JP2003203634A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JP2003203634A
JP2003203634A JP2002310653A JP2002310653A JP2003203634A JP 2003203634 A JP2003203634 A JP 2003203634A JP 2002310653 A JP2002310653 A JP 2002310653A JP 2002310653 A JP2002310653 A JP 2002310653A JP 2003203634 A JP2003203634 A JP 2003203634A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
weight
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002310653A
Other languages
Japanese (ja)
Other versions
JP3654592B2 (en
Inventor
Masaya Okochi
正也 大河内
Masatoshi Nagayama
雅敏 永山
Yutaka Kawadate
裕 川建
Ryoichi Tanaka
亮一 田中
Hideya Asano
英也 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002310653A priority Critical patent/JP3654592B2/en
Publication of JP2003203634A publication Critical patent/JP2003203634A/en
Application granted granted Critical
Publication of JP3654592B2 publication Critical patent/JP3654592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery in which capacity degradation due to charging and discharging cycle is suppressed and capacity degradation due to hot temperature storage is reduced and which, thereby, is excellent in reliability. <P>SOLUTION: This is a lithium ion secondary battery which is constructed of a positive electrode, a negative electrode, and a non-aqueous electrolyte, and of which the positive electrode is made of a positive electrode active material, a conductive assistant, and a binder, and the above positive electrode active material is made of a lithium-contained complex oxide that is expressed by the chemical formula Li<SB>a</SB>(Co<SB>1-x-y</SB>Mg<SB>x</SB>M<SB>y</SB>)<SB>b</SB>O<SB>c</SB>, (wherein, M is at least one kind selected from Ni and Al, and 0≤a≤1.05, 0.03≤x≤0.15, 0≤y≤0.25, 0.85≤b≤1.1, 1.8≤c≤2.1). And the quantity of the conductive assistant contained in the positive electrode is 3.0 parts weight or less for 100 parts weight of the positive electrode active material. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池に関する。
TECHNICAL FIELD The present invention relates to a lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急激に進んでいる。現在、これら電子機
器の駆動用電源を担う小型・軽量で高エネルギー密度を
有する電池への要望が高まっている。とりわけリチウム
イオン二次電池は、高電圧で高エネルギー密度を有する
ことから、ノートパソコン、携帯電話、AV機器などの
電源として、今後の大きな成長が期待されている。これ
まで主流を占めていたアルカリ水溶液を電解質とするニ
ッケル−カドミウム蓄電池あるいはニッケル−水素蓄電
池は、リチウムイオン二次電池に置き換わりつつある。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
Cordless is rapidly progressing. At present, there is an increasing demand for a small, lightweight battery having a high energy density, which serves as a power source for driving these electronic devices. In particular, since the lithium ion secondary battery has a high voltage and a high energy density, it is expected to grow greatly in the future as a power source for notebook computers, mobile phones, AV equipment and the like. A nickel-cadmium storage battery or a nickel-hydrogen storage battery, which uses an alkaline aqueous solution as an electrolyte, which has been the mainstream until now, is being replaced by a lithium ion secondary battery.

【0003】リチウムイオン二次電池の正極活物質に
は、LiCoO2、LiNiO2、LiMnO2、LiM
24などのリチウム含有複合酸化物が用いられてい
る。これらの正極活物質は、充放電を行うことにより膨
張・収縮を繰り返す。この際に結晶構造の破壊や粒子の
割れ等が発生するため、充放電サイクルに伴う容量低下
や内部抵抗の増加を生じる。このような問題に対し、コ
バルトまたはニッケルの一部を他の元素で置換すること
により、結晶構造の安定化を図るという報告がある。例
えば、正極活物質のコバルトの一部をマグネシウムなど
の元素と置換することにより、サイクル特性や安全性を
向上させるという報告がある(特許文献1〜3参照)。
LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiM are used as positive electrode active materials for lithium ion secondary batteries.
Lithium-containing composite oxides such as n 2 O 4 have been used. These positive electrode active materials repeat expansion and contraction by charging and discharging. At this time, the crystal structure is broken or the particles are broken, so that the capacity is lowered and the internal resistance is increased with the charge / discharge cycle. For such a problem, it has been reported that the crystal structure is stabilized by substituting a part of cobalt or nickel with another element. For example, there is a report that a part of cobalt in the positive electrode active material is replaced with an element such as magnesium to improve cycle characteristics and safety (see Patent Documents 1 to 3).

【0004】[0004]

【特許文献1】特許第3162437号公報[Patent Document 1] Japanese Patent No. 3162437

【特許文献2】特開平5−242891号公報[Patent Document 2] JP-A-5-242891

【特許文献3】特開平6−168722号公報[Patent Document 3] JP-A-6-168722

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のような
従来の技術では、サイクル特性の劣化を抑制することが
できる反面、例えば、充電状態の電池を85℃で3日間
保存した場合には、電池内におけるガス発生量が比較的
多くなることが確認されている。特に、角薄型電池やラ
ミネートシートからなる外装材を有する電池の場合、ケ
ースや外装材の強度が弱いため、ガス発生による電池厚
みの増加や容量低下が生じることがある。ガス発生量が
増加する原因は現在のところ確かではないが、コバルト
の一部をマグネシウムで置換した正極活物質は、電子伝
導性が高く、活物質表面が活性なため、非水電解質との
反応性が高まり、非水電解質の分解が促進されるためと
考えられている。
However, in the prior art as described above, deterioration of cycle characteristics can be suppressed, but, for example, when a battery in a charged state is stored at 85 ° C. for 3 days, It has been confirmed that the amount of gas generated in the battery is relatively large. In particular, in the case of a rectangular thin battery or a battery having an outer packaging material made of a laminated sheet, the strength of the case and the outer packaging material is weak, which may cause an increase in battery thickness and a decrease in capacity due to gas generation. The cause of the increase in gas generation is not certain at present, but the positive electrode active material in which a part of cobalt is replaced with magnesium has high electron conductivity and the surface of the active material is active. It is thought that the property is enhanced and the decomposition of the non-aqueous electrolyte is promoted.

【0006】[0006]

【課題を解決するための手段】本発明は、正極、負極お
よび非水電解質からなり、前記正極が、正極活物質、導
電剤、および結着剤からなり、前記正極活物質が、化学
式Lia(Co1-x-yMgxybc(Mは、Niおよび
Alより選ばれる少なくとも1種、0≦a≦1.05、
0.03≦x≦0.15、0≦y≦0.25、0.85
≦b≦1.1、1.8≦c≦2.1)で表されるリチウ
ム含有複合酸化物からなり、前記正極に含まれる前記導
電剤の量が、前記正極活物質100重量部あたり3.0
重量部以下であるリチウムイオン二次電池に関する。
The present invention comprises a positive electrode, a negative electrode and a non-aqueous electrolyte, the positive electrode comprises a positive electrode active material, a conductive agent, and a binder, and the positive electrode active material has the chemical formula Li a (Co 1-xy Mg x M y) b O c (M is at least one selected from Ni and Al, 0 ≦ a ≦ 1.05,
0.03 ≦ x ≦ 0.15, 0 ≦ y ≦ 0.25, 0.85
≦ b ≦ 1.1, 1.8 ≦ c ≦ 2.1), and the amount of the conductive agent contained in the positive electrode is 3 per 100 parts by weight of the positive electrode active material. .0
The present invention relates to a lithium-ion secondary battery that is less than or equal to parts by weight.

【0007】前記正極に含まれる前記結着剤の量は、前
記正極活物質100重量部あたり1.0重量部以上4.
0重量部以下であることが好ましい。前記結着剤は、ポ
リフッ化ビニリデンからなり、前記ポリフッ化ビニリデ
ンの重量平均分子量が、150000以上350000
以下であることが好ましい。前記非水電解質は、非水溶
媒および前記非水溶媒に溶解するリチウム塩からなり、
前記非水溶媒が、γ−ブチロラクトンおよび/またはγ
−ブチロラクトン誘導体を含むことが好ましい。前記負
極は、核粒子および前記核粒子表面の少なくとも一部を
被覆する非晶質炭素からなる材料を含み、前記核粒子は
黒鉛からなることが好ましい。本発明によれば、充放電
サイクルに伴う容量低下を抑制するとともに、高温保存
時の容量低下を抑制したリチウムイオン二次電池を提供
することができる。
The amount of the binder contained in the positive electrode is 1.0 part by weight or more per 100 parts by weight of the positive electrode active material.
It is preferably 0 parts by weight or less. The binder is made of polyvinylidene fluoride, and the polyvinylidene fluoride has a weight average molecular weight of 150,000 or more and 350,000.
The following is preferable. The non-aqueous electrolyte consists of a non-aqueous solvent and a lithium salt soluble in the non-aqueous solvent,
The non-aqueous solvent is γ-butyrolactone and / or γ
It is preferable to include a butyrolactone derivative. It is preferable that the negative electrode includes core particles and a material made of amorphous carbon that covers at least a part of the surface of the core particles, and the core particles are made of graphite. According to the present invention, it is possible to provide a lithium-ion secondary battery that suppresses the capacity decrease due to charge / discharge cycles and also suppresses the capacity decrease during high temperature storage.

【0008】[0008]

【発明の実施の形態】本発明では、化学式Lia(Co
1-x-yMgxybc(Mは、NiおよびAlより選ば
れる少なくとも1種、0≦a≦1.05、0.03≦x
≦0.15、0≦y≦0.25、0.85≦b≦1.
1、1.8≦c≦2.1)で表されるリチウム含有複合
酸化物からなる正極活物質を用いる。前記複合酸化物の
結晶においては、マグネシウムでコバルトの一部が置換
されている。そのため、結晶構造が安定であり、充放電
サイクルに伴う結晶構造の破壊や粒子の割れが発生しに
くい。従って、電池の容量低下が抑制され、サイクル寿
命が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the chemical formula Li a (Co
1-xy Mg x My y ) b O c (M is at least one selected from Ni and Al, 0 ≦ a ≦ 1.05, 0.03 ≦ x
≦ 0.15, 0 ≦ y ≦ 0.25, 0.85 ≦ b ≦ 1.
1. A positive electrode active material composed of a lithium-containing composite oxide represented by the formula 1, 1.8 ≦ c ≦ 2.1) is used. In the crystal of the composite oxide, magnesium is partially substituted for cobalt. Therefore, the crystal structure is stable, and it is difficult for the crystal structure to be broken or the particles to be cracked due to charge / discharge cycles. Therefore, the capacity decrease of the battery is suppressed and the cycle life is improved.

【0009】マグネシウムの含有率xが0.03未満の
場合、複合酸化物の結晶構造の安定化が不十分となる。
従って、充放電を繰り返すと、内部抵抗が増大し、サイ
クル特性が大きく劣化する。一方、含有率xが0.15
をこえると、正極活物質の充放電容量が低下する。この
ことから、Mgの含有率xは、0.03≦x≦0.15
を満たす必要がある。
When the content x of magnesium is less than 0.03, the stabilization of the crystal structure of the composite oxide becomes insufficient.
Therefore, when charging and discharging are repeated, the internal resistance increases and the cycle characteristics deteriorate significantly. On the other hand, the content rate x is 0.15
If it exceeds, the charge / discharge capacity of the positive electrode active material decreases. From this, the Mg content x is 0.03 ≦ x ≦ 0.15.
Need to meet.

【0010】前記複合酸化物は、元素Mとして、Niお
よびAlより選ばれる少なくとも1種を含むことができ
る。Niを含む複合酸化物は、低コストで得ることがで
き、耐熱性が向上する。また、Alを含む複合酸化物
は、耐熱性が向上し、サイクル特性がさらに改善され
る。ただし、元素Mの含有率yが、0.25より大きく
なると、次のようなデメリットが生じる。すなわち、N
iが過剰の場合には、サイクル寿命特性の低下や高温保
存時のガス発生量が増加する。また、Alが過剰の場合
には、活物質の充放電容量が低下したり、活物質粒子の
タップ密度が低下して極板容量が下がったりする。この
ことから、Mの含有率yは、0≦y≦0.25を満たす
必要がある。
The complex oxide may contain, as the element M, at least one selected from Ni and Al. The composite oxide containing Ni can be obtained at low cost and has improved heat resistance. In addition, the composite oxide containing Al has improved heat resistance and further improved cycle characteristics. However, if the content y of the element M is larger than 0.25, the following demerits occur. That is, N
When i is excessive, the cycle life characteristics are deteriorated and the gas generation amount at the time of high temperature storage is increased. Further, when Al is excessive, the charge / discharge capacity of the active material decreases, or the tap density of the active material particles decreases and the electrode plate capacity decreases. From this, the content y of M needs to satisfy 0 ≦ y ≦ 0.25.

【0011】前記正極活物質は、例えば、リチウム塩
と、マグネシウム塩と、コバルト塩とを酸化雰囲気下で
高温で焼成することにより、得ることができる。正極活
物質を合成するための原料としては、以下のものを用い
ることができる。リチウム塩としては、炭酸リチウム、
水酸化リチウム、硝酸リチウム、硫酸リチウム、酸化リ
チウム等を用いることができる。マグネシウム塩として
は、酸化マグネシウム、塩基性炭酸マグネシウム、塩化
マグネシウム、フッ化マグネシウム、硝酸マグネシウ
ム、硫酸マグネシウム、酢酸マグネシウム、蓚酸マグネ
シウム、硫化マグネシウム、水酸化マグネシウムを用い
ることができる。コバルト塩としては、酸化コバルト、
水酸化コバルト等を用いることができる。
The positive electrode active material can be obtained, for example, by firing a lithium salt, a magnesium salt, and a cobalt salt at a high temperature in an oxidizing atmosphere. The following materials can be used as a raw material for synthesizing the positive electrode active material. As the lithium salt, lithium carbonate,
Lithium hydroxide, lithium nitrate, lithium sulfate, lithium oxide or the like can be used. As the magnesium salt, magnesium oxide, basic magnesium carbonate, magnesium chloride, magnesium fluoride, magnesium nitrate, magnesium sulfate, magnesium acetate, magnesium oxalate, magnesium sulfide, or magnesium hydroxide can be used. As the cobalt salt, cobalt oxide,
Cobalt hydroxide or the like can be used.

【0012】正極活物質を、導電剤、結着剤、分散媒等
と混合することにより、ペースト状の正極合剤を得るこ
とができる。前記導電剤には、電池内において化学変化
を起こしにくい電子伝導性材料を特に限定なく用いるこ
とができるが、特に炭素材料が好ましい。例えば、アセ
チレンブラック、ケッチェンブラック、チャンネルブラ
ック、ファーネスブラック、ランプブラック、サーマル
ブラック等のカーボンブラック、鱗片状黒鉛などの天然
黒鉛粉末、人造黒鉛粉末、導電性炭素繊維などを用いる
ことができる。これらは単独で用いてもよく、2種以上
を組み合わせて用いてもよい。
By mixing the positive electrode active material with a conductive agent, a binder, a dispersion medium, etc., a paste-like positive electrode mixture can be obtained. As the conductive agent, an electron conductive material that does not easily undergo a chemical change in the battery can be used without particular limitation, but a carbon material is particularly preferable. For example, carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black, natural graphite powder such as scaly graphite, artificial graphite powder, and conductive carbon fiber can be used. These may be used alone or in combination of two or more.

【0013】本発明で用いる正極は、正極活物質100
重量部あたり、3重量部以下の導電剤を含んでいる。導
電剤の量を3重量部以下にすることにより、高温保存下
での導電剤表面での非水電解質の分解を低減することが
でき、高温保存後の容量低下が抑制される。また、導電
剤は比較的比表面積が大きいが、導電剤の量を3重量部
以下にすることにより、導電剤を被覆する結着剤量を少
なくすることができる。従って、結着剤量を正極活物質
100重量部あたり、4重量部以下にしても、十分な極
板強度を得ることが可能になる。このように絶縁性の結
着剤を少なくすることによって、電池の負荷特性が向上
し、サイクル特性がさらに向上するという相乗効果が得
られる。ただし、結着剤量が、正極活物質100重量部
あたり、1重量部未満になると、充分な極板強度を得る
ことが困難になる。
The positive electrode used in the present invention is a positive electrode active material 100.
It contains 3 parts by weight or less of the conductive agent per part by weight. By setting the amount of the conductive agent to 3 parts by weight or less, the decomposition of the non-aqueous electrolyte on the surface of the conductive agent under high temperature storage can be reduced, and the decrease in capacity after high temperature storage is suppressed. Further, the conductive agent has a relatively large specific surface area, but by setting the amount of the conductive agent to 3 parts by weight or less, the amount of the binder coating the conductive agent can be reduced. Therefore, even if the amount of the binder is 4 parts by weight or less per 100 parts by weight of the positive electrode active material, sufficient electrode plate strength can be obtained. By thus reducing the amount of the insulating binder, the load characteristics of the battery are improved, and the synergistic effect of further improving the cycle characteristics can be obtained. However, if the amount of the binder is less than 1 part by weight per 100 parts by weight of the positive electrode active material, it becomes difficult to obtain sufficient electrode plate strength.

【0014】前記結着剤には、熱可塑性樹脂、熱硬化性
樹脂のいずれを用いてもよく、これらを組み合わせて用
いることもできる。これらの中では、ポリフッ化ビニリ
デン(PVdF)、ポリテトラフルオロエチレン(PT
FE)が好ましく、特にPVdFが好ましい。なかでも
分子量150000以上のPVdFを用いた場合には、
結着強度が向上し、極めて少量でも十分な極板強度が得
られる。この場合、絶縁性の結着剤量をさらに低減でき
ることから、電池の負荷特性がさらに向上し、サイクル
特性が一段と向上するという相乗効果が得られる。一
方、PVdFの分子量が350000以上になると、逆
に、負荷特性が低下し、サイクル特性が低下する傾向が
ある。前記分散媒には、水系分散媒やN−メチル−2−
ピロリドンなどの有機分散媒を用いることができる。
As the binder, either a thermoplastic resin or a thermosetting resin may be used, or these may be used in combination. Among these, polyvinylidene fluoride (PVdF) and polytetrafluoroethylene (PT
FE) is preferable, and PVdF is particularly preferable. Above all, when PVdF having a molecular weight of 150,000 or more is used,
The binding strength is improved and sufficient electrode plate strength can be obtained even with an extremely small amount. In this case, the amount of the insulating binder can be further reduced, so that the load characteristics of the battery are further improved and the cycle characteristics are further improved, which is a synergistic effect. On the other hand, when the molecular weight of PVdF is 350,000 or more, conversely, the load characteristics tend to deteriorate and the cycle characteristics tend to deteriorate. The dispersion medium is an aqueous dispersion medium or N-methyl-2-
An organic dispersion medium such as pyrrolidone can be used.

【0015】リチウムイオン二次電池には、非水溶媒お
よび前記非水溶媒に溶解するリチウム塩からなる非水電
解質を用いることが好ましい。非水溶媒としては、例え
ば、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、ビニレンカーボネートなどの環
状カーボネート類、ジメチルカーボネート、ジエチルカ
ーボネート、エチルメチルカーボネート、ジプロピルカ
ーボネートなどの鎖状カーボネート類、ギ酸メチル、酢
酸メチル、プロピオン酸メチル、プロピオン酸エチルな
どの脂肪族カルボン酸エステル類、γ−ブチロラクト
ン、γ−バレロラクトン、α−メチル−γ−ブチロラク
トン等のγ−ブチロラクトン誘導体類、1,2−ジメト
キシエタン等の鎖状エーテル類、テトラヒドロフラン等
の環状エーテル類、ジメチルスルホキシド、1,3−ジ
オキソラン、ホルムアミド、アセトアミド、ジメチルホ
ルムアミド、ジオキソラン、アセトニトリル、プロピル
ニトリル、ニトロメタン、エチルモノグライム、リン酸
トリエステル、トリメトキシメタン、ジオキソラン誘導
体、スルホラン、メチルスルホラン、1,3−ジメチル
−2−イミダゾリジノン、3−メチル−2−オキサゾリ
ジノン、プロピレンカーボネート誘導体、テトラヒドロ
フラン誘導体、エチルエーテル、1,3−プロパンサル
トン、アニソール、ジメチルスルホキシド、N−メチル
−2−ピロリドンなどの非プロトン性有機溶媒を挙げる
ことができる。これらは単独で用いてもよいが、2種以
上を組み合わせて用いることが好ましい。
For the lithium ion secondary battery, it is preferable to use a non-aqueous electrolyte composed of a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent. As the non-aqueous solvent, for example, ethylene carbonate, propylene carbonate,
Cyclic carbonates such as butylene carbonate and vinylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate and dipropyl carbonate, aliphatic carboxylic acids such as methyl formate, methyl acetate, methyl propionate and ethyl propionate Esters, γ-butyrolactone, γ-valerolactone, γ-butyrolactone derivatives such as α-methyl-γ-butyrolactone, chain ethers such as 1,2-dimethoxyethane, cyclic ethers such as tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimeto Xymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propanesartone, anisole, An aprotic organic solvent such as dimethyl sulfoxide or N-methyl-2-pyrrolidone can be used. These may be used alone, but it is preferable to use two or more kinds in combination.

【0016】前記非水溶媒には、γ−ブチロラクトンお
よび/またはγ−ブチロラクトン誘導体を含有させるこ
とが好ましい。上述の正極活物質を用いた場合、通常よ
く使用されている環状カーボネートと鎖状カーボネート
とを含む非水電解質では、高温保存時に発生するガス量
が多くなる傾向がある。従って、上述の正極活物質と、
環状カーボネートと鎖状カーボネートとを含む非水電解
質との相性は良好とは言えない。一方、γ−ブチロラク
トンやγ−ブチロラクトン誘導体を含む非水電解質の場
合、上述の正極活物質を用いても、高温保存時のガス発
生量が少量に抑えられる。これは、γ−ブチロラクトン
やγ−ブチロラクトン誘導体が、正極表面に被膜を形成
し、ガスを発生させる反応が抑制されるためと考えられ
る。
The non-aqueous solvent preferably contains γ-butyrolactone and / or γ-butyrolactone derivative. When the above-mentioned positive electrode active material is used, the amount of gas generated during high-temperature storage tends to increase in a non-aqueous electrolyte containing a cyclic carbonate and a chain carbonate that are commonly used. Therefore, the positive electrode active material described above,
Compatibility with a non-aqueous electrolyte containing a cyclic carbonate and a chain carbonate cannot be said to be good. On the other hand, in the case of a non-aqueous electrolyte containing γ-butyrolactone or a γ-butyrolactone derivative, the amount of gas generated during high-temperature storage can be suppressed to a small amount even when the above-mentioned positive electrode active material is used. It is considered that this is because γ-butyrolactone or a γ-butyrolactone derivative forms a film on the surface of the positive electrode and suppresses the reaction of generating gas.

【0017】前記効果は、γ−ブチロラクトンおよび/
またはγ−ブチロラクトン誘導体の非水溶媒における含
有率が0.5重量%以上の場合に得ることができる。前
記含有率が0.5重量%未満では、高温保存下における
正極表面での被膜形成が不十分となり、前記効果が得ら
れない。ただし、前記含有率が80重量%を超えると、
非水電解質のイオン導電性が低下して電池のレート特性
が低下する。本発明において特に好ましい溶媒は、γ−
ブチロラクトン0.5〜70体積%と、ビニレンカーボ
ネート0.5〜4体積%と、環状カーボネート10〜4
0体積%との混合溶媒であり、さらに鎖状カーボネート
0〜85体積%を含んでもよい。
The above-mentioned effect is obtained by γ-butyrolactone and / or
Alternatively, it can be obtained when the content of the γ-butyrolactone derivative in the non-aqueous solvent is 0.5% by weight or more. When the content is less than 0.5% by weight, the film formation on the surface of the positive electrode under high temperature storage becomes insufficient and the above effect cannot be obtained. However, if the content exceeds 80% by weight,
The ionic conductivity of the non-aqueous electrolyte is lowered and the rate characteristics of the battery are lowered. Particularly preferred solvent in the present invention is γ-
Butyrolactone 0.5-70% by volume, vinylene carbonate 0.5-4% by volume, cyclic carbonate 10-4
It is a mixed solvent with 0% by volume, and may further contain 0 to 85% by volume of chain carbonate.

【0018】非水溶媒に溶解するリチウム塩としては、
例えばLiClO4 、LiBF4 、LiPF6 、LiA
lCl4、LiSbF6、LiSCN、LiCl、LiC
3SO3 、LiCF3 CO2 、Li(CF3SO22
LiAsF6 、LiN(CF3SO22、LiB10Cl
10、低級脂肪族カルボン酸リチウム、LiCl、LiB
r、LiI、クロロボランリチウム等を挙げることがで
きる。これらは単独で用いてもよく、2種以上を組み合
わせて用いてもよい。また、少なくともLiPF6 を用
いることが好ましい。非水電解質におけるリチウム塩の
濃度は、特に限定されないが、0.2〜2mol/リッ
トルであることが好ましく、0.5〜1.5mol/リ
ットルであることが特に好ましい。
The lithium salt which can be dissolved in a non-aqueous solvent includes
For example, LiClO 4 , LiBF 4 , LiPF 6 , LiA
lCl 4 , LiSbF 6 , LiSCN, LiCl, LiC
F 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 ,
LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiB 10 Cl
10 , lower aliphatic lithium carboxylate, LiCl, LiB
r, LiI, lithium chloroborane and the like can be mentioned. These may be used alone or in combination of two or more. Further, it is preferable to use at least LiPF 6 . The concentration of the lithium salt in the non-aqueous electrolyte is not particularly limited, but it is preferably 0.2 to 2 mol / liter, and particularly preferably 0.5 to 1.5 mol / liter.

【0019】本発明で用いる負極材料は、リチウム合
金、炭素材料、無機酸化物、無機カルコゲナイド、窒化
物、金属錯体、有機高分子化合物等のように、リチウム
イオンを吸蔵・放出できる化合物であればよい。これら
は単独で用いてもよく、2種以上を組み合わせて用いて
もよい。これらの負極材料のうちでは、特に、炭素材料
が好ましい。例えば、リチウムと炭素材料、リチウムと
無機酸化物、リチウムと炭素材料と無機酸化物との組み
合わせなどが挙げられる。これらの負極材料は、高容
量、高放電電位、高い安全性、高いサイクル特性等を与
える点で好ましい。
The negative electrode material used in the present invention is a compound capable of inserting and extracting lithium ions, such as a lithium alloy, a carbon material, an inorganic oxide, an inorganic chalcogenide, a nitride, a metal complex and an organic polymer compound. Good. These may be used alone or in combination of two or more. Among these negative electrode materials, a carbon material is particularly preferable. For example, a combination of lithium and a carbon material, lithium and an inorganic oxide, a combination of lithium and a carbon material and an inorganic oxide, and the like can be given. These negative electrode materials are preferable in that they give high capacity, high discharge potential, high safety, high cycle characteristics, and the like.

【0020】前記リチウム合金としては、Li−Al、
Li−Al−Mn、Li−Al−Mg、Li−Al−S
n、Li−Al−In、Li−Al−Cd、Li−Al
−Te、Li−Ga、Li−Cd、Li−In、Li−
Pb、Li−Bi、Li−Mgなどが挙げられる。この
場合、リチウムの含有率は10重量%以上であることが
好ましい。
As the lithium alloy, Li--Al,
Li-Al-Mn, Li-Al-Mg, Li-Al-S
n, Li-Al-In, Li-Al-Cd, Li-Al
-Te, Li-Ga, Li-Cd, Li-In, Li-
Pb, Li-Bi, Li-Mg, etc. are mentioned. In this case, the lithium content is preferably 10% by weight or more.

【0021】前記炭素材料としては、コークス、熱分解
炭素類、天然黒鉛、人造黒鉛、メソカーボンマイクロビ
ーズ、黒鉛化メソフェーズ小球体、気相成長炭素、ガラ
ス状炭素類、ポリアクリロニトリル、ピッチ、セルロー
スもしくは気相成長炭素からなる炭素繊維、不定形炭
素、有機物の焼成体などが挙げられる。これらは単独で
用いてもよく、2種以上を組み合わせて用いてもよい。
尚、炭素材料は、炭素以外に、O、B、P、N、S、S
iC、B4Cなどの異種元素や化合物を含んでもよい。
異種元素や化合物の含有率は0〜10重量%が好まし
い。
Examples of the carbon material include coke, pyrolytic carbons, natural graphite, artificial graphite, mesocarbon microbeads, graphitized mesophase microspheres, vapor grown carbon, glassy carbons, polyacrylonitrile, pitch, cellulose or Examples thereof include carbon fibers made of vapor grown carbon, amorphous carbon, and fired bodies of organic substances. These may be used alone or in combination of two or more.
In addition to carbon, carbon materials include O, B, P, N, S, and S.
It may contain a different element or compound such as iC or B 4 C.
The content of the different element or compound is preferably 0 to 10% by weight.

【0022】前記無機酸化物としては、例えば、チタン
酸化物、タングステン酸化物、モリブデン酸化物、ニオ
ブ酸化物、バナジウム酸化物、鉄酸化物等が挙げられ
る。また、前記無機カルコゲナイドとしては、例えば、
硫化鉄、硫化モリブデン、硫化チタン等が挙げられる。
前記有機高分子化合物としては、ポリチオフェン、ポリ
アセチレン等の高分子化合物が挙げられる。前記窒化物
としては、コバルト窒化物、銅窒化物、ニッケル窒化
物、鉄窒化物、マンガン窒化物等が挙げられる。
Examples of the inorganic oxide include titanium oxide, tungsten oxide, molybdenum oxide, niobium oxide, vanadium oxide, iron oxide and the like. Further, as the inorganic chalcogenide, for example,
Examples thereof include iron sulfide, molybdenum sulfide, titanium sulfide and the like.
Examples of the organic polymer compound include polymer compounds such as polythiophene and polyacetylene. Examples of the nitride include cobalt nitride, copper nitride, nickel nitride, iron nitride, manganese nitride and the like.

【0023】前記炭素材料としては、黒鉛の核粒子およ
び前記核粒子表面の少なくとも一部を被覆する非晶質炭
素からなる材料(以下、材料X)が特に好ましい。材料
Xを用いる場合、正極からマグネシウムが溶出した場合
に、表面の非晶質炭素中にマグネシウムを取り込むこと
ができるため、黒鉛層間にマグネシウムが挿入されて、
負極特性が劣化するの防ぐことができる。このため、高
温保存後の容量低下がさらに改善されるという効果が得
られる。材料Xの平均粒径は3〜20μmであることが
好ましい。
As the carbon material, a material composed of graphite core particles and amorphous carbon covering at least a part of the surface of the core particles (hereinafter referred to as material X) is particularly preferable. When the material X is used, when magnesium is eluted from the positive electrode, magnesium can be incorporated into the amorphous carbon on the surface, so that magnesium is inserted between the graphite layers,
It is possible to prevent the negative electrode characteristics from deteriorating. Therefore, it is possible to obtain the effect of further improving the capacity reduction after storage at high temperature. The average particle size of the material X is preferably 3 to 20 μm.

【0024】前記負極材料を、結着剤、分散媒等と混合
することにより、ペースト状の負極合剤を得ることがで
きる。結着剤や分散媒には、正極の作製で用いるものと
同様のものを用いることができる。正極は、金属箔等か
らなる芯材上に、正極合剤を塗布し、圧延、乾燥するこ
とにより、得ることができる。また、負極は、金属箔等
からなる芯材上に、負極合剤を塗布し、圧延、乾燥する
ことにより、得ることができる。正極や負極がシート状
の場合、電極合剤層は芯材の両面に設けることが好まし
い。一方の面の電極合剤層が複数層から構成されていて
もよい。電極合剤層の他に、活物質を含まない保護層、
芯材上に設けられる下塗り層、電極合剤層間に設けられ
る中間層等を有していてもよい。
By mixing the above negative electrode material with a binder, a dispersion medium, etc., a paste-like negative electrode mixture can be obtained. As the binder and the dispersion medium, the same ones as those used in the production of the positive electrode can be used. The positive electrode can be obtained by applying a positive electrode mixture on a core material made of metal foil, rolling, and drying. The negative electrode can be obtained by applying a negative electrode mixture on a core material made of metal foil or the like, rolling and drying. When the positive electrode and the negative electrode are sheet-shaped, it is preferable to provide the electrode mixture layer on both surfaces of the core material. The electrode mixture layer on one surface may be composed of a plurality of layers. In addition to the electrode mixture layer, a protective layer containing no active material,
It may have an undercoat layer provided on the core material, an intermediate layer provided between the electrode mixture layers, and the like.

【0025】以下、図面を参照しながら本発明を実施例
に基づいて説明する。図1に、実施例で作製した角型リ
チウムイオン二次電池の構造を示す。なお、ここでは角
型電池を作製したが、本発明の電池の形状は、これに限
定されるものではない。本発明は、例えば、円筒型、コ
イン型、ボタン型、シート型、積層型、偏平型の電池
や、電気自動車等に用いる大型電池にも適用できる。
The present invention will now be described based on embodiments with reference to the drawings. FIG. 1 shows the structure of the prismatic lithium ion secondary battery produced in the example. Although a prismatic battery was manufactured here, the shape of the battery of the present invention is not limited to this. The present invention can be applied to, for example, a cylindrical battery, a coin battery, a button battery, a sheet battery, a laminated battery, a flat battery, and a large battery used in an electric vehicle or the like.

【0026】[0026]

【実施例】《実施例1》 (i)正極活物質の調製 0.95mol/リットルの濃度で硫酸コバルトを含
み、0.05mol/リットルの濃度で硫酸マグネシウ
ムを含む水溶液を、反応槽に連続供給し、水のpHが1
0〜13になるように反応槽に水酸化ナトリウムを滴下
しながら、活物質の前駆体を合成した。その結果、Co
0.95Mg0.05(OH)2からなる水酸化物を得た。
EXAMPLES Example 1 (i) Preparation of Positive Electrode Active Material An aqueous solution containing cobalt sulfate at a concentration of 0.95 mol / liter and magnesium sulfate at a concentration of 0.05 mol / liter was continuously supplied to a reaction tank. The pH of water is 1
A precursor of the active material was synthesized while dripping sodium hydroxide into the reaction tank so as to be 0 to 13. As a result, Co
A hydroxide consisting of 0.95 Mg 0.05 (OH) 2 was obtained.

【0027】この前駆体と炭酸リチウムとを、リチウム
とコバルトとマグネシウムとのモル比が、1:0.9
5:0.05になるように混合し、混合物を600℃で
10時間仮焼成し、粉砕した。次いで、粉砕された焼成
物を900℃で再度10時間焼成し、粉砕、分級し、化
学式Li(Co0.95Mg0.05)O2で表される正極活物
質を得た。
This precursor and lithium carbonate are mixed at a molar ratio of lithium, cobalt and magnesium of 1: 0.9.
The mixture was mixed at 5: 0.05, and the mixture was calcined at 600 ° C. for 10 hours and pulverized. Next, the pulverized fired product was fired again at 900 ° C. for 10 hours, pulverized and classified to obtain a positive electrode active material represented by the chemical formula Li (Co 0.95 Mg 0.05 ) O 2 .

【0028】(ii)正極の作製 得られた正極活物質100重量部に対し、導電剤として
アセチレンブラックを1.5重量部混合し、さらに結着
剤として分子量300000のポリフッ化ビニリデン
(PVdF)のN−メチル−2−ピロリドン溶液を樹脂
分で2重量部加え、撹拌・混合し、ペースト状の正極合
剤を得た。正極合剤は、厚さ15μmのアルミニウム箔
の芯材の両面に塗布し、乾燥後、これを圧延し、所定寸
法に裁断し、正極とした。
(Ii) Preparation of Positive Electrode To 100 parts by weight of the obtained positive electrode active material, 1.5 parts by weight of acetylene black was mixed as a conductive agent, and polyvinylidene fluoride (PVdF) having a molecular weight of 300,000 was used as a binder. 2 parts by weight of N-methyl-2-pyrrolidone solution was added as a resin component, and the mixture was stirred and mixed to obtain a paste-like positive electrode mixture. The positive electrode mixture was applied to both surfaces of a core material of aluminum foil having a thickness of 15 μm, dried, rolled, and cut into predetermined dimensions to obtain a positive electrode.

【0029】(iii)負極の作製 平均粒径20μmの燐片状黒鉛100重量部に対し、増
粘剤としてカルボキシメチルセルロース水溶液を樹脂分
で1重量部混合し、さらに結着剤としてスチレン−ブタ
ジエンゴムを2重量部加え、撹拌・混合し、ペースト状
の負極合剤を得た。負極合剤は、厚さ10μmの銅箔の
芯材の両面に塗布し、乾燥後、これを圧延し、所定寸法
に裁断し、負極とした。
(Iii) Preparation of Negative Electrode 100 parts by weight of scaly graphite having an average particle size of 20 μm was mixed with 1 part by weight of an aqueous solution of carboxymethyl cellulose as a thickener, and styrene-butadiene rubber was used as a binder. Was added and stirred and mixed to obtain a paste-like negative electrode mixture. The negative electrode mixture was applied to both sides of a core material of a copper foil having a thickness of 10 μm, dried, rolled, and cut into a predetermined size to obtain a negative electrode.

【0030】(iv)電池の組立 作製した正極と負極とを厚さ20μmの微多孔性ポリエ
チレン製セパレータを介して扁平な渦巻状に捲回し、極
板群1を構成した。正極と負極には、それぞれ正極リー
ド2および負極リード3を溶接した。極板群1の上部に
ポリエチレン樹脂製絶縁リングを装着し、図1に示され
るように、アルミニウム製電池ケース4内に収納した。
図1には、絶縁リングは示されていない。正極リード2
の他端は、アルミニウム製封口板5にスポット溶接し
た。負極リード3の他端は、封口板5の中央部にあるニ
ッケル製負極端子6の下部にスポット溶接した。電池ケ
ース4の開口端部と封口板5とをレーザー溶接し、所定
量の非水電解質を注入口から注入した。最後に注入口を
アルミニウム製の封栓7で塞ぎ、レーザーで封口板5に
溶接した。
(Iv) Assembly of Battery A positive electrode and a negative electrode thus prepared were wound in a flat spiral shape with a separator made of microporous polyethylene having a thickness of 20 μm interposed therebetween to form an electrode plate group 1. The positive electrode lead 2 and the negative electrode lead 3 were welded to the positive electrode and the negative electrode, respectively. An insulating ring made of polyethylene resin was attached to the upper part of the electrode plate group 1 and housed in an aluminum battery case 4 as shown in FIG.
The insulating ring is not shown in FIG. Positive electrode lead 2
The other end was spot-welded to the aluminum sealing plate 5. The other end of the negative electrode lead 3 was spot-welded to the lower portion of the nickel negative electrode terminal 6 in the center of the sealing plate 5. The open end of the battery case 4 and the sealing plate 5 were laser-welded, and a predetermined amount of non-aqueous electrolyte was injected from the injection port. Finally, the inlet was closed with an aluminum sealing plug 7 and welded to the sealing plate 5 with a laser.

【0031】非水電解質としては、エチレンカーボネー
トとエチルメチルカーボネートとの体積比1:3の混合
溶媒に1.0mol/リットルの濃度でLiPF6を溶
解したものを用いた。このようにして作製した電池を本
発明の電池1Aとした。
As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / liter in a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3 was used. The battery thus manufactured was designated as Battery 1A of the present invention.

【0032】《実施例2》正極の導電剤であるアセチレ
ンブラックの量を、正極活物質100重量部あたり、
3.0重量部にしたこと以外、実施例1と同様にして、
本発明の電池2Aを作製した。
Example 2 The amount of acetylene black, which is the conductive agent for the positive electrode, was changed to 100 parts by weight of the positive electrode active material.
In the same manner as in Example 1 except that the amount was 3.0 parts by weight,
A battery 2A of the present invention was produced.

【0033】《実施例3》正極の導電剤であるアセチレ
ンブラックの量を、正極活物質100重量部あたり、
0.05重量部にしたこと以外、実施例1と同様にし
て、本発明の電池3Aを作製した。
Example 3 The amount of acetylene black, which is the conductive agent for the positive electrode, was changed to 100 parts by weight of the positive electrode active material.
A battery 3A of the present invention was produced in the same manner as in Example 1 except that the amount was 0.05 part by weight.

【0034】《実施例4》正極の導電剤であるアセチレ
ンブラックの量を、正極活物質100重量部あたり、0
重量部にしたこと以外、実施例1と同様にして、本発明
の電池4Aを作製した。すなわち、電池4Aの正極は、
導電剤を含んでいない。
Example 4 The amount of acetylene black, which is the conductive agent for the positive electrode, was 0 per 100 parts by weight of the positive electrode active material.
A battery 4A of the present invention was produced in the same manner as in Example 1 except that the weight part was used. That is, the positive electrode of the battery 4A is
Does not contain conductive agent.

【0035】《実施例5》正極の導電剤であるアセチレ
ンブラックの量を、正極活物質100重量部あたり、
0.1重量部にしたこと以外、実施例1と同様にして、
本発明の電池5Aを作製した。
Example 5 The amount of acetylene black, which is the conductive agent for the positive electrode, was changed to 100 parts by weight of the positive electrode active material.
In the same manner as in Example 1 except that the amount was 0.1 part by weight,
Battery 5A of the present invention was produced.

【0036】《実施例6》正極の導電剤であるアセチレ
ンブラックの量を、正極活物質100重量部あたり、
0.5重量部にしたこと以外、実施例1と同様にして、
本発明の電池6Aを作製した。
Example 6 The amount of acetylene black, which is the conductive agent for the positive electrode, was changed to 100 parts by weight of the positive electrode active material.
In the same manner as in Example 1 except that 0.5 part by weight was used,
Battery 6A of the present invention was produced.

【0037】《実施例7》正極の導電剤であるアセチレ
ンブラックの量を、正極活物質100重量部あたり、
1.0重量部にしたこと以外、実施例1と同様にして、
本発明の電池7Aを作製した。
Example 7 The amount of acetylene black, which is the conductive agent for the positive electrode, was changed to 100 parts by weight of the positive electrode active material.
In the same manner as in Example 1 except that the amount was 1.0 part by weight,
Battery 7A of the present invention was produced.

【0038】《実施例8》実施例1に準じて、前駆体と
してCo0.97Mg0.03(OH)2からなる水酸化物を合
成した。この前駆体と炭酸リチウムとを、リチウムとコ
バルトとマグネシウムとのモル比が、1:0.97:
0.03になるように混合したこと以外、実施例1と同
様の操作を行って、化学式Li(Co0.97Mg0.03)O
2で表される正極活物質を得た。次いで、この正極活物
質を用いたこと以外、実施例1と同様にして、本発明の
電池8Aを作製した。
Example 8 In accordance with Example 1, a hydroxide composed of Co 0.97 Mg 0.03 (OH) 2 was synthesized as a precursor. The molar ratio of this precursor to lithium carbonate was 1: 0.97: lithium, cobalt and magnesium.
The same operation as in Example 1 was carried out except that the mixture was mixed so as to obtain 0.03, and the chemical formula was Li (Co 0.97 Mg 0.03 ) O.
A positive electrode active material represented by 2 was obtained. Next, a battery 8A of the present invention was produced in the same manner as in Example 1 except that this positive electrode active material was used.

【0039】《実施例9》実施例1に準じて、前駆体と
してCo0.85Mg0.15(OH)2からなる水酸化物を合
成した。この前駆体と炭酸リチウムとを、リチウムとコ
バルトとマグネシウムとのモル比が、1:0.85:
0.15になるように混合したこと以外、実施例1と同
様の操作を行って、化学式Li(Co0.85Mg0.15)O
2で表される正極活物質を得た。次いで、この正極活物
質を用いたこと以外、実施例1と同様にして、本発明の
電池9Aを作製した。
Example 9 According to Example 1, a hydroxide composed of Co 0.85 Mg 0.15 (OH) 2 was synthesized as a precursor. The molar ratio of lithium, cobalt and magnesium of the precursor and lithium carbonate was 1: 0.85:
The same operation as in Example 1 was carried out except that the mixture was mixed to give 0.15, and the chemical formula Li (Co 0.85 Mg 0.15 ) O was obtained.
A positive electrode active material represented by 2 was obtained. Next, a battery 9A of the present invention was produced in the same manner as in Example 1 except that this positive electrode active material was used.

【0040】《実施例10》実施例1に準じて、前駆体
としてCo0.90Mg0.10(OH)2からなる水酸化物を
合成した。この前駆体と炭酸リチウムとを、リチウムと
コバルトとマグネシウムとのモル比が、1:0.9:
0.1になるように混合したこと以外、実施例1と同様
の操作を行って、化学式Li(Co0.90Mg0.10)O2
で表される正極活物質を得た。次いで、この正極活物質
を用いたこと以外、実施例1と同様にして、本発明の電
池10Aを作製した。
<Example 10> According to Example 1, a hydroxide composed of Co 0.90 Mg 0.10 (OH) 2 was synthesized as a precursor. The molar ratio of this precursor and lithium carbonate was 1: 0.9: lithium, cobalt and magnesium.
The same operation as in Example 1 was carried out except that the mixture was mixed so as to have a ratio of 0.1, and the chemical formula Li (Co 0.90 Mg 0.10 ) O 2
A positive electrode active material represented by Next, a battery 10A of the present invention was produced in the same manner as in Example 1 except that this positive electrode active material was used.

【0041】《実施例11》正極の結着剤である分子量
300000のPVdFの量を、正極活物質100重量
部あたり、4重量部にしたこと以外、実施例1と同様に
して、本発明の電池11Aを作製した。
Example 11 The procedure of Example 1 was repeated, except that the amount of PVdF having a molecular weight of 300,000, which was the binder for the positive electrode, was 4 parts by weight per 100 parts by weight of the positive electrode active material. Battery 11A was produced.

【0042】《実施例12》正極の結着剤である分子量
300000のPVdFの量を、正極活物質100重量
部あたり、1重量部にしたこと以外、実施例1と同様に
して、本発明の電池12Aを作製した。
Example 12 The procedure of Example 1 was repeated, except that the amount of PVdF having a molecular weight of 300,000 as a binder for the positive electrode was 1 part by weight per 100 parts by weight of the positive electrode active material. Battery 12A was produced.

【0043】《実施例13》正極の結着剤であるPVd
Fの分子量を350000にしたこと以外、実施例1と
同様にして、本発明の電池13Aを作製した。
Example 13 PVd as a binder for the positive electrode
A battery 13A of the present invention was produced in the same manner as in Example 1 except that the molecular weight of F was 350,000.

【0044】《実施例14》正極の結着剤であるPVd
Fの分子量を150000にしたこと以外、実施例1と
同様にして、本発明の電池14Aを作製した。
Example 14 PVd as a binder for the positive electrode
A battery 14A of the present invention was produced in the same manner as in Example 1 except that the molecular weight of F was set to 150,000.

【0045】《実施例15》エチレンカーボネート、エ
チルメチルカーボネート、γ−ブチロラクトンおよびビ
ニレンカーボネートを体積比20:77.5:0.5:
2で混合した混合溶媒に、1.0mol/リットルの濃
度でLiPF6を溶解した。こうして得られた非水電解
質を用いたこと以外、実施例1と同様にして、本発明の
電池15Aを作製した。
Example 15 Ethylene carbonate, ethylmethyl carbonate, γ-butyrolactone and vinylene carbonate were added in a volume ratio of 20: 77.5: 0.5:
LiPF 6 was dissolved in the mixed solvent mixed in 2 at a concentration of 1.0 mol / liter. A battery 15A of the present invention was produced in the same manner as in Example 1 except that the thus obtained non-aqueous electrolyte was used.

【0046】《実施例16》エチレンカーボネート、エ
チルメチルカーボネート、γ−ブチロラクトンおよびビ
ニレンカーボネートを体積比20:48:30:2で混
合した混合溶媒に、1.0mol/リットルの濃度でL
iPF6を溶解した。こうして得られた非水電解質を用
いたこと以外、実施例1と同様にして、本発明の電池1
6Aを作製した。
Example 16 L was added to a mixed solvent prepared by mixing ethylene carbonate, ethylmethyl carbonate, γ-butyrolactone and vinylene carbonate at a volume ratio of 20: 48: 30: 2 at a concentration of 1.0 mol / liter.
The iPF 6 was dissolved. The battery 1 of the present invention was prepared in the same manner as in Example 1 except that the thus obtained non-aqueous electrolyte was used.
6A was produced.

【0047】《実施例17》エチレンカーボネート、エ
チルメチルカーボネート、γ−ブチロラクトンおよびビ
ニレンカーボネートを体積比20:8:70:2で混合
した混合溶媒に、1.0mol/リットルの濃度でLi
PF6を溶解した。こうして得られた非水電解質を用い
たこと以外、実施例1と同様にして、本発明の電池17
Aを作製した。
Example 17 In a mixed solvent prepared by mixing ethylene carbonate, ethylmethyl carbonate, γ-butyrolactone and vinylene carbonate at a volume ratio of 20: 8: 70: 2, Li was added at a concentration of 1.0 mol / liter.
The PF 6 was dissolved. The battery 17 of the present invention was prepared in the same manner as in Example 1 except that the non-aqueous electrolyte thus obtained was used.
A was produced.

【0048】《実施例18》平均粒径20μmの燐片状
黒鉛を、石油ピッチと混合し、800℃で焼成し、燐片
状黒鉛の表面の少なくとも一部を非晶質炭素で被覆し
た。こうして得られた炭素材料(平均粒径22μm)
を、鱗片状黒鉛の代わりに用いたこと以外、実施例1と
同様にして、本発明の電池18Aを作製した。
Example 18 Flake graphite having an average particle size of 20 μm was mixed with petroleum pitch and fired at 800 ° C. to coat at least a part of the surface of the flake graphite with amorphous carbon. Carbon material thus obtained (average particle size 22 μm)
A battery 18A of the present invention was produced in the same manner as in Example 1 except that was used instead of flake graphite.

【0049】《実施例19》0.90mol/リットル
の濃度で硫酸コバルトを含み、0.05mol/リット
ルの濃度で硫酸マグネシウムを含み、0.05mol/
リットルの濃度で硫酸ニッケルを含む水溶液を調製し
た。この水溶液を用いて、実施例1に準じて、前駆体と
してCo0.90Mg0.05Ni0.05(OH)2からなる水酸
化物を合成した。この前駆体と炭酸リチウムとを、リチ
ウムとコバルトとマグネシウムとニッケルとのモル比
が、1:0.90:0.05:0.05になるように混
合したこと以外、実施例1と同様の操作を行って、化学
式Li(Co0.90Mg0.05Ni0.05)O2で表される正
極活物質を得た。次いで、この正極活物質を用いたこと
以外、実施例1と同様にして、本発明の電池19Aを作
製した。
Example 19 Cobalt sulfate was contained in a concentration of 0.90 mol / liter, magnesium sulfate was contained in a concentration of 0.05 mol / liter, and 0.05 mol / liter was contained.
An aqueous solution containing nickel sulfate at a concentration of 1 liter was prepared. Using this aqueous solution, a hydroxide composed of Co 0.90 Mg 0.05 Ni 0.05 (OH) 2 as a precursor was synthesized according to Example 1. This precursor and lithium carbonate were mixed in the same manner as in Example 1 except that the molar ratio of lithium, cobalt, magnesium, and nickel was 1: 0.90: 0.05: 0.05. The operation was performed to obtain a positive electrode active material represented by the chemical formula Li (Co 0.90 Mg 0.05 Ni 0.05 ) O 2 . Next, a battery 19A of the present invention was produced in the same manner as in Example 1 except that this positive electrode active material was used.

【0050】《実施例20》実施例1に準じて、前駆体
としてCo0.85Mg0.05Ni0.10(OH)2からなる水
酸化物を合成した。この前駆体と炭酸リチウムとを、リ
チウムとコバルトとマグネシウムとニッケルとのモル比
が、1:0.85:0.05:0.10になるように混
合したこと以外、実施例1と同様の操作を行って、化学
式Li(Co 0.85Mg0.05Ni0.10)O2で表される正
極活物質を得た。次いで、この正極活物質を用いたこと
以外、実施例1と同様にして、本発明の電池20Aを作
製した。
Example 20 Precursor according to Example 1
As Co0.85Mg0.05Ni0.10(OH)2Consisting of water
The oxide was synthesized. This precursor and lithium carbonate are
Molar ratio of thium to cobalt to magnesium to nickel
But mixed so that it becomes 1: 0.85: 0.05: 0.10.
The same operation as in Example 1 was carried out except that
Formula Li (Co 0.85Mg0.05Ni0.10) O2Positive represented by
A polar active material was obtained. Then, using this positive electrode active material
A battery 20A of the present invention was manufactured in the same manner as in Example 1 except for the above.
Made

【0051】《実施例21》実施例1に準じて、前駆体
としてCo0.80Mg0.05Ni0.15(OH)2からなる水
酸化物を合成した。この前駆体と炭酸リチウムとを、リ
チウムとコバルトとマグネシウムとニッケルとのモル比
が、1:0.80:0.05:0.15になるように混
合したこと以外、実施例1と同様の操作を行って、化学
式Li(Co 0.80Mg0.05Ni0.15)O2で表される正
極活物質を得た。次いで、この正極活物質を用いたこと
以外、実施例1と同様にして、本発明の電池21Aを作
製した。
Example 21 According to Example 1, the precursor
As Co0.80Mg0.05Ni0.15(OH)2Consisting of water
The oxide was synthesized. This precursor and lithium carbonate are
Molar ratio of thium to cobalt to magnesium to nickel
But mixed so that it becomes 1: 0.80: 0.05: 0.15.
The same operation as in Example 1 was carried out except that
Formula Li (Co 0.80Mg0.05Ni0.15) O2Positive represented by
A polar active material was obtained. Then, using this positive electrode active material
A battery 21A of the present invention was manufactured in the same manner as in Example 1 except for the above.
Made

【0052】《実施例22》実施例1に準じて、前駆体
としてCo0.70Mg0.05Ni0.25(OH)2からなる水
酸化物を合成した。この前駆体と炭酸リチウムとを、リ
チウムとコバルトとマグネシウムとニッケルとのモル比
が、1:0.70:0.05:0.25になるように混
合したこと以外、実施例1と同様の操作を行って、化学
式Li(Co 0.70Mg0.05Ni0.25)O2で表される正
極活物質を得た。次いで、この正極活物質を用いたこと
以外、実施例1と同様にして、本発明の電池22Aを作
製した。
Example 22 According to Example 1, the precursor
As Co0.70Mg0.05Ni0.25(OH)2Consisting of water
The oxide was synthesized. This precursor and lithium carbonate are
Molar ratio of thium to cobalt to magnesium to nickel
But mixed so that it becomes 1: 0.70: 0.05: 0.25.
The same operation as in Example 1 was carried out except that
Formula Li (Co 0.70Mg0.05Ni0.25) O2Positive represented by
A polar active material was obtained. Then, using this positive electrode active material
A battery 22A of the present invention was manufactured in the same manner as in Example 1 except for the above.
Made

【0053】《実施例23》0.85mol/リットル
の濃度で硫酸コバルトを含み、0.05mol/リット
ルの濃度で硫酸マグネシウムを含み、0.1mol/リ
ットルの濃度で硫酸アルミニウムを含む水溶液を調製し
た。この水溶液を用いて、実施例1に準じて、前駆体と
してCo0.85Mg0.05Al0.1(OH)2からなる水酸化
物を合成した。この前駆体と炭酸リチウムとを、リチウ
ムとコバルトとマグネシウムとアルミニウムとのモル比
が、1:0.85:0.05:0.1になるように混合
したこと以外、実施例1と同様の操作を行って、化学式
Li(Co0.85Mg0.05Al0. 1)O2で表される正極活
物質を得た。次いで、この正極活物質を用いたこと以
外、実施例1と同様にして、本発明の電池23Aを作製
した。
Example 23 An aqueous solution containing cobalt sulfate at a concentration of 0.85 mol / liter, magnesium sulfate at a concentration of 0.05 mol / liter, and aluminum sulfate at a concentration of 0.1 mol / liter was prepared. . Using this aqueous solution, a hydroxide composed of Co 0.85 Mg 0.05 Al 0.1 (OH) 2 as a precursor was synthesized according to Example 1. Similar to Example 1 except that the precursor and lithium carbonate were mixed so that the molar ratio of lithium, cobalt, magnesium, and aluminum was 1: 0.85: 0.05: 0.1. performing operations to obtain a positive electrode active material represented by the chemical formula Li (Co 0.85 Mg 0.05 Al 0. 1) O 2. Next, a battery 23A of the present invention was produced in the same manner as in Example 1 except that this positive electrode active material was used.

【0054】《実施例24》実施例1に準じて、前駆体
としてCo0.70Mg0.05Al0.25(OH)2からなる水
酸化物を合成した。この前駆体と炭酸リチウムとを、リ
チウムとコバルトとマグネシウムとアルミニウムとのモ
ル比が、1:0.70:0.05:0.25になるよう
に混合したこと以外、実施例1と同様の操作を行って、
化学式Li(Co0.70Mg0.05Al0.25)O2で表され
る正極活物質を得た。次いで、この正極活物質を用いた
こと以外、実施例1と同様にして、本発明の電池24A
を作製した。
Example 24 According to the same manner as in Example 1, a hydroxide composed of Co 0.70 Mg 0.05 Al 0.25 (OH) 2 was synthesized as a precursor. This precursor and lithium carbonate were mixed in the same manner as in Example 1 except that the molar ratio of lithium, cobalt, magnesium and aluminum was 1: 0.70: 0.05: 0.25. Do the operation,
A positive electrode active material represented by the chemical formula Li (Co 0.70 Mg 0.05 Al 0.25 ) O 2 was obtained. Then, the battery 24A of the present invention was manufactured in the same manner as in Example 1 except that this positive electrode active material was used.
Was produced.

【0055】《比較例1》実施例1に準じて、前駆体と
してCo0.98Mg0.02(OH)2からなる水酸化物を合
成した。この前駆体と炭酸リチウムとを、リチウムとコ
バルトとマグネシウムとのモル比が、1:0.98:
0.02になるように混合したこと以外、実施例1と同
様の操作を行って、化学式Li(Co0.98Mg0.02)O
2で表される正極活物質を得た。次いで、この正極活物
質を用いたこと以外、実施例1と同様にして、比較例の
電池1Bを作製した。
Comparative Example 1 According to Example 1, a hydroxide composed of Co 0.98 Mg 0.02 (OH) 2 was synthesized as a precursor. The molar ratio of this precursor and lithium carbonate was 1: 0.98: lithium, cobalt and magnesium.
The same operation as in Example 1 was carried out except that the mixture was mixed so as to obtain 0.02, and the chemical formula Li (Co 0.98 Mg 0.02 ) O was obtained.
A positive electrode active material represented by 2 was obtained. Next, a battery 1B of a comparative example was produced in the same manner as in Example 1 except that this positive electrode active material was used.

【0056】《比較例2》実施例1に準じて、前駆体と
してCo0.80Mg0.20(OH)2からなる水酸化物を合
成した。この前駆体と炭酸リチウムとを、リチウムとコ
バルトとマグネシウムとのモル比が、1:0.80:
0.20になるように混合したこと以外、実施例1と同
様の操作を行って、化学式Li(Co0.80Mg0.20)O
2で表される正極活物質を得た。次いで、この正極活物
質を用いたこと以外、実施例1と同様にして、比較例の
電池2Bを作製した。
Comparative Example 2 In accordance with Example 1, a hydroxide composed of Co 0.80 Mg 0.20 (OH) 2 was synthesized as a precursor. The molar ratio of lithium, cobalt and magnesium of the precursor and lithium carbonate was 1: 0.80:
The same operation as in Example 1 was carried out except that the mixture was mixed to give 0.20, and the chemical formula Li (Co 0.80 Mg 0.20 ) O was obtained.
A positive electrode active material represented by 2 was obtained. Next, a battery 2B of a comparative example was produced in the same manner as in Example 1 except that this positive electrode active material was used.

【0057】《比較例3》マグネシウムを含まない化学
式LiCoO2で示される正極活物質を用いたこと以
外、実施例1と同様にして、比較例の電池3Bを作製し
た。
Comparative Example 3 A battery 3B of Comparative Example was produced in the same manner as in Example 1 except that the positive electrode active material represented by the chemical formula LiCoO 2 containing no magnesium was used.

【0058】《比較例4》正極の導電剤であるアセチレ
ンブラックの量を、正極活物質100重量部あたり、
4.0重量部にしたこと以外、実施例1と同様にして、
比較例の電池4Bを作製した。
Comparative Example 4 The amount of acetylene black, which is the conductive agent for the positive electrode, was changed to 100 parts by weight of the positive electrode active material.
In the same manner as in Example 1 except that the amount was 4.0 parts by weight,
A battery 4B as a comparative example was produced.

【0059】《実施例25》正極の結着剤である分子量
300000のPVdFの量を、正極活物質100重量
部あたり、0.5重量部にしたこと以外、実施例1と同
様にして、本発明の電池25Aを作製した。
Example 25 This example was prepared in the same manner as in Example 1 except that the amount of PVdF having a molecular weight of 300,000 as a binder for the positive electrode was changed to 0.5 part by weight per 100 parts by weight of the positive electrode active material. Battery 25A of the invention was made.

【0060】《実施例26》正極の結着剤である分子量
300000のPVdFの量を、正極活物質100重量
部あたり、5重量部にしたこと以外、実施例1と同様に
して、本発明の電池26Aを作製した。
Example 26 The present invention was carried out in the same manner as in Example 1 except that the amount of PVdF having a molecular weight of 300,000 as a binder for the positive electrode was changed to 5 parts by weight per 100 parts by weight of the positive electrode active material. Battery 26A was produced.

【0061】《実施例27》正極の結着剤であるPVd
Fの分子量を400000にしたこと以外、実施例1と
同様にして、本発明の電池27Aを作製した。
Example 27 PVd as a positive electrode binder
A battery 27A of the present invention was produced in the same manner as in Example 1 except that the molecular weight of F was set to 400000.

【0062】《実施例28》正極の結着剤であるPVd
Fの分子量を100000にしたこと以外、実施例1と
同様にして、本発明の電池28Aを作製した。
Example 28 PVd as a binder for the positive electrode
A battery 28A of the present invention was produced in the same manner as in Example 1 except that the molecular weight of F was 100000.

【0063】《比較例5》実施例1に準じて、前駆体と
してCo0.65Mg0.05Ni0.3(OH)2からなる水酸化
物を合成した。この前駆体と炭酸リチウムとを、リチウ
ムとコバルトとマグネシウムとニッケルとのモル比が、
1:0.65:0.05:0.3になるように混合した
こと以外、実施例1と同様の操作を行って、化学式Li
(Co0.65Mg0.05Ni0.3)O2で表される正極活物質
を得た。次いで、この正極活物質を用いたこと以外、実
施例1と同様にして、比較例の電池5Bを作製した。
Comparative Example 5 According to Example 1, a hydroxide composed of Co 0.65 Mg 0.05 Ni 0.3 (OH) 2 was synthesized as a precursor. This precursor and lithium carbonate, the molar ratio of lithium, cobalt, magnesium and nickel,
The same operation as in Example 1 was carried out except that the mixture was mixed at a ratio of 1: 0.65: 0.05: 0.3 to obtain the chemical formula Li.
A positive electrode active material represented by (Co 0.65 Mg 0.05 Ni 0.3 ) O 2 was obtained. Next, a battery 5B of a comparative example was produced in the same manner as in Example 1 except that this positive electrode active material was used.

【0064】《比較例6》実施例1に準じて、前駆体と
してCo0.65Mg0.05Al0.3(OH)2からなる水酸化
物を合成した。この前駆体と炭酸リチウムとを、リチウ
ムとコバルトとマグネシウムとアルミニウムとのモル比
が、1:0.65:0.05:0.3になるように混合
したこと以外、実施例1と同様の操作を行って、化学式
Li(Co 0.65Mg0.05Al0.3)O2で表される正極活
物質を得た。次いで、この正極活物質を用いたこと以
外、実施例1と同様にして、比較例の電池6Bを作製し
た。
Comparative Example 6 According to Example 1, the precursor
Then Co0.65Mg0.05Al0.3(OH)2Hydroxylation consisting of
The thing was synthesized. This precursor and lithium carbonate
Molar ratio of cobalt to magnesium to aluminum
Mixed so that the ratio becomes 1: 0.65: 0.05: 0.3
The same operation as in Example 1 was performed except that
Li (Co 0.65Mg0.05Al0.3) O2Positive electrode activity represented by
The substance was obtained. Then, using this positive electrode active material
A battery 6B of a comparative example was prepared in the same manner as in Example 1 except for the above.
It was

【0065】[電池の評価]実施例1〜28および比較
例1〜6で作製した電池について、充放電サイクル特性
と高温保存特性の比較を行った。 (i)充放電サイクル特性 充電電圧4.20V、充電最大電流700mAhの条件
で、電池を2時間定電圧充電した後、放電電流700m
Ah、放電終止電圧3.0Vの条件で、電池を定電流放
電するサイクルを、20℃環境下で繰り返し行った。1
サイクル目の放電容量を100とした場合の300サイ
クル目の放電容量の割合を、容量維持率Aとして表1お
よび2に示す。
[Evaluation of Battery] The batteries prepared in Examples 1 to 28 and Comparative Examples 1 to 6 were compared in charge / discharge cycle characteristics and high temperature storage characteristics. (I) Charge / Discharge Cycle Characteristics After charging the battery at a constant voltage for 2 hours under the conditions of a charge voltage of 4.20 V and a maximum charge current of 700 mAh, a discharge current of 700 m
The cycle of constant current discharge of the battery under the conditions of Ah and the final discharge voltage of 3.0 V was repeated in an environment of 20 ° C. 1
The ratio of the discharge capacity at the 300th cycle when the discharge capacity at the cycle was 100 is shown in Tables 1 and 2 as the capacity retention rate A.

【0066】(ii)高温保存特性 充電電圧4.20V、充電最大電流700mAhの条件
で、電池を2時間定電圧充電した後、放電電流700m
Ah、放電終止電圧3.0Vの条件で、電池を定電流放
電するサイクルを、20℃環境下で2サイクル行い、2
サイクル目の充放電容量を確認した。その後、充電状態
の電池を85℃で3日間保存した。次いで、保存後の電
池を再び20℃で、上記と同一条件で2サイクル充放電
し、高温保存後の容量維持率Bを求めた。保存前の放電
容量を100とした場合の高温保存後2サイクル目の放
電容量の割合を、容量維持率Bとして表1および2に示
す。
(Ii) High temperature storage characteristics A battery was charged at a constant voltage for 2 hours under the conditions of a charging voltage of 4.20 V and a maximum charging current of 700 mAh, and then a discharging current of 700 m
Under the conditions of Ah and the end-of-discharge voltage of 3.0 V, the battery is discharged at a constant current for 2 cycles under the environment of 20 ° C.
The charge / discharge capacity at the cycle was confirmed. Then, the charged battery was stored at 85 ° C. for 3 days. Then, the battery after storage was charged and discharged again at 20 ° C. for 2 cycles under the same conditions as above, and the capacity retention rate B after storage at high temperature was obtained. The ratio of the discharge capacity at the second cycle after high temperature storage when the discharge capacity before storage is 100 is shown in Tables 1 and 2 as capacity retention rate B.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【表2】 [Table 2]

【0069】表1および2において、実施例1〜10の
電池特性と、比較例1〜4の電池特性との比較より、マ
グネシウムを添加した正極活物質を用い、導電剤量を正
極活物質に対して3重量%以下にした正極を用いること
により、サイクル特性と高温保存特性の両方が向上する
ことが解る。
In Tables 1 and 2, comparing the battery characteristics of Examples 1 to 10 with the battery characteristics of Comparative Examples 1 to 4, magnesium-added positive electrode active materials were used, and the amount of conductive agent was changed to the positive electrode active materials. On the other hand, it can be seen that both the cycle characteristics and the high temperature storage characteristics are improved by using the positive electrode whose content is 3% by weight or less.

【0070】マグネシウムの添加量が過少である比較例
1の電池1Bは、マグネシウムを添加しない比較例3の
電池3Bと同等のサイクル特性(容量維持率A)しか得
られなかった。また、マグネシウムの添加量が過多の比
較例2の電池2Bは、初期の容量が低く、高温保存時の
容量維持率Bも69%と低かった。
Battery 1B of Comparative Example 1 in which the amount of magnesium added was too small could obtain only the same cycle characteristics (capacity maintenance ratio A) as Battery 3B of Comparative Example 3 in which magnesium was not added. Further, the battery 2B of Comparative Example 2 in which the amount of magnesium added was too large had a low initial capacity, and the capacity retention rate B during high temperature storage was as low as 69%.

【0071】導電剤量は、正極活物質に対して3重量%
以下の場合に特性的に優れており、4重量%の比較例4
の電池4Bは、高温保存特性が68%と低かった。実施
例1、11、12の電池と、実施例25、26の電池と
の比較より、正極に含有される結着剤量を、正極活物質
に対して1〜4重量%にすることにより、サイクル特性
と高温保存特性の両方が向上することが解る。
The amount of the conductive agent is 3% by weight based on the positive electrode active material.
The characteristics are excellent in the following cases, and 4% by weight of Comparative Example 4
Battery 4B had a low high temperature storage property of 68%. From the comparison between the batteries of Examples 1, 11, and 12 and the batteries of Examples 25, 26, by setting the amount of the binder contained in the positive electrode to 1 to 4% by weight with respect to the positive electrode active material, It can be seen that both cycle characteristics and high temperature storage characteristics are improved.

【0072】結着剤量が少なすぎる実施例25の電池2
5Aは、極板強度が弱くなる傾向があり、サイクル特性
が80%であった。また、結着剤量が多すぎる実施例2
6の電池26Aは、負荷特性が低くなる傾向があり、サ
イクル特性が79%であった。実施例1、13、14の
電池特性と、比較例7、8の電池特性との比較より、正
極に含有される結着剤のPVdFの分子量を15000
0〜350000にすることにより、サイクル特性と高
温保存特性の両方が向上することが解る。
Battery 2 of Example 25 containing too little binder
In 5A, the electrode plate strength tended to be weak and the cycle characteristics were 80%. In addition, Example 2 in which the amount of the binder is too large
The battery 26A of No. 6 tended to have a low load characteristic, and the cycle characteristic was 79%. From the comparison between the battery characteristics of Examples 1, 13 and 14 and the battery characteristics of Comparative Examples 7 and 8, the PVdF molecular weight of the binder contained in the positive electrode was determined to be 15,000.
It can be seen that by setting it to 0 to 350,000, both cycle characteristics and high temperature storage characteristics are improved.

【0073】結着剤の分子量が大きすぎる実施例27の
電池27Aは、負荷特性が低く、サイクル特性も低くな
る傾向が見られた。分子量が小さすぎる実施例28の電
池28Aは、極板強度が弱く、サイクル特性が低くなる
傾向が見られた。本発明の電池15Aは、非水溶媒にエ
チレンカーボネート、エチルメチルカーボネート、γ−
ブチロラクトンおよびビニレンカーボネートを体積比2
0:77.5:0.5:2で混合した混合溶媒を用いて
いるため、電池1Aに比べて充放電を繰り返した時の容
量維持率Aはやや劣るものの、高温保存後の容量維持率
Bは良好であった。これは、保存時のガス発生を低減で
きたことによるものと考えられる。
Battery 27A of Example 27, in which the binder had an excessively large molecular weight, tended to have low load characteristics and low cycle characteristics. The battery 28A of Example 28 having a too low molecular weight had a tendency that the electrode plate strength was weak and the cycle characteristics were low. The battery 15A of the present invention comprises a non-aqueous solvent such as ethylene carbonate, ethyl methyl carbonate and γ-.
Volume ratio of butyrolactone and vinylene carbonate is 2
Since the mixed solvent mixed at 0: 77.5: 0.5: 2 is used, the capacity retention rate A after repeated charge and discharge is slightly inferior to the battery 1A, but the capacity retention rate after high temperature storage B was good. It is considered that this is because the generation of gas during storage could be reduced.

【0074】また、本発明の電池17Aは、非水溶媒に
エチレンカーボネート、エチルメチルカーボネート、γ
−ブチロラクトンおよびビニレンカーボネートを体積比
20:8:70:2で混合した混合溶媒を用いているた
め、充放電を繰り返した時の容量維持率Aはさらに低下
するものの、高温保存後の容量維持率Bは非常に良好で
あった。以上のことから、非水溶媒がγ−ブチロラクト
ンを含む場合、高温保存時における容量維持率の向上効
果が得られることがわかった。
In addition, the battery 17A of the present invention uses ethylene carbonate, ethyl methyl carbonate, γ
Since the mixed solvent in which butyrolactone and vinylene carbonate are mixed at a volume ratio of 20: 8: 70: 2 is used, the capacity retention rate A after repeated charge and discharge is further reduced, but the capacity retention rate after high temperature storage is reduced. B was very good. From the above, it was found that when the non-aqueous solvent contained γ-butyrolactone, an effect of improving the capacity retention rate at the time of high temperature storage was obtained.

【0075】本発明の電池18Aは、負極に、表面を非
晶質炭素で被覆した燐片状黒鉛を用いているため、単な
る燐片状黒鉛を用いた本発明の電池1Aよりも、高温保
存特性が優れていた。これは、黒鉛の表面を被覆するこ
とによって、黒鉛表面の活性が抑えられ、保存特性の向
上につながったものと考えられる。
The battery 18A of the present invention uses scaly graphite having a surface coated with amorphous carbon for the negative electrode, and therefore is stored at a higher temperature than the battery 1A of the present invention using mere scaly graphite. The characteristics were excellent. It is considered that by covering the surface of the graphite, the activity of the surface of the graphite was suppressed and the storage characteristics were improved.

【0076】本発明の電池19A〜22Aは、ニッケル
を添加した正極活物質を用いているため、原材料のコス
トを下げることができた。また、特性的にも、正極活物
質にニッケルを添加しない実施例1の電池1Aと同様で
あり、十分に使用し得ることがわかった。ニッケルの添
加量は、比較例5の電池5Bとの比較より、コバルト、
マグネシウム、ニッケルの合計量に対して、10〜25
モル%が最適な範囲と言える。
In the batteries 19A to 22A of the present invention, since the positive electrode active material containing nickel was used, the cost of raw materials could be reduced. It was also found that the characteristics are the same as those of the battery 1A of Example 1 in which nickel was not added to the positive electrode active material, and the battery could be sufficiently used. From the comparison with the battery 5B of Comparative Example 5, the addition amount of nickel was cobalt,
10 to 25 based on the total amount of magnesium and nickel
It can be said that the mol% is the optimum range.

【0077】本発明の電池23A、24Aは、アルミニ
ウムを添加した正極活物質を用いているため、活物質自
体の容量が下がり、電池23Aの電池容量は、実施例1
のそれに比べて5%低下した。しかし一方で、容量維持
率A、容量維持率Bは、ともに向上した。しかし、比較
例6の電池6Bのように、コバルト、マグネシウム、ア
ルミニウムの合計量に対してアルミニウムを30モル%
も添加すると、電池容量が15%も低下し、十分な特性
が得られなかった。よって、アルミニウムの添加量は、
コバルト、マグネシウム、アルミニウムの合計量に対し
て、25モル%以下が最適な範囲と言える。
Since the batteries 23A and 24A of the present invention use the positive electrode active material to which aluminum is added, the capacity of the active material itself is lowered, and the battery capacity of the battery 23A is the same as that of Example 1.
5% lower than that. However, on the other hand, the capacity retention rate A and the capacity retention rate B were both improved. However, as in the battery 6B of Comparative Example 6, 30 mol% of aluminum was added to the total amount of cobalt, magnesium and aluminum.
When added, the battery capacity decreased by 15% and sufficient characteristics could not be obtained. Therefore, the amount of aluminum added is
It can be said that the optimum range is 25 mol% or less with respect to the total amount of cobalt, magnesium and aluminum.

【0078】[0078]

【発明の効果】本発明によれば、リチウムイオン二次電
池の充放電サイクルに伴う容量低下が抑制され、高温保
存による容量低下も小さくなる。従って、本発明によれ
ば、信頼性に優れたリチウムイオン二次電池を提供する
ことができる。
According to the present invention, the capacity decrease due to the charge / discharge cycle of the lithium ion secondary battery is suppressed, and the capacity decrease due to the high temperature storage is also reduced. Therefore, according to the present invention, a highly reliable lithium ion secondary battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる角型電池の一部を切り
欠いた斜視図である。
FIG. 1 is a perspective view in which a part of a prismatic battery according to an embodiment of the present invention is cut away.

【符号の説明】[Explanation of symbols]

1 極板群 2 正極リード 3 負極リード 4 電池ケース 5 封口板 6 負極端子 7 封栓 1 plate group 2 Positive lead 3 Negative electrode lead 4 battery case 5 Seal plate 6 Negative electrode terminal 7 plug

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川建 裕 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 田中 亮一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 浅野 英也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ03 AJ04 AJ05 AK03 AL01 AL02 AL04 AL06 AL07 AL08 AL12 AL19 AM02 AM03 AM04 AM05 AM07 BJ04 BJ14 DJ08 DJ09 DJ18 EJ04 EJ12 EJ14 HJ01 HJ02 HJ11 5H050 AA07 AA08 AA10 BA17 CA08 CB01 CB02 CB05 CB07 CB08 CB09 CB12 DA02 DA03 DA09 DA10 DA11 DA18 EA10 EA24 EA28 FA20 GA22 HA01 HA02 HA11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yutaka Kawaken             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Ryoichi Tanaka             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hideya Asano             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5H029 AJ03 AJ04 AJ05 AK03 AL01                       AL02 AL04 AL06 AL07 AL08                       AL12 AL19 AM02 AM03 AM04                       AM05 AM07 BJ04 BJ14 DJ08                       DJ09 DJ18 EJ04 EJ12 EJ14                       HJ01 HJ02 HJ11                 5H050 AA07 AA08 AA10 BA17 CA08                       CB01 CB02 CB05 CB07 CB08                       CB09 CB12 DA02 DA03 DA09                       DA10 DA11 DA18 EA10 EA24                       EA28 FA20 GA22 HA01 HA02                       HA11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極および非水電解質からなり、 前記正極が、正極活物質、導電剤、および結着剤からな
り、 前記正極活物質が、化学式Lia(Co1-x-yMgxy
bc(Mは、NiおよびAlより選ばれる少なくとも1
種、0≦a≦1.05、0.03≦x≦0.15、0≦
y≦0.25、0.85≦b≦1.1、1.8≦c≦
2.1)で表されるリチウム含有複合酸化物からなり、 前記正極に含まれる前記導電剤の量が、前記正極活物質
100重量部あたり3.0重量部以下であるリチウムイ
オン二次電池。
1. A positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the positive electrode comprises a positive electrode active material, a conductive agent, and a binder, and the positive electrode active material has the chemical formula Li a (Co 1-xy Mg x M y )
b O c (M is at least 1 selected from Ni and Al)
Seed, 0 ≦ a ≦ 1.05, 0.03 ≦ x ≦ 0.15, 0 ≦
y ≦ 0.25, 0.85 ≦ b ≦ 1.1, 1.8 ≦ c ≦
A lithium ion secondary battery comprising the lithium-containing composite oxide represented by 2.1), wherein the amount of the conductive agent contained in the positive electrode is 3.0 parts by weight or less per 100 parts by weight of the positive electrode active material.
【請求項2】 前記正極に含まれる前記結着剤の量が、
前記正極活物質100重量部あたり1.0重量部以上
4.0重量部以下である請求項1記載のリチウムイオン
二次電池。
2. The amount of the binder contained in the positive electrode is
The lithium ion secondary battery according to claim 1, wherein the amount is 1.0 part by weight or more and 4.0 parts by weight or less per 100 parts by weight of the positive electrode active material.
【請求項3】 前記結着剤が、ポリフッ化ビニリデンか
らなり、前記ポリフッ化ビニリデンの重量平均分子量
が、150000以上350000以下である請求項1
記載のリチウムイオン二次電池。
3. The binder comprises polyvinylidene fluoride, and the polyvinylidene fluoride has a weight average molecular weight of 150,000 or more and 350,000 or less.
The lithium-ion secondary battery described.
【請求項4】 前記非水電解質が、非水溶媒および前記
非水溶媒に溶解するリチウム塩からなり、前記非水溶媒
が、γ−ブチロラクトンおよび/またはγ−ブチロラク
トン誘導体を含む請求項1記載のリチウムイオン二次電
池。
4. The non-aqueous electrolyte comprises a non-aqueous solvent and a lithium salt soluble in the non-aqueous solvent, and the non-aqueous solvent contains γ-butyrolactone and / or γ-butyrolactone derivative. Lithium-ion secondary battery.
【請求項5】 前記負極が、核粒子および前記核粒子表
面の少なくとも一部を被覆する非晶質炭素からなる材料
を含み、前記核粒子が、黒鉛からなる請求項1記載のリ
チウムイオン二次電池。
5. The lithium ion secondary according to claim 1, wherein the negative electrode contains core particles and a material made of amorphous carbon that covers at least a part of the surface of the core particles, and the core particles are made of graphite. battery.
JP2002310653A 2001-10-29 2002-10-25 Lithium ion secondary battery Expired - Lifetime JP3654592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310653A JP3654592B2 (en) 2001-10-29 2002-10-25 Lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-330970 2001-10-29
JP2001330970 2001-10-29
JP2002310653A JP3654592B2 (en) 2001-10-29 2002-10-25 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2003203634A true JP2003203634A (en) 2003-07-18
JP3654592B2 JP3654592B2 (en) 2005-06-02

Family

ID=27666602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310653A Expired - Lifetime JP3654592B2 (en) 2001-10-29 2002-10-25 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3654592B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056830A (en) * 2003-07-24 2005-03-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005243486A (en) * 2004-02-27 2005-09-08 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005310622A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2006066297A (en) * 2004-08-27 2006-03-09 Toyota Motor Corp Lithium secondary battery
JP2006107753A (en) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd Coating composition for cathode active substance layer, cathode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
JP2006331941A (en) * 2005-05-27 2006-12-07 Sony Corp Positive electrode active material, positive electrode, and battery
EP1978587A1 (en) 2007-03-27 2008-10-08 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
US8445129B2 (en) 2005-05-27 2013-05-21 Sony Corporation Cathode active material, method of manufacturing it, cathode, and battery
JP2015133193A (en) * 2014-01-10 2015-07-23 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2015532519A (en) * 2013-03-19 2015-11-09 エルジー・ケム・リミテッド Electrode for low resistance electrochemical element, method for producing the same, and electrochemical element including the electrode
WO2017150522A1 (en) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 Positive electrode active material for lithium secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056830A (en) * 2003-07-24 2005-03-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005243486A (en) * 2004-02-27 2005-09-08 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005310622A (en) * 2004-04-23 2005-11-04 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2006066297A (en) * 2004-08-27 2006-03-09 Toyota Motor Corp Lithium secondary battery
JP4543831B2 (en) * 2004-08-27 2010-09-15 トヨタ自動車株式会社 Lithium secondary battery
JP2006107753A (en) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd Coating composition for cathode active substance layer, cathode plate for nonaqueous electrolyte solution secondary battery, and nonaqueous electrolyte solution secondary battery
JP2006331941A (en) * 2005-05-27 2006-12-07 Sony Corp Positive electrode active material, positive electrode, and battery
US8445129B2 (en) 2005-05-27 2013-05-21 Sony Corporation Cathode active material, method of manufacturing it, cathode, and battery
US7862933B2 (en) 2007-03-27 2011-01-04 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
US8263269B2 (en) 2007-03-27 2012-09-11 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
EP1978587A1 (en) 2007-03-27 2008-10-08 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
JP2015532519A (en) * 2013-03-19 2015-11-09 エルジー・ケム・リミテッド Electrode for low resistance electrochemical element, method for producing the same, and electrochemical element including the electrode
US10270102B2 (en) 2013-03-19 2019-04-23 Lg Chem, Ltd. Electrode for electrochemical device with low resistance, method for manufacturing the same, and electrochemical device comprising the electrode
JP2015133193A (en) * 2014-01-10 2015-07-23 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
WO2017150522A1 (en) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 Positive electrode active material for lithium secondary battery
JPWO2017150522A1 (en) * 2016-02-29 2018-09-13 三井金属鉱業株式会社 Positive electrode active material for lithium secondary battery

Also Published As

Publication number Publication date
JP3654592B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4150343B2 (en) Lithium ion secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
JP7038967B2 (en) Lithium secondary battery with improved high temperature storage characteristics
US20050186474A1 (en) Positive electrodes for lithium batteries and their methods of fabrication
JP2019530955A (en) Non-aqueous electrolyte and lithium secondary battery including the same
US7150940B2 (en) Lithium ion secondary battery
US6613480B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery using same
JP7045547B2 (en) Lithium secondary battery with improved high temperature storage characteristics
JP2001015154A (en) Nonaqueous electrolyte secondary battery
KR100922685B1 (en) Cathode active material for lithium secondary battery
KR20180086140A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2004014270A (en) Rechargeable battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP3654592B2 (en) Lithium ion secondary battery
JP2004031131A (en) Nonaqueous electrolyte liquid secondary battery
KR20180086141A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2005183116A (en) Nonaqueous electrolyte secondary battery
JP4795509B2 (en) Non-aqueous electrolyte battery
JP4838989B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2001084998A (en) Nonaqueous electrolyte secondary battery
JP2005005208A (en) Nonaqueous electrolyte secondary battery and method of manufacturing positive electrode for nonaqueous electrolyte secondary battery
JP3577799B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH09293510A (en) Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture
JP2002246070A (en) Charging method for nonaqueous electrolyte cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3654592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

EXPY Cancellation because of completion of term