JP2003204886A - Electric water boiler - Google Patents

Electric water boiler

Info

Publication number
JP2003204886A
JP2003204886A JP2002008385A JP2002008385A JP2003204886A JP 2003204886 A JP2003204886 A JP 2003204886A JP 2002008385 A JP2002008385 A JP 2002008385A JP 2002008385 A JP2002008385 A JP 2002008385A JP 2003204886 A JP2003204886 A JP 2003204886A
Authority
JP
Japan
Prior art keywords
heat insulating
water
insulating material
binder
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002008385A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Sano
光宏 佐野
Takayuki Urata
隆行 浦田
Taku Hashida
卓 橋田
Yasutomo Funakoshi
康友 船越
Toshihiro Matsumoto
敏宏 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002008385A priority Critical patent/JP2003204886A/en
Publication of JP2003204886A publication Critical patent/JP2003204886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermally Insulated Containers For Foods (AREA)
  • Cookers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of an electric water boiler, where glass wool is used or a container or bag stuffed with a powdery heat insulating material is used, that the heat insulation performance is deteriorated and the power necessary for the heat retaining of the electric water boiler is large because a joint is formed between the heat insulating materials and the heat escapes from the joint. <P>SOLUTION: The heat insulating material is solidified by using a binder without deteriorating the heat insulating performance, and the coefficient of heat conductivity of the heat insulating material is the same as or lower than that of stationary air after the solidification. In the electric water boiler, a water reserving container is covered with the heat insulating material with the high heat insulation performance and has no joint, so that the heat will not escape from the joint and only a small quantity of electric power is required for the heat retaining to achieve the energy saving electric water boiler. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は家庭や事務所などで
飲料用の湯を保温し、供給する電気湯沸かし器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric water heater for keeping and supplying hot water for drinking at home or office.

【0002】[0002]

【従来の技術】電気湯沸かし器は水を入れ、電源をつな
げると湯が沸くが、このお湯を長時間、略一定温度で保
温しておく必要がある。そのため一般に、電気湯沸かし
器内の貯水用容器の周囲を様々な断熱材で覆っている。
その断熱材としては、熱伝導率が35mW/m・K程度
のガラスウール、7mW/m・K程度の真空断熱材など
がある。また、高温下での赤外線を反射させることで断
熱をはかる金属の反射板断熱材もある。
2. Description of the Related Art An electric water heater puts water in it and connects it to a power source to boil the water, but it is necessary to keep the hot water at a substantially constant temperature for a long time. Therefore, in general, various heat insulating materials are provided around the water storage container in the electric water heater.
Examples of the heat insulating material include glass wool having a thermal conductivity of about 35 mW / m · K and a vacuum heat insulating material having a thermal conductivity of about 7 mW / m · K. In addition, there is also a metal reflector insulating material that insulates by reflecting infrared rays at high temperatures.

【0003】しかしながら、ガラスウールや金属の反射
板断熱材では、断熱性能が低いという課題があり、真空
断熱材は複雑な形状に加工すると断熱性能が悪化すると
いう課題を有している。また、これらの断熱材で貯水用
容器を一様に覆うのは困難で、図5のように断熱材10
2同士による継ぎ目が発生する。この継ぎ目から熱が漏
れるため、断熱性能は悪化するという課題も有してい
る。
However, the glass wool or metal reflector heat insulating material has a problem that the heat insulating performance is low, and the vacuum heat insulating material has a problem that the heat insulating performance deteriorates when processed into a complicated shape. Further, it is difficult to uniformly cover the water storage container with these heat insulating materials, and as shown in FIG.
A seam occurs between the two. Since the heat leaks from this joint, there is also a problem that the heat insulation performance is deteriorated.

【0004】これらの課題を解決するため、18mW/
m・K程度のキセロゲルと称される無機系の粉末状断熱
材を固形化して使用する方法がある。従来の粉末状断熱
材の固形化方法としては、例えば特表平10−5080
49号公報に記載されているようなものがあった。これ
によると、粉末状断熱材であるエアロゲル(キセロゲル
含む)を、有機ポリマーまたは無機バインダなどの水性
バインダ分散溶液を用いて固形化を行い、32〜46m
W/m・K程度の熱伝導率をもつ固形化した断熱材を実
現している。
In order to solve these problems, 18 mW /
There is a method of solidifying and using an inorganic powdery heat insulating material called xerogel of about m · K. As a conventional method for solidifying a powdery heat insulating material, for example, Japanese Laid-Open Patent Publication No. 10-5080.
There was one as described in Japanese Patent Publication No. 49. According to this, airgel (including xerogel) which is a powdery heat insulating material is solidified by using an aqueous binder dispersion solution such as an organic polymer or an inorganic binder, and the solid content is 32 to 46 m.
We have realized a solidified heat insulating material with a thermal conductivity of about W / mK.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来技術で用いている方法では、粉末状断熱材固形化後の
断熱性能がグラスウールと同程度で、断熱性能が低いと
いう課題を有していた。また、ガラスウールを用いた場
合や、粉末状断熱材を容器、袋等に詰めて使用した場
合、断熱材同士の継ぎ目が発生し、この継ぎ目から熱が
漏れるため、断熱性能は悪化するという課題も有してい
た。
However, the method used in the above prior art has a problem that the heat insulating performance after solidification of the powdery heat insulating material is about the same as that of glass wool, and the heat insulating performance is low. In addition, when glass wool is used or when the powdered heat insulating material is packed in a container, a bag, or the like, a seam between the heat insulating materials occurs, and heat leaks from this seam, which deteriorates the heat insulating performance. Also had.

【0006】本発明は、前記従来技術を解決するもの
で、断熱材の断熱性能をほとんど悪化させることなく、
静止した空気以下の熱伝導率で断熱材を固形化し、継ぎ
目なく貯水用容器に密着させることで、保温のための電
力(以下、保温電力という)を小さくできる省エネ電気
湯沸かし器を提供することを目的とする。
[0006] The present invention is to solve the above-mentioned prior art, and hardly deteriorates the heat insulating performance of the heat insulating material.
An object of the present invention is to provide an energy-saving electric water heater that can reduce electric power for heat retention (hereinafter referred to as heat insulation power) by solidifying a heat insulating material with a thermal conductivity equal to or lower than that of stationary air and closely adhering to a water storage container. And

【0007】[0007]

【課題を解決するための手段】前記従来の課題を解決す
るために、本発明の電気湯沸かし器は、素断熱材をバイ
ンダにより結合させ熱伝導率が静止した空気の熱伝導率
以下である断熱材で継ぎ目なく貯水用容器を覆ったもの
で、熱伝導率が静止空気の熱伝導率以下である高断熱性
の断熱材で貯水用容器を覆い、さらに継ぎ目がないた
め、熱が継ぎ目から漏れることなく、保温電力の小さい
省エネ電気湯沸かし器を実現できる。
In order to solve the above-mentioned conventional problems, an electric water heater according to the present invention is a heat insulating material in which elemental heat insulating materials are combined with a binder and the heat conductivity is equal to or lower than that of stationary air. The water storage container is seamlessly covered with, and the water storage container is covered with a highly heat-insulating insulating material whose thermal conductivity is less than that of still air, and since there is no seam, heat leaks from the seam. Without, it is possible to realize an energy-saving electric water heater with low heat insulation power.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、素断熱材をバインダにより結合させ熱伝導率が静止
した空気の熱伝導率以下である断熱材とを有し、断熱材
が継ぎ目なく前記貯水用容器を覆ったものであり、熱伝
導率が静止空気の熱伝導率以下である高断熱性の断熱材
で貯水用容器を覆い、さらに継ぎ目がないため、熱が継
ぎ目から漏れることなく、保温電力の小さい省エネ電気
湯沸かし器を実現できる。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention comprises a heat insulating material having a thermal conductivity lower than or equal to that of stationary air, which is obtained by combining elementary heat insulating materials with a binder. Is a seamless cover of the water storage container, the thermal conductivity is less than the thermal conductivity of the still air to cover the water storage container with a high heat insulating material, because there is no seam, heat from the seam It is possible to realize an energy-saving electric water heater with low heat insulation power without leaking.

【0009】また、請求項2記載の発明は、断熱材と貯
水用容器が、バインダにより結合された請求項1記載の
電気湯沸かし器としたもので、熱伝導率が静止空気の熱
伝導率以下である高断熱性の断熱材と貯水用容器の密着
性を向上し、貯水用容器と一体化できるため、保温電力
の小さい省エネ電気湯沸かし器を実現できる。
The invention according to claim 2 is the electric water heater according to claim 1 in which the heat insulating material and the water storage container are connected by a binder, and the thermal conductivity is equal to or lower than the thermal conductivity of still air. Since the adhesion between a certain highly heat-insulating material and the water storage container can be improved and integrated with the water storage container, an energy-saving electric water heater with low heat-retention power can be realized.

【0010】また、請求項3記載の発明は、素断熱材が
疎水性を有しかつ多孔体を有し、バインダが水溶性有機
バインダである請求項1または2記載の電気湯沸かし器
としたもので、熱伝導率が静止空気の熱伝導率以下であ
る高断熱性の断熱材で継ぎ目なく貯水用容器を覆い、貯
水用容器と一体化できるので、保温電力の小さい省エネ
電気湯沸かし器を実現できる。
The invention according to claim 3 is the electric water heater according to claim 1 or 2, wherein the elementary heat insulating material is hydrophobic and has a porous body, and the binder is a water-soluble organic binder. Since the water storage container can be seamlessly covered with a high heat insulating material whose thermal conductivity is less than that of still air and can be integrated with the water storage container, it is possible to realize an energy-saving electric water heater with low heat insulation power.

【0011】また、請求項4記載の発明は、貯水用容器
と、前記貯水用容器内の水を加熱するヒータと、水を流
出させる出湯経路と、熱伝導率が静止した空気の熱伝導
率以下である断熱材とを有し、疎水性でかつ細孔を有す
る素断熱材と、水溶性有機バインダの混合物に水分を添
加し、混練した後に前記貯水用容器に塗り、前記水分を
除去することで前記断熱材を装着した電気湯沸かし器と
したもので、熱伝導率が静止空気の熱伝導率以下である
高断熱性の断熱材で継ぎ目なく貯水用容器を覆い、貯水
用容器と一体化できるので、保温電力の小さい省エネ電
気湯沸かし器を実現できる。
Further, according to the invention of claim 4, the water storage container, the heater for heating the water in the water storage container, the hot water outlet passage for letting out the water, and the thermal conductivity of the air whose thermal conductivity is stationary. Having a heat insulating material which is the following, water is added to a mixture of a hydrophobic and fine pore heat insulating material and a water-soluble organic binder, and the mixture is kneaded and then applied to the water storage container to remove the water. By doing so, it is an electric water heater equipped with the above-mentioned heat insulating material, and the water storage container can be seamlessly covered with a high heat insulating heat insulating material whose thermal conductivity is equal to or lower than that of still air, and can be integrated with the water storage container. Therefore, it is possible to realize an energy-saving electric water heater with low heat insulation power.

【0012】また、請求項5記載の発明は、貯水用容器
と、前記貯水用容器内の水を加熱するヒータと、水を流
出させる出湯経路と、熱伝導率が静止した空気の熱伝導
率以下である断熱材とを有し、素断熱材と樹脂バインダ
との混合物に圧力と温度を加えることで前記貯水用容器
に密着する成形体として前記断熱材を装着した電気湯沸
かし器としたもので、熱伝導率が静止空気の熱伝導率以
下である高断熱性の断熱材で継ぎ目なく貯水用容器を覆
うことができるので、保温電力の小さい省エネ電気湯沸
かし器を実現できる。
Further, the invention according to claim 5 is that a water storage container, a heater for heating the water in the water storage container, a hot water outlet passage for letting out the water, and a thermal conductivity of air whose thermal conductivity is stationary. Having an insulating material which is the following, in an electric water heater equipped with the insulating material as a molded body that adheres to the water storage container by applying pressure and temperature to a mixture of the elementary insulating material and the resin binder, Since the water storage container can be seamlessly covered with a highly heat-insulating insulating material having a thermal conductivity equal to or lower than the thermal conductivity of still air, an energy-saving electric water heater with low heat-retention power can be realized.

【0013】また、請求項6記載の発明は、素断熱材が
シリカキセロゲルである請求項1〜5いずれか1項記載
の電気湯沸かし器としたもので、シリカキセロゲルは非
真空断熱材の中で極めて断熱性能が高いので、保温電力
の小さい省エネ電気湯沸かし器を実現できる。
Further, the invention according to claim 6 is the electric water heater according to any one of claims 1 to 5, wherein the elementary heat insulating material is silica xerogel. The silica xerogel is extremely high among non-vacuum heat insulating materials. Since it has high heat insulation performance, it can realize an energy-saving electric water heater with low heat insulation power.

【0014】また、請求項7記載の発明は、素断熱材も
しくはバインダと、結着もしくは絡み付く繊維状物質を
有する請求項1〜6いずれか1項に記載の電気湯沸かし
器としたもので、断熱性能を悪化させずに断熱材の強度
を向上することができ、実用に耐え得る保温電力の小さ
い省エネ電気湯沸かし器を実現できる。
Further, the invention according to claim 7 is the electric water heater according to any one of claims 1 to 6, which has a raw heat insulating material or binder and a fibrous substance that binds or is entangled with each other. It is possible to improve the strength of the heat insulating material without deteriorating the heat resistance, and to realize an energy-saving electric water heater with a small amount of heat insulating power that can withstand practical use.

【0015】また、請求項8記載の発明は、赤外線を反
射する物質もしくは吸収する物質のうち少なくともいず
れか一つを含む請求項1〜7いずれか1項に記載の電気
湯沸かし器としたもので、断熱材の断熱性能に対する温
度依存性を小さくし、高温でも断熱性能が高い断熱材を
実現できるので、保温電力の小さい省エネ電気湯沸かし
器を実現できる。
The invention according to claim 8 is the electric water heater according to any one of claims 1 to 7, which contains at least one of a substance that reflects and absorbs infrared rays, Since the temperature dependence of the heat insulating property of the heat insulating material is reduced, and the heat insulating material having high heat insulating performance even at high temperature can be realized, it is possible to realize an energy-saving electric water heater with low heat insulating power.

【0016】[0016]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】(実施例1)以下、本発明の第一の実施例
を図に基づいて説明する。図1において、1は電気湯沸
かし器本体の本体(以下、本実施例では本体と称する)
で、内部に貯水する内径184mm、深さ200mmの
貯水用容器2(以下、本実施例では容器2と称する)を
有している。3は容器2の口部を封じるようにした中栓
である。また、4は本体1の上部を開閉可能に覆った上
蓋である。5は上蓋に設けられた蒸気通路であり、一端
は中栓3を貫通して容器2内と連通しており、他端は大
気と連通している。6は水漏れ防止弁であり、蒸気通路
5内に配置されており、転倒時等には蒸気通路5を遮断
するようになっている。ここで、蒸気通路5は複雑に曲
げられている。これにより容器2の水が沸騰したときな
ど大気に比べ、容器2の内側の圧力が高くなったとき
は、蒸気が蒸気通路5を通じて本体外に排出されるが、
容易には外気と容器2内の水面と上蓋4の間の空気(以
下、本実施例では内気と称する)が混合しない構成とな
っている。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 1 denotes a main body of an electric water heater main body (hereinafter, referred to as a main body in this embodiment).
Then, the water storage container 2 having an inner diameter of 184 mm and a depth of 200 mm (hereinafter, referred to as a container 2 in the present embodiment) for storing water therein is provided. Reference numeral 3 is an inner plug adapted to seal the mouth of the container 2. Reference numeral 4 is an upper lid that covers the upper portion of the main body 1 so as to be openable and closable. Reference numeral 5 is a vapor passage provided in the upper lid, one end of which penetrates the inside plug 3 to communicate with the inside of the container 2 and the other end of which communicates with the atmosphere. A water leakage prevention valve 6 is arranged in the steam passage 5 and shuts off the steam passage 5 when the vehicle falls over. Here, the steam passage 5 is complicatedly bent. As a result, when the pressure inside the container 2 becomes higher than the atmospheric pressure such as when the water in the container 2 boils, steam is discharged to the outside of the main body through the steam passage 5.
It is configured so that the outside air and the air between the water surface in the container 2 and the upper lid 4 (hereinafter referred to as inside air in this embodiment) are not easily mixed.

【0018】7は本体1と容器2との間の底部に設けた
モータ、8はモータ7によって駆動されるポンプで、そ
の吸い込み口9は容器2の底部と連通している。10は
ポンプ8の吐出口で、出湯管11に連通している。12
は出湯口であり、ここより電気湯沸かし器外に出湯す
る。したがって、出湯経路は容器2から吸い込み口9、
ポンプ8、ポンプ8の吐出口10、出湯管11を通り、
出湯口12となる。
Reference numeral 7 is a motor provided at the bottom between the main body 1 and the container 2, 8 is a pump driven by the motor 7, and its suction port 9 communicates with the bottom of the container 2. A discharge port 10 of the pump 8 communicates with the hot water outlet pipe 11. 12
Is a tap, from which the hot water is poured out of the electric kettle. Therefore, the hot water outlet path is from the container 2 to the suction port 9,
Passing through the pump 8, the discharge port 10 of the pump 8 and the hot water outlet pipe 11,
It becomes the outlet 12.

【0019】13は加熱用のヒーターであり、ドーナツ
状に中央部が抜けており、容器2の下部に装着されてい
る。15はモータ7を駆動する起動スイッチであり、可
変抵抗体を有しており、押しボタン16の押し動作スイ
ッチによりロッド17を介して動作する。
Reference numeral 13 denotes a heater for heating, which has a doughnut-shaped central portion and is attached to the lower portion of the container 2. Reference numeral 15 is a start switch for driving the motor 7, which has a variable resistor, and is operated via a rod 17 by a push operation switch of a push button 16.

【0020】18は圧縮形のスプリングで、このスプリ
ング18は、常時ロッド17を上方に押し上げるように
付勢している。19は制御装置であり、14の温度検知
器からの信号を取り込み、ヒーター13等を制御する。
20は容器2の側面を覆う断熱材であり、容器2の熱が
本体1の側面および底面から逃げることを抑える役割を
している。
Reference numeral 18 denotes a compression type spring, which constantly urges the rod 17 to be pushed upward. Reference numeral 19 is a control device, which takes in a signal from the temperature detector 14 and controls the heater 13 and the like.
Reference numeral 20 denotes a heat insulating material that covers the side surface of the container 2, and plays a role of suppressing the heat of the container 2 from escaping from the side surface and the bottom surface of the main body 1.

【0021】本実施例において断熱材20は、バインダ
を用いて固形化を行ったシリカキセロゲル(以下、本実
施例ではキセロゲルという)を用いた。これは素断熱材
に相当するものである。キセロゲルは各種断熱材の中で
も、静止空気より熱伝導率が小さく、非常に断熱性能が
高い断熱材である。キセロゲル乾燥工程で超臨界乾燥を
用いて作製したキセロゲルはエアロゲルと称され、本発
明ではエアロゲルもキセロゲルに含むものである。
In this embodiment, as the heat insulating material 20, silica xerogel (hereinafter referred to as xerogel in this embodiment) solidified with a binder was used. This is equivalent to a plain heat insulating material. Among various heat insulating materials, xerogel is a heat insulating material that has a lower thermal conductivity than static air and has a very high heat insulating performance. The xerogel produced by using supercritical drying in the xerogel drying step is called an aerogel, and in the present invention, the aerogel is also included in the xerogel.

【0022】キセロゲルの詳細について図を用いて簡単
に説明する。キセロゲルは、水ガラスや、テトラメトキ
シシランのような金属アルコキシドを、ある条件下でゲ
ル化させ、内部の溶媒を蒸発乾燥させたものである。普
通に熱風乾燥させたものは、溶媒が乾燥するときの表面
張力により、収縮してしまい断熱材としては機能しな
い。しかしながら、ゲル表面を疎水化し、さらに溶媒を
トルエンやアセトンやヘキサンなど表面張力の小さい溶
媒に置換し、熱風乾燥させたものは、表面張力がほとん
ど働かず、図2に示すように1〜10nm程度の径をも
つシリカ一次粒子31が集合し、40〜100nm程度
の粒子間距離32をもった集合体となる。したがって、
この粒子間距離32が細孔を形成し、多孔質体となる。
この40〜100nmが空気分子の平均自由行程と同程
度の大きさであるため、空気分子間の衝突による熱伝導
が小さくなり、キセロゲルは高い断熱性能を示す。そし
て、これら一次粒子の集合体が1μm〜10mm程度の
二次粒子を形成する。これが、粉状もしくは粒状の断熱
材となる。
The details of the xerogel will be briefly described with reference to the drawings. The xerogel is obtained by gelating water glass or a metal alkoxide such as tetramethoxysilane under a certain condition and evaporating and drying the solvent inside. What is normally dried with hot air shrinks due to the surface tension of the solvent when it dries, and does not function as a heat insulating material. However, when the gel surface is made hydrophobic, and the solvent is replaced with a solvent having a small surface tension such as toluene, acetone, or hexane, and dried with hot air, the surface tension hardly works, and as shown in FIG. 2, about 1 to 10 nm. Silica primary particles 31 having a diameter of 5 are aggregated to form an aggregate having an interparticle distance 32 of about 40 to 100 nm. Therefore,
The inter-particle distance 32 forms pores and becomes a porous body.
Since this 40 to 100 nm is about the same size as the mean free path of air molecules, heat conduction due to collisions between air molecules becomes small, and xerogel exhibits high heat insulation performance. Then, the aggregate of these primary particles forms secondary particles of about 1 μm to 10 mm. This becomes a powdery or granular heat insulating material.

【0023】次に、キセロゲルの電気湯沸かし器への搭
載方法について図を用いて説明する。断熱材を電気湯沸
かし器へ搭載するためには、粉末もしくは粒状の断熱材
を、金属容器や繊維状の袋に入れる方法がある。しかし
ながら、金属容器に入れると金属容器自身を伝わって漏
れる熱が大きいことや、繊維状の袋では複雑形状ができ
ないため断熱材同士に継ぎ目が発生し、その部分から熱
が漏れるという問題があった。
Next, a method of mounting the xerogel on the electric water heater will be described with reference to the drawings. In order to mount the heat insulating material on the electric water heater, there is a method of putting the powder or granular heat insulating material in a metal container or a fibrous bag. However, there was a problem that when placed in a metal container, the heat leaked through the metal container itself was large, and because a fibrous bag could not have a complicated shape, there was a seam between the heat insulating materials and the heat leaked from that part. .

【0024】また、バインダを用いて粉末状物質を固形
化する方法は多数あるが、高い断熱性能を維持したまま
固形化することは非常に難しい。これはバインダを入れ
過ぎると、断熱性能が極度に低下するからであり、バイ
ンダを少なくすると、固形化しないもしくは固形化した
断熱材の強度が小さいためである。したがって、バイン
ダの選定、バインダと断熱材の比率、バインダの粒子
径、断熱材とバインダの混合方法などが重要な因子とな
る。
There are many methods for solidifying a powdery substance using a binder, but it is very difficult to solidify while maintaining high heat insulation performance. This is because if the binder is added too much, the heat insulation performance is extremely deteriorated. If the amount of the binder is decreased, the solidified heat insulating material has a low strength. Therefore, the selection of the binder, the ratio of the binder and the heat insulating material, the particle size of the binder, the mixing method of the heat insulating material and the binder, etc. are important factors.

【0025】本発明では、キセロゲルを断熱性能を悪化
させることなく固形化し、電気湯沸かし器へ搭載する方
法として、水溶性有機バインダを用いる方法と、熱可塑
性樹脂バインダもしくは熱硬化性樹脂バインダを用いる
方法を発明した。
In the present invention, a method using a water-soluble organic binder and a method using a thermoplastic resin binder or a thermosetting resin binder are used as a method for solidifying the xerogel without deteriorating the heat insulation performance and mounting it on an electric water heater. Invented

【0026】水溶性有機バインダを用いた方法について
説明する。断熱材として用いるキセロゲルは製造プロセ
ス上、ほぼ疎水化されている。よって、水溶性バインダ
を溶かした水溶液とキセロゲルとを混合させるとき、キ
セロゲルが水をはじき、混合できない。したがって、予
め水溶性バインダ粒子とキセロゲルのシリカ二次粒子を
均一に混合させておき、水を添加させながら混練するこ
とにより粘土状にし、貯水用容器に塗り付けた後に、水
分を除去することで断熱材と容器2とを一体化すること
ができる。
A method using a water-soluble organic binder will be described. The xerogel used as a heat insulating material is substantially hydrophobized in the manufacturing process. Therefore, when the xerogel is mixed with the aqueous solution in which the water-soluble binder is dissolved, the xerogel repels water and cannot be mixed. Therefore, the water-soluble binder particles and the silica secondary particles of xerogel are uniformly mixed in advance, and the mixture is kneaded while adding water to form a clay, which is applied to a water storage container and then water is removed. The heat insulating material and the container 2 can be integrated.

【0027】具体的な方法としては、例えば図3に示す
装置を用いて、水溶性バインダ粒子とキセロゲルのシリ
カ二次粒子を均一に混合させておき、水を添加させなが
ら混練することにより粘土状とした粘土状断熱材34を
ノズル33からシート35に吹き出させ、ローラ36を
回転させナイフ37で厚みを制御することで、貯水用容
器38に転写する。その後、乾燥させるなどして水分の
除去を行うことで、断熱材と一体化した容器2を実現で
きる。
As a concrete method, for example, by using the apparatus shown in FIG. 3, the water-soluble binder particles and the silica secondary particles of xerogel are uniformly mixed and kneaded while adding water to obtain a clay-like material. The clay-like heat insulating material 34 is blown out from the nozzle 33 onto the sheet 35, the roller 36 is rotated, and the thickness is controlled by the knife 37, so that the water is transferred to the water storage container 38. Then, the container 2 integrated with the heat insulating material can be realized by removing moisture by drying or the like.

【0028】混合方法としては、断熱材と水溶性バイン
ダを同じ容器に混合し、ミキサーまたはミックスロータ
などを用い、できるだけ均一になるように混合させる。
また、混練方法は、キセロゲルと水溶性バインダを練る
ことができれば、特に限定しない。
As a mixing method, the heat insulating material and the water-soluble binder are mixed in the same container, and mixed using a mixer or a mix rotor so as to be as uniform as possible.
The kneading method is not particularly limited as long as the xerogel and the water-soluble binder can be kneaded.

【0029】添加する水粒子の大きさは、できるだけ小
さい方が良く、滴状から霧状が望ましい。特に、水溶性
バインダ粒子径の大きさ以下の水粒子径である霧状で添
加するのが最適である。水粒子の大きさが大きいと、複
数の水溶性バインダ粒子が一度に溶けてしまい、水溶性
バインダ粒子の凝集体を作り、バインダ粒子が偏って分
布し、バインダの少ないところの強度が弱かったり、固
形化しなかったりする。また、この状態を防ぐために、
水溶性バインダ量を増加させると、断熱性能が極度に低
下してしまう。
The size of the water particles to be added is preferably as small as possible, and preferably in the form of drops or mist. In particular, it is optimal to add it in the form of a mist having a water particle size equal to or smaller than the water-soluble binder particle size. When the size of the water particles is large, a plurality of water-soluble binder particles are melted at once, forming an aggregate of the water-soluble binder particles, the binder particles are unevenly distributed, and the strength of the place where the binder is small is weak, It does not solidify. Also, to prevent this situation,
When the amount of the water-soluble binder is increased, the heat insulation performance is extremely deteriorated.

【0030】また、添加する水の量は特に限定しない
が、なるべく少ない方がよい。水の量が多すぎると、バ
インダ粒子の偏りが起こり、バインダの少ないところの
強度が弱かったり、水を除去するときに気泡が残り、断
熱性能悪化につながったりする。
The amount of water added is not particularly limited, but it is preferable that the amount is as small as possible. If the amount of water is too large, the binder particles will be biased, the strength will be weak where there is little binder, and bubbles will remain when water is removed, leading to poor heat insulation performance.

【0031】さらに、蒸気で水を添加すると、水粒子径
が非常に小さい状態で水を供給でき、バインダ粒子の分
布の偏りがなく、高い断熱性能を維持したまま固形化す
ることができる。また高温で供給できるので、水溶性バ
インダの溶解度が上がり、最終的には除去する水の量が
少なくて済む。
Furthermore, when water is added by steam, water can be supplied in a state where the water particle size is very small, and there is no uneven distribution of binder particles, and solidification can be achieved while maintaining high heat insulation performance. Moreover, since the water-soluble binder can be supplied at a high temperature, the solubility of the water-soluble binder is increased, and finally the amount of water to be removed is small.

【0032】水溶性有機バインダの種類については特に
限定しないが、好ましくは、常温常圧で固体であり、水
への溶解度が大きいもの、溶解時の粘性が大きいもの、
熱分解温度の高いもの、熱伝導率が小さいものがよい。
これらの例として、メチルセルロースやヒドロキシプロ
ピルセルロース(本実施例では、HPCという)に代表
される水溶性のセルロース類がある。
The type of the water-soluble organic binder is not particularly limited, but preferably, it is a solid at room temperature and normal pressure, has a high solubility in water, and has a high viscosity when dissolved.
Those having a high thermal decomposition temperature and those having a small thermal conductivity are preferable.
Examples of these include water-soluble celluloses represented by methyl cellulose and hydroxypropyl cellulose (referred to as HPC in this embodiment).

【0033】水溶性バインダ粒子の大きさは、小さい方
がよく、好ましくはキセロゲル粒子の大きさ以下が望ま
しい。そうすることで、水溶性バインダの分散性が向上
し、より均一混合し易くなる。
The size of the water-soluble binder particles is preferably as small as possible, and preferably smaller than the size of the xerogel particles. By doing so, the dispersibility of the water-soluble binder is improved, and it becomes easier to mix it more uniformly.

【0034】水溶性バインダと断熱材の混合割合は、特
に限定するものではないが、好ましくはバインダ30w
t%程度以下がよい。バインダ量を多くすると、バイン
ダを通って熱が流れるので断熱性能が悪化する。また、
バインダ量を少なくすると、固形化できない、もしくは
強度が小さくなってしまう。
The mixing ratio of the water-soluble binder and the heat insulating material is not particularly limited, but is preferably 30 w of the binder.
It is preferably about t% or less. When the amount of the binder is increased, heat flows through the binder, so that the heat insulation performance deteriorates. Also,
If the amount of binder is reduced, solidification will not be possible or strength will be reduced.

【0035】次に、熱可塑性樹脂バインダもしくは熱硬
化性樹脂バインダを用いた方法を説明する。断熱材とバ
インダを同じ容器に入れ、ミキサーまたはミックスロー
タなどを用い、できるだけ均一になるように混合させ
る。
Next, a method using a thermoplastic resin binder or a thermosetting resin binder will be described. Put the heat insulating material and the binder in the same container, and use a mixer or a mix rotor to mix them as evenly as possible.

【0036】また、バインダとしては、フェノール樹
脂、シリコーン樹脂、ポリエチレン、ポリプロピレンな
どの樹脂バインダや、珪酸ソーダ粉末、燐酸塩系粉末な
どの無機バインダがある。樹脂バインダを用いた方が、
加圧成形や射出成形などが可能であり、成形性が良く、
金型の形に応じて自由な形状に固形化でき、適度な柔軟
性をもつ成形体ができる。
As the binder, there are resin binders such as phenol resin, silicone resin, polyethylene and polypropylene, and inorganic binders such as sodium silicate powder and phosphate powder. It is better to use a resin binder
Pressure molding and injection molding are possible, good moldability,
According to the shape of the mold, it can be solidified into a free shape, and a molded product with appropriate flexibility can be obtained.

【0037】バインダとして樹脂バインダを用い、断熱
材と混合の後、金型に入れ、加熱することによりバイン
ダが溶けだし、断熱材粉末が固形化される。このとき、
金型にかける圧力は特に限定しない。このとき特に、フ
ェノール樹脂やシリコーン樹脂など熱硬化性樹脂を用い
ると、固形化後の断熱材を300℃程度の高温下でも型
崩れせずに、使用することができる。したがって、予め
容器2の形の金型を用い、容器2の形に断熱材を固形化
したものを作製しておき、貯水用容器を覆うように搭載
することで、断熱材と一体化した貯水用容器を実現でき
る。
A resin binder is used as a binder, and after being mixed with a heat insulating material, it is put into a mold and heated to melt the binder and solidify the heat insulating material powder. At this time,
The pressure applied to the mold is not particularly limited. At this time, in particular, when a thermosetting resin such as a phenol resin or a silicone resin is used, the heat insulating material after solidification can be used without losing its shape even at a high temperature of about 300 ° C. Therefore, by using a mold in the shape of the container 2 in advance, a solidified heat insulating material is prepared in the shape of the container 2, and the container is mounted so as to cover the water storage container. Can be used as a container.

【0038】樹脂バインダの平均粒子径は、極力小さい
ほうが良く、少なくとも断熱材の平均粒子径より小さい
方が良い。これは、バインダの分散性を上げ、より均一
混合し易くするためであり、またバインダ粒子径が極端
に大きいと、熱を加えた後、熱により変形したバインダ
が断熱材粒子と同程度の太さになり、樹脂バインダを通
って熱が流れてしまい、固形化した断熱材の断熱性能を
悪化させてしまうからである。
The average particle size of the resin binder is preferably as small as possible, and at least smaller than the average particle size of the heat insulating material. This is to increase the dispersibility of the binder and facilitate more uniform mixing.If the binder particle size is extremely large, the binder deformed by heat after heat is applied is as thick as the heat insulating material particles. This is because heat flows through the resin binder and deteriorates the heat insulating performance of the solidified heat insulating material.

【0039】またバインダと断熱材の混合割合は、特に
限定するものではないが、好ましくはバインダ50wt
%程度以下がよい。バインダ量を多くすると、バインダ
を通って熱が流れるので断熱性能が悪化する。また、バ
インダ量を少なくすると、固形化できないもしくは強度
が小さくなる。
The mixing ratio of the binder and the heat insulating material is not particularly limited, but preferably 50 wt% of the binder.
% Or less is preferable. When the amount of the binder is increased, heat flows through the binder, so that the heat insulation performance deteriorates. Further, if the amount of the binder is reduced, it cannot be solidified or the strength becomes low.

【0040】繊維状物質を添加する効果について図を用
いて説明する。バインダと断熱材に繊維状物質を添加す
ることにより、断熱性能を悪化させずに強度を上げるこ
とができる。このとき、繊維状物質がバインダと絡み付
いた状態を図4に示す。キセロゲルのシリカ二次粒子4
1同士が水溶性バインダ42により結着していなくて
も、シリカ二次粒子41に結着した水溶性バインダ42
同士を繊維状物質43により結着できるので、結果的に
キセロゲルのシリカ二次粒子を結着させることができる
ため、繊維状物質を加えることにより強度を上げること
ができる。また、添加する繊維状物質の量は特に限定す
るものではない。
The effect of adding the fibrous substance will be described with reference to the drawings. By adding the fibrous substance to the binder and the heat insulating material, the strength can be increased without deteriorating the heat insulating performance. At this time, a state in which the fibrous substance is entangled with the binder is shown in FIG. Xerogel silica secondary particles 4
Even if one is not bound by the water-soluble binder 42, the water-soluble binder 42 bound by the silica secondary particles 41
Since the fibrous substances 43 can bind each other, as a result, the silica secondary particles of the xerogel can be bound, so that the strength can be increased by adding the fibrous substance. Moreover, the amount of the fibrous substance to be added is not particularly limited.

【0041】繊維状物質としては、ガラス繊維やポリエ
ステル繊維、金属繊維、カイノール繊維、炭素繊維など
があるが、特にガラス繊維やカイノール繊維を用いる
と、固形化した断熱材を高温下で使用することができる
ようになり、さらにこれらは金属繊維より熱伝導率が小
さいので、断熱材に用いるには最適である。
As the fibrous substance, there are glass fiber, polyester fiber, metal fiber, kynol fiber, carbon fiber and the like. Especially when glass fiber or kynol fiber is used, solidified heat insulating material should be used at high temperature. Moreover, since they have lower thermal conductivity than metal fibers, they are optimal for use as heat insulating materials.

【0042】また炭素繊維を用いると、赤外線を吸収す
るので、高温下での断熱性能をさらに上げることができ
る。
Further, when carbon fibers are used, infrared rays are absorbed, so that the heat insulating performance at high temperatures can be further improved.

【0043】また、酸化チタンやATO(酸化アンチモ
ンドープ酸化スズ)やITO(酸化インジウムドープ酸
化スズ)などに代表される金属酸化物など赤外線を反射
する物質を混合させたり、微粉炭やカーボンブラックな
どの赤外線を吸収する物質を混合させたりすると、高温
下での断熱性能をさらに上げることができる。水溶性バ
インダを用いる場合、添加する水に赤外線を吸収する染
料などを予め溶解させておくと、混練時に、より均一に
赤外線を吸収する物質を分散させることができる。
In addition, an infrared-reflecting substance such as a metal oxide typified by titanium oxide, ATO (antimony oxide-doped tin oxide), ITO (indium oxide-doped tin oxide), or the like is mixed, pulverized coal, carbon black, or the like. If a substance that absorbs infrared rays is mixed, the heat insulation performance at high temperatures can be further improved. When a water-soluble binder is used, if a dye or the like that absorbs infrared rays is dissolved in water to be added in advance, the substance that absorbs infrared rays can be more uniformly dispersed during kneading.

【0044】なお、本実施例では素断熱材としてキセロ
ゲルを例にして説明したが、素断熱材としては、乾燥に
よって多孔質になる無機材料(例えばシリカゲル等)
や、セラミックス、耐熱性のスポンジ状物質、スチール
ウールなどでも良い。
In this embodiment, xerogel has been described as an example of the elementary heat insulating material, but as the elementary heat insulating material, an inorganic material (for example, silica gel) which becomes porous by drying.
Alternatively, ceramics, heat-resistant sponge-like substance, steel wool, etc. may be used.

【0045】以下、本実施例の動作を説明する。容器2
に水を入れた後通電すると、容器2内の水温は温度検知
器14により計測されその信号が制御装置19に送ら
れ、制御装置はヒーター13の通電を開始し始める。容
器2内の水が沸騰すると、ヒーター13への通電が終了
する。その後、温度検知器14からの信号を受けて、制
御装置19はヒーター13を容器2の温度が略一定温度
になるように制御する。出湯する際は押しボタン16を
押す。モーター7が動作し、容器2内の水はポンプ8に
より、11の出湯管を通り出湯口12より電気湯沸かし
器外に排出され利用される。以下、固形化を行った断熱
材を搭載した電気湯沸かし器に関する実験例を示す。
The operation of this embodiment will be described below. Container 2
When water is put into the container and then energized, the temperature of the water in the container 2 is measured by the temperature detector 14, the signal is sent to the control device 19, and the control device starts to energize the heater 13. When the water in the container 2 boils, the power supply to the heater 13 ends. After that, in response to the signal from the temperature detector 14, the control device 19 controls the heater 13 so that the temperature of the container 2 becomes substantially constant. When tapping, the push button 16 is pushed. The motor 7 operates and the water in the container 2 is discharged by the pump 8 through the hot water outlet pipe 11 from the hot water outlet 12 to the outside of the electric water heater for use. The following is an example of an experiment relating to an electric water heater equipped with a solidified heat insulating material.

【0046】<実験例1>断熱材に平均粒径40μmの
キセロゲル粉末を選び、水溶性バインダにHPCを選ん
だ。キセロゲル180gとHPC20gをミキサーにて
混合し、霧吹きで水を添加しながら混練し、キセロゲル
と水溶性バインダとの粘土状の混合物を作製した。次
に、この混合物を容器2の外側に均一になるように塗
り、容器2ごと80℃の恒温槽に入れ、熱風乾燥にて水
分を除去することで、断熱材と一体化した容器2を作製
した。この容器2を有する電気湯沸かし器(以下、本実
施例では水溶性品という)を用意した。
<Experimental Example 1> Xerogel powder having an average particle size of 40 μm was selected as the heat insulating material, and HPC was selected as the water-soluble binder. 180 g of xerogel and 20 g of HPC were mixed with a mixer and kneaded while adding water by spraying to prepare a clay-like mixture of xerogel and a water-soluble binder. Next, the mixture is evenly applied to the outside of the container 2, and the whole container 2 is placed in a constant temperature bath at 80 ° C., and water is removed by drying with hot air to produce a container 2 integrated with a heat insulating material. did. An electric water heater having this container 2 (hereinafter referred to as a water-soluble product in this embodiment) was prepared.

【0047】次に、断熱材に平均粒径40μmのキセロ
ゲル粉末を選び、樹脂バインダとしてフェノール樹脂で
あるベルパール(鐘紡製)を選んだ。キセロゲル180
gとベルパール20gをミキサーにて混合し、その後、
容器2の形をした金型に入れ、ヒータによって徐々に金
型の温度を上げ始め、約40分で200℃まで加熱し、
約10分間200℃に維持し、水冷装置により15分程
度で室温まで冷却した。そして金型を開け取り出したサ
ンプルを容器2に装着した。この容器2を有する電気湯
沸かし器(以下、本実施例ではフェノール品という)を
用意した。
Next, a xerogel powder having an average particle size of 40 μm was selected as the heat insulating material, and a phenol resin, Bellpearl (manufactured by Kanebo), was selected as the resin binder. Xerogel 180
g and Bellpearl 20g are mixed with a mixer, and then
Put in a mold in the shape of container 2, gradually raise the temperature of the mold by a heater, and heat up to 200 ° C in about 40 minutes,
The temperature was maintained at 200 ° C. for about 10 minutes, and the temperature was cooled to room temperature by a water cooling device in about 15 minutes. Then, the mold was opened and the sample taken out was attached to the container 2. An electric water heater having this container 2 (hereinafter referred to as a phenol product in this embodiment) was prepared.

【0048】また、従来例として、ステンレス容器に平
均粒径40μmのキセロゲル粉末を詰め、容器2に装着
した電気湯沸かし器(以下、本実施例では従来品1とい
う)とポリエチレンテレフタレートの不織布により作製
した袋に平均粒径40μmのキセロゲル粉末を詰め、図
5のように継ぎ目を有した状態で、容器2に装着した電
気湯沸かし器(以下、本実施例では従来品2という)を
用意した。
In addition, as a conventional example, a bag made of a non-woven fabric of polyethylene terephthalate and an electric water heater (hereinafter referred to as a conventional product 1 in this embodiment) which is packed in a stainless steel container and filled with a xerogel powder having an average particle size of 40 μm and mounted in the container 2. A xerogel powder having an average particle size of 40 μm was packed in a container, and an electric water heater (hereinafter referred to as a conventional product 2 in this example) mounted on the container 2 was prepared in a state having a seam as shown in FIG.

【0049】これらの4種類の電気湯沸かし器に水を入
れ、それぞれの保温電力を測定した。なお、保温水温は
96.5℃、雰囲気温度は20℃とした。測定は十分平
衡状態に達した後に行った。実験結果を(表1)に示
す。
Water was put into each of these four types of electric water heaters, and the heat insulation power of each was measured. The temperature of the heat retaining water was 96.5 ° C and the ambient temperature was 20 ° C. The measurement was performed after reaching a sufficient equilibrium state. The experimental results are shown in (Table 1).

【0050】[0050]

【表1】 したがって、本発明による方法で、断熱材と容器2を一
体化させることにより、大幅に保温電力を削減した電気
湯沸かし器を実現することができる。
[Table 1] Therefore, by integrating the heat insulating material and the container 2 by the method according to the present invention, it is possible to realize an electric water heater in which the heat insulating power is significantly reduced.

【0051】<実験例2>断熱材に平均粒径40μmの
キセロゲル粉末を選び、水溶性バインダにHPCを選
び、繊維状物質にガラス繊維を選んだ。キセロゲル18
0gとHPC20gをミキサーにより混合したもの(以
下、本実施例では0%品という)、キセロゲル171g
とHPC19gとガラス繊維10gをミキサーにより混
合したもの(以下、本実施例では5%品という)、キセ
ロゲル162gとHPC18gとガラス繊維20gをミ
キサーにより混合したもの(以下、本実施例では10%
品という)、キセロゲル144gとHPC16gとガラ
ス繊維40gをミキサーにより混合したもの(以下、本
実施例では20%品という)、キセロゲル126gとH
PC14gとガラス繊維60gをミキサーにより混合し
たもの(以下、本実施例では30%品という)、キセロ
ゲル90gとHPC10gとガラス繊維100gをミキ
サーにより混合したもの(以下、本実施例では50%品
という)を用意した。そして、それぞれに霧吹きで水を
添加しながら混練し、粘土状の物質を作製した。
<Experimental Example 2> Xerogel powder having an average particle size of 40 μm was selected as the heat insulating material, HPC was selected as the water-soluble binder, and glass fiber was selected as the fibrous substance. Xerogel 18
A mixture of 0 g and 20 g of HPC with a mixer (hereinafter, referred to as 0% product in this embodiment), xerogel 171 g
And a mixture of 19 g of HPC and 10 g of glass fiber with a mixer (hereinafter referred to as 5% product in this example), a mixture of 162 g of xerogel, 18 g of HPC and 20 g of glass fiber with a mixer (hereinafter, 10% in this example).
Product), a mixture of 144 g of xerogel, 16 g of HPC and 40 g of glass fiber with a mixer (hereinafter referred to as 20% product in this example), 126 g of xerogel and H.
A mixture of 14 g of PC and 60 g of glass fiber with a mixer (hereinafter referred to as 30% product in this example), a mixture of 90 g of xerogel, 10 g of HPC and 100 g of glass fiber with a mixer (hereinafter referred to as 50% product in this example). Prepared. Then, each was kneaded while adding water by spraying to produce a clay-like substance.

【0052】次に、それぞれの粘土状物質を容器2の外
側に均一になるように塗り、容器2ごと80℃の恒温槽
に入れ、熱風乾燥にて水分を除去することで、断熱材と
一体化した容器2をそれぞれ作製した。この容器2を有
する電気湯沸かし器をそれぞれ用意した。
Next, each clay-like substance is evenly coated on the outside of the container 2, and the whole container 2 is placed in a constant temperature bath at 80 ° C., and moisture is removed by hot air drying to integrate with the heat insulating material. The individualized containers 2 were produced. Each electric water heater having this container 2 was prepared.

【0053】これらの6種類の電気湯沸かし器に水を入
れ、それぞれの保温電力を測定した。なお、保温水温は
96.5℃、雰囲気温度は20℃とした。測定は十分平
衡状態に達した後に行った。実験結果を(表2)に示
す。
Water was put into each of these six types of electric water heaters, and the heat insulating power of each was measured. The temperature of the heat retaining water was 96.5 ° C and the ambient temperature was 20 ° C. The measurement was performed after reaching a sufficient equilibrium state. The experimental results are shown in (Table 2).

【0054】[0054]

【表2】 したがって、本発明による方法で、断熱材と容器2を一
体化させるとき、繊維状物質を添加することにより、断
熱材の強度が向上するため、より耐久性が高く、また大
幅に保温電力を削減した電気湯沸かし器を実現すること
ができる。
[Table 2] Therefore, when the heat insulating material and the container 2 are integrated by the method according to the present invention, by adding the fibrous substance, the strength of the heat insulating material is improved, so that the durability is higher and the heat insulating power is significantly reduced. It is possible to realize the electric water heater.

【0055】<実験例3>断熱材に平均粒径40μmの
キセロゲル粉末を選び、水溶性バインダにHPCを選
び、繊維状物質にガラス繊維を選んだ。さらに、赤外線
を反射する物質として酸化チタンを、赤外線を吸収する
物質としてカーボンブラックを選んだ。キセロゲル17
1gとHPC19gとガラス繊維10gとをミキサーに
より混合したもの(以下、本実施例では通常品とい
う)、キセロゲル171gとHPC19gとガラス繊維
10gと酸化チタン10gとをミキサーにより混合した
もの(以下、本実施例では酸化チタン品という)、キセ
ロゲル171gとHPC19gとガラス繊維10gとカ
ーボンブラック10gとをミキサーにより混合したもの
(以下、本実施例ではカーボン品という)を用意した。
そして、それぞれに霧吹きで水を添加しながら混練し、
粘土状の物質を作製した。
<Experimental Example 3> Xerogel powder having an average particle diameter of 40 μm was selected as the heat insulating material, HPC was selected as the water-soluble binder, and glass fiber was selected as the fibrous substance. Furthermore, titanium oxide was selected as a substance that reflects infrared rays, and carbon black was selected as a substance that absorbs infrared rays. Xerogel 17
A mixture of 1 g, 19 g of HPC and 10 g of glass fiber (hereinafter referred to as a normal product in this example), a mixture of 171 g of xerogel, 19 g of HPC, 10 g of glass fiber and 10 g of titanium oxide (hereinafter referred to as the present embodiment). In the example, a titanium oxide product), a mixture of 171 g of xerogel, 19 g of HPC, 10 g of glass fiber and 10 g of carbon black (hereinafter referred to as a carbon product in this example) were prepared.
And knead while adding water to each by spraying,
A clay-like material was made.

【0056】次に、それぞれの粘土状物質を容器2の外
側に均一になるように塗り、容器2ごと80℃の恒温槽
に入れ、熱風乾燥にて水分を除去することで、断熱材と
一体化した容器2をそれぞれ作製した。この容器2を有
する電気湯沸かし器をそれぞれ用意した。
Next, each clay-like substance is evenly applied to the outside of the container 2, and the whole container 2 is placed in a constant temperature bath at 80 ° C., and moisture is removed by drying with hot air, whereby it is integrated with the heat insulating material. The individualized containers 2 were produced. Each electric water heater having this container 2 was prepared.

【0057】これらの3種類の電気湯沸かし器に水を入
れ、それぞれの保温電力を測定した。なお、保温水温は
96.5℃、雰囲気温度は20℃とした。測定は十分平
衡状態に達した後に行った。実験結果を(表3)に示
す。
Water was put into these three types of electric water heaters, and the heat insulating power of each was measured. The temperature of the heat retaining water was 96.5 ° C and the ambient temperature was 20 ° C. The measurement was performed after reaching a sufficient equilibrium state. The experimental results are shown in (Table 3).

【0058】[0058]

【表3】 したがって、本発明による方法で、断熱材と容器2を一
体化させるとき、赤外線を反射する物質もしくは赤外線
を吸収する物質を添加することにより、さらに大幅に保
温電力を削減した電気湯沸かし器を実現することができ
る。
[Table 3] Therefore, when the heat insulating material and the container 2 are integrated by the method according to the present invention, by adding a substance that reflects infrared rays or a substance that absorbs infrared rays, it is possible to realize an electric water heater with a significantly reduced heat insulating power. You can

【0059】[0059]

【発明の効果】以上のように、請求項1〜6および8記
載の発明によると、熱伝導率が静止空気の熱伝導率以下
である高断熱性の断熱材を、その断熱性能を悪化させる
ことなく、様々な形状に固形化することができ、その固
形化した断熱材で貯水用容器を覆い一体化できるため、
継ぎ目を無くすことができ、熱が継ぎ目から漏れること
なく、保温電力の小さい省エネ電気湯沸かし器を実現で
きる。
As described above, according to the inventions described in claims 1 to 6 and 8, the heat insulating material having a high heat insulating property whose heat conductivity is equal to or lower than that of still air deteriorates its heat insulating performance. Without solidification, it can be solidified into various shapes, and since the solidified heat insulating material can cover and integrate the water storage container,
The seam can be eliminated, and heat can be prevented from leaking from the seam, and an energy-saving electric water heater with low heat insulation power can be realized.

【0060】また、請求項7記載の発明によると、貯水
用容器と一体化した断熱材の強度が向上するため、より
耐久性が高く、保温電力の小さい省エネ電気湯沸かし器
を実現できる。
Further, according to the invention of claim 7, since the strength of the heat insulating material integrated with the water storage container is improved, it is possible to realize an energy-saving electric water heater having a higher durability and a smaller heat insulating power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における電気湯沸かし器の縦
断面図
FIG. 1 is a vertical sectional view of an electric water heater according to a first embodiment of the present invention.

【図2】本発明の実施例1におけるシリカキセロゲルの
一部を拡大した模式図
FIG. 2 is an enlarged schematic view of a part of the silica xerogel in Example 1 of the present invention.

【図3】本発明の実施例1における電気湯沸かし器の貯
水用容器と断熱材を一体化する装置の模式図
FIG. 3 is a schematic diagram of an apparatus that integrates a water storage container of the electric water heater and a heat insulating material according to the first embodiment of the present invention.

【図4】本発明の実施例1における固形化した断熱材の
一部を拡大した模式図
FIG. 4 is an enlarged schematic view of a part of the solidified heat insulating material in Example 1 of the present invention.

【図5】従来の技術における電気湯沸かし器の貯水用容
器の縦断面図
FIG. 5 is a vertical cross-sectional view of a water storage container of an electric water heater according to a conventional technique.

【符号の説明】[Explanation of symbols]

2 貯水用容器 20 断熱材 34 粘土状断熱材 41 シリカ二次粒子 42 水溶性バインダ粒子 43 繊維状物質 2 Water storage container 20 insulation 34 Clay insulation 41 Silica secondary particles 42 Water-soluble binder particles 43 Fibrous substances

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋田 卓 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 船越 康友 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松本 敏宏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4B002 AA12 BA53 CA21 CA31 CA34 4B055 AA34 BA23 BA27 CA15 CC58 FA01 FB32 FC05 FC11 FC20 FD02 FE03 FE10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Hashida             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yasutomo Funakoshi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Toshihiro Matsumoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 4B002 AA12 BA53 CA21 CA31 CA34                 4B055 AA34 BA23 BA27 CA15 CC58                       FA01 FB32 FC05 FC11 FC20                       FD02 FE03 FE10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 貯水用容器と、前記貯水用容器内の水を
加熱するヒータと、水を流出させる出湯経路と、素断熱
材をバインダにより結合させ熱伝導率が静止した空気の
熱伝導率以下である断熱材とを有し、前記断熱材が継ぎ
目なく前記貯水用容器を覆った電気湯沸かし器。
1. A water storage container, a heater for heating water in the water storage container, a hot water outlet passage for discharging the water, and a base heat insulating material that are bound by a binder to have a thermal conductivity of air whose thermal conductivity is still. An electric water heater having the following heat insulating material, wherein the heat insulating material seamlessly covers the water storage container.
【請求項2】 断熱材と貯水用容器がバインダにより結
合された請求項1記載の電気湯沸かし器。
2. The electric water heater according to claim 1, wherein the heat insulating material and the water storage container are connected by a binder.
【請求項3】 素断熱材が疎水性を有しかつ多孔体を有
し、バインダが水溶性有機バインダである請求項1また
は2記載の電気湯沸かし器。
3. The electric water heater according to claim 1, wherein the elementary heat insulating material has hydrophobicity and has a porous body, and the binder is a water-soluble organic binder.
【請求項4】 貯水用容器と、前記貯水用容器内の水を
加熱するヒータと、水を流出させる出湯経路と、熱伝導
率が静止した空気の熱伝導率以下である断熱材とを有
し、疎水性でかつ細孔を有する素断熱材と、水溶性有機
バインダの混合物に水分を添加し、混練した後に前記貯
水用容器に塗り、前記水分を除去することで前記断熱材
を装着した電気湯沸かし器。
4. A water storage container, a heater for heating water in the water storage container, a hot water outlet path for letting out water, and a heat insulating material having a thermal conductivity equal to or lower than that of stationary air. Then, water is added to the mixture of the hydrophobic and pore-containing heat insulating material and the water-soluble organic binder, and the mixture is kneaded, then applied to the water storage container, and the heat insulating material is attached by removing the water. Electric water heater.
【請求項5】 貯水用容器と、前記貯水用容器内の水を
加熱するヒータと、水を流出させる出湯経路と、熱伝導
率が静止した空気の熱伝導率以下である断熱材とを有
し、素断熱材と樹脂バインダとの混合物に圧力と温度を
加えることで前記貯水用容器に密着する成形体として前
記断熱材を装着した電気湯沸かし器。
5. A water storage container, a heater for heating water in the water storage container, a hot water outlet passage for letting out water, and a heat insulating material having a thermal conductivity equal to or lower than that of stationary air. An electric water heater equipped with the heat insulating material as a molded body that adheres to the water storage container by applying pressure and temperature to a mixture of the base heat insulating material and the resin binder.
【請求項6】 素断熱材がシリカキセロゲルである請求
項1〜5いずれか1項に記載の電気湯沸かし器。
6. The electric water heater according to claim 1, wherein the elementary heat insulating material is silica xerogel.
【請求項7】 素断熱材もしくはバインダと、結着もし
くは絡み付く繊維状物質を有する請求項1〜6いずれか
1項に記載の電気湯沸かし器。
7. The electric water heater according to any one of claims 1 to 6, which has a base heat insulating material or a binder and a fibrous substance that binds or is entangled with each other.
【請求項8】 赤外線を反射する物質もしくは吸収する
物質のうち少なくともいずれか一つを含む請求項1〜7
いずれか1項に記載の電気湯沸かし器。
8. A material containing at least one of a substance that reflects and absorbs infrared rays.
The electric water heater according to claim 1.
JP2002008385A 2002-01-17 2002-01-17 Electric water boiler Pending JP2003204886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008385A JP2003204886A (en) 2002-01-17 2002-01-17 Electric water boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008385A JP2003204886A (en) 2002-01-17 2002-01-17 Electric water boiler

Publications (1)

Publication Number Publication Date
JP2003204886A true JP2003204886A (en) 2003-07-22

Family

ID=27646661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008385A Pending JP2003204886A (en) 2002-01-17 2002-01-17 Electric water boiler

Country Status (1)

Country Link
JP (1) JP2003204886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502717A (en) * 2005-07-26 2009-01-29 ザ・ボーイング・カンパニー Aerogel and phase change material composite
WO2017038098A1 (en) * 2015-09-02 2017-03-09 パナソニックIpマネジメント株式会社 Heat retaining container and method for manufacturing the same
US10418875B2 (en) 2014-08-01 2019-09-17 Panasonic Intellectual Property Management Co., Ltd. Thermal insulation structure for electronic device, motor provided with said thermal insulation structure, and method for forming thermal insulation member for electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502717A (en) * 2005-07-26 2009-01-29 ザ・ボーイング・カンパニー Aerogel and phase change material composite
US10418875B2 (en) 2014-08-01 2019-09-17 Panasonic Intellectual Property Management Co., Ltd. Thermal insulation structure for electronic device, motor provided with said thermal insulation structure, and method for forming thermal insulation member for electronic device
WO2017038098A1 (en) * 2015-09-02 2017-03-09 パナソニックIpマネジメント株式会社 Heat retaining container and method for manufacturing the same
JPWO2017038098A1 (en) * 2015-09-02 2018-06-14 パナソニックIpマネジメント株式会社 Thermal insulation container and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6967709B2 (en) Insulation material and equipment using the insulation material
CN103803934B (en) A kind of nano silicon oxide heat-insulating heat-preserving material and normal temperature drying wet processing preparation method thereof
CN107814552A (en) A kind of silica heat insulation composite material and preparation method thereof
CN110876492A (en) Electronic atomization device
CN106478051B (en) A kind of diatomite composite material and preparation method thereof
JP2003042387A (en) Heat-insulating material, solidifying method therefor and apparatus using it
JP2003204886A (en) Electric water boiler
JP3888262B2 (en) Insulation and equipment using it
JPH09145241A (en) Vacuum heat-insulating material
CN104650812B (en) A kind of method for preparing stearic acid silica composite phase-change heat-storage slurry
CN206109226U (en) Ceramic manufacturing device
CN1323976C (en) Shell type expending pearlite thermal insulating bones material and preparation process thereof
CN208855378U (en) Absorb component, the lamp rear cover of the sustainable unidirectional quickly heating discharge moisture of moisture in small micro- space
CN206951189U (en) A kind of enamel reaction still
CN205066321U (en) Tilting vibration vacuum drying machine
CN101368338B (en) Foaming netted anti-skid pad
CN207417569U (en) self-heating bottle
JP2003144322A (en) Electric hot-water heater
CN109185599A (en) Lightening fire resistant heat-insulating material and its foam process
CN207237738U (en) Electrical heating emulsion tank
CN2937869Y (en) Microwave oven with water container
US4381970A (en) Thermocatalytic reactor and process for producing same
JP2002265286A (en) Heat insulating material
JP6476794B2 (en) Manufacturing method of heat insulating plate and manufacturing apparatus thereof, and vacuum heat insulating material and manufacturing method thereof
CN208757590U (en) A kind of terpinol heating reaction pot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628