JP2003208998A - Sheath width detecting method between plasma and boundary - Google Patents

Sheath width detecting method between plasma and boundary

Info

Publication number
JP2003208998A
JP2003208998A JP2002006620A JP2002006620A JP2003208998A JP 2003208998 A JP2003208998 A JP 2003208998A JP 2002006620 A JP2002006620 A JP 2002006620A JP 2002006620 A JP2002006620 A JP 2002006620A JP 2003208998 A JP2003208998 A JP 2003208998A
Authority
JP
Japan
Prior art keywords
plasma
metal plate
disk
sheath width
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002006620A
Other languages
Japanese (ja)
Other versions
JP3887237B2 (en
Inventor
Osamu Takai
治 高井
Kazuyuki Oe
一行 大江
Sutamaate Eugene
スタマーテ ユージェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002006620A priority Critical patent/JP3887237B2/en
Publication of JP2003208998A publication Critical patent/JP2003208998A/en
Application granted granted Critical
Publication of JP3887237B2 publication Critical patent/JP3887237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sheath width detecting method between the plasma and a boundary which is produced when a substrate or the like is installed into the plasma by observations. <P>SOLUTION: To produce a disk type metal plate 10 of a flat plate probe, which is presented for measurement, a metal disk of such as gold, platinum, copper, stainless steel, aluminum, or the like, is installed into the plasma, and a conductive thin film, of which the material is different from the above disk material, is formed on the metal plate 10 of the flat plate probe. Next, creating A<SB>r</SB>plasma, which it is going to measure, installing the metal plate 10 in the inside of it, and impressing predetermined voltage to exposure it to the plasma during a predetermined time, corresponding to impressed voltage, as shown in Fig. 3, a bright ring can be observed inside the perimeter of the metal plate. The sheath width DCL is detected by measuring the distance (r<SB>p</SB>-r<SB>imp</SB>) from the perimeter of the metal plate to the bright ring, and inserting it in the formula (4). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、プラズマ中に基板
等を設置した時のプラズマと基板との境界に生じるシー
ス幅の検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detecting a sheath width generated at a boundary between a plasma and a substrate when the substrate or the like is placed in the plasma.

【0002】[0002]

【従来の技術】最近、低圧グロー放電(直流、交流、高
周波、マイクロウエーブ放電)は電子ディバイスの製
作、薄膜製作に用いられているが、一般的にこれらの基
板はプラズマ中に設置されて製作される。この時プラズ
マパラメータ(プラズマ電圧、プラズマ密度、電子温度
等)はラングミュアープローブ(探針)で計測される。
また、基板上のプロセスに重要な励起種、正イオン、負
イオン等は質量分析装置で計測され、これらの計測値に
よりプラズマを制御して最適条件を求めている。
2. Description of the Related Art Recently, low-voltage glow discharge (DC, AC, high frequency, microwave discharge) has been used for manufacturing electronic devices and thin films. Generally, these substrates are installed in plasma. To be done. At this time, plasma parameters (plasma voltage, plasma density, electron temperature, etc.) are measured by a Langmuir probe (probe).
Excited species, positive ions, negative ions, etc., which are important for the process on the substrate, are measured by a mass spectrometer, and the optimum values are obtained by controlling the plasma based on these measured values.

【0003】無限の平面の基板又は壁においては、図6
(A)に示すように、プラズマ中では電荷が中性である
ため、電子と正イオン数が同数(負イオンを含む場合
は、電子密度ne +負イオン密度=正イオン密度ni
になる。ところが、基板又は壁近傍では電子が軽いた
め、壁に早く到達し壁が負の電位となる。また、この電
子が早く壁に到達することにより壁の近くに電子の非常
に少ない領域が生じ、プラズマと基板(又は容器壁)の
間にシースが形成される。シースの形状は印加電圧、プ
ラズマパラメータ、基板の形状に依存する。
For an infinitely flat substrate or wall, FIG.
As shown in (A), since the electric charge is neutral in the plasma, the number of electrons and the number of positive ions are the same (when negative ions are included, electron density ne + negative ion density = positive ion density ni ).
become. However, since electrons are light near the substrate or the wall, the wall reaches the wall early and the wall becomes a negative potential. Further, the electrons reaching the wall early generate a region having very few electrons near the wall, and a sheath is formed between the plasma and the substrate (or the container wall). The shape of the sheath depends on the applied voltage, plasma parameters, and the shape of the substrate.

【0004】また、有限の平板ディスク状の基板におい
ては、図6(B)に示すように、該基板をプラズマ中に
設置して該有限の平板ディスク状の基板に対して負電位
を印加すると、無限の平面の基板の時と同様に印加電圧
とプラズマパラメータに対応する大きさのシースが形成
される。
In the case of a finite flat disk-shaped substrate, as shown in FIG. 6B, when the substrate is placed in plasma and a negative potential is applied to the finite flat disk-shaped substrate. , A sheath having a size corresponding to the applied voltage and plasma parameters is formed as in the case of an infinitely flat substrate.

【0005】プラズマ中に基板を設置して電子ディバイ
スを製作する時には、イオンはこれらのプロセスで最も
重要な動きをし、シースは正イオンにとって加速領域と
なるため、シースの存在はプロセスでは重要な問題であ
り、シース幅の正確な測定が求められてきた。従来、シ
ース幅の測定には電子ビームの反射を利用する方法、レ
ーザ誘起法、プローブ法、エミッシブプローブ法、イオ
ン音波タイムフライト法などの多数の方法が知られてい
るが、これらは直接法で且つ接触的である。
The presence of the sheath is important in the process because when the substrate is placed in a plasma to make an electron device, the ions have the most important motion in these processes and the sheath is the accelerating region for the positive ions. This is a problem, and accurate measurement of the sheath width has been required. Conventionally, many methods such as a method using electron beam reflection, a laser induction method, a probe method, an emissive probe method, and an ion acoustic wave time flight method are known for measuring the sheath width, but these are direct methods. It is also contact.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の電子ビ
ーム法およびプローブ法はプローブを基板から電気的に
絶縁することが必要であり、そのための絶縁物の存在
が、プラズマ中に基板等を設置した時のプラズマと基板
との境界に生じるシースの電位分布を変え、そのことが
基板へのイオン流束も変える要因となる。また、これは
シースの検出に大きな誤差を生じる。このように、これ
まで適当な測定方法がないために、実測されず理論的な
推定がなされてきた。このため、上述の従来の方法の空
間分解能は悪く、小さい寸法(2〜30mmより小)の
基板には適応不可能である等の不都合があった。そこで
本発明は、実測によりプラズマ中に基板等を設置した時
に生じる、プラズマと境界の間のシース幅の高精度で簡
便な検出方法を提供することを目的とする。
However, in the conventional electron beam method and probe method, it is necessary to electrically insulate the probe from the substrate, and the presence of an insulator for that purpose causes the substrate or the like to be installed in the plasma. The potential distribution of the sheath generated at the boundary between the plasma and the substrate at that time is changed, which causes a change in the ion flux to the substrate. It also causes a large error in the detection of the sheath. As described above, since there is no suitable measuring method, a theoretical estimation has been made without actual measurement. Therefore, the spatial resolution of the above-mentioned conventional method is poor, and there are inconveniences such as inapplicability to a substrate having a small size (smaller than 2 to 30 mm). Therefore, an object of the present invention is to provide a highly accurate and simple detection method of the sheath width between the plasma and the boundary, which occurs when a substrate or the like is placed in the plasma by actual measurement.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、この発明の請求項1に係るプラズマと境界の間のシ
ース幅検出方法は、金属のディスクをプラズマ中に設置
し、第1のガス中で前記ディスク材料と異なる導電性の
薄膜を平板プローブ用のディスク型金板上に作成し、次
に、計測する第2のガスのプラズマ中に該金板を設置
し、所定の電圧を印加して所定時間プラズマに曝すこと
により、印加電圧に対応して該金板の外周の内側に明る
いリングを形成して、該金板の外周端rp から明るいリ
ングの外縁rimp までの距離(rp −rimp )を計測
し、演算式によりシース幅DLCを検出するような構成と
した。
In order to solve the above-mentioned problems, the method of detecting the sheath width between the plasma and the boundary according to claim 1 of the present invention is such that a metal disk is installed in the plasma, and A conductive thin film different from the disk material in a gas is formed on a disk-shaped metal plate for a flat plate probe, and then the metal plate is placed in a plasma of a second gas to be measured, and a predetermined voltage is applied. By applying and exposing to plasma for a predetermined time, a bright ring is formed inside the outer periphery of the metal plate corresponding to the applied voltage, and the distance from the outer peripheral edge r p of the metal plate to the outer edge r imp of the bright ring. (R p −r imp ) is measured, and the sheath width D LC is detected by an arithmetic expression.

【0008】この発明の請求項2に係るプラズマと境界
の間のシース幅検出方法は、金属のディスクをプラズマ
中に設置し、第1のガス中で前記ディスク材料と異なる
導電性の薄膜を平板プローブ用のディスク型金板上に作
成し、次に、計測する第2のガスのプラズマ中に該金板
を設置し、所定の電圧を印加して所定時間プラズマに曝
すことにより、印加電圧に対応して該金板の外周の内側
に明るいリングを形成し、該金板の外周端rp から明る
いリングの外縁rimp までの距離(rp −rim p )を計
測し、演算式DCL≒10(rp −rimp )によりシース
幅DCLを検出するような構成とした。
A plasma and a boundary according to claim 2 of the present invention
A method of detecting the width of the sheath between plasma and metal disks.
Installed inside and different from the disk material in the first gas
A conductive thin film is formed on a disk-shaped metal plate for a flat plate probe.
Then, the gold plate is placed in the plasma of the second gas to be measured.
Installed, apply a predetermined voltage and expose it to plasma for a predetermined time.
The inner side of the outer periphery of the metal plate according to the applied voltage.
Forming a bright ring on the outer peripheral edge r of the metal platep From bright
Outer ring edge rimp Distance to (rp -Rim p ) Total
Measured, calculation formula DCL≈ 10 (rp -Rimp ) By sheath
Width DCLIs configured to detect.

【0009】この発明の請求項3に係るプラズマと境界
の間のシース幅検出方法は、金、白金、銅、ステンレ
ス、アルミ等で形成されている金属のディスクをプラズ
マ中に設置し、第1のガス中で前記ディスク材料と異な
る導電性の薄膜を平板プローブ用のディスク型金板上に
作成し、次に、計測する第2のガスのプラズマ中に該金
板を設置し、所定の電圧を印加して所定時間プラズマに
曝すことにより、印加電圧に対応して該金板の外周の内
側に明るいリングを形成し、該金板の外周端rpから明
るいリングの外縁rimp までの距離(rp −rimp )を
計測し、演算式D CL≒10(rp −rimp )によりシー
ス幅DCLを検出するような構成とした。
A plasma and a boundary according to claim 3 of the present invention
The method for detecting the sheath width between the two is gold, platinum, copper, stainless steel.
Plas a metal disc made of aluminum, aluminum, etc.
It is installed in the machine and is different from the disk material in the first gas.
A conductive thin film on a disc-shaped metal plate for a flat plate probe.
Create and then measure the gold in the plasma of the second gas to be measured
Place a plate, apply a predetermined voltage and plasma for a predetermined time.
By exposing it, the inside of the outer periphery of the metal plate can be changed according to the applied voltage.
Forming a bright ring on the side, and the outer peripheral edge r of the metal platepClear
Outer edge of rui ring rimp Distance to (rp -Rimp )
Measure and calculate formula D CL≈ 10 (rp -Rimp ) By sea
Width DCLIs configured to detect.

【0010】これにより、予めプラズマ中で金、白金、
銅、ステンレス、アルミ等で形成されている金属のディ
スク上に作成された、前記金属材料異なる導電性の薄膜
が形成された金板を、計測する反応ガスのプラズマに曝
すことにより、印加電圧に対応して該金板の外周の内側
に形成される明るいリングの外縁と該金板の外周端まで
の距離を計測することにより、実測によりプラズマ中に
基板等を設置した時に生じる、プラズマと境界の間のシ
ース幅を演算して得ることができ、空間分解能を良好に
し、小さい寸法(2〜30mmより小)の基板等にも適
応可能とすることができる。
As a result, gold, platinum,
By exposing a metal plate formed on a metal disk made of copper, stainless steel, aluminum, or the like, on which a conductive thin film having a different metal material is formed, to the applied voltage by exposing it to the plasma of the reaction gas to be measured. Correspondingly, by measuring the distance between the outer edge of the bright ring formed inside the outer periphery of the metal plate and the outer peripheral edge of the metal plate, the boundary with the plasma generated when the substrate or the like is installed in the plasma by actual measurement It is possible to obtain the sheath width between them by calculation, to improve the spatial resolution, and to adapt it to a substrate having a small size (less than 2 to 30 mm).

【0011】[0011]

【発明の実施の形態】本発明の実施形態を図1乃至図5
に基づいて以下に詳述する。まず、図1(A)(B)の
プラズマ装置によるシース形成図により本発明の原理を
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention is shown in FIGS.
Will be described in detail below. First, the principle of the present invention will be described with reference to FIGS.

【0012】図1(A)において、一次元で無限の金属
板が、電子密度ne =正イオン密度ni 、電子温度Te
のプラズマ中に設置され、−V0 の電圧が印加された
時、シース幅DCLは理論的に
In FIG. 1A, a one-dimensional and infinite metal plate has an electron density n e = positive ion density n i and an electron temperature T e.
Of the sheath width D CL when a -V 0 voltage is applied.

【数1】 と与えられる。[Equation 1] Is given.

【0013】上記式中、ε0 は真空中の誘電率、eは電
荷、mi はイオンの質量、kはボルツマン定数である。
従って、正イオン密度ni 、電子温度Te をラングミュ
アプローブ等で検出すれば、印加電圧V0 は既知である
から、シース幅DCLが推測できる(但し、測定はできな
い)。
In the above equation, ε 0 is the permittivity in vacuum, e is the charge, m i is the mass of the ion, and k is the Boltzmann constant.
Therefore, if the positive ion density n i and the electron temperature T e are detected by a Langmuir probe or the like, the applied voltage V 0 is known, so that the sheath width D CL can be estimated (however, it cannot be measured).

【0014】また、半径rp の有限のディスク金属板を
プラズマ中に設置し、表面だけがプラズマに曝されてい
るとすると、印加電圧V0 に依存して図1(B)に示す
ようなシースが形成される。
If a finite disk metal plate having a radius r p is placed in the plasma and only the surface is exposed to the plasma, as shown in FIG. 1 (B) depending on the applied voltage V 0 . A sheath is formed.

【0015】この時、ディスク金属板上へのイオンの入
射を考慮するため、シース内の等電位面と電気力線を求
める必要がある。今、ディスクの中心をOとして半径方
向の距離をr、ディスク板より高さ方向への距離をzと
すると、z、r点の電圧は夫々次式で与えられる。
At this time, in order to consider the incidence of ions on the metal plate of the disk, it is necessary to find the equipotential surface in the sheath and the lines of electric force. Now, assuming that the center of the disk is O, the distance in the radial direction is r, and the distance in the height direction from the disk plate is z, the voltages at points z and r are respectively given by the following equations.

【数2】 [Equation 2]

【0016】一例として、半径rP =5mm、電子温度
e =1eV、正イオン密度ni =5×1014-3、印
加電圧V0 =−300Vの時の等電位面と電気力線の計
算例を図2に示す。図よりディスク板の端(1)におか
れたイオン(初速度=0)の軌路を運動量保存とエネル
ギー保存式を用いて計算することができる。
As an example, the radius r P = 5 mm, the electron temperature T e = 1 eV, the positive ion density n i = 5 × 10 14 m -3 and the applied voltage V 0 = -300 V, the equipotential surface and the electric force lines. An example of calculation of is shown in FIG. From the figure, the trajectory of the ions (initial velocity = 0) placed on the edge (1) of the disk plate can be calculated using the momentum conservation and energy conservation equations.

【0017】その結果は図中の実線(1)の軌跡とな
る。この時のイオンのディスクの半径上の到達点をr
imp とする。(1)から(2)の間のイオンは図示され
たように、ディスク位置のr方向の狭い範囲(rimp
2 の間)に集中する。一方、r p−rimp 間はイオン
の到達しない領域となる。また、r2 >r≧oでは比較
的イオンは平均に到達する。
The result is the locus of the solid line (1) in the figure.
It The arrival point on the radius of the disk of the ion at this time is r
imp And Ions between (1) and (2) are shown
As described above, a narrow range of the disc position in the r direction (rimp When
r2 During). On the other hand, r p-Rimp Ion between
It is an area that does not reach. Also, r2 > When r ≧ o, comparison
Ions reach the mean.

【0018】従って、予めディスク板面に薄い薄膜をデ
ィポジットさせておき、これを所定の基板等が設置され
たプラズマの近傍に配置する。この時、適当な時間(数
分間)所定のプラズマに曝すと、rp −rimp 間は元の
まままで、rimp −r2 間の膜はイオン衝突によってエ
ッチングされる。この時、r2 >r>o間はイオン衝突
は受けるが、rimp −r2 間に比べて小さくなる。
Therefore, a thin thin film is deposited in advance on the disk plate surface, and this is placed in the vicinity of the plasma on which a predetermined substrate or the like is installed. At this time, upon exposure to appropriate time (several minutes) predetermined plasma, between r p -r imp until intact, membrane between r imp -r 2 is etched by ion bombardment. At this time, although ion collision occurs during r 2 >r> o, it becomes smaller than that between r imp and r 2 .

【0019】この結果、図3に示すように、ディスク板
面の外周から中心に向かって、rp−rimp 間の元の薄
膜領域、rimp −r2 間の明るいリング領域、r2 >r
>o間の幾分かエッチングされた領域が形成される。
[0019] Consequently, as shown in FIG. 3, toward the center from the outer periphery of the disc plate surface, r p -r original thin film region between the imp, r imp -r bright ring area between 2, r 2> r
Some etched areas between> o are formed.

【0020】次に、ディスク板面の外周から明るいリン
グまでのrp −rimp の距離を測定し、シース幅Dexp
を求める手法について説明する。印加電圧V0 は外部か
ら設定するので既知な値である。一方、イオン密度n
i 、電子温度Te はラングミュアプローブ等で計測でき
るが、ここではラングミュアプローブ等は設置されてい
ないものとする。
Next, the distance r p -r imp from the outer circumference of the disk plate surface to the bright ring is measured, and the sheath width D exp
A method for obtaining is described. The applied voltage V 0 is a known value because it is set from the outside. On the other hand, the ion density n
Although i and the electron temperature T e can be measured by a Langmuir probe or the like, it is assumed that the Langmuir probe or the like is not installed here.

【0021】従って、イオン密度ni 、電子温度Te
未知であるので、このままでは(1)式を用いて、シー
ス幅DCL(≒Dexp )を求めることはできない。そこ
で、n i 、Te を適当に与えて図2に示すような計算図
を得る。図2の計算図より、ディスク板の外周端rp
のイオンの軌跡を求めrimp を求める。この過程を繰り
返して測定されたrimp と計算されたrimp が一致する
ようにイオン密度ni 、電子温度Te を決定する。
Therefore, the ion density ni , Electron temperature Te Is
Since it is unknown, by using equation (1),
Width DCL(≒ Dexp ) Can not be asked. There
And n i , Te Calculation diagram as shown in Fig. 2
To get From the calculation diagram of FIG. 2, the outer peripheral edge r of the disc platep so
The ion trajectory ofimp Ask for. Repeat this process
Returned and measured rimp Calculated as rimp Match
Ion density ni , Electron temperature Te To decide.

【0022】これにより、シース幅DCL(≒Dexp )が
求められる。実際のプラズマで求められるDexp とrp
−rimp の関係を図4に示す。この図を参照することよ
り、Dexp ≒10(rp −rimp )となることが解か
る。即ち、シース幅DCL
As a result, the sheath width D CL (≈D exp ) is obtained. D exp and r p found in actual plasma
The relationship of −r imp is shown in FIG. By referring to this figure, it can be understood that D exp ≈10 (r p −r imp ). That is, the sheath width D CL is

【数3】 で求めることができる。[Equation 3] Can be found at.

【0023】本発明の原理を用いた実施形態は、主たる
プラズマ装置の構成は一般的に使用されているプラズマ
装置を用い、それに一部改良を加えることにより達成さ
れる。その例を図5の本発明のプラズマ装置の概略図に
よって説明する。図において、1はプラズマ装置の容器
を構成するステンレスでなる壁、2はタングステン線で
なる陰極、3は直流電源(直流100V,10A)、4
は放電用可変電源(直流200V,200mA)であ
り、これらでプラズマ発生部5を構成し容器の一側面に
配置する。
The embodiment using the principle of the present invention is achieved by using a commonly used plasma device as the main plasma device and adding some improvements thereto. An example thereof will be described with reference to the schematic view of the plasma device of the present invention in FIG. In the figure, 1 is a wall made of stainless steel which constitutes a container of a plasma device, 2 is a cathode made of a tungsten wire, 3 is a DC power supply (DC 100V, 10A), 4
Is a variable power source for discharge (DC 200 V, 200 mA), which constitutes the plasma generator 5 and is arranged on one side surface of the container.

【0024】また、6はラングミュアプローブの探針、
7はプローブ電圧印加用可変電源、8は電流検出用抵抗
であり、ラングミュアプローブ部9を構成し、容器の他
の側面に配置される。10は平板プローブのための金属
でなるディスク板、11はプローブ電圧印加用可変電源
(直流400V,50mA)であり、これらでシース幅
検出用平板プローブ部12を構成し容器の底面に配置す
る。印加電圧Vは演算用パソコン(図示なし)に送出さ
れる。更に、図示されていないが、反応ガスの供給・排
出を行なうためのバルブその他の手段を当然備えてい
る。
6 is a Langmuir probe probe,
Reference numeral 7 is a variable power source for applying a probe voltage, and 8 is a resistance for current detection, which constitutes a Langmuir probe unit 9 and is arranged on the other side surface of the container. Reference numeral 10 is a disk plate made of metal for a flat plate probe, and 11 is a variable power source for applying a probe voltage (DC 400V, 50 mA), which constitutes a flat plate probe portion 12 for sheath width detection and is arranged on the bottom surface of the container. The applied voltage V is sent to a computing personal computer (not shown). Further, although not shown, a valve or other means for supplying / discharging the reaction gas is naturally provided.

【0025】このように構成されたプラズマ装置におい
て、1〜10mTorr 程度の圧力のAガスのもとで、
ステンレス容器1を陽極とし、タングステン線でなる陰
極2に対して電圧を印加(電圧150V、電流100〜
200mA程度)して加熱、放電させる。
[0025] In thus constructed plasma apparatus, under A r gas pressure of about 1~10MT orr,
A voltage is applied to the cathode 2 made of tungsten wire by using the stainless steel container 1 as an anode (voltage 150 V, current 100-).
About 200 mA) to heat and discharge.

【0026】ステンレス容器1の外壁には永久磁石の列
(図示なし)をNS各列ごとに交互に設置されているの
で、ステンレス容器1の外壁に近いほど磁場が強くなる
効果によって、プラズマが低圧(1mTorr 以下)でも
維持される。また、ステンレス容器内でプラズマが一様
に維持される。この時、プラズマのパラメータ(電位、
密度、電子温度等)はラングミュアプローブ部9のラン
グミュアプローブの探針6で計測し、得られた電圧v及
び電流Iを演算用パソコン(図示なし)に送出する。
Since rows of permanent magnets (not shown) are alternately installed on the outer wall of the stainless steel container 1 for each NS row, the closer the outer wall of the stainless steel container 1 is to the stronger magnetic field, the lower the plasma pressure. It is maintained even at (1 mT orr or less). Further, the plasma is uniformly maintained in the stainless steel container. At this time, plasma parameters (potential,
(Density, electron temperature, etc.) is measured by the probe 6 of the Langmuir probe of the Langmuir probe unit 9, and the obtained voltage v and current I are sent to a computing personal computer (not shown).

【0027】計測に供する平板プローブのディスク型金
板10を作成するために、金、白金、銅、ステンレス、
アルミ等の金属ディスクをプラズマ中に設置する。この
時、ディスクの表面に予め薄膜を作成するために、O2
ガスを用いてプラズマを生成して、タングステン等の導
電性の薄膜を平板プローブ用のディスク型金板10上に
作成する。
In order to prepare the disk-shaped metal plate 10 of the flat plate probe for measurement, gold, platinum, copper, stainless steel,
A metal disk such as aluminum is installed in the plasma. At this time, in order to form a thin film on the surface of the disk in advance, O 2
Plasma is generated using gas to form a conductive thin film such as tungsten on the disk-shaped metal plate 10 for the flat plate probe.

【0028】次に、測定しようとするAr プラズマを作
成して、その中にこの金板10を設置し、所定の電圧を
印加して所定時間プラズマに曝すことにより、印加電圧
に対応して、図3に示すように、金板の外周の内側に明
るいリングを観測することができる。金板の外周端から
明るいリングの外縁までの距離(rp −rimp )を計測
し、上記(4)式に挿入することにより、シース幅DCL
を計測することができる。
Next, an Ar plasma to be measured is created, the gold plate 10 is placed in the plasma, and a predetermined voltage is applied and exposed to the plasma for a predetermined time. As shown in FIG. 3, a bright ring can be observed inside the outer periphery of the metal plate. By measuring the distance (r p −r imp ) from the outer peripheral edge of the gold plate to the outer edge of the bright ring and inserting it into the above equation (4), the sheath width D CL
Can be measured.

【0029】[0029]

【発明の効果】以上のように、本発明のプラズマと境界
の間のシース幅検出方法は、正イオンの衝撃によるプラ
ズマ表面処理技術において、最重要パラメータであるタ
ーゲット表面のシース幅を、受動面の寸法より簡単なモ
デルから検出することにより、ターゲット表面の一様性
を改良するためのプラズマパラメータおよびターゲット
のバイアスを簡単に最適化することを可能にする。ま
た、本発明はプラズマとターゲット間の相互作用を直接
制御する方法であり、多くのプラズマによる表面処理分
野に有効である。
As described above, according to the method of detecting the sheath width between the plasma and the boundary of the present invention, the sheath width of the target surface, which is the most important parameter in the plasma surface treatment technology by the impact of positive ions, is set to the passive surface. Detecting from a model that is simpler than the dimension of allows for easy optimization of plasma parameters and target bias to improve target surface uniformity. Further, the present invention is a method for directly controlling the interaction between the plasma and the target, and is effective in many plasma surface treatment fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマ装置によるシース形成状態
図。
FIG. 1 is a diagram showing a state where a sheath is formed by a plasma device of the present invention.

【図2】等電位面と電気力線の計算図。FIG. 2 is a calculation diagram of equipotential surfaces and lines of electric force.

【図3】ディスク板面の薄膜領域図。FIG. 3 is a thin film area diagram of a disk plate surface.

【図4】シース幅とディスク板面上の距離との相関関係
図。
FIG. 4 is a correlation diagram of the sheath width and the distance on the disk plate surface.

【図5】本発明のプラズマ装置の概略図。FIG. 5 is a schematic view of a plasma device of the present invention.

【図6】通常のプラズマ装置によるシース形成状態図。FIG. 6 is a diagram showing a state in which a sheath is formed by a normal plasma device.

【符号の説明】[Explanation of symbols]

1 ステンレス壁 2 陰極 3 直流電源 4 放電用可変電源 5 プラズマ発生部 6 ラングミュアプローブの探針 7 プローブ電圧印加用可変電源 8 電流検出用抵抗 9 ラングミュアプローブ部 10 平板プローブのディスク板 11 プローブ電圧印加用可変電源 12 シース幅検出用平板プローブ部 1 stainless steel wall 2 cathode 3 DC power supply 4 Variable power supply for discharge 5 Plasma generator 6 Langmuir probe tips 7 Variable power supply for probe voltage application 8 Current detection resistor 9 Langmuir probe part 10 Disc probe plate 11 Variable power supply for probe voltage application 12 Flat plate probe for sheath width detection

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属のディスクをプラズマ中に設置し、
第1のガス中で前記ディスク材料と異なる導電性の薄膜
を平板プローブ用のディスク型金板上に作成し、次に、
計測する第2のガスのプラズマ中に該金板を設置し、所
定の電圧を印加して所定時間プラズマに曝すことによ
り、印加電圧に対応して該金板の外周の内側に明るいリ
ングを形成し、該金板の外周端rp から明るいリングの
外縁rim p までの距離(rp −rimp )を計測し、演算
式によりシース幅DCLを検出することを特徴とするプラ
ズマと境界の間のシース幅検出方法。
1. A metal disk is placed in the plasma,
Conductive thin film different from the disk material in the first gas
On a disk-shaped metal plate for a flat plate probe, and then
Place the metal plate in the plasma of the second gas to be measured,
By applying a constant voltage and exposing it to plasma for a predetermined time
Depending on the applied voltage, a bright
Forming a ring and the outer peripheral edge r of the metal plate.p From a bright ring
Outer edge rim p Distance to (rp -Rimp ) Is measured and calculated
Sheath width D according to the formulaCLIs characterized by detecting
A method for detecting the sheath width between the tsuma and the boundary.
【請求項2】 前記シース幅の演算式はDCL≒10(r
p −rimp )であることを特徴とする請求項1記載のプ
ラズマと境界の間のシース幅検出方法。
2. The equation for calculating the sheath width is D CL ≈10 (r
p- r imp ). The method for detecting the sheath width between the plasma and the boundary according to claim 1.
【請求項3】 前記金属のディスクは金、白金、銅、ス
テンレス、アルミ等で形成されていることを特徴とする
請求項1記載のプラズマと境界の間のシース幅検出方
法。
3. The sheath width detecting method between the plasma and the boundary according to claim 1, wherein the metal disk is made of gold, platinum, copper, stainless steel, aluminum or the like.
JP2002006620A 2002-01-15 2002-01-15 Sheath width detection method between plasma and boundary Expired - Fee Related JP3887237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006620A JP3887237B2 (en) 2002-01-15 2002-01-15 Sheath width detection method between plasma and boundary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006620A JP3887237B2 (en) 2002-01-15 2002-01-15 Sheath width detection method between plasma and boundary

Publications (2)

Publication Number Publication Date
JP2003208998A true JP2003208998A (en) 2003-07-25
JP3887237B2 JP3887237B2 (en) 2007-02-28

Family

ID=27645338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006620A Expired - Fee Related JP3887237B2 (en) 2002-01-15 2002-01-15 Sheath width detection method between plasma and boundary

Country Status (1)

Country Link
JP (1) JP3887237B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054417A (en) * 2007-08-27 2009-03-12 Tokyo Electron Ltd Plasma particle simulation method, storage medium, plasma particle simulator, and plasma processing device
JP2009263769A (en) * 2008-03-31 2009-11-12 Ngk Insulators Ltd Method and apparatus for mass-producing dlc films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054417A (en) * 2007-08-27 2009-03-12 Tokyo Electron Ltd Plasma particle simulation method, storage medium, plasma particle simulator, and plasma processing device
JP2009263769A (en) * 2008-03-31 2009-11-12 Ngk Insulators Ltd Method and apparatus for mass-producing dlc films

Also Published As

Publication number Publication date
JP3887237B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
US5830327A (en) Methods and apparatus for sputtering with rotating magnet sputter sources
US4871433A (en) Method and apparatus for improving the uniformity ion bombardment in a magnetron sputtering system
US11742183B2 (en) Plasma processing apparatus and control method
JP2020025083A (en) Control method and plasma processing apparatus
WO2020026802A1 (en) Control method and plasma processing device
TWI375978B (en) Method for characterizing an electron beam treatment apparatus
JP7204931B2 (en) Ion milling device and milling method using the same
JPH10251849A (en) Sputtering device
JP6425431B2 (en) Sputtering method
JP3887237B2 (en) Sheath width detection method between plasma and boundary
US6090246A (en) Methods and apparatus for detecting reflected neutrals in a sputtering process
JPH1074481A (en) Method and device for measuring ion energy
JP2009007637A (en) Magnetron sputtering apparatus and method for manufacturing article having thin-film formed thereon
JP3575822B2 (en) Plasma measurement device
JP2020143353A (en) Vacuum treatment apparatus
JP2688831B2 (en) Film forming equipment by sputtering method
JP3038828B2 (en) Plasma processing method
JP4642212B2 (en) Vacuum processing apparatus and vacuum processing method
US20240096600A1 (en) Substrate Bombardment with Ions having Targeted Mass using Pulsed Bias Phase Control
JP4184173B2 (en) Negative ion density measurement method and apparatus
JP3937272B2 (en) Sputtering apparatus and sputtering method
Stamate 3D Plasma-sheath-lenses: phenomenology and applications
JP2002367970A (en) Method for controlling amount of etching in dry etching process and dry etching apparatus
JPH08203865A (en) Plasma treating device
JPH08111397A (en) Plasma processing method and its device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees