板4aをダイス1の貫通孔1aに嵌入され所定量の位
置で停止させる(図1(b))。次にダイス1の貫通孔1a
の上方面からタンタル,ニオブ、チタン、アルミニウム
などの弁作用金属からなり平均粒子径として1.5〜
0.7μmの1次粒子径の微細な範囲内で一定の粒度分
布を有するようにあらかじめ造粒され、これに成形性を
高めるためのバインダを混合した造粒粉である2次粒子
経が10〜200μmとした金属粉末5を、ダイス1の
貫通孔1aの開口面が平坦となるように充填させ、粉末
が充填されたダイス1の貫通孔1aの真上には上パンチ1
(第2のパンチ)が配置されており(図1(c))、この上
パンチ3はその貫通孔1aの軸心に沿って嵌入して下パ
ンチ2の上に載置され弁作用金属板4aの方向に上パン
チ3を近付け下降させて弁作用金属粉末5を所定圧力で
圧縮加圧し粉末成形体6を形成し(図1(d))、下パン
チ2を下降させつつ、上パンチ3を下降させてダイス1
より打ち抜かれた弁作用金属板4aを有する粉末成形体
6をノックアウトさせて粉末成形体6をクランプ機構部
9で掴み取り出すことにより(図1(e))、図2、図3に
示すような固体電解コンデンサ7(例えば、粉末成形体
6のサイズ:幅1.15mm×高さ1.15mm×厚さ1.16
mm)を得ることができるものである。
As shown in FIG. 1 (a), a through hole 1a having a vertical side surface is formed in the die 1 of the powder molding die. The cross-sectional shape of the through hole 1a is circular, elliptical or rectangular. First, a valve action metal strip member 4 (for example, width 2.0 mm × thickness 0.05 mm) made of tantalum, niobium, titanium, aluminum or the like is disposed on the lower surface of the die 1 of the powder molding die (see FIG. 1 (a )), The lower punch 2 (first punch) is lifted from the lower surface side of the through hole of the die 1 to raise the valve action metal strip member 4
Is pressed by the pad portion 11 via the spring portion 10 and press-punched with the through hole 1a of the die, and the punched valve action metal plate 4a is fitted into the through hole 1a of the die 1 and stopped at a predetermined position ( Figure 1 (b)). Next, the through hole 1a of the die 1
From the upper surface of the valve metal made of valve metal such as tantalum, niobium, titanium, and aluminum as an average particle size of 1.5 to
The secondary particle diameter, which is a granulated powder obtained by previously granulating so as to have a certain particle size distribution within a fine range of the primary particle diameter of 0.7 μm, and mixing a binder for enhancing the moldability, is 10 The metal powder 5 having a diameter of up to 200 μm is filled so that the opening surface of the through hole 1a of the die 1 becomes flat, and the upper punch 1 is provided right above the through hole 1a of the die 1 filled with the powder.
A (second punch) is arranged (FIG. 1 (c)), and the upper punch 3 is fitted along the axial center of the through hole 1a and is placed on the lower punch 2 to be mounted on the valve-acting metal plate. 4a, the upper punch 3 is approached and lowered to compress the valve action metal powder 5 at a predetermined pressure to form a powder compact 6 (FIG. 1 (d)). While lowering the lower punch 2, the upper punch 3 is lowered. Lowering the die 1
As shown in FIGS. 2 and 3, by knocking out the powder compact 6 having the valve action metal plate 4a punched out more and grasping and taking out the powder compact 6 by the clamp mechanism portion 9 (FIG. 1 (e)). Solid electrolytic capacitor 7 (for example, size of powder compact 6: width 1.15 mm x height 1.15 mm x thickness 1.16)
mm) can be obtained.

【0018】ダイス1、下パンチ2及び上パンチ3は、
上下動可能に保持されており、精度よく移動・停止でき
るように例えばサーボモーターにより駆動される(図中
省略)。また、ダイス1、下パンチ2及び上パンチ3
は、相互の摺動および金属粉末5との擦過による磨耗を
抑えるため、例えば超硬合金などのような耐磨耗性に優
れた材料が用いられている。
The die 1, the lower punch 2 and the upper punch 3 are
It is held so that it can move up and down, and is driven by, for example, a servo motor so that it can be moved and stopped with high precision (not shown in the figure). Also, the die 1, the lower punch 2, and the upper punch 3
In order to suppress abrasion due to mutual sliding and rubbing against the metal powder 5, a material having excellent abrasion resistance such as cemented carbide is used.

【0019】下パンチ2を下降させつつ、上パンチ3を
下降させてダイス1より打ち抜かれた弁作用金属板4a
を有する粉末成形体6をノックアウトさせる(図1
(e))。このダイスの貫通孔の下方側へノックアウトさ
せる理由は、弁作用金属板4aと共に打ち抜きする側から
成形体をノックアフトするので、弁作用金属板と粉末成
形体との接触界面を剥離する方向には外力が加わらない
ので安定したLC特性が得られるためである、また、従
来例で示した上ポンチ3の方向に粉末成形体6をノック
アウトするより、下パンチ2の方向にノックアウトする
方がノックアウト量が粉末充填高さの関係で加圧圧縮後
は小さくなるため、ノックアウトするときのダイス1の
貫通孔1aの内壁と粉末成形体6との摩擦距離を極力少
なくさせて摩擦キズの発生を抑制させLC特性の劣化の
原因を排除するものであり、よって、この製造方法によ
り固体電解コンデンサとして特に半田耐熱でのLC特性
不良発生が1/3に低減できる。
A valve action metal plate 4a punched out from the die 1 by lowering the lower punch 2 and lowering the upper punch 3.
Knock out the powder compact 6 having
(e)). The reason for knocking out to the lower side of the through hole of the die is that the molded body is knock-afted from the side to be punched together with the valve action metal plate 4a, so that an external force is applied in the direction of separating the contact interface between the valve action metal plate and the powder compact. This is because a stable LC characteristic can be obtained because no knockout is added, and the knockout amount in the direction of the lower punch 2 is smaller than that in the case of knocking out the powder compact 6 in the direction of the upper punch 3 shown in the conventional example. Since it becomes smaller after pressure compression due to the powder filling height, the friction distance between the inner wall of the through hole 1a of the die 1 and the powder compact 6 at the time of knocking out is minimized to suppress the occurrence of friction scratches. This eliminates the cause of deterioration of characteristics. Therefore, this manufacturing method can reduce the occurrence of LC characteristics defects, especially in solder heat resistance, to 1/3 as a solid electrolytic capacitor. .

【0020】図2は本発明の製造方法で得られた固体電
解コンデンサの斜視図を示したものあり、平均1次粒子
径が1.5μm以下の微細な弁作用金属粉体で、その2
次粒子経が10〜200μmである金属粉体を用いて、
前述したように得られた粉末成形体6を焼結させる。そ
の条件は、通常、温度1200〜1600℃で、10-3
〜10-4Paの燒結装置(図示省略)を用いて燒結し、図
2に示す固体電解コンデンサ7を得ることにより、従来
例に示された突起したものがないために燒結装置の容積
に対しての多量の粉末成形体が入りことになり高温高真
空での燒結作業の容積効率が高く量産的である。
FIG. 2 is a perspective view of a solid electrolytic capacitor obtained by the manufacturing method of the present invention, which is a fine valve action metal powder having an average primary particle diameter of 1.5 μm or less.
Using a metal powder having a secondary particle size of 10 to 200 μm,
The powder compact 6 obtained as described above is sintered. The conditions are usually a temperature of 1200 to 1600 ° C. and a temperature of 10 −3
The solid electrolytic capacitor 7 shown in FIG. 2 was sintered by using a sintering device (not shown) having a pressure of -10 −4 Pa, so that the solid electrolytic capacitor 7 shown in FIG. As a result, a large amount of powder compacts will enter, and the volumetric efficiency of the sintering work at high temperature and high vacuum will be high, and mass production will be possible.

【0021】更に、図3は本図2に示す固体電解コンデ
ンサの弁作用金属板の露呈した面に弁作用を有する陽極
リードをレーザ溶接した固体電解コンデンサの斜視図を
示したものある。粉末成形体6を得た後に、粉末成形体
を高温真空燒結する工程後にレーザ溶接する製造方法に
より、陽極リードを利用してコンデンサの誘電体酸化皮
膜を形成する化成工程、二酸化マンガンまたは導電性高
分子などの固体電解質層を形成する分解または生成工程
などで多数個を同時に持吊して処理でき効率的な作業が
できる。またこの所定の間隔に持吊した状態での陽極リ
ードは、所定の間隔に配列された外部端子(例えば、42
合金製リードフレーム)と対応されており接合作業が効
率的にできる。またこの陽極リードの一部は、コンデン
サとしての外部端子(例えば、42合金製リードフレーム)
との接合に利用できて接合作業が容易となる。
Further, FIG. 3 is a perspective view of the solid electrolytic capacitor shown in FIG. 2, in which an anode lead having a valve action is laser-welded to the exposed surface of the valve action metal plate of the solid electrolytic capacitor. After the powder compact 6 is obtained, a chemical conversion process of forming a dielectric oxide film of a capacitor using an anode lead by a manufacturing method of laser welding after a process of sintering the powder compact at a high temperature, manganese dioxide or high conductivity. Efficient work can be performed by suspending and processing a large number of molecules at the same time in a decomposition or generation process of forming a solid electrolyte layer of molecules and the like. In addition, the anode lead in a state of being hung and suspended at this predetermined interval has an external terminal (for example, 42
It is compatible with alloy lead frames) and can be joined efficiently. A part of this anode lead is an external terminal as a capacitor (for example, 42 alloy lead frame).
It can be used for joining to and joining work becomes easy.

【0022】図1(a)〜(e)要部断面図に示すように固体
電解コンデンサの成形方法を、例えば製造装置にするこ
とも容易である。即ち、下パンチ2(第1のパンチ)と上
パンチ3(第2のパンチ)との軸心を一致させた成形用貫
通孔を有する粉末成形金型のダイス1と、このダイス1
の成形用貫通孔1aに下方から嵌入して粉末充填孔の底
面を形成する下パンチ2と、ダイス1の成形用貫通孔1
aに上方から嵌入して下パンチ2に近付けて充填された
弁作用金属粉末を圧縮成形する上パンチ3とで粉末成形
体6を形成する固体電解コンデンサの成形装置におい
て、タンタル,ニオブ、チタン、アルミニウムなどの弁
作用金属条部材4を粉末成形金型のダイス1の下方面に
対向配設し、ダイス1の貫通孔の下方面側より下パンチ
2(第1のパンチ)を上昇させ、成形用貫通孔1aのダイ
ス1の下方面と下パンチ2とで弁作用金属条部材4をバ
ネ部10を介してパット部11で押圧しつつ打ち抜いて
ダイス1に嵌入させ停止した後、ダイス1の成形用貫通
孔1aに上方から充填された弁作用金属粉末5をダイス
1の成形用貫通孔に上方から嵌入して上パンチで粉末成
形体6を圧縮形成し、下パンチ2を下降させつつ、上パ
ンチ3を下降させてダイス1より打ち抜かれた弁作用金
属板4aを有する粉末成形体6をノックアウトする、と
共にダイス1よりノックアウトした粉末成形体6をクラ
ンプ機構部9で掴み搬送する製造装置となる。その後、
この装置により得られた粉末成形体を高温高真空の燒結
装置(図示省略)で燒結後、図2に示す固体電解コンデン
サを得る。また、弁作用金属板に弁作用を有する陽極リ
ードをレーザ溶接装置(図示省略)で溶接し図3に示す固
体電解コンデンサを得る。この装置構成により、弁作用
金属条部材を粉末成形金型のダイス1の下方面に対向配
設し、弁作用金属条部材4を打ち抜きしながら嵌入する
ため、プレス抜き加工と粉末成形加工とを共用したダイ
ス、ポンチであるので動作機能が単純となり製造装置が
簡易となる。また、弁作用金属板4aと共に打ち抜きす
る側から粉末成形体6をノックアフトするので接触界面
を剥離する方向に外力が加わらないので安定したLC特
性が得られ高品質・高能率である固体電解コンデンサを
得る製造装置となる。
As shown in the cross-sectional views of the essential parts of FIGS. 1 (a) to 1 (e), it is easy to use a solid electrolytic capacitor forming method, for example, a manufacturing apparatus. That is, the die 1 of the powder molding die having a through hole for molding in which the axes of the lower punch 2 (first punch) and the upper punch 3 (second punch) are aligned, and the die 1
Lower punch 2 which is fitted into the molding through hole 1a from below to form the bottom surface of the powder filling hole, and the molding through hole 1 of the die 1.
In a solid electrolytic capacitor forming apparatus for forming a powder compact 6 with an upper punch 3 for compression-molding a valve action metal powder which is fitted into a from above and closes to a lower punch 2, tantalum, niobium, titanium, A valve action metal strip member 4 made of aluminum or the like is disposed so as to face the lower surface of the die 1 of the powder molding die, and the lower punch 2 (first punch) is raised from the lower surface side of the through hole of the die 1 to perform molding. The lower surface of the die 1 of the through hole 1a for use and the lower punch 2 presses the valve action metal strip member 4 with the pad portion 11 via the spring portion 10 and punches it into the die 1 to stop and then the die 1 The valve action metal powder 5 filled in the molding through hole 1a from above is fitted into the molding through hole of the die 1 from above, the powder compact 6 is formed by compression with the upper punch, and the lower punch 2 is lowered. Lower the upper punch 3 and die To knock powder compact 6 having a valve metal plate 4a blanked from 1, the powder compact 6 knockout from the die 1 a manufacturing apparatus for conveying gripping by the clamp mechanism 9 with. afterwards,
The powder compact obtained by this apparatus is sintered by a high-temperature high-vacuum sintering apparatus (not shown) to obtain the solid electrolytic capacitor shown in FIG. Further, an anode lead having a valve action is welded to a valve action metal plate by a laser welding device (not shown) to obtain the solid electrolytic capacitor shown in FIG. With this device configuration, the valve action metal strip member is disposed so as to face the lower surface of the die 1 of the powder molding die, and the valve action metal strip member 4 is inserted while being punched. Therefore, the press punching process and the powder molding process are performed. Since the dies and punches are shared, the operation function becomes simple and the manufacturing apparatus becomes simple. Further, since the powder molded body 6 is knock-afted from the punching side together with the valve action metal plate 4a, an external force is not applied in the direction of separating the contact interface, so that stable LC characteristics can be obtained and a solid electrolytic capacitor of high quality and high efficiency can be obtained. It becomes a manufacturing device to obtain.

【0023】[0023]

【発明の効果】以上説明したように、弁作用金属粉末の
粉末成形体を燒結して固体電解コンデンサとして作製す
るにあたり、本発明の固体電解コンデンサその成形方法
によれば、弁作用金属粉末との接触部分に、弁作用金属
条部材を粉末成形金型で打ち抜きながら弁作用金属板と
して重ねた状態で配設し、弁作用金属粉末を第1のパン
チと第2のパンチとでダイスの貫通孔内に嵌入し加圧圧
縮して粉末成形体を形成し、ダイスの貫通孔の下方側へ
粉末成形体を第2のパンチでノックアウトして排出した
粉末成形体を高温高真空燒結し、その後、弁作用金属板
の露呈した面に弁作用を有する陽極リードをレーザ溶接
し、その表面に誘電体酸化皮膜を形成し、この表面に固
体電解質となる二酸化マンガン層、または導電性高分子
層を形成し、さらにその表面に陰極層となるグラファイ
ト層、導電性樹脂層を順次形成する固体電解コンデンサ
の製造方法により、粉末成形体の表面に摺りキズの発生
が抑制できるため、市場が要求するコンデンサ特性とし
ての特に半田耐熱でのLC特性不良発生が1/3に低減
できる。
As described above, when a powder compact of valve action metal powder is sintered to produce a solid electrolytic capacitor, the solid electrolytic capacitor of the present invention can be molded with a valve action metal powder. A valve action metal strip member is punched out by a powder molding die in the contact portion, and is arranged in a stacked state as a valve action metal plate. The valve action metal powder is passed through a die through a first punch and a second punch. Then, the powder compact is inserted into the inside and compressed under pressure to form a powder compact, the powder compact is knocked out by the second punch to the lower side of the through hole of the die, and the discharged powder compact is sintered under high temperature and high vacuum, and thereafter, Anode lead having valve action is laser-welded on the exposed surface of valve action metal plate, a dielectric oxide film is formed on the surface, and a manganese dioxide layer or a conductive polymer layer to be a solid electrolyte is formed on this surface. And then By the method of manufacturing a solid electrolytic capacitor in which a graphite layer serving as a cathode layer and a conductive resin layer are sequentially formed on the surface thereof, it is possible to suppress the occurrence of scratches on the surface of the powder molded body, and therefore, particularly as the capacitor characteristics required by the market. The occurrence of defective LC characteristics due to solder heat resistance can be reduced to 1/3.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の固体電解コンデンサの製造方
法の工程順の要部断面図である。
FIG. 1 is a cross-sectional view of an essential part in the order of steps of a method for manufacturing a solid electrolytic capacitor according to an embodiment of the present invention.

【図2】本発明の製造方法で得られた固体電解コンデン
サの斜視図である。
FIG. 2 is a perspective view of a solid electrolytic capacitor obtained by the manufacturing method of the present invention.

【図3】図2に示す燒結後の粉末成形体の弁作用金属板
に陽極リードをレーザ溶接した固体電解コンデンサの斜
視図である。
3 is a perspective view of a solid electrolytic capacitor in which an anode lead is laser-welded to a valve action metal plate of the powder compact after sintering shown in FIG.

【図4】従来における成形方法の工程順の断面図である
(特開平2-69923号公報)。
FIG. 4 is a cross-sectional view in the order of steps of a conventional molding method.
(JP-A-2-69923).

【図5】従来における成形方法の工程順の断面図である
(特開昭58-96724号公報)。
FIG. 5 is a cross-sectional view in the order of steps of a conventional molding method.
(JP-A-58-96724).

【図6】図5における成形方法の他の実施例でのコンデ
ンサエレメントの斜視図である。
FIG. 6 is a perspective view of a capacitor element in another embodiment of the molding method in FIG.

【符号の説明】[Explanation of symbols]

1 ダイス 2 下パンチ(第1のパンチ) 3 上パンチ(第2のパンチ) 4 弁作用金属条部材 4a 弁作用金属板 5 弁作用金属粉末 6 粉末成形体 7 固体電解コンデンサ 8 陽極リード 9 クランプ機構部 10 バネ部 11 パット部 12 送りローラ部 1 die 2 Lower punch (first punch) 3 Upper punch (second punch) 4 Valve metal strip 4a Valve action metal plate 5 Valve metal powder 6 powder compacts 7 Solid electrolytic capacitor 8 Anode lead 9 Clamp mechanism 10 Spring part 11 Pat 12 Feed roller section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属粉末との接触部分に弁作用金
属板を重ねた状態に配設して、前記弁作用金属粉末を第
1のパンチと第2のパンチとでダイスの貫通孔内に嵌入
し加圧圧縮して粉末成形体を形成し、前記粉末成形体を
高温高真空燒結した後、誘電体酸化皮膜を形成し、この
表面に固体電解質となる二酸化マンガン層、または導電
性高分子層を形成し、その表面に陰極層となるグラファ
イト層、導電性樹脂層を順次形成する固体電解コンデン
サの製造方法において、 前記ダイスの貫通孔の下方側へ前記粉末成形体を第2の
パンチでノックアウトして排出することを特徴とする固
体電解コンデンサの製造方法。
1. A valve action metal plate is disposed in a state of being superposed on a contact portion with the valve action metal powder, and the valve action metal powder is introduced into a through hole of a die by a first punch and a second punch. To form a powder compact by pressurizing and compressing the powder compact, sintering the powder compact at high temperature and high vacuum, and then forming a dielectric oxide film on the surface of which a manganese dioxide layer to be a solid electrolyte, or a highly conductive material. In a method for manufacturing a solid electrolytic capacitor in which a molecular layer is formed and a graphite layer serving as a cathode layer and a conductive resin layer are sequentially formed on the surface of the molecular layer, the powder compact is provided to the lower side of the through hole of the die with a second punch. A method for manufacturing a solid electrolytic capacitor, which comprises knocking out and discharging.
【請求項2】 前記ダイスの貫通孔の下方側から前記ダ
イスと前記第1のパンチとで弁作用金属条部材を打ち抜
きし、打ち抜きした弁作用金属板を前記ダイスの貫通孔
に嵌入して前記弁作用金属粉末との接触部分に重ねた状
態に配設することを特徴とする請求項1記載の固体電解
コンデンサの製造方法。
2. A valve action metal strip member is punched from the lower side of the through hole of the die by the die and the first punch, and the punched valve action metal plate is fitted into the through hole of the die and The method for producing a solid electrolytic capacitor according to claim 1, wherein the solid electrolytic capacitor is arranged in a state of being overlapped with a portion that comes into contact with the valve action metal powder.
【請求項3】 前記粉末成形体を高温高真空燒結した
後において、前記粉末成形体の前記打ち抜きした弁作用
金属板の露呈した面に弁作用を有する陽極リードをレー
ザ溶接することを特徴とする請求項1または請求項2に
記載の固体電解コンデンサの製造方法。
3. An anode lead having a valve action is laser-welded to an exposed surface of the punched valve action metal plate of the powder compact after the powder compact is sintered at high temperature and high vacuum. A method for manufacturing the solid electrolytic capacitor according to claim 1.
JP2002007373A 2002-01-16 2002-01-16 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP3949456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002007373A JP3949456B2 (en) 2002-01-16 2002-01-16 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002007373A JP3949456B2 (en) 2002-01-16 2002-01-16 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2003209028A true JP2003209028A (en) 2003-07-25
JP3949456B2 JP3949456B2 (en) 2007-07-25

Family

ID=27645903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002007373A Expired - Fee Related JP3949456B2 (en) 2002-01-16 2002-01-16 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3949456B2 (en)

Also Published As

Publication number Publication date
JP3949456B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
CN101258572B (en) Method of forming anode bodies for solid state capacitors
KR100967944B1 (en) Improved fluted anode with minimal density gradients and capacitor comprising same
JP4995462B2 (en) Manufacturing method of battery electrode plate
EP1045410A2 (en) Electrode for electrolytic capacitor and process of producing the same
US6517338B1 (en) Set of molding dies for fuel-cell separator
KR100850844B1 (en) Solid electrolytic capacitor, anode used for solid electrolytic capacitor, and method of manufacturing the anode
JP3925781B2 (en) Manufacturing method of solid electrolytic capacitor
JP3949456B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003077769A (en) Method and device for manufacturing pellet for solid electrolytic capacitor
JP4761463B2 (en) Capacitor anode body manufacturing method and apparatus
KR20160013746A (en) Tantalum capacitor and method of preparing the same
JP2014022586A (en) Capacitor and manufacturing method therefor
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JP2005116589A (en) Molding method and molding apparatus
JPH08162373A (en) Tantalum capacitor element with lead wire-buried part high in bulk density
CN217603094U (en) High-efficient base bonding instrument
JP3506201B2 (en) Method for manufacturing thin plate-shaped sintered body and heat spreader
CN113260472A (en) Mold for producing molded body, production device and production method
JP2792480B2 (en) Method for manufacturing tantalum anode body
JPH1167607A (en) Manufacture of solid electrolytic capacitor
JP2539061Y2 (en) Powder molding equipment
JPH10163074A (en) Method and apparatus for compact molding porous chip body for capacitor element in solid electrolytic capacitor
JP2022185624A (en) Manufacturing method of laminated electrode body and manufacturing method of all-solid secondary battery
JP2000176693A (en) Compacting device and compacting method
JPH03210765A (en) Manufacture of button type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070411

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110427

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130427

LAPS Cancellation because of no payment of annual fees