JP2003202567A - Three-dimensional means condenser, its manufacturing method and liquid crystal display device - Google Patents

Three-dimensional means condenser, its manufacturing method and liquid crystal display device

Info

Publication number
JP2003202567A
JP2003202567A JP2002209929A JP2002209929A JP2003202567A JP 2003202567 A JP2003202567 A JP 2003202567A JP 2002209929 A JP2002209929 A JP 2002209929A JP 2002209929 A JP2002209929 A JP 2002209929A JP 2003202567 A JP2003202567 A JP 2003202567A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
plate
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002209929A
Other languages
Japanese (ja)
Inventor
Seiiku Bun
盛▲イク▼ 文
Shuen Boku
種淵 朴
Shugo Boku
種午 朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Science and Technology KIST
Original Assignee
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Science and Technology KIST filed Critical Korea Institute of Science and Technology KIST
Publication of JP2003202567A publication Critical patent/JP2003202567A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136277Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon
    • G02F1/136281Active matrix addressed cells formed on a semiconductor substrate, e.g. of silicon having a transmissive semiconductor substrate

Abstract

<P>PROBLEM TO BE SOLVED: To improve the overall efficiency of light by reducing an optical loss to be caused on the way of a route for transmitting light from a back light source of a liquid crystal display device up to a glass substrate formed on the surface of the display device. <P>SOLUTION: The liquid crystal display device is provided with a three- dimensional MEMS condenser 20 having such a rectangular waveguide structure that a plurality of feed horns 65 of which numerical aperture on the side of a back light unit 10 is larger than that on the side of a liquid crystal board 40 are arranged like a matrix between a protection board 8 of the back light unit 10 and the liquid crystal board 50 where thin film transistors 30 are arranged on its lower part at a prescribed interval. Consequently a converging effect from the side of the unit 10 to the side of the board 40 is displayed by the condenser 20 and the transmission efficiency of light can be improved. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は三次元MEMS(Mic
ro-Electro-Mechanical-System:微小電気機械システ
ム)集光体、その製造方法、及びそのような三次元ME
MS集光体を用いた液晶表示装置に関する。より詳細に
は、液晶表示装置のバックライト光源で発生された光が
表示装置表面のガラス基板へ伝達されるまでの経路途中
における光損失を低減して光の全体の伝達効率を向上さ
せた三次元MEMS集光体、その製造方法及びそのよう
な三次元MEMS集光体を用いた液晶表示装置に関す
る。
TECHNICAL FIELD The present invention relates to a three-dimensional MEMS (Mic
ro-Electro-Mechanical-System: Micro-electromechanical system) Concentrator, manufacturing method thereof, and three-dimensional ME
The present invention relates to a liquid crystal display device using an MS condensing body. More specifically, a third-order light source that improves the overall light transmission efficiency by reducing light loss in the course of the light generated by the backlight light source of a liquid crystal display device to the glass substrate on the display device surface. The present invention relates to an original MEMS light collector, a manufacturing method thereof, and a liquid crystal display device using such a three-dimensional MEMS light collector.

【0002】[0002]

【従来の技術】近年の情報化社会の進展に伴って液晶表
示装置(LCD:Liquid Crystal Display)の開発が目
覚しく発展しており、その役割も重要になっている。し
かし、液晶表示素子はそれ自体は発光出来ないため、一
般的に使用されている透過形液晶表示装置ではバックラ
イトが必要である。このため、液晶表示装置の性能は液
晶表示素子自体のみならず、使用するバックライトの性
能に依存するところが大きい。
2. Description of the Related Art The development of a liquid crystal display (LCD) has been remarkably progressing with the recent progress of information society, and its role is also important. However, since the liquid crystal display element itself cannot emit light, a transmissive liquid crystal display device that is generally used requires a backlight. Therefore, the performance of the liquid crystal display device largely depends not only on the performance of the liquid crystal display element itself but also on the performance of the backlight used.

【0003】従来の液晶表示装置の内の薄膜トランジス
タ(TFT:Thin Film Transistor)を使用して表示制
御を行なうTFT−LCDでは、バックライトで発生さ
れた光の内の液晶表示装置表面にまで透過するのは3乃
至10%程度でしかなく、非常に非効率的な装置であ
る。即ち、二枚の偏光板の透過率が45%で、ガラス二
枚の透過率が94%で、TFTアレイ及び画素の透過率
が65%で、カラーフィルターの透過率が27%である
として計算すると、TFT−LCDのトータルの光透過
率はそれぞれの透過率を乗じた約7.4%にしかなら
ず、特にバッテリを使用する携帯型の装置(携帯型P
C,PDA,携帯電話機等)においてはバッテリ容量を
無駄に消費することになる。
In a conventional TFT-LCD that controls display using a thin film transistor (TFT) in a liquid crystal display device, light generated by a backlight is transmitted to the surface of the liquid crystal display device. Is only 3 to 10%, which is a very inefficient device. That is, the transmittance of the two polarizing plates is 45%, the transmittance of the two glass sheets is 94%, the transmittance of the TFT array and the pixel is 65%, and the transmittance of the color filter is 27%. Then, the total light transmittance of the TFT-LCD is only about 7.4%, which is obtained by multiplying the respective transmittances. Especially, a portable device using a battery (portable P
In C, PDA, mobile phones, etc., the battery capacity is wasted.

【0004】このような従来のTFT−LCDのバック
ライト構造は、光源、反射板、導光板、拡散板、プリズ
ム板等から構成されている。従って、このようなTFT
−LCDのバックライト構造は、バックライトで発生さ
れる光が前記構成の各層を通過しながら透過する構造を
有する。更に、バックライトで発生された光が導光板、
拡散板、水平及び垂直プリズム板等を通過した後にも、
薄膜トランジスタが占める面積のために100%全ては
通過することはできず、一部が更に遮断される。
Such a conventional backlight structure of a TFT-LCD is composed of a light source, a reflection plate, a light guide plate, a diffusion plate, a prism plate and the like. Therefore, such a TFT
-The backlight structure of the LCD has a structure in which light generated by the backlight is transmitted while passing through each layer of the above-mentioned structure. Furthermore, the light generated by the backlight is a light guide plate,
Even after passing through the diffuser plate, horizontal and vertical prism plates,
Due to the area occupied by the thin film transistor, 100% cannot pass completely and some are blocked further.

【0005】従って、具体的には、例えば携帯型のノー
トPC等の表示装置としての用途に主として現在生産さ
れている12.1インチ級のTFT−LCDの光透過率
は5乃至8%である。上述したように、バックライトで
発生された光が後面偏光板、TFT基板、カラーフィル
ター及び前面偏光板を透過するとその強さが10%以下
に低下する。
Therefore, specifically, the 12.1-inch class TFT-LCD currently produced mainly for use as a display device of, for example, a portable notebook PC has a light transmittance of 5 to 8%. . As described above, when the light generated by the backlight is transmitted through the rear polarizing plate, the TFT substrate, the color filter and the front polarizing plate, the intensity of the light is reduced to 10% or less.

【0006】[0006]

【発明が解決しようとする課題】本発明は以上のような
問題点を解決するためになされたものであって、液晶表
示装置のバックライト光源から発散されて出てくる光が
表示装置表面のガラス基板まで伝達される間の経路にお
ける光損失を低減することにより、光の全体的な伝達効
率を向上させることが出来る三次元MEMS集光体を提
供することを主たる目的とする。また本発明はそのよう
な三次元MEMS集光体の製造方法、更にはそのような
集光体を用いた液晶表示装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the light emitted from the backlight light source of a liquid crystal display device is emitted from the surface of the display device. The main object of the present invention is to provide a three-dimensional MEMS concentrator that can improve the overall light transmission efficiency by reducing the light loss in the path while being transmitted to the glass substrate. Another object of the present invention is to provide a method for manufacturing such a three-dimensional MEMS light collector, and further to provide a liquid crystal display device using such a light collector.

【0007】具体的には、本発明はMEMS(Micro-El
ectro-Mechanical-System:微小電気機械システム)の種
々の工程を利用して三次元フィードホーン有するをME
MS構造体として集光体を製造することにより、液晶表
示装置のみならず種々の表示装置にも応用可能な新たな
方法を提案することに目的がある。
Specifically, the present invention relates to a MEMS (Micro-El
ectro-Mechanical-System: Micro electromechanical system)
It is an object of the present invention to propose a new method that can be applied not only to liquid crystal display devices but also to various display devices by manufacturing a light collector as an MS structure.

【0008】[0008]

【課題を解決するための手段】前述した目的を達成する
ために本発明に係る三次元MEMS集光体は、導波方向
の上流側の開口率が下流側の開口率よりも大である複数
の貫通孔がマトリクス状に配列された矩形導波路構造を
有することを特徴とする。
In order to achieve the above-mentioned object, the three-dimensional MEMS concentrator according to the present invention has a plurality of aperture ratios on the upstream side in the waveguide direction which are larger than the aperture ratio on the downstream side. Has a rectangular waveguide structure in which the through holes are arranged in a matrix.

【0009】このような本発明の三次元MEMS集光体
では、マトリクス状に配列された複数の貫通孔(フィー
ドホーン)の両開口の開口率が、それぞれの導波方向の
上流側の開口率が下流側の開口率よりも大であるため、
導波方向の上流側の開口から下流側の開口へ向けて集光
効果が生じる。
In such a three-dimensional MEMS light collector of the present invention, the aperture ratio of both openings of a plurality of through holes (feed horns) arranged in a matrix is the aperture ratio on the upstream side in each waveguide direction. Is larger than the aperture ratio on the downstream side,
A condensing effect is produced from the opening on the upstream side in the waveguide direction toward the opening on the downstream side.

【0010】更に本発明に係る三次元MEMS集光体の
製造方法は、上述の三次元MEMS集光体を製造するた
めの製造方法であって、半導体基板上に電気メッキのた
めのシード層を形成するステップと、前記シード層の上
部に犠牲層を形成するために、感光性樹脂を塗布して感
光膜を形成するステップと、所定のパターンが形成され
たマスクを前記感光膜の上面に位置させて光を照射する
ことによりリソグラフィを行なうステップと、前記リソ
グラフィにより側断面が台形状の感光膜構造物を形成す
るステップと、前記シード層上に電気メッキにより前記
側断面が台形状の感光膜構造物を覆う金属膜の構造物を
形成するステップと、CMP法により前記金属膜構造物
を少なくとも前記側断面が台形状の感光膜構造物の上面
の位置まで平坦化するステップと、犠牲層である前記感
光膜を除去することにより、前記金属膜中に側断面が台
形状の貫通孔を形成するステップとを含むことを特徴と
する。
Further, a method of manufacturing a three-dimensional MEMS light collecting body according to the present invention is a method of manufacturing the above-mentioned three-dimensional MEMS light collecting body, wherein a seed layer for electroplating is formed on a semiconductor substrate. Forming a sacrificial layer on the seed layer, forming a photosensitive film by applying a photosensitive resin, and placing a mask having a predetermined pattern on the upper surface of the photosensitive film. And irradiating with light to perform lithography, forming a photosensitive film structure having a trapezoidal side section by the lithography, and forming a photosensitive film having a trapezoidal side section by electroplating on the seed layer. Forming a structure of a metal film covering the structure, and planarizing the metal film structure to at least a position of an upper surface of the photosensitive film structure having a trapezoidal side cross section by a CMP method. A step that, by removing the photoresist is sacrificial layer, characterized by comprising the steps of side section to the metal film to form a through-hole of the trapezoidal.

【0011】このような本発明の三次元MEMS集光体
の製造方法では、半導体基板上に電気メッキのためのシ
ード層が形成され、このシード層の上部に犠牲層を形成
するために、感光性樹脂が塗布されて感光膜が形成さ
れ、所定のパターンが形成されたマスクが感光膜の上面
に位置された状態で光が照射されることによりリソグラ
フィが行なわれ、このリソグラフィによって側断面が台
形状(たとえば円錐台形状、角錐台形状)の感光膜構造
物が形成され、シード層上に電気メッキが行なわれて側
断面が台形状の感光膜構造物を覆う金属膜の構造物が形
成され、CMP法で金属膜構造物が少なくとも側断面が
台形状の感光膜構造物の上面の位置まで平坦化され、最
後に、犠牲層である感光膜が除去されることにより、金
属膜中に側断面が台形状の貫通孔、即ちフィードホーン
が形成される。
According to the method for manufacturing a three-dimensional MEMS light collector of the present invention, a seed layer for electroplating is formed on a semiconductor substrate, and a sacrificial layer is formed on the seed layer. A photosensitive resin is applied to form a photosensitive film, and lithography is performed by irradiating light with a mask having a predetermined pattern formed on the upper surface of the photosensitive film. A photosensitive film structure having a shape (for example, a truncated cone shape or a truncated pyramid shape) is formed, and electroplating is performed on the seed layer to form a metal film structure that covers the photosensitive film structure having a trapezoidal side cross section. The CMP method planarizes the metal film structure at least to the position of the upper surface of the photosensitive film structure having a trapezoidal cross section, and finally removes the photosensitive film that is the sacrificial layer to form a side surface in the metal film. Cross section Jo through holes, i.e. the feed horn is formed.

【0012】また、本発明に係る三次元MEMS集光体
の製造方法は、上述の発明において、前記感光膜の除去
は乾式方法であるプラズマアッシャによることを特徴と
する。
The method for manufacturing a three-dimensional MEMS light collector according to the present invention is characterized in that, in the above-mentioned invention, the photosensitive film is removed by a plasma asher which is a dry method.

【0013】このような本発明の三次元MEMS集光体
の製造方法では、上述の発明において、乾式方法である
プラズマアッシャを使用して感光膜が除去される。
In such a method of manufacturing a three-dimensional MEMS light collector of the present invention, the photosensitive film is removed by using the plasma asher which is a dry method in the above invention.

【0014】更にまた本発明に係る液晶表示装置は、光
源、光源カバー、反射板、導光板、拡散板、上下プリズ
ム板及び保護板を含むバックライトユニットと、薄膜ト
ランジスタが下部に所定間隔で配置された液晶板とを備
えた液晶表示装置において、前記保護板と前記液晶板と
の間に、前記バックライトユニット側の開口率が前記液
晶板側の開口率よりも大である複数の貫通孔がマトリク
ス状に配列された集光体を備えたことを特徴とする。
Further, in the liquid crystal display device according to the present invention, a backlight unit including a light source, a light source cover, a reflection plate, a light guide plate, a diffusion plate, upper and lower prism plates and a protection plate, and a thin film transistor are arranged at a lower portion at a predetermined interval. In a liquid crystal display device including a liquid crystal plate, a plurality of through holes having an aperture ratio on the backlight unit side larger than the aperture ratio on the liquid crystal plate side are provided between the protective plate and the liquid crystal plate. It is characterized in that it is provided with light collectors arranged in a matrix.

【0015】このような本発明の液晶表示装置では、バ
ックライトユニット側の開口率が液晶板側の開口率より
も大である複数の貫通孔がマトリクス状に配列された集
光体がバックライトユニット側の保護板と液晶板との間
に備えられているので、バックライトユニット側から液
晶板側への集光効果が発揮される。
In such a liquid crystal display device of the present invention, the backlight is a light condensing body in which a plurality of through holes whose aperture ratio on the backlight unit side is larger than that on the liquid crystal plate side are arranged in a matrix. Since it is provided between the protection plate on the unit side and the liquid crystal plate, a light condensing effect from the backlight unit side to the liquid crystal plate side is exhibited.

【0016】また本発明に係る液晶表示装置は、上述の
発明において、前記集光体の前記液晶板側の各開口部分
が、前記液晶板に配置された各薄膜トランジスタと重畳
しない位置になるようにしてあることを特徴とする。
Further, in the liquid crystal display device according to the present invention, in the above-mentioned invention, each opening portion on the liquid crystal plate side of the condensing body is positioned so as not to overlap with each thin film transistor arranged on the liquid crystal plate. It is characterized by being present.

【0017】このような本発明の液晶表示装置では、上
述の発明において、液晶板に配置された各薄膜トランジ
スタと重畳しない位置に集光体の開口部分が位置するの
で、各薄膜トランジスタが集光に影響を与える位置には
配置されないことになる。
In such a liquid crystal display device of the present invention, in the above-mentioned invention, since the aperture of the light collector is located at a position where it does not overlap with each thin film transistor arranged on the liquid crystal plate, each thin film transistor influences light collection. Will not be placed in the position that gives.

【0018】[0018]

【発明の実施の形態】以下、本発明をその実施の形態を
示す図面に基づいて詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to the drawings showing the embodiments thereof.

【0019】図1(a)は本発明に係る液晶表示装置の
三次元MEMS集光体の部分の構成を示す模式的側面図
であり、図1(b)は本発明に係る三次元MEMS集光
体の三次元的な概念を示す模式的斜視図である。
FIG. 1 (a) is a schematic side view showing the structure of a three-dimensional MEMS light collector of the liquid crystal display device according to the present invention, and FIG. 1 (b) is a three-dimensional MEMS collection according to the present invention. It is a typical perspective view which shows the three-dimensional concept of a light body.

【0020】図示したように、本発明に係る三次元ME
MS集光体である集光体20は矩形導波路(Rectangula
r Wavelength)の構造を採用しており、両開口率、即ち
上部開口率と下部開口率とが異なる貫通孔であるフィー
ドホーン65が、それぞれの両開口を結ぶ方向を導波方
向に沿わせて多数形成されており、それらがマトリクス
状に配列されている。
As shown, the three-dimensional ME according to the present invention.
The condenser 20 which is an MS condenser is a rectangular waveguide (Rectangula).
r Wavelength) structure is adopted, and the feed horn 65, which is a through hole having different aperture ratios, that is, upper aperture ratio and lower aperture ratio, makes the direction connecting both apertures along the waveguide direction. Many are formed and they are arranged in a matrix.

【0021】フィードホーン65は、導波方向の上流
側、即ち後述する液晶板40側の開口(以下、上部開口
という)の直径aが、導波方向の下流側、即ち後述する
バックライトユニット10側の開口(以下、下部開口と
いう)の直径bよりも小さく(a<b)形成されてお
り、両開口率に差がある。
The feed horn 65 has an upstream side in the waveguide direction, that is, a diameter a of an opening (hereinafter referred to as an upper opening) on the liquid crystal plate 40 side, which will be described later, is a downstream side in the waveguide direction, that is, the backlight unit 10 described later. It is formed smaller than the diameter b of the side opening (hereinafter referred to as the lower opening) (a <b), and there is a difference in both opening ratios.

【0022】フィードホーン65の下部開口率が上部開
口率よりも大きく形成されていること、即ちこのような
開口率の差があるという原理によって、フィードホーン
65は光を図上で下から上へ、換言すれば導波方向の上
流側から下流側へ集める集光手段としての役割を果たす
ことになる。具体的には、バックライトユニット10で
発散されて透過した光が集光体20のフィードホーン6
5を介して上部のガラス基板50に到達するが、フィー
ドホーン65の開口率の差によって、バックライトユニ
ット10側の比較的大なる開口率の開口から入射した光
が集光体20を貫通しているフィードホーン65の内壁
面に衝突して反射しつつガラス基板50側の比較的小な
る開口率の開口から出てくることになる。
On the basis of the principle that the lower aperture ratio of the feed horn 65 is larger than that of the upper aperture ratio, that is, there is such a difference in aperture ratio, the feed horn 65 causes light to travel from bottom to top in the figure. In other words, it plays a role as a light collecting means for collecting light from the upstream side in the waveguide direction to the downstream side. Specifically, the light diverged by the backlight unit 10 and transmitted is the feed horn 6 of the condenser 20.
Although it reaches the upper glass substrate 50 via 5, the light incident from the opening having a relatively large opening ratio on the side of the backlight unit 10 penetrates the light collector 20 due to the difference in the opening ratio of the feed horn 65. While colliding with the inner wall surface of the feed horn 65, which is reflected, comes out from the opening having a relatively small aperture ratio on the glass substrate 50 side.

【0023】また、詳細は後述するが、図1(a)に示
すように、集光体20の開口部分(フィードホーン65
が開口している部分)が液晶板40の下面に配置された
各薄膜トランジスタ30と重畳しない位置になるように
してある。このため、バックライトユニット10の光源
で発生された光は多数の層を透過するが、透過された光
は前述の原理によって集光体20のフィードホーン65
を介して液晶板40を透過し、ガラス基板50に到達す
ることになるが、集光体20から液晶板40へ光が入射
する際に、薄膜トランジスタ30が占める部分のために
光が遮断されて通過できないという可能性を非常に小さ
くすることが出来ることになる。
Further, as will be described in detail later, as shown in FIG. 1A, the opening portion of the condenser 20 (the feed horn 65).
The opening) is such that it does not overlap the thin film transistors 30 arranged on the lower surface of the liquid crystal plate 40. Therefore, the light generated by the light source of the backlight unit 10 passes through many layers, but the transmitted light is the feed horn 65 of the light collector 20 according to the above-described principle.
The light is transmitted through the liquid crystal plate 40 via the light source and reaches the glass substrate 50. However, when the light enters the liquid crystal plate 40 from the light collector 20, the light is blocked due to the portion occupied by the thin film transistor 30. The possibility of not being able to pass will be greatly reduced.

【0024】図2は上述の集光体20を液晶表示装置に
適用した場合の全体の構成例を示す模式的側面図であ
る。
FIG. 2 is a schematic side view showing an example of the entire structure when the above-mentioned light collector 20 is applied to a liquid crystal display device.

【0025】図示したように、バックライトユニット1
0は光を発生する光源1を備えると共に、この光源1の
側面に、光源1からの光を散乱させて均一化する導光板
4が設置されている。なお、光源1は一側のみが開口さ
れた反射材製の光源カバー2で囲まれている。
As shown, the backlight unit 1
Reference numeral 0 denotes a light source 1 that emits light, and a light guide plate 4 that scatters the light from the light source 1 to make the light uniform is installed on the side surface of the light source 1. The light source 1 is surrounded by a light source cover 2 made of a reflective material and having an opening on only one side.

【0026】導光板4の上面には拡散板5が配置されて
おり、下面には反射板3が配置されている。拡散板5は
導光板4から入射される光を拡散することにより、液晶
板40へ入射される光の均一度を高める。反射板3は光
源1が発生した光の外部への漏洩、即ち導光板4の下部
へ光が漏洩することを防ぐ。
A diffusion plate 5 is arranged on the upper surface of the light guide plate 4, and a reflection plate 3 is arranged on the lower surface thereof. The diffusion plate 5 diffuses the light incident from the light guide plate 4 to increase the uniformity of the light incident on the liquid crystal plate 40. The reflection plate 3 prevents the light generated by the light source 1 from leaking to the outside, that is, the light from leaking to the lower portion of the light guide plate 4.

【0027】また、拡散板5の上部には光の進行経路を
変換してその輝度得るための一対の垂直及び水平プリズ
ム板6,7が上下に並列に配置されている。この一対の
プリズム板6,7の上部には、これらのプリズム板6,
7の形状保護のために保護板8が配置されている。液晶
板40は保護板8の上部で所定距離を置いた適宜の位置
に離隔して配置されている。
Further, a pair of vertical and horizontal prism plates 6 and 7 for converting the traveling path of light and obtaining the brightness are arranged above and above the diffusion plate 5 in parallel. Above the pair of prism plates 6 and 7, the prism plates 6 and
A protective plate 8 is arranged to protect the shape of 7. The liquid crystal plate 40 is disposed above the protective plate 8 and spaced apart at an appropriate position with a predetermined distance.

【0028】液晶板40には、その下面に表示制御用の
薄膜トランジスタ(TFT)30が一定の距離間隔(具
体的には、画素間隔に関連する間隔)で離隔されて配置
されている。これらの薄膜トランジスタ30は液晶板4
0の下面において一定の面積を占めており、本来はこの
薄膜トランジスタ30が液晶板40の下面において占有
する一定の面積の部分がバックライトユニット10側か
ら液晶板40側へ入射する光を遮断する。しかし、本発
明の液晶表示装置では、液晶板40と保護板8との間に
本発明に係る集光体20が介装されている。そして、前
述したように、集光体20の開口部と薄膜トランジスタ
30とが重畳しない位置になるようにしてある。
On the lower surface of the liquid crystal plate 40, display control thin film transistors (TFTs) 30 are arranged at regular intervals (specifically, intervals related to pixel intervals). These thin film transistors 30 are the liquid crystal plate 4
The lower surface of 0 occupies a certain area, and the thin film transistor 30 originally occupies a certain area on the lower surface of the liquid crystal plate 40, which blocks light incident from the backlight unit 10 side to the liquid crystal plate 40 side. However, in the liquid crystal display device of the present invention, the light collector 20 according to the present invention is interposed between the liquid crystal plate 40 and the protective plate 8. Then, as described above, the opening of the light condensing body 20 and the thin film transistor 30 are arranged so as not to overlap each other.

【0029】このように構成された液晶表示装置は光源
1で発生された光が直接または反射体の光源カバー2に
よって反射されて導光板4へ入射され、次いで拡散板
5、一対のプリズム板6,7及び集光体20のフィード
ホーン65を通過して液晶板40へ入射され、所定の画
像が表示される。この際、薄膜トランジスタ30が液晶
板40の下面において閉める面積のために遮断される光
は、上部開口率と下部開口率とが異なるフィードホーン
65の集光原理によって集光されて、ほぼ100%が液
晶板40へ入射される。
In the liquid crystal display device having such a structure, the light generated by the light source 1 is incident on the light guide plate 4 directly or by being reflected by the light source cover 2 which is a reflector, and then the diffusion plate 5 and the pair of prism plates 6 are provided. , 7 and the feed horn 65 of the condenser 20 to enter the liquid crystal plate 40, and a predetermined image is displayed. At this time, the light blocked by the area where the thin film transistor 30 is closed on the lower surface of the liquid crystal plate 40 is condensed by the condensing principle of the feed horn 65 having different upper and lower aperture ratios, and almost 100% of the light is condensed. It is incident on the liquid crystal plate 40.

【0030】より具体的には、光源1で発生されて放射
される光は反射板3によって外部への漏洩が防止された
状態で導光板4へ入射されて均一に散乱される。そし
て、このように散乱された光は拡散板5によって拡散さ
れてより均一化された後、一対のプリズム6,7を通過
する際に一定の角度で進行経路が変換され、更に保護板
8、集光体20を経て液晶板40へ入射される。
More specifically, the light generated and emitted by the light source 1 is incident on the light guide plate 4 and uniformly scattered while being prevented from leaking to the outside by the reflection plate 3. Then, the light thus scattered is diffused by the diffusion plate 5 to be made more uniform, and then the traveling path is converted at a constant angle when passing through the pair of prisms 6 and 7, and further, the protection plate 8 and The light is incident on the liquid crystal plate 40 via the light collector 20.

【0031】この際、一対のプリズム6,7によって進
行経路が変換された光の大部分は反射されることなくフ
ィードホーン65の下部開口へ入射して上部開口から液
晶板40へ入射され、残りの光は集光体20を貫通して
いるフィードホーン65の内壁面で反射されつつフィー
ドホーン65の上部開口へ出て液晶板40へ入射され
る。このような下部開口の開口率が上部開口の開口率よ
りも大であるフィードホーン65の存在により、薄膜ト
ランジスタ30が液晶板30の下面に占める面積のため
に本来は液晶板40へは入射しない光も液晶液晶板40
へ入射することになり、光の伝達効率が向上する。
At this time, most of the light whose traveling path is converted by the pair of prisms 6 and 7 is not reflected but is incident on the lower opening of the feed horn 65, is incident on the liquid crystal plate 40 from the upper opening, and remains. The light is reflected by the inner wall surface of the feed horn 65 penetrating the light collector 20, goes out to the upper opening of the feed horn 65, and enters the liquid crystal plate 40. Due to the presence of the feed horn 65 in which the aperture ratio of the lower opening is larger than the aperture ratio of the upper opening, the light that does not originally enter the liquid crystal plate 40 due to the area occupied by the thin film transistor 30 on the lower surface of the liquid crystal plate 30. Liquid crystal liquid crystal plate 40
Will be incident on, and the light transmission efficiency will be improved.

【0032】図3乃至図9は本発明の三次元MEMS集
光体の製造工程の各段階を示す模式図である。以下、こ
れらの図面を参照して本発明の三次元MEMS集光体の
製造方法について説明する。
3 to 9 are schematic views showing each step of the manufacturing process of the three-dimensional MEMS light collector of the present invention. Hereinafter, a method of manufacturing the three-dimensional MEMS light collector of the present invention will be described with reference to these drawings.

【0033】まず、図3に示すように、半導体基板61
上に電気メッキのためのシード層60が最初に積層形成
される。
First, as shown in FIG.
A seed layer 60 for electroplating is first deposited on top.

【0034】次に図4に示すように、シード層60の上
部に、犠牲層を形成するための感光性樹脂が塗布されて
感光膜63が形成される。次に図5に示すように、感光
膜63の上部に、所定のパターン(具体的には、フィー
ドホーンの上部開口のパターン)が所定の間隔(具体的
には、画素間隔に対応する間隔)で形成されたマスク6
2を位置させておき、光を照射してリソグラフィを行な
う。このリソグラフィにより、図6に示すように、円錐
台形状の感光膜63の構造物が形成される。
Next, as shown in FIG. 4, a photosensitive resin for forming a sacrificial layer is applied on the seed layer 60 to form a photosensitive film 63. Next, as shown in FIG. 5, a predetermined pattern (specifically, a pattern of the upper opening of the feed horn) is provided on the upper portion of the photosensitive film 63 at a predetermined interval (specifically, an interval corresponding to the pixel interval). Mask 6 formed by
2 is positioned and light is irradiated to perform lithography. By this lithography, as shown in FIG. 6, a structure of the photosensitive film 63 having a truncated cone shape is formed.

【0035】この際、感光膜63は露光することによっ
て不溶性になるネガティブタイプと、逆に可溶性になる
ポジティブタイプとがあるが、本発明はネガティブタイ
プの例である。
At this time, the photosensitive film 63 includes a negative type which becomes insoluble by exposure to light and a positive type which becomes conversely when exposed to light, but the present invention is an example of a negative type.

【0036】次に図7に示すように、シード層60上に
電気メッキにより、円錐台形状の感光膜63の構造物を
覆う金属膜64の構造物を形成する。そして図8に示す
ように、CMP(Chemical Mechanical Polishing )法
で金属膜64の構造物を少なくとも円錐台形状の感光膜
63の構造物の上面の位置まで選択的に研磨して平坦化
する。
Next, as shown in FIG. 7, a structure of a metal film 64 is formed on the seed layer 60 by electroplating so as to cover the structure of the truncated cone-shaped photosensitive film 63. Then, as shown in FIG. 8, the structure of the metal film 64 is selectively polished and planarized by the CMP (Chemical Mechanical Polishing) method up to at least the position of the upper surface of the structure of the photosensitive film 63 having a truncated cone shape.

【0037】最後に図9に示すように、乾式の灰化装置
であるプラズマアッシャ(Plasma asher)を用いて円錐
台形状の感光膜63、即ち犠牲層を除去する。以上によ
り、図2に示したような、上下開口率、即ち上部開口率
と下部開口率とが異なる、より具体的には基板61側の
開口率が逆側の開口率よりも大である貫通孔、即ちフィ
ードホーン65が内部に形成された金属膜64が得られ
る。この金属膜64が集光体20として使用される。
Finally, as shown in FIG. 9, the truncated cone-shaped photosensitive film 63, that is, the sacrificial layer is removed by using a plasma asher which is a dry ashing apparatus. From the above, as shown in FIG. 2, the vertical aperture ratio, that is, the upper aperture ratio and the lower aperture ratio are different, and more specifically, the aperture ratio on the substrate 61 side is larger than the aperture ratio on the opposite side. A metal film 64 having a hole, that is, a feed horn 65 formed therein is obtained. This metal film 64 is used as the light collector 20.

【0038】なお、プラズマを用いる乾式の灰化装置で
あるプラズマアッシャは、材料を反応室に入れて高周波
を印加した状態で気体酸素を注入することにより、反応
室内部に生成されるプラズマの影響で酸素が高いエネル
ギーレベルで励起されて感光膜63を酸化させる。この
方法は湿式方法よりも高コストであるが、化学薬品を使
用する必要がなく、従って事後の洗浄工程が不要である
という利点がある。
A plasma asher, which is a dry ashing apparatus using plasma, has an effect of plasma generated inside the reaction chamber by injecting gaseous oxygen in a state where a material is placed in the reaction chamber and a high frequency is applied. Oxygen is excited at a high energy level to oxidize the photosensitive film 63. Although this method is more expensive than the wet method, it has the advantage that it does not require the use of chemicals and therefore no post-cleaning step.

【0039】以上のような図3乃至図9に示す工程に従
って製造された金属膜64である図2に示すような集光
体20を液晶表示装置に適用した図1(a)及び図1
(b)に示す三次元MEMS集光体として利用すること
により、液晶表示装置のバックライト光源から放射され
て発散された光の表示装置表面のガラス基板までの伝達
経路途中での損失を低減して、光の全体的な伝達効率を
向上させることが出来る。
1A and 1A in which the light collector 20 as shown in FIG. 2 which is the metal film 64 manufactured according to the steps shown in FIGS. 3 to 9 is applied to a liquid crystal display device.
By using it as the three-dimensional MEMS light collector shown in (b), it is possible to reduce the loss of the light emitted from the backlight source of the liquid crystal display device and diverging in the middle of the transmission path to the glass substrate on the display device surface. As a result, the overall light transmission efficiency can be improved.

【0040】なお、上述の図3乃至図9に示す工程にお
いては、フィードホーン65を側断面が円錐台形状に形
成したが、マスク62に形成するパターンに応じて角錐
台形状とすることも可能である。また、液晶板40側の
薄膜トランジスタ30の形状、配置状態等に応じて、フ
ィードホーン65の開口を上記実施の形態のような円形
のみならず、種々の形状に形成することが可能である。
In the steps shown in FIGS. 3 to 9 described above, the feed horn 65 is formed in a truncated cone shape in side cross section, but it may be formed in a truncated pyramid shape depending on the pattern formed on the mask 62. Is. In addition, the opening of the feed horn 65 can be formed in various shapes other than the circular shape as in the above-described embodiment, depending on the shape, arrangement state, etc. of the thin film transistor 30 on the liquid crystal plate 40 side.

【0041】[0041]

【発明の効果】以上に詳述したように本発明によれば、
三次元のフィードホーンを有するMEMS集光体の上下
開口率差の原理を利用した集光効果により、光の経路上
での光損失を低減することができるので、結果的に光の
全体的な伝達効率を向上させることができ、従来のFP
D(Flat Panel Display)装置の短所であった非効率的
な光の透過率を改善させることができるようになる。
As described in detail above, according to the present invention,
Since the light condensing effect utilizing the principle of the difference in the vertical aperture ratio of the MEMS condensing body having the three-dimensional feed horn can reduce the light loss on the path of the light, as a result, the overall light The transmission efficiency can be improved and the conventional FP
It is possible to improve the inefficient light transmittance, which was a disadvantage of the D (Flat Panel Display) device.

【0042】また本発明の三次元MEMS集光体によれ
ば、マトリクス状に配列された複数の貫通孔(フィード
ホーン)が、それぞれの導波方向の上流側の開口率が下
流側の開口率よりも大であるため、導波方向の上流側の
開口から下流側の開口へ向けて集光効果が生じ、光の伝
達効率を向上させることができる。
Further, according to the three-dimensional MEMS condensing body of the present invention, the plurality of through holes (feed horns) arranged in a matrix form have aperture ratios on the upstream side in the respective waveguide directions and on the downstream side. Since it is larger than the above, a condensing effect occurs from the opening on the upstream side in the waveguide direction toward the opening on the downstream side, and the light transmission efficiency can be improved.

【0043】また本発明の三次元MEMS集光体の製造
方法によれば、三次元MEMS(Micro-Electro-Mechan
ical-System:微小電気機械システム)により、金属膜中
に円錐台形状の貫通孔、即ちフィードホーンを形成する
ことができ、これを集光体として利用することが可能に
なるので、フィードホーンの内壁面が金属面になり、従
って高効率で光を反射しつつ伝達することが出来る。
According to the method for manufacturing a three-dimensional MEMS light collector of the present invention, the three-dimensional MEMS (Micro-Electro-Mechanical
ical-System: a micro-electro mechanical system), it is possible to form a truncated cone-shaped through hole, that is, a feed horn, in the metal film, and it is possible to use this as a light collector. Since the inner wall surface is a metal surface, it is possible to transmit light while reflecting it with high efficiency.

【0044】また本発明の三次元MEMS集光体の製造
方法によれば、上述の発明において、乾式方法であるプ
ラズマアッシャを使用して感光膜が除去されるので、化
学薬品を使用する必要がなく、従って事後の洗浄工程が
不要になる。
According to the method for manufacturing a three-dimensional MEMS light collecting body of the present invention, in the above-mentioned invention, since the photosensitive film is removed by using the plasma asher which is a dry method, it is necessary to use chemicals. Therefore, the subsequent cleaning step is unnecessary.

【0045】また本発明の液晶表示装置では、バックラ
イトユニット側の開口率が液晶板側の開口率よりも大で
ある複数の貫通孔がマトリクス状に配列された集光体が
バックライトユニット側の保護板と液晶板との間に備え
られているので、バックライトユニット側から液晶板側
への集光効果が発揮され、バックライトユニット側から
液晶板側への光の伝達効率が向上する。
Further, in the liquid crystal display device of the present invention, the condensing body in which a plurality of through holes whose aperture ratio on the backlight unit side is larger than that on the liquid crystal plate side are arranged in a matrix is a backlight unit side. Since it is provided between the protective plate and the liquid crystal plate, the light collecting effect from the backlight unit side to the liquid crystal plate side is exhibited, and the light transmission efficiency from the backlight unit side to the liquid crystal plate side is improved. .

【0046】また本発明の液晶表示装置では、上述の発
明において、液晶板に配置された各薄膜トランジスタと
重畳しない位置に集光体の開口部分が位置するので、各
薄膜トランジスタが光を遮断する割合が非常に小さくな
り、バックライトユニット側から液晶板側への光の伝達
効率がより向上する。
Further, in the liquid crystal display device of the present invention, in the above-mentioned invention, since the aperture of the light collector is located at a position where it does not overlap with each thin film transistor arranged on the liquid crystal plate, each thin film transistor has a light blocking ratio. The size is extremely small, and the efficiency of light transmission from the backlight unit side to the liquid crystal plate side is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明に係る液晶表示装置の三次元M
EMS集光体の部分の構成を示す模式的側面図であり、
(b)は本発明に係る三次元MEMS集光体の三次元的
な概念を示す模式的斜視図である。
FIG. 1A is a three-dimensional M of a liquid crystal display device according to the present invention.
It is a typical side view showing the composition of the portion of an EMS condensing body,
(B) is a typical perspective view showing the three-dimensional concept of the three-dimensional MEMS condensing body concerning the present invention.

【図2】本発明の集光体を液晶表示装置に適用した場合
の全体の構成例を示す模式的側面図である。
FIG. 2 is a schematic side view showing an example of the entire configuration when the light collector of the present invention is applied to a liquid crystal display device.

【図3】本発明の三次元MEMS集光体の製造工程の各
段階を示す模式図である。
FIG. 3 is a schematic view showing each stage of the manufacturing process of the three-dimensional MEMS light collector of the present invention.

【図4】本発明の三次元MEMS集光体の製造工程の各
段階を示す模式図である。
FIG. 4 is a schematic view showing each stage of the manufacturing process of the three-dimensional MEMS light collector of the present invention.

【図5】本発明の三次元MEMS集光体の製造工程の各
段階を示す模式図である。
FIG. 5 is a schematic view showing each stage of the manufacturing process of the three-dimensional MEMS light collector of the present invention.

【図6】本発明の三次元MEMS集光体の製造工程の各
段階を示す模式図である。
FIG. 6 is a schematic view showing each stage of the manufacturing process of the three-dimensional MEMS light collector of the present invention.

【図7】本発明の三次元MEMS集光体の製造工程の各
段階を示す模式図である。
FIG. 7 is a schematic view showing each stage of the manufacturing process of the three-dimensional MEMS light collector of the present invention.

【図8】本発明の三次元MEMS集光体の製造工程の各
段階を示す模式図である。
FIG. 8 is a schematic diagram showing each stage of the manufacturing process of the three-dimensional MEMS light collector of the present invention.

【図9】本発明の三次元MEMS集光体の製造工程の各
段階を示す模式図である。
FIG. 9 is a schematic view showing each stage of the manufacturing process of the three-dimensional MEMS light collector of the present invention.

【符号の説明】[Explanation of symbols]

1:光源 2:光源カバー 3:反射板 4:導光板 5:拡散板 6:水平プリズム板 7:垂直プリズム板 8:保護板 10:バックライトユニット 20:集光体 30:薄膜トランジスタ(TFT) 40:液晶板 50:ガラス基板 60:シード層 61:半導体基板 62:マスク 63:感光膜 64:金属膜 65:フィードホーン 1: Light source 2: Light source cover 3: Reflector 4: Light guide plate 5: Diffuser 6: Horizontal prism plate 7: Vertical prism plate 8: Protective plate 10: Backlight unit 20: Light collector 30: Thin film transistor (TFT) 40: Liquid crystal plate 50: Glass substrate 60: Seed layer 61: Semiconductor substrate 62: Mask 63: Photosensitive film 64: Metal film 65: Feed horn

フロントページの続き (72)発明者 朴 種淵 大韓民国ソウル特別市松坂区石村洞179− 5番地102号 (72)発明者 朴 種午 大韓民国ソウル特別市瑞草区岑源洞ハンガ ンアパート2棟802号 Fターム(参考) 2H091 FA23Z FA41Z FC10 GA13 LA16 Continued front page    (72) Inventor Pak Jinbuchi             179-Ishimura-dong, Matsuzaka-ku, Seoul, Republic of Korea             5th 102th (72) Inventor Pak Tan             South Korea Seoul Special City Seocho-gu Yuyuan-dong Hanga             Apartment 2 No. 802 F-term (reference) 2H091 FA23Z FA41Z FC10 GA13                       LA16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導波方向の上流側の開口率が下流側の開
口率よりも大である複数の貫通孔がマトリクス状に配列
された矩形導波路構造を有することを特徴とする三次元
MEMS集光体。
1. A three-dimensional MEMS having a rectangular waveguide structure in which a plurality of through holes having an aperture ratio on the upstream side in the waveguide direction larger than an aperture ratio on the downstream side are arranged in a matrix. Light collector.
【請求項2】 半導体基板上に電気メッキのためのシー
ド層を形成するステップと、 前記シード層の上部に犠牲層を形成するために、感光性
樹脂を塗布して感光膜を形成するステップと、 所定のパターンが形成されたマスクを前記感光膜の上面
に位置させて光を照射することによりリソグラフィを行
なうステップと、 前記リソグラフィにより側断面が台形状の感光膜構造物
を形成するステップと、 前記シード層上に電気メッキにより前記側断面が台形状
の感光膜構造物を覆う金属膜の構造物を形成するステッ
プと、 CMP法により前記金属膜構造物を少なくとも前記側断
面が台形状の感光膜構造物の上面の位置まで平坦化する
ステップと、 犠牲層である前記感光膜を除去することにより、前記金
属膜中に側断面が台形状の貫通孔を形成するステップと
を含むことを特徴とする三次元MEMS集光体の製造方
法。
2. A step of forming a seed layer for electroplating on a semiconductor substrate, and a step of applying a photosensitive resin to form a photosensitive film to form a sacrificial layer on the seed layer. A step of performing a lithography by irradiating light with a mask having a predetermined pattern formed on the upper surface of the photosensitive film; and a step of forming the photosensitive film structure having a trapezoidal side section by the lithography, Forming a structure of a metal film on the seed layer by electroplating to cover the photosensitive film structure having a trapezoidal side section; and exposing the metal film structure to a photosensitive film having a trapezoidal side section by a CMP method. Forming a through hole having a trapezoidal side cross section in the metal film by removing the sacrificial layer and the photosensitive film by flattening to the position of the upper surface of the film structure; A method for manufacturing a three-dimensional MEMS light collector, comprising:
【請求項3】 前記感光膜の除去は乾式方法であるプラ
ズマアッシャによることを特徴とする請求項2に記載の
三次元MEMS集光体の製造方法。
3. The method of manufacturing a three-dimensional MEMS concentrator according to claim 2, wherein the photosensitive film is removed by a plasma asher which is a dry method.
【請求項4】 光源、光源カバー、反射板、導光板、拡
散板、上下プリズム板及び保護板を含むバックライトユ
ニットと、薄膜トランジスタが下部に所定間隔で配置さ
れた液晶板とを備えた液晶表示装置において、 前記保護板と前記液晶板との間に、前記バックライトユ
ニット側の開口率が前記液晶板側の開口率よりも大であ
る複数の貫通孔がマトリクス状に配列された集光体を備
えたことを特徴とする液晶表示装置。
4. A liquid crystal display comprising a backlight unit including a light source, a light source cover, a reflection plate, a light guide plate, a diffusion plate, upper and lower prism plates, and a protection plate, and a liquid crystal plate on which thin film transistors are arranged at predetermined intervals below. In the device, a condensing body in which a plurality of through holes whose aperture ratio on the backlight unit side is larger than that on the liquid crystal plate side are arranged in a matrix between the protective plate and the liquid crystal plate. A liquid crystal display device comprising:
【請求項5】 前記集光体の前記液晶板側の各開口部分
が、前記液晶板に配置された各薄膜トランジスタと重畳
しない位置になるようにしてあることを特徴とする請求
項4に記載の集光体を用いた液晶表示装置。
5. The liquid crystal plate-side opening of the light collector is arranged so as not to overlap the thin film transistors arranged on the liquid crystal plate. A liquid crystal display device using a light collector.
JP2002209929A 2001-12-29 2002-07-18 Three-dimensional means condenser, its manufacturing method and liquid crystal display device Pending JP2003202567A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010088281A KR20030059420A (en) 2001-12-29 2001-12-29 3D MEMS light collection plate, manufacturing method and display devices
KR2001-088281 2001-12-29

Publications (1)

Publication Number Publication Date
JP2003202567A true JP2003202567A (en) 2003-07-18

Family

ID=27656299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209929A Pending JP2003202567A (en) 2001-12-29 2002-07-18 Three-dimensional means condenser, its manufacturing method and liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2003202567A (en)
KR (1) KR20030059420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027078B2 (en) 2009-11-05 2011-09-27 Samsung Electronics Co., Ltd. Display device using MEMS element and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447773B1 (en) * 2010-11-02 2013-07-10 Fujifilm Corporation Method for producing a pattern, method for producing a MEMS structure, use of a cured film of a photosensitive composition as a sacrificial layer or as a component of a MEMS structure
KR101684848B1 (en) * 2015-06-09 2016-12-12 (주)이미지스테크놀로지 A pressure sensing touch system on the device using display panel of based on liquid crystal display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107202A (en) * 1984-10-30 1986-05-26 Shimadzu Corp Semitransparent mirror
JPH0980464A (en) * 1995-09-13 1997-03-28 Toshiba Corp Liquid crystal display device
JPH1124102A (en) * 1997-07-01 1999-01-29 Matsushita Electric Ind Co Ltd Display panel and its driving method and manufacturing method, and display device using the same display panel
JPH11258595A (en) * 1998-03-10 1999-09-24 Citizen Watch Co Ltd Liquid crystal display device
JP2000284724A (en) * 1999-03-29 2000-10-13 Denso Corp Manufacture of electrode substrate for display

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588021A (en) * 1991-09-25 1993-04-09 Nitto Denko Corp Light transmission body
JPH05249450A (en) * 1991-12-02 1993-09-28 Nec Corp Liquid crystal display
JPH07114014A (en) * 1993-10-18 1995-05-02 Sanyo Electric Co Ltd Liquid crystal display device
JPH08220519A (en) * 1995-02-14 1996-08-30 Matsushita Electric Ind Co Ltd Diffusion screen and liquid crystal display device using it
JP2000347129A (en) * 1999-06-08 2000-12-15 Sony Corp Projecting optical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107202A (en) * 1984-10-30 1986-05-26 Shimadzu Corp Semitransparent mirror
JPH0980464A (en) * 1995-09-13 1997-03-28 Toshiba Corp Liquid crystal display device
JPH1124102A (en) * 1997-07-01 1999-01-29 Matsushita Electric Ind Co Ltd Display panel and its driving method and manufacturing method, and display device using the same display panel
JPH11258595A (en) * 1998-03-10 1999-09-24 Citizen Watch Co Ltd Liquid crystal display device
JP2000284724A (en) * 1999-03-29 2000-10-13 Denso Corp Manufacture of electrode substrate for display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8027078B2 (en) 2009-11-05 2011-09-27 Samsung Electronics Co., Ltd. Display device using MEMS element and manufacturing method thereof

Also Published As

Publication number Publication date
KR20030059420A (en) 2003-07-10

Similar Documents

Publication Publication Date Title
US7573642B2 (en) System for collimating backlight
US6700632B2 (en) Illuminator apparatus
US7595934B2 (en) Integrated sub-assembly having a light collimating or transflecting device
CN104656306A (en) Substrate provided with black matrix, manufacturing method of substrate and display device
US7372531B2 (en) Reflective plate of LCD and fabrication method thereof
WO2014166211A1 (en) Light guide plate and manufacturing method therefor, and display device comprising same
US9195143B2 (en) Mask plate and exposing method
JP4401221B2 (en) Manufacturing method of liquid crystal display device
KR100990074B1 (en) Inclined exposure lithography system
JP2003202567A (en) Three-dimensional means condenser, its manufacturing method and liquid crystal display device
JP2008010393A (en) Backlight unit and liquid crystal display device
JP2013104960A (en) Photomask and exposure method
KR20180035864A (en) Optical mask for optical alignment and optical alignment method
US20070218372A1 (en) Method For Production Of Micro-Optics Structures
JP2005032537A (en) Direct backlight
KR100623030B1 (en) Fabrication method of metal wire grid polarizer for liquid crystal display on flexible substrate
US20040227262A1 (en) Method of fabricating light-guide plate
JP4061923B2 (en) Transflective liquid crystal display device and manufacturing method thereof
US7387423B2 (en) Light guide plate with transmittance enhancement layer and backlight system using same
JP2006106687A (en) Polarization optical device and liquid crystal display module
JP2001133604A (en) Optical diffusion plate, manufacturing method therefor and optical guide device for illumination
US20040253546A1 (en) Method for manufacturing a diffuser for a backlight module
KR20060106415A (en) Microlens sheet, manufacturing method and liquid crystal display using thereof
TW200925683A (en) Light guide plate, manufacturing method and application thereof
KR100671519B1 (en) Method for fabricating reflective plate of liquid crystal display

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419