JP2003207219A - Refrigerating cycle device - Google Patents

Refrigerating cycle device

Info

Publication number
JP2003207219A
JP2003207219A JP2002009700A JP2002009700A JP2003207219A JP 2003207219 A JP2003207219 A JP 2003207219A JP 2002009700 A JP2002009700 A JP 2002009700A JP 2002009700 A JP2002009700 A JP 2002009700A JP 2003207219 A JP2003207219 A JP 2003207219A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
refrigeration cycle
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002009700A
Other languages
Japanese (ja)
Inventor
Shozo Funakura
正三 船倉
Yuichi Kusumaru
雄一 薬丸
Fumitoshi Nishiwaki
文俊 西脇
Noriho Okaza
典穂 岡座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002009700A priority Critical patent/JP2003207219A/en
Publication of JP2003207219A publication Critical patent/JP2003207219A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To skirt a problem in a refrigerating cycle device posed by the unbalance in optimum refrigerant amount among operation modes. <P>SOLUTION: A refrigerating cycle circuit is formed by circularly connecting a compressor, a plurality of heat exchangers, a decompressor and the like by a connection pipe, a switching means is mounted to switch the pressure of the refrigerant flowing in at least one heat exchanger A of the plurality of heat exchangers, between low pressure and high pressure, and carbon dioxide is used as the refrigerant. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、少なくともひとつ
の熱交換器内を高圧と低圧とに切り替える機能を持つ冷
凍サイクル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus having a function of switching the inside of at least one heat exchanger between high pressure and low pressure.

【0002】[0002]

【従来の技術】従来、冷凍サイクルを構成する複数の熱
交換器のうちの少なくともひとつの熱交換器内の冷媒圧
力を高圧と低圧とに切り替えて、放熱器として作用させ
たり、あるいは吸熱器として作用させたり、あるいは熱
交換を抑制させたりする冷凍サイクル装置がある。
2. Description of the Related Art Conventionally, the refrigerant pressure in at least one heat exchanger of a plurality of heat exchangers constituting a refrigeration cycle is switched between high pressure and low pressure to act as a radiator or as a heat absorber. There is a refrigeration cycle device that operates or suppresses heat exchange.

【0003】例えば、図7に示すように、圧縮機51、
室外熱交換器52、減圧器53、室内熱交換器54を環
状に配管接続し、切り替え手段として四方弁55を備
え、さらに冷媒としてHCFC22を封入した冷凍サイ
クル装置は、ルームエアコン等の冷凍サイクルの基本構
成であることは周知である。
For example, as shown in FIG. 7, a compressor 51,
An outdoor heat exchanger 52, a decompressor 53, and an indoor heat exchanger 54 are annularly connected by pipes, a four-way valve 55 is provided as a switching unit, and a refrigeration cycle apparatus in which an HCFC 22 is enclosed as a refrigerant is used for a refrigeration cycle such as a room air conditioner. It is well known that it has a basic configuration.

【0004】このような冷凍サイクル装置の動作につい
て説明する。
The operation of such a refrigeration cycle apparatus will be described.

【0005】まず、四方弁55を図7の実線で示したよ
うに設定すると、圧縮機51で圧縮されて高温高圧のガ
スとなった冷媒(HCFC22)は、四方弁55を経て
室外熱交換器52で外気によって冷却されて液体とな
り、減圧器53で減圧されて低温低圧の気液2相状態と
なって室内熱交換器54に導入される。この室内熱交換
器54では、室内の空気からの吸熱により蒸発してガス
となり、四方弁55を経て再び圧縮機51で圧縮され
る。以上のような動作により室内を冷房することができ
る。
First, when the four-way valve 55 is set as shown by the solid line in FIG. 7, the refrigerant (HCFC22) that has been compressed by the compressor 51 into a high-temperature and high-pressure gas passes through the four-way valve 55 and the outdoor heat exchanger. At 52, it is cooled by the outside air to become a liquid, and at the decompressor 53 it is decompressed to become a low-temperature low-pressure gas-liquid two-phase state and introduced into the indoor heat exchanger 54. In the indoor heat exchanger 54, heat is absorbed from the indoor air to be vaporized into gas, which is compressed again by the compressor 51 via the four-way valve 55. The above-described operation makes it possible to cool the room.

【0006】一方、四方弁55を図7の破線で示したよ
うに設定すると、圧縮機51で圧縮されて高温高圧のガ
スとなった冷媒(HCFC22)は、四方弁55を経て
室内熱交換器54で室内空気に放熱して液体となり、減
圧器53で減圧されて低温低圧の気液2相状態となって
室外熱交換器52に導入される。この室外熱交換器52
では、外気からの吸熱により蒸発してガスとなり、四方
弁55を経て再び圧縮機51で圧縮される。以上のよう
な動作により室内を暖房することができる。
On the other hand, when the four-way valve 55 is set as shown by the broken line in FIG. 7, the refrigerant (HCFC22) compressed into high temperature and high pressure gas by the compressor 51 passes through the four-way valve 55 and the indoor heat exchanger. At 54, heat is radiated to the indoor air to become a liquid, which is decompressed at the decompressor 53 to be in a low-temperature low-pressure gas-liquid two-phase state and introduced into the outdoor heat exchanger 52. This outdoor heat exchanger 52
Then, it is evaporated by heat absorption from the outside air to become gas, and is compressed again by the compressor 51 via the four-way valve 55. The room can be heated by the above operation.

【0007】また、特開平9−66722号公報には図
8に示すように、冷凍サイクル装置を電気自動車用の空
調装置の補助加熱手段として適用することが提案されて
いる。
Further, as shown in FIG. 8, Japanese Patent Application Laid-Open No. 9-66722 proposes to apply a refrigeration cycle device as an auxiliary heating means of an air conditioner for an electric vehicle.

【0008】図8において、エンジン61、ポンプ6
2、ラジエター63、水冷媒熱交換器64、ヒータコア
65により、エンジン冷却回路66が構成される。ま
た、圧縮機67、水冷媒熱交換器64、減圧器68、電
磁弁69、室外熱交換器70、電磁弁71、減圧器7
2、室内熱交換器73等から冷凍サイクル装置が構成さ
れている。
In FIG. 8, an engine 61 and a pump 6
2, the radiator 63, the water-refrigerant heat exchanger 64, and the heater core 65 constitute an engine cooling circuit 66. Further, the compressor 67, the water-refrigerant heat exchanger 64, the pressure reducer 68, the solenoid valve 69, the outdoor heat exchanger 70, the solenoid valve 71, the pressure reducer 7
2. The indoor heat exchanger 73 and the like constitute a refrigeration cycle device.

【0009】このような冷凍サイクル装置の動作につい
て説明する。
The operation of such a refrigeration cycle apparatus will be described.

【0010】まず、車室内を冷房するためには、切り替
え手段として、電磁弁69を開、電磁弁71を閉に設定
する。圧縮機67で圧縮されて高温高圧のガスとなった
冷媒(HFC134a)は、水冷媒熱交換器64でエン
ジン冷却回路66を流れる冷却媒体によって冷却され、
電磁弁69を経て室外熱交換器70で外気によってさら
に冷却されて液体となり、減圧器72で減圧されて低温
低圧の気液2相状態となって室内熱交換器73に導入さ
れる。この室内熱交換器73では、車室内の空気からの
吸熱により蒸発してガスとなり、再び圧縮機67で圧縮
される。また、水冷媒熱交換器64で冷媒により加熱さ
れた冷却媒体は、ヒータコア65を経てエンジン61で
エンジン排熱によりさらに加熱され、ラジエター63で
外気によって冷却される。このとき、ダンパ74は、室
内熱交換器73で冷却された車室内の空気がヒータコア
65を通過しないように動作することにより、車室内を
冷房することができる。
First, in order to cool the passenger compartment, the solenoid valve 69 is set to open and the solenoid valve 71 is set to close as switching means. The refrigerant (HFC134a) that has been compressed by the compressor 67 into high-temperature and high-pressure gas is cooled by the cooling medium flowing through the engine cooling circuit 66 in the water-refrigerant heat exchanger 64,
After passing through the electromagnetic valve 69, it is further cooled by the outside air in the outdoor heat exchanger 70 to become a liquid, and is decompressed in the decompressor 72 to be in a low-temperature low-pressure gas-liquid two-phase state and introduced into the indoor heat exchanger 73. In the indoor heat exchanger 73, heat is absorbed from the air in the passenger compartment to evaporate into gas, which is compressed by the compressor 67 again. The cooling medium heated by the refrigerant in the water-refrigerant heat exchanger 64 is further heated by the engine exhaust heat in the engine 61 via the heater core 65, and is cooled by the outside air in the radiator 63. At this time, the damper 74 can cool the vehicle interior by operating so that the air in the vehicle interior cooled by the indoor heat exchanger 73 does not pass through the heater core 65.

【0011】一方、車室内を暖房するためには、切り替
え手段として、電磁弁69を閉、電磁弁71を開に設定
する。圧縮機67で圧縮されて高温高圧のガスとなった
冷媒(HFC134a)は、水冷媒熱交換器64でエン
ジン冷却回路66を流れる冷却媒体によって冷却されて
液体となり、減圧器68で減圧されて低温低圧の気液2
相状態となって室外熱交換器70に導入される。室外熱
交換器70では外気からの吸熱により蒸発してガスとな
り、電磁弁71を経て再び圧縮機67で圧縮される。ま
た、水冷媒熱交換器64で冷媒により加熱された冷却媒
体は、ヒータコア65を経てエンジン61でエンジン排
熱によりさらに加熱される。このとき、ダンパ74は、
室内熱交換器73を経た車室内の空気がヒータコア65
を通過して加熱されるように動作することにより、車室
内を暖房することができる。
On the other hand, in order to heat the passenger compartment, the solenoid valve 69 is closed and the solenoid valve 71 is set to open as switching means. The refrigerant (HFC134a) that has been compressed by the compressor 67 into a high-temperature and high-pressure gas is cooled by the cooling medium flowing through the engine cooling circuit 66 in the water-refrigerant heat exchanger 64 to become a liquid, which is decompressed by the decompressor 68 and cooled to a low temperature. Low pressure gas-liquid 2
The phase state is introduced into the outdoor heat exchanger 70. In the outdoor heat exchanger 70, heat is absorbed from the outside air to evaporate into a gas, which is compressed by the compressor 67 again via the electromagnetic valve 71. The cooling medium heated by the refrigerant in the water-refrigerant heat exchanger 64 is further heated by the engine exhaust heat in the engine 61 via the heater core 65. At this time, the damper 74
The air in the vehicle interior that has passed through the indoor heat exchanger 73 is heated by the heater core 65.
The vehicle interior can be heated by operating so as to pass through and be heated.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、図7の
ような冷凍サイクル装置においては、室内熱交換器54
は室内に設置されることから小型化が強く要求され、一
方、室外熱交換器52は凝縮能力向上による冷房時の省
エネルギー化や吸熱能力向上による暖房時の高能力化の
ために室内熱交換器54に比べて大型化されている。し
たがって、大型化された室外熱交換器52が高圧側とな
って冷媒の凝縮が行われる冷房運転時に効率のよい運転
を実現するために必要な冷媒量(冷房時最適冷媒量)
は、小型化された室内熱交換器54が高圧側となって冷
媒の凝縮が行われる暖房運転時に効率のよい運転を実現
するために必要な冷媒量(暖房時最適冷媒量)よりも多
くなる。
However, in the refrigeration cycle apparatus as shown in FIG. 7, the indoor heat exchanger 54 is used.
The indoor heat exchanger 52 is required to be compact because it is installed indoors. On the other hand, the outdoor heat exchanger 52 is an indoor heat exchanger for energy saving during cooling by improving the condensing capacity and high capacity during heating by improving the heat absorption capacity. It is larger than the 54. Therefore, the amount of refrigerant required to realize efficient operation during cooling operation in which the large outdoor heat exchanger 52 is on the high pressure side and the refrigerant is condensed (optimum refrigerant amount during cooling)
Is greater than the amount of refrigerant (the optimal amount of refrigerant during heating) required for realizing efficient operation during heating operation in which the downsized indoor heat exchanger 54 is on the high pressure side and refrigerant is condensed. .

【0013】このため、冷房時最適冷媒量で暖房運転す
ると過充填となり、冷凍サイクル装置の効率低下に加え
て、圧縮機吐出圧力の過上昇や、液圧縮のため圧縮機信
頼性の低下を招いていた。また、暖房時最適冷媒量で冷
房運転すると、冷凍サイクル装置の効率低下に加えて、
圧縮機吐出温度の過上昇のため圧縮機信頼性の低下を招
いていた。あるいは、冷房最適冷媒量と暖房最適冷媒量
の折衷的な冷媒量として、冷凍サイクル装置の効率の低
下を招いていた。
For this reason, when the heating operation is performed with the optimum amount of refrigerant during cooling, overfilling occurs, which causes the efficiency of the refrigeration cycle apparatus to decrease, the discharge pressure of the compressor to increase excessively, and the reliability of the compressor to decrease due to liquid compression. Was there. In addition, if the cooling operation is performed with the optimum amount of refrigerant during heating, in addition to the efficiency reduction of the refrigeration cycle device,
Due to the excessive rise in the discharge temperature of the compressor, the reliability of the compressor was reduced. Alternatively, the efficiency of the refrigeration cycle apparatus is reduced due to the eclectic refrigerant amount of the optimum cooling medium amount and the optimum heating medium amount.

【0014】また、図8のような冷凍サイクル装置にお
いては、室内熱交換器73は一般にエンジンルーム内後
方の非常に狭い空間に設置されることから小型化が強く
要求され、一方、室外熱交換器70は一般にエンジンル
ーム内前方に配置され、凝縮能力向上による冷房時の省
エネルギー化や吸熱能力向上による暖房時の高能力化の
ために室内熱交換器54に比べて大型化されている。さ
らに、室外熱交換器70が高圧側となって冷媒の凝縮が
行われる冷房運転時に効率のよい運転を実現するために
必要な冷媒量(冷房時最適冷媒量)は、室外熱交換器7
0が低圧側となって冷媒の蒸発が行われる暖房運転時に
効率のよい運転を実現するために必要な冷媒量(暖房時
最適冷媒量)よりも多くなる。
Further, in the refrigeration cycle apparatus as shown in FIG. 8, the indoor heat exchanger 73 is generally installed in a very narrow space in the rear of the engine room, and therefore, miniaturization is strongly demanded, while outdoor heat exchange is performed. The device 70 is generally arranged in the front of the engine room, and is made larger than the indoor heat exchanger 54 in order to save energy during cooling by improving the condensing capacity and enhance capacity during heating by improving the heat absorption capability. Furthermore, the amount of refrigerant (the optimal amount of refrigerant during cooling) required to realize efficient operation during cooling operation in which the outdoor heat exchanger 70 is on the high pressure side and the refrigerant is condensed is the outdoor heat exchanger 7
0 becomes a low pressure side, and is larger than the amount of refrigerant (the optimal amount of refrigerant during heating) necessary for realizing efficient operation during heating operation in which the refrigerant is evaporated.

【0015】このため、冷房時最適冷媒量で暖房運転す
ると過充填となり、冷凍サイクル装置の効率低下に加え
て、圧縮機吐出圧力の過上昇や、液圧縮のため圧縮機信
頼性の低下を招いていた。また、暖房時最適冷媒量で冷
房運転すると、冷凍サイクル装置の効率低下に加えて、
圧縮機吐出温度の過上昇のため圧縮機信頼性の低下を招
いていた。あるいは、冷房最適冷媒量と暖房最適冷媒量
の折衷的な冷媒量として、冷凍サイクル装置の効率の低
下を招いていた。
For this reason, when the heating operation is performed with the optimum amount of refrigerant during cooling, overfilling occurs, and in addition to the efficiency of the refrigeration cycle apparatus, the discharge pressure of the compressor rises excessively and the reliability of the compressor decreases due to liquid compression. Was there. In addition, if the cooling operation is performed with the optimum amount of refrigerant during heating, in addition to the efficiency reduction of the refrigeration cycle device,
Due to the excessive rise in the discharge temperature of the compressor, the reliability of the compressor was reduced. Alternatively, the efficiency of the refrigeration cycle apparatus is reduced due to the eclectic refrigerant amount of the optimum cooling medium amount and the optimum heating medium amount.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、第1の本発明(請求項1に記載の本発明に対応)
は、圧縮機、複数の熱交換器、減圧器等を接続配管にて
環状に接続して冷凍サイクル回路を構成し、複数の熱交
換器のうちの少なくともひとつの熱交換器A内を流れる
冷媒の圧力を低圧と高圧とに切り替える切り替え手段を
備え、冷媒として二酸化炭素を用いることを特徴とす
る。
In order to solve the above-mentioned problems, the first invention (corresponding to the invention described in claim 1).
Is a refrigerant that flows in the heat exchanger A of at least one of the plurality of heat exchangers by forming a refrigeration cycle circuit by annularly connecting a compressor, a plurality of heat exchangers, a pressure reducer and the like with connection pipes. It is characterized in that it is provided with a switching means for switching the pressure of 1 to a low pressure and a high pressure and uses carbon dioxide as a refrigerant.

【0017】また、第2の本発明(請求項2に記載の本
発明に対応)は、切り替え手段は、冷凍サイクル回路の
少なくとも一部で冷媒の流れを逆転させることを特徴と
する。
A second aspect of the present invention (corresponding to the present invention according to claim 2) is characterized in that the switching means reverses the flow of the refrigerant in at least a part of the refrigeration cycle circuit.

【0018】また、第3の本発明(請求項3に記載の本
発明に対応)は、切り替え手段は、熱交換器Aの冷媒上
流側と冷媒下流側での減圧量の操作や弁の開閉によるこ
とを特徴とする。
According to a third aspect of the present invention (corresponding to the present invention according to claim 3), the switching means controls the amount of decompression on the refrigerant upstream side and the refrigerant downstream side of the heat exchanger A and opens / closes the valve. It is characterized by

【0019】また、第4の本発明(請求項4に記載の本
発明に対応)は、熱交換器Aをバイパスさせる回路を設
けることを特徴とする。
The fourth aspect of the invention (corresponding to the invention of claim 4) is characterized in that a circuit for bypassing the heat exchanger A is provided.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0021】(実施の形態1)図1は、本発明の1実施
の形態である冷凍サイクル装置の構成図である。
(Embodiment 1) FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to an embodiment of the present invention.

【0022】図1において、圧縮機1、室外熱交換器
2、減圧器3、室内熱交換器4を環状に配管接続し、切
り替え手段として四方弁5を備え、さらに冷媒として二
酸化炭素(CO2)を封入した冷凍サイクル装置であ
る。
In FIG. 1, a compressor 1, an outdoor heat exchanger 2, a decompressor 3 and an indoor heat exchanger 4 are connected in an annular pipe, a four-way valve 5 is provided as a switching means, and carbon dioxide (CO2) as a refrigerant. Is a refrigeration cycle device in which is enclosed.

【0023】このような冷凍サイクル装置の動作につい
て説明する。
The operation of such a refrigeration cycle apparatus will be described.

【0024】まず、四方弁5を図1の実線で示したよう
に設定すると、圧縮機1で圧縮されて高温高圧のガスと
なった冷媒(CO2)は、四方弁5を経て室外熱交換器
2で外気によって冷却されて、減圧器3で減圧されて低
温低圧の気液2相状態となって室内熱交換器4に導入さ
れる。この室内熱交換器4では、室内の空気からの吸熱
により蒸発してガスとなり、四方弁5を経て再び圧縮機
1で圧縮される。以上のような動作により室内を冷房す
ることができる。
First, when the four-way valve 5 is set as shown by the solid line in FIG. 1, the refrigerant (CO2) that has been compressed by the compressor 1 into a high-temperature and high-pressure gas passes through the four-way valve 5 and the outdoor heat exchanger. It is cooled by the outside air at 2 and is decompressed by the decompressor 3 to be a low temperature low pressure gas-liquid two-phase state and introduced into the indoor heat exchanger 4. In the indoor heat exchanger 4, heat is absorbed from the indoor air to be vaporized into gas, which is compressed by the compressor 1 again via the four-way valve 5. The above-described operation makes it possible to cool the room.

【0025】一方、四方弁5を図1の破線で示したよう
に設定すると、圧縮機1で圧縮されて高温高圧のガスと
なった冷媒(CO2)は、四方弁5を経て室内熱交換器
4で室内空気に放熱して、減圧器3で減圧されて低温低
圧の気液2相状態となって室外熱交換器2に導入され
る。この室外熱交換器2では、外気からの吸熱により蒸
発してガスとなり、四方弁5を経て再び圧縮機1で圧縮
される。以上のような動作により室内を暖房することが
できる。
On the other hand, when the four-way valve 5 is set as shown by the broken line in FIG. 1, the refrigerant (CO2) compressed by the compressor 1 into a high temperature and high pressure gas passes through the four-way valve 5 and the indoor heat exchanger. The heat is radiated to the indoor air at 4, and the pressure is reduced by the pressure reducer 3 to form a low-temperature low-pressure gas-liquid two-phase state, which is introduced into the outdoor heat exchanger 2. In the outdoor heat exchanger 2, the heat is absorbed from the outside air to evaporate into a gas, which is compressed by the compressor 1 again via the four-way valve 5. The room can be heated by the above operation.

【0026】ここで、上述したように室内熱交換器4は
室外熱交換器2よりも相対的に小さいために、暖房運転
時には、圧縮機1〜四方弁5〜相対的に小さい室内熱交
換器4〜減圧器3が高圧側となり、減圧器3〜相対的に
大きい室外熱交換器2〜四方弁5〜圧縮機1が低圧側と
なり、暖房時高圧側内容積<暖房時低圧側内容積とな
る。
Since the indoor heat exchanger 4 is relatively smaller than the outdoor heat exchanger 2 as described above, the compressor 1 to the four-way valve 5 to the relatively small indoor heat exchanger during heating operation. 4 to the pressure reducer 3 on the high pressure side, the pressure reducer 3 to the relatively large outdoor heat exchanger 2 to the four-way valve 5 to the compressor 1 to the low pressure side, and the heating high pressure side internal volume <heating low pressure side internal volume Become.

【0027】また、冷房運転時には、圧縮機1〜四方弁
5〜相対的に大きい室外熱交換器2〜減圧器3が高圧側
となり、減圧器3〜相対的に小さい室内熱交換器4〜四
方弁5〜圧縮機1が低圧側となり、冷房時高圧側内容積
>冷房時低圧側内容積となる。
During the cooling operation, the compressor 1, the four-way valve 5, the relatively large outdoor heat exchanger 2 and the decompressor 3 are on the high pressure side, and the decompressor 3 -the relatively small indoor heat exchanger 4 -four-way. The valve 5 to the compressor 1 are on the low pressure side, and the internal volume of the high pressure side during cooling> the internal volume of the low pressure side during cooling.

【0028】そこで、冷房時最適冷媒量と暖房時最適冷
媒量とがアンバランスになる課題解決を検討した。この
とき、HCFC22やHCFC22の代替冷媒とされる
R410A、R407C等の冷媒では低圧側、高圧側と
もに臨界点以下の状態で作動するのに対して、CO2を
冷媒として用いると高圧側では超臨界の状態で作動する
ことに着目した。冷媒物性プログラム「REFPROP
VER.6.0」で求めたHCFC22、R4140
A、CO2の密度を(表1)に比較して示す。CO2は
40℃では超臨界状態となるので、40℃、10MPa
の密度を用いた。
Therefore, a solution to the problem that the optimum amount of refrigerant during cooling and the optimum amount of refrigerant during heating are unbalanced was examined. At this time, the low-pressure side and the high-pressure side of the refrigerant such as R410A and R407C, which are HCFC22 and alternative refrigerants to the HCFC22, operate at a temperature below the critical point, whereas when CO2 is used as the refrigerant, it becomes supercritical on the high-pressure side. Focused on working in the state. Refrigerant physical property program "REFPROP
VER. 6.0 "HCFC22, R4140
The densities of A and CO2 are shown in comparison with (Table 1). Since CO2 becomes a supercritical state at 40 ° C, 40 ° C, 10 MPa
The density of was used.

【0029】[0029]

【表1】 [Table 1]

【0030】(表1)より、CO2は他の冷媒と比較し
てa/bの値が小さく、すなわち、冷凍サイクル装置の
高圧側と低圧側とで密度の変化が小さいことから、冷房
時最適冷媒量と暖房時最適冷媒量とのアンバランスを緩
和できる可能性がある。
From Table 1, CO2 has a smaller value of a / b than other refrigerants, that is, the change in density between the high pressure side and the low pressure side of the refrigeration cycle apparatus is small, and therefore CO2 is optimal for cooling. There is a possibility that the imbalance between the amount of refrigerant and the optimum amount of refrigerant during heating can be relaxed.

【0031】そこで、図1に示すような冷凍サイクル装
置において、室外熱交換器2と室内熱交換器4の大きさ
を変更して、最適冷媒量を求める検討を行った。図2に
その結果を示す。暖房時低圧側内容積が暖房時高圧側内
容積より約30%大きいときに、冷媒がHCFC22の
場合には冷房時最適冷媒量は暖房時最適冷媒量より約2
0%増となるが、冷媒がCO2の場合には、約13%増
であり、冷媒量のアンバランスは約2/3に緩和され
た。R410A、R407CとCO2を比較してもほぼ
同様の傾向が確認された。したがって、冷媒をCO2に
することにより、運転モードによる冷媒量のアンバラン
スに起因する、冷凍サイクル装置の効率低下、圧縮機吐
出圧力の過上昇、液圧縮、圧縮機吐出温度の過上昇等に
よる圧縮機信頼性の低下を抑制できる。
Therefore, in the refrigeration cycle apparatus as shown in FIG. 1, the size of the outdoor heat exchanger 2 and the size of the indoor heat exchanger 4 were changed to examine the optimum amount of refrigerant. The results are shown in FIG. When the heating low-pressure side internal volume is about 30% larger than the heating high-pressure side internal volume, when the refrigerant is HCFC22, the optimum cooling medium refrigerant amount is about 2 less than the heating optimal refrigerant amount.
Although it increased by 0%, when the refrigerant was CO2, it increased by about 13%, and the imbalance of the refrigerant amount was eased to about 2/3. A similar tendency was confirmed by comparing R410A, R407C and CO2. Therefore, by using CO2 as the refrigerant, the efficiency of the refrigeration cycle is reduced, the compressor discharge pressure is excessively increased, the liquid is compressed, and the compressor discharge temperature is excessively increased due to the imbalance of the refrigerant amount depending on the operation mode. It is possible to suppress deterioration of machine reliability.

【0032】(実施の形態2)図3は、本発明の他の1
実施の形態である冷凍サイクル装置の構成図である。
(Second Embodiment) FIG. 3 shows another embodiment of the present invention.
It is a block diagram of the refrigerating-cycle apparatus which is embodiment.

【0033】図3において、エンジン11、ポンプ1
2、ラジエター13、水冷媒熱交換器14、ヒータコア
15により、エンジン冷却回路16が構成される。ま
た、圧縮機17、水冷媒熱交換器14、減圧器18、電
磁弁19、室外熱交換器20、電磁弁21、減圧器2
2、室内熱交換器23等からなる回路に冷媒として二酸
化炭素(CO2)を封入して冷凍サイクル装置が構成さ
れている。
In FIG. 3, engine 11 and pump 1
2, the radiator 13, the water-refrigerant heat exchanger 14, and the heater core 15 constitute an engine cooling circuit 16. Further, the compressor 17, the water-refrigerant heat exchanger 14, the pressure reducer 18, the solenoid valve 19, the outdoor heat exchanger 20, the solenoid valve 21, the pressure reducer 2
2. A refrigeration cycle apparatus is configured by enclosing carbon dioxide (CO2) as a refrigerant in a circuit including the indoor heat exchanger 23 and the like.

【0034】このような冷凍サイクル装置の動作につい
て説明する。
The operation of such a refrigeration cycle apparatus will be described.

【0035】まず、車室内を冷房するためには、切り替
え手段として、電磁弁19を開、電磁弁21を閉に設定
する。圧縮機17で圧縮されて高温高圧のガスとなった
冷媒(CO2)は、水冷媒熱交換器14でエンジン冷却
回路16を流れる冷却媒体によって冷却され、電磁弁1
9を経て室外熱交換器20で外気によってさらに冷却さ
れて、減圧器22で減圧されて低温低圧の気液2相状態
となって室内熱交換器23に導入される。この室内熱交
換器23では、車室内の空気からの吸熱により蒸発して
ガスとなり、再び圧縮機17で圧縮される。また、水冷
媒熱交換器14で冷媒により加熱された冷却媒体は、ヒ
ータコア15を経てエンジン11でエンジン排熱により
さらに加熱され、ラジエター13で外気によって冷却さ
れる。このとき、ダンパ24は、室内熱交換器23で冷
却された車室内の空気がヒータコア15を通過しないよ
うに動作することにより、車室内を冷房することができ
る。
First, in order to cool the passenger compartment, the solenoid valve 19 is set to open and the solenoid valve 21 is set to close as switching means. The refrigerant (CO2) that has been compressed by the compressor 17 into a high temperature and high pressure gas is cooled by the cooling medium flowing in the engine cooling circuit 16 in the water refrigerant heat exchanger 14, and the solenoid valve 1
After passing through 9, the air is further cooled in the outdoor heat exchanger 20 by the outside air, and is decompressed in the decompressor 22 into a low-temperature low-pressure gas-liquid two-phase state and introduced into the indoor heat exchanger 23. In this indoor heat exchanger 23, heat is absorbed from the air in the vehicle compartment to evaporate into gas, which is compressed by the compressor 17 again. The cooling medium heated by the refrigerant in the water-refrigerant heat exchanger 14 is further heated by the engine exhaust heat in the engine 11 via the heater core 15, and is cooled by the outside air in the radiator 13. At this time, the damper 24 can cool the vehicle interior by operating so that the air in the vehicle interior cooled by the indoor heat exchanger 23 does not pass through the heater core 15.

【0036】一方、車室内を暖房するためには、切り替
え手段として、電磁弁19を閉、電磁弁21を開に設定
する。圧縮機17で圧縮されて高温高圧のガスとなった
冷媒(CO2)は、水冷媒熱交換器14でエンジン冷却
回路16を流れる冷却媒体によって冷却されて、減圧器
18で減圧されて低温低圧の気液2相状態となって室外
熱交換器20に導入される。室外熱交換器20では外気
からの吸熱により蒸発してガスとなり、電磁弁21を経
て再び圧縮機17で圧縮される。また、水冷媒熱交換器
14で冷媒により加熱された冷却媒体は、ヒータコア1
5を経てエンジン11でエンジン排熱によりさらに加熱
される。このとき、ダンパ24は、室内熱交換器23を
経た車室内の空気がヒータコア15を通過して加熱され
るように動作することにより、車室内を暖房することが
できる。
On the other hand, in order to heat the passenger compartment, the solenoid valve 19 is closed and the solenoid valve 21 is set to open as switching means. The refrigerant (CO2) that has been compressed by the compressor 17 into a high-temperature and high-pressure gas is cooled by the cooling medium flowing through the engine cooling circuit 16 in the water-refrigerant heat exchanger 14, and is decompressed by the decompressor 18 to have a low temperature and low pressure. The gas-liquid two-phase state is introduced into the outdoor heat exchanger 20. In the outdoor heat exchanger 20, heat is absorbed from the outside air to evaporate into gas, which is compressed by the compressor 17 again via the electromagnetic valve 21. Further, the cooling medium heated by the refrigerant in the water-refrigerant heat exchanger 14 is the heater core 1
After passing 5, the engine 11 is further heated by the engine exhaust heat. At this time, the damper 24 can heat the vehicle interior by operating so that the air in the vehicle compartment that has passed through the indoor heat exchanger 23 passes through the heater core 15 and is heated.

【0037】さらに、車室内を除湿しながら暖房するた
めには、電磁弁19を閉、電磁弁21を閉に設定する。
圧縮機17で圧縮されて高温高圧のガスとなった冷媒
(CO2)は、水冷媒熱交換器14でエンジン冷却回路
16を流れる冷却媒体によって冷却されて、減圧器18
で減圧されて低温低圧の気液2相状態となって室外熱交
換器20に導入される。室外熱交換器20では外気から
吸熱した後、減圧器22を経て室内熱交換器23で車室
内の空気からさらに吸熱して蒸発ガス化し、このときに
車室内の空気を冷却除湿する。その後、再び圧縮機17
で圧縮される。また、水冷媒熱交換器14で冷媒により
加熱された冷却媒体は、ヒータコア15を経てエンジン
11でエンジン排熱によりさらに加熱される。このと
き、ダンパ24は、室内熱交換器23で冷却除湿された
車室内の空気がヒータコア15を通過して加熱されるよ
うに動作することにより、車室内を除湿しながら暖房す
ることができる。
Further, in order to heat the vehicle compartment while dehumidifying it, the solenoid valve 19 is closed and the solenoid valve 21 is closed.
The refrigerant (CO2) that has been compressed by the compressor 17 into a high-temperature and high-pressure gas is cooled by the cooling medium flowing through the engine cooling circuit 16 in the water-refrigerant heat exchanger 14, and the decompressor 18
It is decompressed in a low-temperature low-pressure gas-liquid two-phase state and introduced into the outdoor heat exchanger 20. After the outdoor heat exchanger 20 absorbs heat from the outside air, the indoor heat exchanger 23 passes through the pressure reducer 22 to further absorb the heat from the air in the vehicle interior to evaporate and gasify, and at this time, the air in the vehicle interior is cooled and dehumidified. Then, the compressor 17 again
Compressed with. The cooling medium heated by the refrigerant in the water-refrigerant heat exchanger 14 is further heated by the engine exhaust heat in the engine 11 via the heater core 15. At this time, the damper 24 operates so that the air in the vehicle compartment cooled and dehumidified by the indoor heat exchanger 23 passes through the heater core 15 and is heated, thereby heating the vehicle compartment while dehumidifying.

【0038】ここで、上述したように暖房運転時や除湿
暖房時には室内熱交換器23より相対的に大きい室外熱
交換器20が低圧側となり、圧縮機17〜水冷媒熱交換
器14〜減圧器18が高圧側となり、減圧器18〜相対
的に大きい室外熱交換器20〜減圧器22〜相対的に小
さい室内熱交換器23〜圧縮機1が低圧側となり、暖房
時高圧側内容積<暖房時低圧側内容積となる。
Here, as described above, during the heating operation or the dehumidifying and heating, the outdoor heat exchanger 20 which is relatively larger than the indoor heat exchanger 23 becomes the low pressure side, and the compressor 17 to the water-refrigerant heat exchanger 14 to the decompressor. 18 is the high pressure side, the pressure reducer 18 is a relatively large outdoor heat exchanger 20, the pressure reducer 22 is a relatively small indoor heat exchanger 23, the compressor 1 is the low pressure side, and the heating high pressure side internal volume <heating At that time, the internal volume on the low pressure side is reached.

【0039】また、冷房運転時には、室内熱交換器23
より相対的に大きい室外熱交換器20が高圧側となり、
圧縮機1〜水冷媒熱交換器14〜電磁弁19〜相対的に
大きい室外熱交換器20〜減圧器22が高圧側となり、
減圧器22〜相対的に小さい室内熱交換器23〜圧縮機
17が低圧側となり、冷房時高圧側内容積>冷房時低圧
側内容積となる。
During the cooling operation, the indoor heat exchanger 23
The relatively larger outdoor heat exchanger 20 is on the high pressure side,
Compressor 1-water refrigerant heat exchanger 14-solenoid valve 19-relatively large outdoor heat exchanger 20-pressure reducer 22 are on the high pressure side,
The pressure reducer 22 to the relatively small indoor heat exchanger 23 to the compressor 17 are on the low pressure side, and the cooling high pressure side internal volume> the cooling low pressure side internal volume.

【0040】ここで、(実施の形態1)と同様に、冷媒
物性プログラム「REFPROPVER.6.0」で求
めたHFC134aとCO2の密度を(表2)に比較し
て示す。CO2は40℃では超臨界状態となるので、4
0℃、10MPaの密度を用いた。
Here, similarly to (Embodiment 1), the densities of HFC134a and CO2 obtained by the refrigerant physical property program "REFPROPVER.6.0" are shown in comparison with (Table 2). Since CO2 is in a supercritical state at 40 ° C, 4
A density of 0 ° C. and 10 MPa was used.

【0041】[0041]

【表2】 [Table 2]

【0042】(表2)より、CO2はHFC134aと
比較してa/bの値が小さく、すなわち、冷凍サイクル
装置の高圧側と低圧側とで密度の変化が小さいことか
ら、冷房時最適冷媒量と暖房時最適冷媒量とのアンバラ
ンスを緩和できる可能性がある。
From Table 2, CO2 has a smaller value of a / b as compared with HFC134a, that is, the density change between the high pressure side and the low pressure side of the refrigeration cycle apparatus is small, so that the optimum refrigerant amount during cooling is There is a possibility that the imbalance between the optimum amount of refrigerant during heating and the optimum amount can be alleviated.

【0043】そこで、図3に示すような冷凍サイクル装
置において、室外熱交換器20と室内熱交換器23の大
きさを変更して、最適冷媒量を求める検討を行った。図
4にその結果を示す。暖房時低圧側内容積が暖房時高圧
側内容積より約50%大きいときに、冷媒がHFC13
4aの場合には冷房時最適冷媒量は暖房時最適冷媒量よ
り約35%増となるが、冷媒がCO2の場合には、約2
0%増であり、冷媒量のアンバランスは約3/5に緩和
された。したがって、冷媒をCO2にすることにより、
運転モードによる冷媒量のアンバランスに起因する、冷
凍サイクル装置の効率低下、圧縮機吐出圧力の過上昇、
液圧縮、圧縮機吐出温度の過上昇等による圧縮機信頼性
の低下を抑制できる。
Therefore, in the refrigeration cycle apparatus as shown in FIG. 3, the size of the outdoor heat exchanger 20 and the size of the indoor heat exchanger 23 were changed to examine the optimum amount of refrigerant. The results are shown in FIG. When the internal volume of the low pressure side during heating is about 50% larger than the internal volume of the high pressure side during heating, the refrigerant becomes HFC13.
In the case of 4a, the optimum amount of refrigerant during cooling is about 35% higher than the optimum amount of refrigerant during heating, but when the refrigerant is CO2, it is about 2%.
It was 0% increase, and the imbalance of the refrigerant amount was eased to about 3/5. Therefore, by changing the refrigerant to CO2,
Due to the imbalance of the refrigerant amount due to the operation mode, the efficiency of the refrigeration cycle device is reduced, the compressor discharge pressure is excessively increased,
It is possible to suppress deterioration of compressor reliability due to liquid compression, excessive rise in compressor discharge temperature, and the like.

【0044】さらに、電磁弁19を閉、電磁弁21を閉
に設定すると、CO2冷媒は減圧器18で少し減圧さ
れ、室外熱交換器20を経て減圧器22でさらに減圧さ
れて室内熱交換器23で蒸発して圧縮機17に吸入され
る。すなわち室外熱交換器20内は中間圧状態となり、
減圧器18、19の減圧量を操作することにより、室外
熱交換器20内の圧力を変動させ、室外熱交換器20か
ら外気への放熱量、あるいは外気から室外熱交換器20
への吸熱量を調整することができ、水冷媒熱交換器14
での放熱量や室内熱交換器23での吸熱量の調整が可能
となり、車室内空気の温熱環境をきめ細かく設定するこ
とも可能となる。
Further, when the solenoid valve 19 is closed and the solenoid valve 21 is closed, the CO2 refrigerant is slightly decompressed by the decompressor 18, further decompressed by the decompressor 22 via the outdoor heat exchanger 20, and the indoor heat exchanger. It is evaporated at 23 and is sucked into the compressor 17. That is, the inside of the outdoor heat exchanger 20 is in an intermediate pressure state,
By operating the decompression amount of the decompressors 18 and 19, the pressure inside the outdoor heat exchanger 20 is changed, and the amount of heat radiated from the outdoor heat exchanger 20 to the outside air or from the outside air to the outdoor heat exchanger 20 is changed.
The amount of heat absorbed by the water refrigerant heat exchanger 14 can be adjusted.
It is possible to adjust the heat radiation amount in the vehicle and the heat absorption amount in the indoor heat exchanger 23, and it is also possible to finely set the thermal environment of the vehicle interior air.

【0045】なお、図3においては、減圧器18と電磁
弁19とを並列に構成したが、減圧器18を電子式膨張
弁等を用いることにより、減圧器18での全閉も含めて
減圧量を幅広く調整できれば、電磁弁19の回路を省く
ことができる。また、減圧器22、室内熱交換器23と
電磁弁21とを並列に構成したが、減圧器22を電子式
膨張弁等を用いることにより、減圧器22での全閉も含
めて減圧量を幅広く調整でき、室内熱交換器23とヒー
タコア15の間にも車室内空気を車室から直接供給でき
れば、電磁弁21を含む回路を省くことができる。
Although the pressure reducer 18 and the solenoid valve 19 are arranged in parallel in FIG. 3, the pressure reducer 18 can be reduced in pressure, including fully closed, by using an electronic expansion valve or the like. If the amount can be adjusted widely, the circuit of the solenoid valve 19 can be omitted. Further, the decompressor 22, the indoor heat exchanger 23, and the electromagnetic valve 21 are arranged in parallel, but by using an electronic expansion valve or the like for the decompressor 22, the decompression amount including the fully closed state of the decompressor 22 can be reduced. The circuit including the solenoid valve 21 can be omitted if the air can be widely adjusted and the vehicle interior air can be directly supplied from the vehicle interior between the indoor heat exchanger 23 and the heater core 15.

【0046】(実施の形態3)図5は、実施の形態2で
説明した図3のような冷凍サイクル装置をさらに改良し
た構成図である。
(Embodiment 3) FIG. 5 is a block diagram showing a further improvement of the refrigeration cycle apparatus as shown in FIG. 3 described in the second embodiment.

【0047】図5における図3との違いは、電磁弁19
が減圧器18と室外熱交換器20とをバイパスするよう
に構成されている点である。このように構成した場合に
は、減圧器18を電子式膨張弁等を用いて全閉状態に、
電磁弁19を開に設定すると、圧縮機17で圧縮されて
高温高圧のガスとなった冷媒(CO2)は、水冷媒熱交
換器14でエンジン冷却回路16を流れる冷却媒体によ
って冷却されて、電磁弁19を経て室外熱交換器20を
バイパスして、減圧器22で減圧されて低温低圧の気液
2相状態となって室内熱交換器23で車室内の空気から
吸熱して蒸発ガス化し、このときに車室内の空気を冷却
除湿する。その後、再び圧縮機17で圧縮される。ま
た、水冷媒熱交換器14で冷媒により加熱された冷却媒
体は、ヒータコア15を経てエンジン11でエンジン排
熱によりさらに加熱される。このとき、ダンパ24は、
室内熱交換器23で冷却除湿された車室内の空気がヒー
タコア15を通過して加熱されるように動作することに
より、車室内を除湿しながら暖房することができるが、
冷媒(CO2)は室外熱交換器20をバイパスして流れ
るため、外気との熱交換が回避できることにより、外気
からの影響で減圧器22入口での冷媒状態が変動してし
まうことを抑制でき、室内熱交換器23での冷却除湿能
力を安定させることができる。
The difference between FIG. 5 and FIG. 3 is that the solenoid valve 19
Is configured to bypass the decompressor 18 and the outdoor heat exchanger 20. When configured in this way, the pressure reducer 18 is fully closed using an electronic expansion valve or the like,
When the solenoid valve 19 is set to open, the refrigerant (CO2) that has been compressed by the compressor 17 into a high temperature and high pressure gas is cooled by the cooling medium flowing through the engine cooling circuit 16 in the water refrigerant heat exchanger 14, and the electromagnetic After bypassing the outdoor heat exchanger 20 via the valve 19, the pressure is reduced by the pressure reducer 22 to become a low-temperature low-pressure gas-liquid two-phase state, and the indoor heat exchanger 23 absorbs heat from the air in the vehicle interior to evaporate gas, At this time, the air in the vehicle compartment is cooled and dehumidified. Then, it is compressed again by the compressor 17. The cooling medium heated by the refrigerant in the water-refrigerant heat exchanger 14 is further heated by the engine exhaust heat in the engine 11 via the heater core 15. At this time, the damper 24
By operating so that the air in the passenger compartment cooled and dehumidified by the indoor heat exchanger 23 passes through the heater core 15 and is heated, the passenger compartment can be heated while being dehumidified.
Since the refrigerant (CO2) flows by bypassing the outdoor heat exchanger 20, it is possible to prevent heat exchange with the outside air, and thus it is possible to prevent the refrigerant state at the inlet of the decompressor 22 from changing due to the influence from the outside air. The cooling and dehumidifying ability of the indoor heat exchanger 23 can be stabilized.

【0048】(実施の形態4)図6は、実施の形態2で
説明した図3のような冷凍サイクル装置をさらに改良し
た構成図である。
(Embodiment 4) FIG. 6 is a block diagram showing a further improvement of the refrigeration cycle apparatus as shown in FIG. 3 described in the second embodiment.

【0049】図6における図3および図5との違いは、
電磁弁19が電磁弁25と室外熱交換器20とをバイパ
スするように構成されている点である。このように構成
した場合には、切り替え手段として、電磁弁19を開、
電磁弁25を閉に設定すると、圧縮機17で圧縮されて
高温高圧のガスとなった冷媒(CO2)は、水冷媒熱交
換器14でエンジン冷却回路16を流れる冷却媒体によ
って冷却されて、減圧器18で減圧されて電磁弁19を
経て電磁弁25と室外熱交換器20とをバイパスして、
減圧器22でさらに減圧されて低温低圧の気液2相状態
となり、室内熱交換器23で車室内の空気から吸熱して
蒸発ガス化し、このときに車室内の空気を冷却除湿す
る。その後、再び圧縮機17で圧縮される。また、水冷
媒熱交換器14で冷媒により加熱された冷却媒体は、ヒ
ータコア15を経てエンジン11でエンジン排熱により
さらに加熱される。このとき、ダンパ24は、室内熱交
換器23で冷却除湿された車室内の空気がヒータコア1
5を通過して加熱されるように動作することにより、車
室内を除湿しながら暖房することができるが、室外熱交
換器20内は中間圧状態となり、かつ、冷媒(CO2)
は室外熱交換器20をバイパスして流れるため、室外熱
交換器20への外気導入量などが急激に変化しても、減
圧器22入口での冷媒状態の急激な変動を抑制でき、室
内熱交換器23での冷却除湿能力を安定させることがで
きる。
The difference between FIG. 6 and FIGS. 3 and 5 is that
The electromagnetic valve 19 is configured to bypass the electromagnetic valve 25 and the outdoor heat exchanger 20. When configured in this way, the solenoid valve 19 is opened as switching means,
When the electromagnetic valve 25 is set to be closed, the refrigerant (CO2) compressed into the high temperature and high pressure gas by the compressor 17 is cooled by the cooling medium flowing through the engine cooling circuit 16 in the water / refrigerant heat exchanger 14, and the pressure is reduced. The pressure is reduced in the device 18, and the electromagnetic valve 25 and the outdoor heat exchanger 20 are bypassed via the electromagnetic valve 19.
It is further decompressed by the decompressor 22 to become a low-temperature low-pressure gas-liquid two-phase state, and the indoor heat exchanger 23 absorbs heat from the air in the vehicle interior to evaporate and gasify, and at this time, the air in the vehicle interior is cooled and dehumidified. Then, it is compressed again by the compressor 17. The cooling medium heated by the refrigerant in the water-refrigerant heat exchanger 14 is further heated by the engine exhaust heat in the engine 11 via the heater core 15. At this time, in the damper 24, the air in the passenger compartment cooled and dehumidified by the indoor heat exchanger 23 is supplied to the heater core 1.
By operating so as to pass through 5 and be heated, the vehicle interior can be heated while dehumidifying, but the inside of the outdoor heat exchanger 20 is in an intermediate pressure state and the refrigerant (CO2)
Since the air flows by bypassing the outdoor heat exchanger 20, even if the amount of outside air introduced into the outdoor heat exchanger 20 changes abruptly, it is possible to suppress a rapid change in the refrigerant state at the inlet of the decompressor 22 and to reduce the indoor heat. The cooling / dehumidifying ability of the exchanger 23 can be stabilized.

【0050】なお、上記実施の形態においては、エンジ
ンを備えたエンジン冷却回路を取り上げて説明したが、
これに熱源としてエンジンにこだわるものではなく、燃
料電池の排熱を処理する冷却回路や、モータやインバー
タ発熱を処理する冷却回路などにも適用できる。
In the above embodiment, the engine cooling circuit provided with the engine is taken up and described.
The present invention is not limited to the engine as a heat source, and can be applied to a cooling circuit that processes exhaust heat of a fuel cell, a cooling circuit that processes heat generated by a motor or an inverter, and the like.

【0051】また、ルームエアコンや電気自動車用の空
調装置を例に説明したが、これにこだわるものではな
く、少なくともひとつの熱交換器内の冷媒圧力を高圧と
低圧とに切り替えて、放熱作用と吸熱作用とに切り替え
る冷凍サイクル装置に適用できる。
Although the air conditioner for a room air conditioner or an electric vehicle has been described as an example, the invention is not limited to this, and the pressure of the refrigerant in at least one heat exchanger is switched between high pressure and low pressure to achieve heat radiation. It can be applied to a refrigeration cycle device that switches to endothermic action.

【0052】[0052]

【発明の効果】以上述べたように、冷媒としてCO2を
用いることにより、運転モードによる冷媒量のアンバラ
ンスに起因する、冷凍サイクル装置の効率低下、圧縮機
吐出圧力の過上昇、液圧縮、圧縮機吐出温度の過上昇等
による圧縮機信頼性の低下を抑制できるものである。
As described above, by using CO2 as the refrigerant, the efficiency of the refrigeration cycle apparatus is reduced, the compressor discharge pressure is excessively increased, the liquid compression and the compression are caused by the imbalance of the refrigerant amount depending on the operation mode. It is possible to suppress deterioration of the reliability of the compressor due to excessive rise of the discharge temperature of the machine.

【0053】さらに、室外熱交換器をバイパスさせる回
路を設けることにより、室外熱交換器20への外気導入
量などが急激に変化しても、減圧器22入口での冷媒状
態の急激な変動を抑制でき、室内熱交換器23での冷却
除湿能力を安定させることができる。
Further, by providing a circuit for bypassing the outdoor heat exchanger, even if the amount of outside air introduced into the outdoor heat exchanger 20 changes abruptly, a sudden change in the refrigerant state at the inlet of the pressure reducer 22 can be prevented. Therefore, the cooling and dehumidifying ability of the indoor heat exchanger 23 can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施の形態である冷凍サイクル装置
の構成図
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus that is an embodiment of the present invention.

【図2】冷房時最適冷媒量と暖房時最適冷媒量の比較を
示す図
FIG. 2 is a diagram showing a comparison between the optimum refrigerant amount during cooling and the optimum refrigerant amount during heating.

【図3】本発明の他の1実施の形態である冷凍サイクル
装置の構成図
FIG. 3 is a configuration diagram of a refrigeration cycle apparatus which is another embodiment of the present invention.

【図4】冷房時最適冷媒量と暖房時最適冷媒量の比較を
示す図
FIG. 4 is a diagram showing a comparison between the optimum refrigerant amount during cooling and the optimum refrigerant amount during heating.

【図5】本発明の他の1実施の形態である冷凍サイクル
装置の構成図
FIG. 5 is a configuration diagram of a refrigeration cycle apparatus which is another embodiment of the present invention.

【図6】本発明の他の1実施の形態である冷凍サイクル
装置の構成図
FIG. 6 is a configuration diagram of a refrigeration cycle apparatus which is another embodiment of the present invention.

【図7】従来の冷凍サイクル装置の構成図FIG. 7 is a configuration diagram of a conventional refrigeration cycle device.

【図8】従来の他の冷凍サイクル装置の構成図FIG. 8 is a configuration diagram of another conventional refrigeration cycle apparatus.

【符号の説明】[Explanation of symbols]

1,17 圧縮機 2,20 室外熱交換器 3,18,22 減圧器 4,23 室内熱交換器 5 四方弁 11 エンジン 12 ポンプ 13 ラジエター 14 水冷媒熱交換器 15 ヒータコア 16 エンジン冷却回路 19,21 電磁弁 24 ダンパ 1,17 Compressor 2,20 outdoor heat exchanger 3,18,22 Decompressor 4,23 Indoor heat exchanger 5 four-way valve 11 engine 12 pumps 13 radiator 14 Water Refrigerant Heat Exchanger 15 heater core 16 Engine cooling circuit 19,21 Solenoid valve 24 damper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西脇 文俊 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 岡座 典穂 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Fumitoshi Nishiwaki             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Noriho Okaza             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、複数の熱交換器、減圧器等を接
続配管にて環状に接続して冷凍サイクル回路を構成し、
前記複数の熱交換器のうちの少なくともひとつの熱交換
器A内を流れる冷媒の圧力を低圧と高圧とに切り替える
切り替え手段を備え、前記冷媒として二酸化炭素を用い
ることを特徴とする冷凍サイクル装置。
1. A refrigeration cycle circuit is constituted by connecting a compressor, a plurality of heat exchangers, a pressure reducer, etc. in an annular shape by connecting pipes,
A refrigeration cycle apparatus comprising switching means for switching the pressure of a refrigerant flowing in at least one heat exchanger A of the plurality of heat exchangers between a low pressure and a high pressure, and using carbon dioxide as the refrigerant.
【請求項2】 切り替え手段は、冷凍サイクル回路の少
なくとも一部で冷媒の流れを逆転させることを特徴とす
る請求項1記載の冷凍サイクル装置。
2. The refrigeration cycle apparatus according to claim 1, wherein the switching means reverses the flow of the refrigerant in at least a part of the refrigeration cycle circuit.
【請求項3】 切り替え手段は、熱交換器Aの冷媒上流
側と冷媒下流側での減圧量の操作や弁の開閉によること
を特徴とする請求項1記載の冷凍サイクル装置。
3. The refrigeration cycle apparatus according to claim 1, wherein the switching means is operated by operating a pressure reduction amount and opening / closing a valve on the refrigerant upstream side and the refrigerant downstream side of the heat exchanger A.
【請求項4】 熱交換器Aをバイパスさせる回路を設け
ることを特徴とする請求項3記載の冷凍サイクル装置。
4. The refrigeration cycle apparatus according to claim 3, wherein a circuit that bypasses the heat exchanger A is provided.
JP2002009700A 2002-01-18 2002-01-18 Refrigerating cycle device Pending JP2003207219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002009700A JP2003207219A (en) 2002-01-18 2002-01-18 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002009700A JP2003207219A (en) 2002-01-18 2002-01-18 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2003207219A true JP2003207219A (en) 2003-07-25

Family

ID=27647638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002009700A Pending JP2003207219A (en) 2002-01-18 2002-01-18 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2003207219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016221A1 (en) * 2016-07-22 2018-01-25 株式会社デンソー Vehicle air-conditioning device
WO2018021083A1 (en) * 2016-07-26 2018-02-01 株式会社デンソー Refrigeration cycle device
US10919364B2 (en) 2016-07-22 2021-02-16 Denso Corporation Vehicle air conditioning device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016221A1 (en) * 2016-07-22 2018-01-25 株式会社デンソー Vehicle air-conditioning device
US10919364B2 (en) 2016-07-22 2021-02-16 Denso Corporation Vehicle air conditioning device
WO2018021083A1 (en) * 2016-07-26 2018-02-01 株式会社デンソー Refrigeration cycle device
CN109477668A (en) * 2016-07-26 2019-03-15 株式会社电装 Refrigerating circulatory device
CN109477668B (en) * 2016-07-26 2021-03-30 株式会社电装 Refrigeration cycle device
US10989447B2 (en) 2016-07-26 2021-04-27 Denso Corporation Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US7302807B2 (en) Refrigerating cycle device
JP4242131B2 (en) Refrigeration cycle equipment
WO2011135616A1 (en) Refrigeration cycle device
JP3953871B2 (en) Refrigeration air conditioner
JP5478715B2 (en) Refrigeration cycle apparatus and operation method thereof
JP2006078087A (en) Refrigeration unit
JP2007178072A (en) Air conditioner for vehicle
JP5068342B2 (en) Refrigeration equipment
JP2006138525A (en) Freezing device, and air conditioner
JP2005214550A (en) Air conditioner
JP4407000B2 (en) Refrigeration system using CO2 refrigerant
JP4156422B2 (en) Refrigeration cycle equipment
JP2003130481A (en) Vapor compression type refrigerating cycle of air conditioner for automobile
JP2003207219A (en) Refrigerating cycle device
JP2003287294A (en) Operating method of refrigeration cycle device
JP2005300031A (en) Refrigerating cycle device and its controlling method
JP4326004B2 (en) Air conditioner
JP2004189069A (en) Refrigeration cycle device
JP3863555B2 (en) Refrigeration cycle equipment
KR20210076677A (en) Gas heat-pump system and control mehtod for the same
JP4644278B2 (en) Refrigeration cycle equipment
JP4239256B2 (en) Heat pump cycle
JP2006177588A (en) Vapor compression refrigerator
JP3617742B2 (en) Scroll compressor and air conditioner
JP2006017352A (en) Vapor compression type refrigeration machine